Solutions to the problems in Chapter 24

24.4 Mean field theory

The antiferromagnetic two-dimensional Ising model on a square lattice. In this lattice, the number of nearest neighbours is $z=4$. The Hamiltonian is supposed to be

$$
\begin{equation*}
\mathcal{H}=-\sum_{\left\langle\vec{R} \vec{R}^{\prime}\right\rangle} J \sigma_{\vec{R}} \sigma_{\vec{R}^{\prime}}-\sum_{\vec{R}} H \mu_{\mathrm{B}} \sigma_{\vec{R}}=-\frac{1}{2} \sum_{\vec{R} \vec{R}^{\prime}} J \sigma_{\vec{R}} \sigma_{\vec{R}^{\prime}}-\sum_{\vec{R}} H \mu_{\mathrm{B}} \sigma_{\vec{R}}, \quad J<0 \tag{1}
\end{equation*}
$$

where $\mathcal{H}=\mathcal{E}$ in the usual representation of $\sigma_{\vec{R}}= \pm 1$. Because J is negative, the ground state is not the ferro- but the antiferromagnet. In the sums, \vec{R} and \vec{R}^{\prime} are nearest neighbours, and the antiferromagnetic ground state is assumed to be determined by the mean field values

$$
\left(\left\langle\sigma_{\vec{R}}\right\rangle,\left\langle\sigma_{\vec{R}^{\prime}}\right\rangle\right)= \begin{cases}\left(\sigma_{\uparrow}, \sigma_{\downarrow}\right), & \vec{R} \subset \text { sublattice A } \tag{2}\\ \left(\sigma_{\downarrow}, \sigma_{\uparrow}\right), & \vec{R} \subset \text { sublattice B }\end{cases}
$$

The two sublattices of the square lattice: A shown by filled and B by open circles. The figure shows the case, where the site at \vec{R} belongs to the A-sublattice, in which case $\left\langle\sigma_{\vec{R}}\right\rangle=\sigma_{\uparrow}$. Its four nearest neighbours at positions \vec{R}^{\prime}, then all belong to the B sublattice and $\left\langle\sigma_{\vec{R}^{\prime}}\right\rangle=\sigma_{\downarrow}$.
(a) In the mean-field (MF) approximation we get, when inserting (2) in (1),

$$
\begin{align*}
\mathcal{E} & \stackrel{\mathrm{MF}}{=}-\frac{1}{2} \sum_{\vec{R} \vec{R}^{\prime}} J\left(\sigma_{\vec{R}}\left\langle\sigma_{\vec{R}^{\prime}}\right\rangle+\sigma_{\vec{R}^{\prime}}\left\langle\sigma_{\vec{R}}\right\rangle-\left\langle\sigma_{\vec{R}}\right\rangle\left\langle\sigma_{\vec{R}^{\prime}}\right\rangle\right)-H \mu_{\mathrm{B}} \sum_{\vec{R}} \sigma_{\vec{R}} \\
& =-\sum_{\vec{R} \vec{R}^{\prime}} J\left\langle\sigma_{\vec{R}^{\prime}}\right\rangle \sigma_{\vec{R}}-H \mu_{\mathrm{B}} \sum_{\vec{R}} \sigma_{\vec{R}}+\frac{1}{2} N z J \sigma_{\uparrow} \sigma_{\downarrow} \tag{3}\\
& =-\sum_{\vec{R} \subset A}^{N / 2}\left(z J \sigma_{\downarrow}+\mu_{\mathrm{B}} H\right) \sigma_{\vec{R}}-\sum_{\vec{R} \subset B}^{N / 2}\left(z J \sigma_{\uparrow}+\mu_{\mathrm{B}} H\right) \sigma_{\vec{R}}+\frac{1}{2} N z J \sigma_{\uparrow} \sigma_{\downarrow}
\end{align*}
$$

