Solutions to the problems in Chapter 24

24.4 Mean field theory

The antiferromagnetic two-dimensional Ising model on a square lattice. In this lattice, the number of nearest neighbours is z = 4. The Hamiltonian is supposed to be

$$\mathcal{H} = -\sum_{\langle \vec{R}\vec{R}' \rangle} J \,\sigma_{\vec{R}} \sigma_{\vec{R}'} - \sum_{\vec{R}} H \mu_{\rm B} \sigma_{\vec{R}} = -\frac{1}{2} \sum_{\vec{R}\vec{R}'} J \,\sigma_{\vec{R}} \sigma_{\vec{R}'} - \sum_{\vec{R}} H \mu_{\rm B} \sigma_{\vec{R}}, \qquad J < 0 \ (1)$$

where $\mathcal{H} = \mathcal{E}$ in the usual representation of $\sigma_{\vec{R}} = \pm 1$. Because J is negative, the ground state is not the ferro- but the antiferromagnet. In the sums, \vec{R} and \vec{R}' are nearest neighbours, and the antiferromagnetic ground state is assumed to be determined by the mean field values

$$(\langle \sigma_{\vec{R}} \rangle, \langle \sigma_{\vec{R}'} \rangle) = \begin{cases} (\sigma_{\uparrow}, \sigma_{\downarrow}), & \vec{R} \subset \text{ sublattice A} \\ (\sigma_{\downarrow}, \sigma_{\uparrow}), & \vec{R} \subset \text{ sublattice B} \end{cases}$$
(2)

The two sublattices of the square lattice: A shown by filled and B by open circles. The figure shows the case, where the site at \vec{R} belongs to the A-sublattice, in which case $\langle \sigma_{\vec{R}} \rangle = \sigma_{\uparrow}$. Its four nearest neighbours at positions \vec{R}' , then all belong to the Bsublattice and $\langle \sigma_{\vec{R}'} \rangle = \sigma_{\downarrow}$.

(a) In the mean-field (MF) approximation we get, when inserting (2) in (1),

$$\mathcal{E} \stackrel{\mathrm{MF}}{=} -\frac{1}{2} \sum_{\vec{R}\vec{R}'} J \left(\sigma_{\vec{R}} \langle \sigma_{\vec{R}'} \rangle + \sigma_{\vec{R}'} \langle \sigma_{\vec{R}} \rangle - \langle \sigma_{\vec{R}} \rangle \langle \sigma_{\vec{R}'} \rangle \right) - H \mu_{\mathrm{B}} \sum_{\vec{R}} \sigma_{\vec{R}}$$

$$= -\sum_{\vec{R}\vec{R}'} J \left\langle \sigma_{\vec{R}'} \right\rangle \sigma_{\vec{R}} - H \mu_{\mathrm{B}} \sum_{\vec{R}} \sigma_{\vec{R}} + \frac{1}{2} N z J \sigma_{\uparrow} \sigma_{\downarrow}$$

$$= -\sum_{\vec{R}\subset A}^{N/2} \left(z J \sigma_{\downarrow} + \mu_{\mathrm{B}} H \right) \sigma_{\vec{R}} - \sum_{\vec{R}\subset B}^{N/2} \left(z J \sigma_{\uparrow} + \mu_{\mathrm{B}} H \right) \sigma_{\vec{R}} + \frac{1}{2} N z J \sigma_{\uparrow} \sigma_{\downarrow}$$

$$(3)$$

Because of the MF-approximation, the total energy $\mathcal{E} = \sum_{\vec{R}} \mathcal{E}_{\vec{R}}$ is the sum of the individual contributions of each site, and the partition function of the total system

$$Z = \sum_{\text{all } \mathcal{E}} e^{-\beta \mathcal{E}} = \prod_{\vec{R}} \left(\sum_{\text{all } \mathcal{E}_{\vec{R}}} e^{-\beta \mathcal{E}_{\vec{R}}} \right) = \prod_{\vec{R}} Z_{\vec{R}}$$
(4)

