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Solutions to the problems in Chapter 24

24.4 Mean field theory

The antiferromagnetic two-dimensional Ising model on a square lattice. In this
lattice, the number of nearest neighbours is z = 4. The Hamiltonian is supposed
to be

Z Jopos — ZHMB :——ZJO' S0 5, — ZHMBG~, J <0 (1)

RR’ RR

where H = € in the usual representation of o3 = +1. Because J is negative, the

ground state is not the ferro- but the antiferromagnet. In the sums, R and R/
are nearest neighbours, and the antiferromagnetic ground state is assumed to be
determined by the mean field values

(04,0,), R C sublattice A
) = { (i (2)

(O'J’,O'T), R C sublattice B

i The two sublattices of the square lattice:
B R R A shown by filled and B by open circles.

The figure shows the case, where the site
at R belongs to the A-sublattice, in which

% $ % B * case (0z) = 0. Its four nearest neighbours

at positions R’, then all belong to the B
sublattice and (0,) = 0,.

(a) In the mean-field (MF) approximation we get, when inserting (2) in (1),

MI __ZJ< )+ og o R>_<0R><0R’>> —HMBZO'R
R

RR/
== Z J(og)op — H“Bzaé + %NzJaTai
i 7 ®)
N/2 N/2
= — Z (zJai + MBH> op— Z (ZJO’T + MBH> op+ %NZJUT%
RCA RCB

Because of the MF-approximation, the total energy € = > 5z € is the sum of the
individual contributions of each site, and the partition function of the total system

7= Pt - H( > e—ﬁgé> =1[4; (4)
all & R Nal &g R

is reduced so to become the product of the partition functions Z 3 for the individual

sites, see for instance (6.40). For the sites, where R belongs to the sublattice A
(1), we get, when omitting the constant energy term %zJ 040,

=Y e [~(To +ug o] _ > PEIotunH)o _ o o {ZJ%—HLBH} (5)
o==+1 o==%1
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which implies that

1
(op) =04 = A Z o B tunt)e _ oy [B(zJai + MBH)} (6)
T o==+1

Notice that the omission of a constant energy term does not affect the calculation
of a thermal expectation value. Z, and o are determined equivalently

Z| = 2cosh [ZJO‘T + ,uBH} , o, = tanh [B(ZJO'T + MBH)} (7)
and the (total) free energy is
N
F= -kl (N2, +1In2)) + NjzJojo, =

N N
— EkBT {ln [2 cosh (zJo| + ,uBH)} +1In [2 cosh (zJoy + ,LLBH)}} + ?zJUT%
(8)
The constant energy term neglecting in the partition functions adds to F.

(b) The self-consistent equations determining oy and o are derived above.

(c) In the paramagnetic phase, T' > Ty, o, and o vanish in the limit H — 0.
Expanding tanh to leading order, tanh z ~ x, we get from (6) and (7)

oy = tanh [B(zJ%—I—uBH)} ~ B(zJo + ppgH) s HB

op =0 = 9)
o, = tanh [B(zJaT + uBH)} ~ B(zJoy + pgH)

1—2J8

The expectation values o, and o, are equal and are proportional to the field. The
magnetization is M = (N/V)ug(o + 0))/2 and the susceptibility is defined as
X = M/H in the limit of zero field, and we find

N N _ ]

_ N & =7 10
VkgT —2J ~ Vkg(T —0©) kp N (10)

X =
The paramagnetic Curie, or Curie-Weiss, temperature © is defined by (24.41),
x o< (T — ©)~L. In the present system O is negative (J is negative), and |©] is, as
we shall see, the same as the “Néel temperature”, Ty, below which the system is
antiferromagnetically ordered at zero field.

(d) The Néel temperature is the temperature below which the self-consistent equa-
tions for oy and o have a non-zero solution at zero field. The solution is obtained
by assuming o, = —o |, and H = 0, in which case we get

o4 = tanh [B(—ZL]D(—O‘T)} = tanh(Bz|J|o;) = tanh(aoy) (11)

This equation is the same as considered in the case of the ferromagnet, (24.56), and
it has a non-zero solution, when the coefficient & > 1. The Néel temperature Ty
is the temperature at which a = z|J|5 = 1, or T = z|J|/ky. The paramagnetic
susceptibility, which diverges at the transition, is obtained by applying a field with
the same symmetry as the ordered phase. The application of a “staggered” field,
where H 5= +H at the A sites and —H at the B sites determines straightforwardly
(using o = —0o ) the staggered susceptibility to be
E pp(o + -0 ¢) N [

_ _N 12
Xstog = 3 op V k(T — Ty) (12)
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which diverges at TYy.

(e) Spin-flip transition: In the ordered phase, the application of a small field along
z, in the “up” direction, does not change oy =1oro =—1. However, if the field
becomes sufficiently large, the spins antiparallel to the field are going to flip so to
become parallel to the field. This first-order spin-flip transition happens, when the
Zeeman-energy gain is able to compensate for the loss of exchange energy.