Because of the MF-approximation, the total energy $\mathcal{E}=\sum_{\vec{R}} \mathcal{E}_{\vec{R}}$ is the sum of the individual contributions of each site, and the partition function of the total system

$$
\begin{equation*}
Z=\sum_{\text {all } \mathcal{E}} e^{-\beta \mathcal{E}}=\prod_{\vec{R}}\left(\sum_{\text {all } \mathcal{E}_{\overrightarrow{\mathrm{R}}}} e^{-\beta \mathcal{E}_{\vec{R}}}\right)=\prod_{\vec{R}} Z_{\vec{R}} \tag{4}
\end{equation*}
$$

is reduced so to become the product of the partition functions $Z_{\vec{R}}$ for the individual sites, see for instance (6.40). For the sites, where \vec{R} belongs to the sublattice A (\uparrow), we get, when omitting the constant energy term $\frac{1}{2} z J \sigma_{\uparrow} \sigma_{\downarrow}$,

$$
\begin{equation*}
Z_{\uparrow}=\sum_{\sigma= \pm 1} e^{-\beta\left[-\left(z J \sigma_{\downarrow}+\mu_{\mathrm{B}} H\right) \sigma\right]}=\sum_{\sigma= \pm 1} e^{\beta\left(z J \sigma_{\downarrow}+\mu_{\mathrm{B}} H\right) \sigma}=2 \cosh \left[z J \sigma_{\downarrow}+\mu_{\mathrm{B}} H\right] \tag{5}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\left\langle\sigma_{\vec{R}}\right\rangle=\sigma_{\uparrow}=\frac{1}{Z_{\uparrow}} \sum_{\sigma= \pm 1} \sigma e^{\beta\left(z J \sigma_{\downarrow}+\mu_{\mathrm{B}} H\right) \sigma}=\tanh \left[\beta\left(z J \sigma_{\downarrow}+\mu_{\mathrm{B}} H\right)\right] \tag{6}
\end{equation*}
$$

Notice that the omission of a constant energy term does not affect the calculation of a thermal expectation value. Z_{\downarrow} and σ_{\downarrow} are determined equivalently

$$
\begin{equation*}
Z_{\downarrow}=2 \cosh \left[z J \sigma_{\uparrow}+\mu_{\mathrm{B}} H\right], \quad \sigma_{\downarrow}=\tanh \left[\beta\left(z J \sigma_{\uparrow}+\mu_{\mathrm{B}} H\right)\right] \tag{7}
\end{equation*}
$$

and the (total) free energy is

$$
\begin{align*}
& \mathcal{F}=-\frac{N}{2} k_{\mathrm{B}} T\left(\ln Z_{\uparrow}+\ln Z_{\downarrow}\right)+N \frac{1}{2} z J \sigma_{\uparrow} \sigma_{\downarrow}= \\
& -\frac{N}{2} k_{\mathrm{B}} T\left\{\ln \left[2 \cosh \left(z J \sigma_{\downarrow}+\mu_{\mathrm{B}} H\right)\right]+\ln \left[2 \cosh \left(z J \sigma_{\uparrow}+\mu_{\mathrm{B}} H\right)\right]\right\}+\frac{N}{2} z J \sigma_{\uparrow} \sigma_{\downarrow} \tag{8}
\end{align*}
$$

The constant energy term neglecting in the partition functions adds to \mathcal{F}.
(b) The self-consistent equations determining σ_{\uparrow} and σ_{\downarrow} are derived above.
(c) In the paramagnetic phase, $T>T_{\mathrm{N}}, \sigma_{\uparrow}$ and σ_{\downarrow} vanish in the limit $H \rightarrow 0$. Expanding \tanh to leading order, $\tanh x \simeq x$, we get from (6) and (7)

$$
\left.\begin{array}{l}
\sigma_{\uparrow}=\tanh \left[\beta\left(z J \sigma_{\downarrow}+\mu_{\mathrm{B}} H\right)\right] \simeq \beta\left(z J \sigma_{\downarrow}+\mu_{\mathrm{B}} H\right) \tag{9}\\
\sigma_{\downarrow}=\tanh \left[\beta\left(z J \sigma_{\uparrow}+\mu_{\mathrm{B}} H\right)\right] \simeq \beta\left(z J \sigma_{\uparrow}+\mu_{\mathrm{B}} H\right)
\end{array}\right\} \quad \sigma_{\uparrow}=\sigma_{\downarrow}=\frac{\mu_{\mathrm{B}} H \beta}{1-z J \beta}
$$