is reduced so to become the product of the partition functions $Z_{\vec{R}}$ for the individual sites, see for instance (6.40). For the sites, where \vec{R} belongs to the sublattice A (\uparrow), we get, when omitting the constant energy term $\frac{1}{2}zJ\sigma_{\uparrow}\sigma_{\downarrow}$,

$$Z_{\uparrow} = \sum_{\sigma=\pm 1} e^{-\beta \left[-(zJ\sigma_{\downarrow} + \mu_{\rm B}H)\sigma \right]} = \sum_{\sigma=\pm 1} e^{\beta \left(zJ\sigma_{\downarrow} + \mu_{\rm B}H \right)\sigma} = 2\cosh\left[zJ\sigma_{\downarrow} + \mu_{\rm B}H \right]$$
(5)

which implies that

$$\langle \sigma_{\vec{R}} \rangle = \sigma_{\uparrow} = \frac{1}{Z_{\uparrow}} \sum_{\sigma=\pm 1} \sigma \, e^{\beta \left(z J \sigma_{\downarrow} + \mu_{\rm B} H \right) \sigma} = \tanh \left[\beta (z J \sigma_{\downarrow} + \mu_{\rm B} H) \right] \tag{6}$$

Notice that the omission of a constant energy term does not affect the calculation of a thermal expectation value. Z_{\perp} and σ_{\perp} are determined equivalently

$$Z_{\downarrow} = 2 \cosh\left[z J \sigma_{\uparrow} + \mu_{\rm B} H\right], \qquad \sigma_{\downarrow} = \tanh\left[\beta(z J \sigma_{\uparrow} + \mu_{\rm B} H)\right] \tag{7}$$

and the (total) free energy is

$$\mathcal{F} = -\frac{N}{2}k_{\mathrm{B}}T\left(\ln Z_{\uparrow} + \ln Z_{\downarrow}\right) + N\frac{1}{2}zJ\sigma_{\uparrow}\sigma_{\downarrow} = -\frac{N}{2}k_{\mathrm{B}}T\left\{\ln\left[2\cosh\left(zJ\sigma_{\downarrow} + \mu_{\mathrm{B}}H\right)\right] + \ln\left[2\cosh\left(zJ\sigma_{\uparrow} + \mu_{\mathrm{B}}H\right)\right]\right\} + \frac{N}{2}zJ\sigma_{\uparrow}\sigma_{\downarrow}$$
(8)

The constant energy term neglecting in the partition functions adds to \mathcal{F} .

(b) The self-consistent equations determining σ_{\uparrow} and σ_{\downarrow} are derived above.

(c) In the paramagnetic phase, $T > T_{\rm N}$, σ_{\uparrow} and σ_{\downarrow} vanish in the limit $H \to 0$. Expanding tanh to leading order, $\tanh x \simeq x$, we get from (6) and (7)

$$\sigma_{\uparrow} = \tanh\left[\beta(zJ\sigma_{\downarrow} + \mu_{\rm B}H)\right] \simeq \beta(zJ\sigma_{\downarrow} + \mu_{\rm B}H) \\ \sigma_{\downarrow} = \tanh\left[\beta(zJ\sigma_{\uparrow} + \mu_{\rm B}H)\right] \simeq \beta(zJ\sigma_{\uparrow} + \mu_{\rm B}H) \end{cases} \qquad \sigma_{\uparrow} = \sigma_{\downarrow} = \frac{\mu_{\rm B}H\beta}{1 - zJ\beta} \qquad (9)$$

The expectation values σ_{\uparrow} and σ_{\downarrow} are equal and are proportional to the field. The magnetization is $M = (N/V)\mu_{\rm B}(\sigma_{\uparrow} + \sigma_{\downarrow})/2$ and the susceptibility is defined as $\chi = M/H$ in the limit of zero field, and we find

$$\chi = \frac{N}{V} \frac{\mu_{\rm B}^2}{k_{\rm B} T - zJ} \equiv \frac{N}{V} \frac{\mu_{\rm B}^2}{k_{\rm B} (T - \Theta)}, \qquad \Theta = -\frac{z|J|}{k_B} = -T_{\rm N}$$
(10)

The paramagnetic Curie, or Curie–Weiss, temperature Θ is defined by (24.41), $\chi \propto (T - \Theta)^{-1}$. In the present system Θ is negative (*J* is negative), and $|\Theta|$ is, as we shall see, the same as the "Néel temperature", $T_{\rm N}$, below which the system is antiferromagnetically ordered at zero field.