Introducing dimensionless quantities, then
UT—tanh (f y ai—tanh f y h = W, t= E (13)

In the limit of ¢ — 0, then the introduction of o, = 1 in the second equation
implies 0 = —1if 1 > h >0 and o) = 1if h > 1. The first equation then predicts
o, = 1 in both cases, hence assuring that this is the self-consistent solution. Using

In[2 cosh 2] = In[e® 4 e~%] — Inel®l = |z| for z — =+oo0, the free energy is found to
be determined by

_ F 1 —o,+h —op+h 1
f—m— 2{ln[2005h< " )]—i—ln[QCOSh( ; )]} 5010

— h — h 1
_%l{‘%+ +’%+ H_%%%:{ 1 o0<h<1

2 t t —h+3%,  h>1
(14)
Hence, the free energies of the antiferromagnetic phase f = —1/2 and of the spin-
flipped phase f = —h + 1/2 are equal at the transition at h = 1. At a finite
temperature the spin-flip transition is smeared out due to thermal effects. The
figure below shows the numerical calculated “magnetization”, (o + 0y)/2, as a
function of the field h at various values of temperature t.
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24.6 Superlattices
Model of CuzAu — In the fcc lattice, the sites in the

S—
centers of the six faces are named A, and the 8 corners ——
are named B, as indicated on the figure by, respec-
tively, black and white spheres. There is 8/8 = 1
B, site and 6/2 = 3 A, sites per unit cell. The dis-
tance between nearest neighbours is a/v/2, and the
sl \
\ ‘As
Dbt B

coordination number is z = 12. The kind of nearest

neighbours of the two kind of sites are B
A,-site: 8 A, sites and 4 B, sites.
B -site: 12 A, sites.
The correct solution to the equations (24.62) and (24.63) is not (24.64), but
€pp — € 2€ 5 — €44 — €

when leaving out the constant term C| = (2€ 45+ €44 +€pp)/4. This modification
affects the definition of the effective parameters in (24.67), which should read

_ ) _ _
pnH = i — w 2, J=tAB Z‘A ‘BB (24.67")

(a) In the present system we have a 3:1 mixture of A and B atoms. The effective
Hamiltonian equals the energy minus the chemical potential times the difference
between the numbers of B and A atoms, is (leaving out the constant contribution)

9{:8—MZU§:—J2 aéaé,—uBHZUé (1)
R (RR') R

We are going to use the same choice as Marder, that oz = 1 or —1 signifies a site
occupied by, respectively, a B or an A atom. With this choice, the effective energy
parameters are those given by (24.67") above. In the mean-field approximation

HE —g ) <0R<01§/>+‘7§/<‘7R>_ <‘7R><0R’>> “upH ) op=3 %G ()
( . ?

RR)
where
S (oplogtonion)) = 3 3 (rnlon) +aglogt) = Xorg 3 o)
(RR') RR/ R ’ (nn)
N 3N
= ZUBS (12 <O’AS>> + Za;‘s (8 (U;‘S> +4 <a§5>>
Bs As

(3)
Here N is the number of unit cells (or Bj sites), and 0z = 05 (0 ), if R = A,
(és) is the position of an A, (B,) site. The (grand) partition function of the total
system is the product of the individual partition functions for each site, because

H =35 Hs, and in the case of an Aj site (omitting the constant energy term)

Z, = Z e,B[J(S(O'AS>+4<0'§5>)+MBH]U (4)
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implying that
> _ZL Z Ueﬁ[J(S (o5 )44 <aés>)+uBH]a

As a::l:l (5)
:tanh{B{SJ@A )+4J (o5 ) —I—,LLBH”

and equivalently
<O’BS> = tanh {5{12J<0A5>+,MBH}} (6)

(b) o 5=l for the B atoms and the number of these atoms is equal the number
of unit cells N, whereas the number of A atoms is 3N. These conditions imply

N —3N = -2N
ZO‘~: N 3N = (0z)=-2-3(c+)
7| 2s o = Nlog) +3N(og) " b
Bs As

(c) The chemical potential, or effectively ppH, has to be adjusted so that the two
equations (5) and (6) are in accordance with the relation (o5 ) = =2 —3(0; ).
The effective Zeeman term may be eliminated:

tanh_1<ags> - tanh_l<ag~,s> = B{BJ(UA‘J + 4J<a§5> + uBH}
—8[127 (07)+ ppH| =487 (<aés> - <a;‘5>) = —84J (1+ 2<ags>)

Introducing an effective order parameter ) and J = —|.J|, we finally get

£(Q) = tanh™! (%) - ) =ssla. @=-1-203) ©)

In the disordered phase both the A, and the B, sites are occupied by an A atom

with the probability 2 or (05)=(0z) = (=1)2 + (+1)%2 = —1. This result is in

accordance with (7) and Q = 1 2(c 1 ) = 0. In the completely ordered phase at

(8)

+ tanh™! (

zero temperature, all A (B) atoms are sblaced on the A (B,) sites implying that
<UA' ) =—1and <‘7§ ) =1 and hence @ = 1.

£

Order parameter (Q)

The numerical solution of (9) is discussed 1
in a Mathematica program. The system

orders at a first-order transition, when

£(Q) = QF(Q) [the line y = aQ with 08
a = f(Q,) is parallel to the tangent
of f(Q) at @ = @Q,, and this line just
touches f(Q) at Q = Q,, when f(Q,.) =
a@,.. This then becomes a solution to
(9) if choosing oo = 83|.J|]. The solution 04+
is @ = Q. = 0.3455 and defining the ef-
fective temperature scale t = (83|.J|)~!
then @ jumps from zero to @, at the
temperature t = t, = 1/f(Q,) = 0.4143.
The calculated variation of @) as a func-

tion of ¢ is shown in the figure. 0.1 0.2 0.3 0.4
Temperature (t)
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