The expectation values σ_{\uparrow} and σ_{\downarrow} are equal and are proportional to the field. The magnetization is $M=(N / V) \mu_{\mathrm{B}}\left(\sigma_{\uparrow}+\sigma_{\downarrow}\right) / 2$ and the susceptibility is defined as $\chi=M / H$ in the limit of zero field, and we find

$$
\begin{equation*}
\chi=\frac{N}{V} \frac{\mu_{\mathrm{B}}^{2}}{k_{\mathrm{B}} T-z J} \equiv \frac{N}{V} \frac{\mu_{\mathrm{B}}^{2}}{k_{\mathrm{B}}(T-\Theta)}, \quad \Theta=-\frac{z|J|}{k_{B}}=-T_{\mathrm{N}} \tag{10}
\end{equation*}
$$

The paramagnetic Curie, or Curie-Weiss, temperature Θ is defined by (24.41), $\chi \propto(T-\Theta)^{-1}$. In the present system Θ is negative (J is negative), and $|\Theta|$ is, as we shall see, the same as the "Néel temperature", T_{N}, below which the system is antiferromagnetically ordered at zero field.
(d) The Néel temperature is the temperature below which the self-consistent equations for σ_{\uparrow} and σ_{\downarrow} have a non-zero solution at zero field. The solution is obtained by assuming $\sigma_{\uparrow}=-\sigma_{\downarrow}$, and $H=0$, in which case we get

$$
\begin{equation*}
\sigma_{\uparrow}=\tanh \left[\beta(-z|J|)\left(-\sigma_{\uparrow}\right)\right]=\tanh \left(\beta z|J| \sigma_{\uparrow}\right)=\tanh \left(\alpha \sigma_{\uparrow}\right) \tag{11}
\end{equation*}
$$

This equation is the same as considered in the case of the ferromagnet, (24.56), and it has a non-zero solution, when the coefficient $\alpha \geq 1$. The Néel temperature T_{N} is the temperature at which $\alpha=z|J| \beta=1$, or $T_{\mathrm{N}}=z|J| / k_{\mathrm{B}}$. The paramagnetic susceptibility, which diverges at the transition, is obtained by applying a field with the same symmetry as the ordered phase. The application of a "staggered" field, where $H_{\vec{R}}=+H$ at the A sites and $-H$ at the B sites determines straightforwardly (using $\sigma_{\uparrow}=-\sigma_{\downarrow}$) the staggered susceptibility to be

$$
\begin{equation*}
\chi_{\text {stag }}=\frac{N}{V} \frac{\mu_{\mathrm{B}}\left(\sigma_{\uparrow}-\sigma_{\downarrow}\right)}{2 H}=\frac{N}{V} \frac{\mu_{\mathrm{B}}^{2}}{k_{\mathrm{B}}\left(T-T_{\mathrm{N}}\right)} \tag{12}
\end{equation*}
$$

which diverges at T_{N}.
(e) Spin-flip transition: In the ordered phase, the application of a small field along z, in the "up" direction, does not change $\sigma_{\uparrow}=1$ or $\sigma_{\downarrow}=-1$. However, if the field becomes sufficiently large, the spins antiparallel to the field are going to flip so to become parallel to the field. This first-order spin-flip transition happens, when the Zeeman-energy gain is able to compensate for the loss of exchange energy.

Introducing dimensionless quantities, then

$$
\begin{equation*}
\sigma_{\uparrow}=\tanh \left(\frac{-\sigma_{\downarrow}+h}{t}\right), \quad \sigma_{\downarrow}=\tanh \left(\frac{-\sigma_{\uparrow}+h}{t}\right), \quad h=\frac{\mu_{\mathrm{B}} H}{z|J|}, \quad t=\frac{T}{T_{\mathrm{N}}} \tag{13}
\end{equation*}
$$