(d) The Néel temperature is the temperature below which the self-consistent equations for σ_{\uparrow} and σ_{\downarrow} have a non-zero solution at zero field. The solution is obtained by assuming $\sigma_{\uparrow} = -\sigma_{\downarrow}$, and H = 0, in which case we get

$$\sigma_{\uparrow} = \tanh\left[\beta(-z|J|)(-\sigma_{\uparrow})\right] = \tanh(\beta z|J|\sigma_{\uparrow}) = \tanh(\alpha \sigma_{\uparrow})$$
(11)

This equation is the same as considered in the case of the ferromagnet, (24.56), and it has a non-zero solution, when the coefficient $\alpha \geq 1$. The Néel temperature $T_{\rm N}$ is the temperature at which $\alpha = z|J|\beta = 1$, or $T_{\rm N} = z|J|/k_{\rm B}$. The paramagnetic susceptibility, which diverges at the transition, is obtained by applying a field with the same symmetry as the ordered phase. The application of a "staggered" field, where $H_{\vec{R}} = +H$ at the A sites and -H at the B sites determines straightforwardly (using $\sigma_{\uparrow} = -\sigma_{\downarrow}$) the staggered susceptibility to be

$$\chi_{\text{stag}} = \frac{N}{V} \frac{\mu_{\text{B}}(\sigma_{\uparrow} - \sigma_{\downarrow})}{2H} = \frac{N}{V} \frac{\mu_{\text{B}}^2}{k_{\text{B}}(T - T_{\text{N}})}$$
(12)

which diverges at $T_{\rm N}$.

(e) Spin-flip transition: In the ordered phase, the application of a small field along z, in the "up" direction, does not change $\sigma_{\uparrow} = 1$ or $\sigma_{\downarrow} = -1$. However, if the field becomes sufficiently large, the spins antiparallel to the field are going to flip so to become parallel to the field. This first-order spin-flip transition happens, when the Zeeman-energy gain is able to compensate for the loss of exchange energy.

Introducing dimensionless quantities, then

$$\sigma_{\uparrow} = \tanh\left(\frac{-\sigma_{\downarrow} + h}{t}\right), \quad \sigma_{\downarrow} = \tanh\left(\frac{-\sigma_{\uparrow} + h}{t}\right), \quad h = \frac{\mu_{\rm B}H}{z|J|}, \quad t = \frac{T}{T_{\rm N}}$$
(13)

In the limit of $t \to 0$, then the introduction of $\sigma_{\uparrow} = 1$ in the second equation implies $\sigma_{\downarrow} = -1$ if 1 > h > 0 and $\sigma_{\downarrow} = 1$ if h > 1. The first equation then predicts $\sigma_{\uparrow} = 1$ in both cases, hence assuring that this is the self-consistent solution. Using $\ln[2\cosh x] = \ln[e^x + e^{-x}] \to \ln e^{|x|} = |x|$ for $x \to \pm \infty$, the free energy is found to be determined by

$$f = \frac{\mathcal{F}}{Nz|J|} = -\frac{t}{2} \left\{ \ln \left[2 \cosh \left(\frac{-\sigma_{\downarrow} + h}{t} \right) \right] + \ln \left[2 \cosh \left(\frac{-\sigma_{\uparrow} + h}{t} \right) \right] \right\} - \frac{1}{2} \sigma_{\uparrow} \sigma_{\downarrow}$$
$$\rightarrow -\frac{t}{2} \left\{ \frac{-\sigma_{\downarrow} + h}{t} + \left| \frac{-\sigma_{\uparrow} + h}{t} \right| \right\} - \frac{1}{2} \sigma_{\uparrow} \sigma_{\downarrow} = \left\{ \begin{array}{cc} -\frac{1}{2}, & 0 < h < 1\\ -h + \frac{1}{2}, & h > 1 \end{array} \right.$$
(14)

