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Solutions to the problems in Chapter 24

24.4 Mean field theory

The antiferromagnetic two-dimensional Ising model on a square lattice. In this
lattice, the number of nearest neighbours is z = 4. The Hamiltonian is supposed
to be

H = −
∑
〈�R�R′〉

J σ�R
σ�R′ −

∑
�R

HµBσ�R
= −1

2

∑
�R�R′

J σ�R
σ�R′ −

∑
�R

HµBσ�R
, J < 0 (1)

where H = E in the usual representation of σ�R = ±1. Because J is negative, the

ground state is not the ferro- but the antiferromagnet. In the sums, �R and �R′

are nearest neighbours, and the antiferromagnetic ground state is assumed to be
determined by the mean field values

(〈σ�R
〉, 〈σ�R′〉) =

{
(σ↑, σ↓), �R ⊂ sublattice A

(σ↓, σ↑), �R ⊂ sublattice B
(2)

The two sublattices of the square lattice:
A shown by filled and B by open circles.
The figure shows the case, where the site

at �R belongs to the A-sublattice, in which
case 〈σ�R

〉 = σ↑. Its four nearest neighbours
at positions �R′, then all belong to the B
sublattice and 〈σ�R′〉 = σ↓.

(a) In the mean-field (MF) approximation we get, when inserting (2) in (1),

E
MF
= − 1

2

∑
�R�R′

J
(
σ�R

〈σ�R′〉+ σ�R′〈σ�R
〉 − 〈σ�R

〉〈σ�R′〉
)
−HµB

∑
�R

σ�R

= −
∑
�R�R′

J 〈σ�R′〉σ�R
−HµB

∑
�R

σ�R
+ 1

2NzJσ↑σ↓

= −
N/2∑
�R⊂A

(
zJσ↓ + µBH

)
σ�R

−
N/2∑
�R⊂B

(
zJσ↑ + µBH

)
σ�R

+ 1
2NzJσ↑σ↓

(3)

Because of the MF-approximation, the total energy E =
∑

�R
E�R

is the sum of the
individual contributions of each site, and the partition function of the total system

Z =
∑
all E

e−βE =
∏
�R

( ∑
all E�R

e−βE�R

)
=
∏
�R

Z�R
(4)

is reduced so to become the product of the partition functions Z�R
for the individual

sites, see for instance (6.40). For the sites, where �R belongs to the sublattice A
(↑), we get, when omitting the constant energy term 1

2zJσ↑σ↓,

Z↑ =
∑

σ=±1

e−β[−(zJσ↓+µBH)σ] =
∑

σ=±1

eβ(zJσ↓+µBH)σ = 2 cosh
[
zJσ↓ + µBH

]
(5)
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which implies that

〈σ�R
〉 = σ↑ =

1

Z↑

∑
σ=±1

σ eβ(zJσ↓+µBH)σ = tanh
[
β(zJσ↓ + µBH)

]
(6)

Notice that the omission of a constant energy term does not affect the calculation
of a thermal expectation value. Z↓ and σ↓ are determined equivalently

Z↓ = 2 cosh
[
zJσ↑ + µBH

]
, σ↓ = tanh

[
β(zJσ↑ + µBH)

]
(7)

and the (total) free energy is

F = −N

2
kBT

(
lnZ↑ + lnZ↓

)
+N 1

2zJσ↑σ↓ =

− N

2
kBT

{
ln
[
2 cosh (zJσ↓ + µBH)

]
+ ln

[
2 cosh (zJσ↑ + µBH)

]}
+

N

2
zJσ↑σ↓

(8)
The constant energy term neglecting in the partition functions adds to F.

(b) The self-consistent equations determining σ↑ and σ↓ are derived above.

(c) In the paramagnetic phase, T > TN, σ↑ and σ↓ vanish in the limit H → 0.
Expanding tanh to leading order, tanhx � x, we get from (6) and (7)

σ↑ = tanh
[
β(zJσ↓ + µBH)

]
� β(zJσ↓ + µBH)

σ↓ = tanh
[
β(zJσ↑ + µBH)

]
� β(zJσ↑ + µBH)

⎫⎪⎬
⎪⎭ σ↑ = σ↓ =

µBHβ

1− zJβ
(9)

The expectation values σ↑ and σ↓ are equal and are proportional to the field. The
magnetization is M = (N/V )µB(σ↑ + σ↓)/2 and the susceptibility is defined as
χ = M/H in the limit of zero field, and we find

χ =
N

V

µ2
B

kBT − zJ
≡ N

V

µ2
B

kB(T −Θ)
, Θ = −z|J |

kB
= −TN (10)

The paramagnetic Curie, or Curie–Weiss, temperature Θ is defined by (24.41),
χ ∝ (T −Θ)−1. In the present system Θ is negative (J is negative), and |Θ| is, as
we shall see, the same as the “Néel temperature”, TN, below which the system is
antiferromagnetically ordered at zero field.