In the limit of $t \rightarrow 0$, then the introduction of $\sigma_{\uparrow}=1$ in the second equation implies $\sigma_{\downarrow}=-1$ if $1>h>0$ and $\sigma_{\downarrow}=1$ if $h>1$. The first equation then predicts $\sigma_{\uparrow}=1$ in both cases, hence assuring that this is the self-consistent solution. Using $\ln [2 \cosh x]=\ln \left[e^{x}+e^{-x}\right] \rightarrow \ln e^{|x|}=|x|$ for $x \rightarrow \pm \infty$, the free energy is found to be determined by

$$
\begin{align*}
f & =\frac{\mathcal{F}}{N z|J|}=-\frac{t}{2}\left\{\ln \left[2 \cosh \left(\frac{-\sigma_{\downarrow}+h}{t}\right)\right]+\ln \left[2 \cosh \left(\frac{-\sigma_{\uparrow}+h}{t}\right)\right]\right\}-\frac{1}{2} \sigma_{\uparrow} \sigma_{\downarrow} \\
& \rightarrow-\frac{t}{2}\left\{\frac{-\sigma_{\downarrow}+h}{t}+\left|\frac{-\sigma_{\uparrow}+h}{t}\right|\right\}-\frac{1}{2} \sigma_{\uparrow} \sigma_{\downarrow}=\left\{\begin{array}{cc}
-\frac{1}{2}, & 0<h<1 \\
-h+\frac{1}{2}, & h>1
\end{array}\right. \tag{14}
\end{align*}
$$

Hence, the free energies of the antiferromagnetic phase $f=-1 / 2$ and of the spinflipped phase $f=-h+1 / 2$ are equal at the transition at $h=1$. At a finite temperature the spin-flip transition is smeared out due to thermal effects. The figure below shows the numerical calculated "magnetization", $\left(\sigma_{\uparrow}+\sigma_{\downarrow}\right) / 2$, as a function of the field h at various values of temperature t.

24.6 Superlattices

Model of $\mathrm{Cu}_{3} \mathrm{Au}$ - In the fcc lattice, the sites in the centers of the six faces are named A_{s} and the 8 corners are named B_{s} as indicated on the figure by, respectively, black and white spheres. There is $8 / 8=1$ B_{s} site and $6 / 2=3 A_{s}$ sites per unit cell. The distance between nearest neighbours is $a / \sqrt{2}$, and the coordination number is $z=12$. The kind of nearest neighbours of the two kind of sites are

$$
A_{s} \text {-site: } 8 A_{s} \text { sites and } 4 B_{s} \text { sites. }
$$

$$
B_{s} \text {-site: } 12 A_{s} \text { sites. }
$$

The correct solution to the equations (24.62) and (24.63) is not (24.64), but

$$
f\left(\sigma_{\vec{R}}, \sigma_{\vec{R}^{\prime}}\right)=\frac{\epsilon_{B B}-\epsilon_{A A}}{4}\left(\sigma_{\vec{R}}+\sigma_{\vec{R}^{\prime}}\right)-\frac{2 \epsilon_{A B}-\epsilon_{A A}-\epsilon_{B B}}{4} \sigma_{\vec{R}} \sigma_{\vec{R}^{\prime}}
$$

when leaving out the constant term $C_{1}=\left(2 \epsilon_{A B}+\epsilon_{A A}+\epsilon_{B B}\right) / 4$. This modification affects the definition of the effective parameters in (24.67), which should read

$$
\mu_{\mathrm{B}} H=\mu-\frac{\epsilon_{B B}-\epsilon_{A A}}{2} z, \quad J=\frac{2 \epsilon_{A B}-\epsilon_{A A}-\epsilon_{B B}}{4}
$$

(a) In the present system we have a $3: 1$ mixture of A and B atoms. The effective Hamiltonian equals the energy minus the chemical potential times the difference between the numbers of B and A atoms, is (leaving out the constant contribution)

$$
\begin{equation*}
\mathcal{H}=\mathcal{E}-\mu \sum_{\vec{R}} \sigma_{\vec{R}}=-J \sum_{\left\langle\vec{R} \vec{R}^{\prime}\right\rangle} \sigma_{\vec{R}} \sigma_{\vec{R}^{\prime}}-\mu_{\mathrm{B}} H \sum_{\vec{R}} \sigma_{\vec{R}} \tag{1}
\end{equation*}
$$