Hence, the free energies of the antiferromagnetic phase f = -1/2 and of the spinflipped phase f = -h + 1/2 are equal at the transition at h = 1. At a finite temperature the spin-flip transition is smeared out due to thermal effects. The figure below shows the numerical calculated "magnetization", $(\sigma_{\uparrow} + \sigma_{\downarrow})/2$, as a function of the field h at various values of temperature t.

24.6 Superlattices

Model of Cu₃Au – In the fcc lattice, the sites in the centers of the six faces are named A_s and the 8 corners are named B_s as indicated on the figure by, respectively, black and white spheres. There is 8/8 = 1 B_s site and 6/2 = 3 A_s sites per unit cell. The distance between nearest neighbours is $a/\sqrt{2}$, and the coordination number is z = 12. The kind of nearest neighbours of the two kind of sites are

 A_s -site: 8 A_s sites and 4 B_s sites.

 B_s -site: 12 A_s sites.

The correct solution to the equations (24.62) and (24.63) is not (24.64), but

$$f(\sigma_{\vec{R}},\sigma_{\vec{R}'}) = \frac{\epsilon_{BB} - \epsilon_{AA}}{4} (\sigma_{\vec{R}} + \sigma_{\vec{R}'}) - \frac{2\epsilon_{AB} - \epsilon_{AA} - \epsilon_{BB}}{4} \sigma_{\vec{R}} \sigma_{\vec{R}'}$$
(24.64')

when leaving out the constant term $C_1 = (2\epsilon_{AB} + \epsilon_{AA} + \epsilon_{BB})/4$. This modification affects the definition of the effective parameters in (24.67), which should read

$$\mu_{\rm B}H = \mu - \frac{\epsilon_{BB} - \epsilon_{AA}}{2} z, \qquad J = \frac{2\epsilon_{AB} - \epsilon_{AA} - \epsilon_{BB}}{4}$$
(24.67)

(a) In the present system we have a 3:1 mixture of A and B atoms. The effective Hamiltonian equals the energy minus the chemical potential times the difference between the numbers of B and A atoms, is (leaving out the constant contribution)

$$\mathcal{H} = \mathcal{E} - \mu \sum_{\vec{R}} \sigma_{\vec{R}} = -J \sum_{\langle \vec{R}\vec{R}' \rangle} \sigma_{\vec{R}} \sigma_{\vec{R}'} - \mu_{\rm B} H \sum_{\vec{R}} \sigma_{\vec{R}} \tag{1}$$

We are going to use the same choice as Marder, that $\sigma_{\vec{R}} = 1$ or -1 signifies a site occupied by, respectively, a *B* or an *A* atom. With this choice, the effective energy parameters are those given by (24.67') above. In the mean-field approximation

$$\mathcal{H} \stackrel{\mathrm{MF}}{=} -J \sum_{\langle \vec{R}\vec{R}' \rangle} \left(\sigma_{\vec{R}} \langle \sigma_{\vec{R}'} \rangle + \sigma_{\vec{R}'} \langle \sigma_{\vec{R}} \rangle - \langle \sigma_{\vec{R}} \rangle \langle \sigma_{\vec{R}'} \rangle \right) - \mu_{\mathrm{B}} H \sum_{\vec{R}} \sigma_{\vec{R}} = \sum_{\vec{R}} \mathcal{H}_{\vec{R}} \quad (2)$$