(d) The Néel temperature is the temperature below which the self-consistent equa-
tions for σ↑ and σ↓ have a non-zero solution at zero field. The solution is obtained
by assuming σ↑ = −σ↓, and H = 0, in which case we get

σ↑ = tanh
[
β(−z|J |)(−σ↑)

]
= tanh(βz|J |σ↑) = tanh(ασ↑) (11)

This equation is the same as considered in the case of the ferromagnet, (24.56), and
it has a non-zero solution, when the coefficient α ≥ 1. The Néel temperature TN

is the temperature at which α = z|J |β = 1, or TN = z|J |/kB. The paramagnetic
susceptibility, which diverges at the transition, is obtained by applying a field with
the same symmetry as the ordered phase. The application of a “staggered” field,
whereH�R

= +H at the A sites and −H at the B sites determines straightforwardly

(using σ↑ = −σ↓) the staggered susceptibility to be

χstag =
N

V

µB(σ↑ − σ↓)
2H

=
N

V

µ2
B

kB(T − TN)
(12)
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which diverges at TN.

(e) Spin-flip transition: In the ordered phase, the application of a small field along
z, in the “up” direction, does not change σ↑ = 1 or σ↓ = −1. However, if the field
becomes sufficiently large, the spins antiparallel to the field are going to flip so to
become parallel to the field. This first-order spin-flip transition happens, when the
Zeeman-energy gain is able to compensate for the loss of exchange energy.

Introducing dimensionless quantities, then

σ↑ = tanh

(−σ↓ + h

t

)
, σ↓ = tanh

(−σ↑ + h

t

)
, h =

µBH

z|J | , t =
T

TN

(13)

In the limit of t → 0, then the introduction of σ↑ = 1 in the second equation
implies σ↓ = −1 if 1 > h > 0 and σ↓ = 1 if h > 1. The first equation then predicts
σ↑ = 1 in both cases, hence assuring that this is the self-consistent solution. Using

ln[2 coshx] = ln[ex + e−x] → ln e|x| = |x| for x → ±∞, the free energy is found to
be determined by

f =
F

Nz|J | = − t

2

{
ln

[
2 cosh

(−σ↓ + h

t

)]
+ ln

[
2 cosh

(−σ↑ + h

t

)]}
− 1

2σ↑σ↓

→ − t

2

{−σ↓ + h

t
+

∣∣∣∣−σ↑ + h

t

∣∣∣∣
}
− 1

2σ↑σ↓ =

{
−1

2 , 0 < h < 1

−h+ 1
2 , h > 1

(14)
Hence, the free energies of the antiferromagnetic phase f = −1/2 and of the spin-
flipped phase f = −h + 1/2 are equal at the transition at h = 1. At a finite
temperature the spin-flip transition is smeared out due to thermal effects. The
figure below shows the numerical calculated “magnetization”, (σ↑ + σ↓)/2, as a
function of the field h at various values of temperature t.
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24.6 Superlattices

Model of Cu3Au – In the fcc lattice, the sites in the

centers of the six faces are namedAs and the 8 corners

are named Bs as indicated on the figure by, respec-

tively, black and white spheres. There is 8/8 = 1
Bs site and 6/2 = 3 As sites per unit cell. The dis-

tance between nearest neighbours is a/
√
2, and the

coordination number is z = 12. The kind of nearest

neighbours of the two kind of sites are

As-site: 8 As sites and 4 Bs sites.

Bs-site: 12 As sites.

The correct solution to the equations (24.62) and (24.63) is not (24.64), but

f(σ�R
, σ�R′) =

εBB − εAA

4
(σ�R

+ σ�R′)−
2εAB − εAA − εBB

4
σ�R

σ�R′ (24.64′)

when leaving out the constant term C1 = (2εAB+ εAA+ εBB)/4. This modification
affects the definition of the effective parameters in (24.67), which should read

µBH = µ− εBB − εAA

2
z , J =

2εAB − εAA − εBB

4
(24.67′)

(a) In the present system we have a 3:1 mixture of A and B atoms. The effective
Hamiltonian equals the energy minus the chemical potential times the difference
between the numbers of B and A atoms, is (leaving out the constant contribution)

H = E− µ
∑
�R

σ�R
= −J

∑
〈�R�R′〉

σ�R
σ�R′ − µBH

∑
�R

σ�R
(1)