We are going to use the same choice as Marder, that $\sigma_{\vec{R}}=1$ or -1 signifies a site occupied by, respectively, a B or an A atom. With this choice, the effective energy parameters are those given by $\left(24.67^{\prime}\right)$ above. In the mean-field approximation

$$
\begin{equation*}
\mathcal{H} \stackrel{\mathrm{MF}}{=}-J \sum_{\left\langle\vec{R} \vec{R}^{\prime}\right\rangle}\left(\sigma_{\vec{R}}\left\langle\sigma_{\vec{R}^{\prime}}\right\rangle+\sigma_{\vec{R}^{\prime}}\left\langle\sigma_{\vec{R}}\right\rangle-\left\langle\sigma_{\vec{R}}\right\rangle\left\langle\sigma_{\vec{R}^{\prime}}\right\rangle\right)-\mu_{\mathrm{B}} H \sum_{\vec{R}} \sigma_{\vec{R}}=\sum_{\vec{R}} \mathcal{H}_{\vec{R}} \tag{2}
\end{equation*}
$$

where

$$
\begin{gather*}
\sum_{\left\langle\vec{R} \vec{R}^{\prime}\right\rangle}\left(\sigma_{\vec{R}}\left\langle\sigma_{\vec{R}^{\prime}}\right\rangle+\sigma_{\vec{R}^{\prime}}\left\langle\sigma_{\vec{R}}\right\rangle\right)=\frac{1}{2} \sum_{\vec{R} \vec{R}^{\prime}}\left(\sigma_{\vec{R}}\left\langle\sigma_{\vec{R}^{\prime}}\right\rangle+\sigma_{\vec{R}^{\prime}}\left\langle\sigma_{\vec{R}}\right\rangle\right)=\sum_{\vec{R}} \sigma_{\vec{R}}\left(\sum_{\vec{R}^{\prime}(\mathrm{nn})}\left\langle\sigma_{\vec{R}^{\prime}}\right\rangle\right) \\
=\sum_{\vec{B}_{s}}^{N} \sigma_{\vec{B}_{s}}\left(12\left\langle\sigma_{\vec{A}_{s}}\right\rangle\right)+\sum_{\vec{A}_{s}}^{3 N} \sigma_{\vec{A}_{s}}\left(8\left\langle\sigma_{\vec{A}_{s}}\right\rangle+4\left\langle\sigma_{\vec{B}_{s}}\right\rangle\right) \tag{3}
\end{gather*}
$$

Here N is the number of unit cells (or B_{s} sites), and $\sigma_{\vec{R}}=\sigma_{\vec{A}_{s}}\left(\sigma_{\vec{B}_{s}}\right)$, if $\vec{R}=\vec{A}_{s}$ $\left(\vec{B}_{s}\right)$ is the position of an $A_{s}\left(B_{s}\right)$ site. The (grand) partition function of the total system is the product of the individual partition functions for each site, because $\mathcal{H}=\sum_{\vec{R}} \mathcal{H}_{\vec{R}}$, and in the case of an A_{s} site (omitting the constant energy term)

$$
\begin{equation*}
Z_{A_{s}}=\sum_{\sigma= \pm 1} e^{\beta\left[J\left(8\left\langle\sigma_{\vec{A}_{s}}\right\rangle+4\left\langle\sigma_{\vec{B}_{s}}\right\rangle\right)+\mu_{\mathrm{B}} H\right] \sigma} \tag{4}
\end{equation*}
$$

implying that

$$
\begin{align*}
\left\langle\sigma_{\vec{A}_{s}}\right\rangle & =\frac{1}{Z_{A_{s}}} \sum_{\sigma= \pm 1} \sigma e^{\beta\left[J\left(8\left\langle\sigma_{\vec{A}_{s}}\right\rangle+4\left\langle\sigma_{\vec{B}_{s}}\right\rangle\right)+\mu_{\mathrm{B}} H\right]_{\sigma}} \tag{5}\\
& =\tanh \left\{\beta\left[8 J\left\langle\sigma_{\vec{A}_{s}}\right\rangle+4 J\left\langle\sigma_{\vec{B}_{s}}\right\rangle+\mu_{\mathrm{B}} H\right]\right\}
\end{align*}
$$

and equivalently

$$
\begin{equation*}
\left\langle\sigma_{\vec{B}_{s}}\right\rangle=\tanh \left\{\beta\left[12 J\left\langle\sigma_{\vec{A}_{s}}\right\rangle+\mu_{\mathrm{B}} H\right]\right\} \tag{6}
\end{equation*}
$$

(b) $\sigma_{\vec{R}}=+1$ for the B atoms and the number of these atoms is equal the number of unit cells N, whereas the number of A atoms is $3 N$. These conditions imply

$$
\sum_{\vec{R}} \sigma_{\vec{R}}=\left\{\begin{array}{l}
N-3 N=-2 N \tag{7}\\
\sum_{\vec{B}_{s}}^{N} \sigma_{\vec{B}_{s}}+\sum_{\vec{A}_{s}}^{3 N} \sigma_{\vec{A}_{s}}=N\left\langle\sigma_{\vec{B}_{s}}\right\rangle+3 N\left\langle\sigma_{\vec{A}_{s}}\right\rangle \quad \Rightarrow \quad\left\langle\sigma_{\vec{B}_{s}}\right\rangle=-2-3\left\langle\sigma_{\vec{A}_{s}}\right\rangle
\end{array}\right.
$$

(c) The chemical potential, or effectively $\mu_{\mathrm{B}} H$, has to be adjusted so that the two equations (5) and (6) are in accordance with the relation $\left\langle\sigma_{\vec{B}_{s}}\right\rangle=-2-3\left\langle\sigma_{\vec{A}_{s}}\right\rangle$. The effective Zeeman term may be eliminated:

$$
\begin{align*}
\tanh ^{-1}\left\langle\sigma_{\vec{A}_{s}}\right\rangle-\tanh ^{-1}\left\langle\sigma_{\vec{B}_{s}}\right\rangle & =\beta\left[8 J\left\langle\sigma_{\vec{A}_{s}}\right\rangle+4 J\left\langle\sigma_{\vec{B}_{s}}\right\rangle+\mu_{\mathrm{B}} H\right] \\
-\beta\left[12 J\left\langle\sigma_{\vec{A}_{s}}\right\rangle+\mu_{\mathrm{B}} H\right] & =4 \beta J\left(\left\langle\sigma_{\vec{B}_{s}}\right\rangle-\left\langle\sigma_{\vec{A}_{s}}\right\rangle\right)=-8 \beta J\left(1+2\left\langle\sigma_{\vec{A}_{s}}\right\rangle\right) \tag{8}
\end{align*}
$$

Introducing an effective order parameter Q and $J=-|J|$, we finally get

$$
\begin{equation*}
f(Q) \equiv \tanh ^{-1}\left(\frac{Q+1}{2}\right)+\tanh ^{-1}\left(\frac{3 Q-1}{2}\right)=8 \beta|J| Q, \quad Q=-1-2\left\langle\sigma_{\vec{A}_{s}}\right\rangle \tag{9}
\end{equation*}
$$

In the disordered phase both the A_{s} and the B_{s} sites are occupied by an A atom with the probability $\frac{3}{4}$ or $\left\langle\sigma_{\vec{A}_{s}}\right\rangle=\left\langle\sigma_{\vec{B}_{s}}\right\rangle=(-1) \frac{3}{4}+(+1) \frac{1}{4}=-\frac{1}{2}$. This result is in accordance with (7) and $Q=-1-2\left\langle\sigma_{\vec{A}_{s}}\right\rangle=0$. In the completely ordered phase at zero temperature, all $A(B)$ atoms are placed on the $A_{s}\left(B_{s}\right)$ sites implying that $\left\langle\sigma_{\vec{A}_{s}}\right\rangle=-1$ and $\left\langle\sigma_{\vec{B}_{s}}\right\rangle=1$ and hence $Q=1$.

The numerical solution of (9) is discussed in a Mathematica program. The system orders at a first-order transition, when $f(Q)=Q f^{\prime}(Q)$ [the line $y=\alpha Q$ with $\alpha=f^{\prime}\left(Q_{c}\right)$ is parallel to the tangent of $f(Q)$ at $Q=Q_{c}$, and this line just touches $f(Q)$ at $Q=Q_{c}$, when $f\left(Q_{c}\right)=$ αQ_{c}. This then becomes a solution to (9) if choosing $\alpha=8 \beta|J|]$. The solution is $Q=Q_{c}=0.3455$ and defining the effective temperature scale $t=(8 \beta|J|)^{-1}$ then Q jumps from zero to Q_{c} at the temperature $t=t_{c}=1 / f^{\prime}\left(Q_{c}\right)=0.4143$. The calculated variation of Q as a function of t is shown in the figure.