We are going to use the same choice as Marder, that σ�R = 1 or −1 signifies a site
occupied by, respectively, a B or an A atom. With this choice, the effective energy
parameters are those given by (24.67′) above. In the mean-field approximation

H
MF
= − J

∑
〈�R�R′〉

(
σ�R

〈σ�R′〉+ σ�R′〈σ�R
〉 − 〈σ�R

〉〈σ�R′〉
)
− µBH

∑
�R

σ�R
=
∑
�R

H�R
(2)

where

∑
〈�R�R′〉

(
σ�R

〈σ�R′〉+σ�R′〈σ�R
〉
)
=

1

2

∑
�R�R′

(
σ�R

〈σ�R′〉+ σ�R′〈σ�R
〉
)
=
∑
�R

σ�R

( ∑
�R′ (nn)

〈σ�R′〉
)

=
N∑
�Bs

σ�Bs

(
12 〈σ�As

〉
)
+

3N∑
�As

σ�As

(
8 〈σ�As

〉+ 4 〈σ�Bs
〉
)

(3)
Here N is the number of unit cells (or Bs sites), and σ�R

= σ�As
(σ�Bs

), if �R = �As

(�Bs) is the position of an As (Bs) site. The (grand) partition function of the total
system is the product of the individual partition functions for each site, because
H =

∑
�R H�R

, and in the case of an As site (omitting the constant energy term)

ZAs
=
∑
σ=±1

e
β[J(8 〈σ

�As
〉+4 〈σ

�Bs
〉)+µBH]σ (4)
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implying that

〈σ�As
〉 = 1

ZAs

∑
σ=±1

σ e
β[J(8 〈σ

�As
〉+4 〈σ

�Bs
〉)+µBH]σ

=tanh
{
β
[
8 J 〈σ�As

〉+ 4 J 〈σ�Bs
〉+ µBH

]} (5)

and equivalently

〈σ�Bs
〉 = tanh

{
β
[
12 J 〈σ�As

〉+ µBH
]}

(6)

(b) σ�R
= +1 for the B atoms and the number of these atoms is equal the number

of unit cells N , whereas the number of A atoms is 3N . These conditions imply

∑
�R

σ�R
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N − 3N = −2N

N∑
�Bs

σ�Bs
+

3N∑
�As

σ�As
= N〈σ�Bs

〉+ 3N〈σ�As
〉 ⇒ 〈σ�Bs

〉 = −2−3 〈σ�As
〉

(7)
(c) The chemical potential, or effectively µBH, has to be adjusted so that the two
equations (5) and (6) are in accordance with the relation 〈σ�Bs

〉 = −2 − 3 〈σ�As
〉.

The effective Zeeman term may be eliminated:

tanh−1〈σ�As
〉 − tanh−1〈σ�Bs

〉 = β
[
8 J 〈σ�As

〉+ 4 J 〈σ�Bs
〉+ µBH

]
−β
[
12 J 〈σ�As

〉+ µBH
]
= 4βJ

(
〈σ�Bs

〉 − 〈σ�As
〉
)
= −8βJ

(
1 + 2〈σ�As

〉
) (8)

Introducing an effective order parameter Q and J = −|J |, we finally get

f(Q) ≡ tanh−1
(
Q+ 1

2

)
+ tanh−1

(
3Q− 1

2

)
= 8β|J |Q, Q = −1− 2〈σ�As

〉 (9)

In the disordered phase both the As and the Bs sites are occupied by an A atom
with the probability 3

4 or 〈σ�As
〉 = 〈σ�Bs

〉 = (−1)34 + (+1)14 = −1
2 . This result is in

accordance with (7) and Q = −1−2〈σ�As
〉 = 0. In the completely ordered phase at

zero temperature, all A (B) atoms are placed on the As (Bs) sites implying that
〈σ�As

〉 = −1 and 〈σ�Bs
〉 = 1 and hence Q = 1.

The numerical solution of (9) is discussed

in a Mathematica program. The system

orders at a first-order transition, when
f(Q) = Qf ′(Q) [the line y = αQ with

α = f ′(Qc) is parallel to the tangent

of f(Q) at Q = Qc, and this line just

touches f(Q) at Q = Qc, when f(Qc) =
αQc. This then becomes a solution to

(9) if choosing α = 8β|J |]. The solution

is Q = Qc = 0.3455 and defining the ef-

fective temperature scale t = (8β|J |)−1

then Q jumps from zero to Qc at the
temperature t = tc = 1/f ′(Qc) = 0.4143.

The calculated variation of Q as a func-

tion of t is shown in the figure.