where

$$\sum_{\langle \vec{R}\vec{R}'\rangle} \left(\sigma_{\vec{R}} \langle \sigma_{\vec{R}'} \rangle + \sigma_{\vec{R}'} \langle \sigma_{\vec{R}} \rangle \right) = \frac{1}{2} \sum_{\vec{R}\vec{R}'} \left(\sigma_{\vec{R}} \langle \sigma_{\vec{R}'} \rangle + \sigma_{\vec{R}'} \langle \sigma_{\vec{R}} \rangle \right) = \sum_{\vec{R}} \sigma_{\vec{R}} \left(\sum_{\vec{R}' \, (nn)} \langle \sigma_{\vec{R}'} \rangle \right)$$
$$= \sum_{\vec{B}_s}^N \sigma_{\vec{B}_s} \left(12 \, \langle \sigma_{\vec{A}_s} \rangle \right) + \sum_{\vec{A}_s}^{3N} \sigma_{\vec{A}_s} \left(8 \, \langle \sigma_{\vec{A}_s} \rangle + 4 \, \langle \sigma_{\vec{B}_s} \rangle \right)$$

Here N is the number of unit cells (or B_s sites), and $\sigma_{\vec{R}} = \sigma_{\vec{A}_s} (\sigma_{\vec{B}_s})$, if $\vec{R} = \vec{A}_s (\vec{B}_s)$ is the position of an $A_s (B_s)$ site. The (grand) partition function of the total system is the product of the individual partition functions for each site, because $\mathcal{H} = \sum_{\vec{R}} \mathcal{H}_{\vec{R}}$, and in the case of an A_s site (omitting the constant energy term)

$$Z_{A_s} = \sum_{\sigma=\pm 1} e^{\beta \left[J \left(8 \left\langle \sigma_{\vec{A}_s} \right\rangle + 4 \left\langle \sigma_{\vec{B}_s} \right\rangle \right) + \mu_{\rm B} H \right] \sigma} \tag{4}$$

implying that

$$\langle \sigma_{\vec{A}_s} \rangle = \frac{1}{Z_{A_s}} \sum_{\sigma=\pm 1} \sigma e^{\beta \left[J \left(8 \left\langle \sigma_{\vec{A}_s} \right\rangle + 4 \left\langle \sigma_{\vec{B}_s} \right\rangle \right) + \mu_{\rm B} H \right] \sigma}$$

$$= \tanh \left\{ \beta \left[8 J \left\langle \sigma_{\vec{A}_s} \right\rangle + 4 J \left\langle \sigma_{\vec{B}_s} \right\rangle + \mu_{\rm B} H \right] \right\}$$

$$(5)$$

and equivalently

$$\langle \sigma_{\vec{B}_s} \rangle = \tanh \left\{ \beta \left[12 J \left\langle \sigma_{\vec{A}_s} \right\rangle + \mu_{\rm B} H \right] \right\} \tag{6}$$

(b) $\sigma_{\vec{R}} = +1$ for the *B* atoms and the number of these atoms is equal the number of unit cells *N*, whereas the number of *A* atoms is 3*N*. These conditions imply

$$\sum_{\vec{R}} \sigma_{\vec{R}} = \begin{cases} N - 3N = -2N \\ \sum_{\vec{B}_s}^N \sigma_{\vec{B}_s} + \sum_{\vec{A}_s}^{3N} \sigma_{\vec{A}_s} = N \langle \sigma_{\vec{B}_s} \rangle + 3N \langle \sigma_{\vec{A}_s} \rangle \end{cases} \Rightarrow \langle \sigma_{\vec{B}_s} \rangle = -2 - 3 \langle \sigma_{\vec{A}_s} \rangle$$

$$(7)$$

(c) The chemical potential, or effectively $\mu_{\rm B}H$, has to be adjusted so that the two equations (5) and (6) are in accordance with the relation $\langle \sigma_{\vec{B}_s} \rangle = -2 - 3 \langle \sigma_{\vec{A}_s} \rangle$. The effective Zeeman term may be eliminated:

$$\tanh^{-1}\langle \sigma_{\vec{A}_s} \rangle - \tanh^{-1}\langle \sigma_{\vec{B}_s} \rangle = \beta \left[8 J \langle \sigma_{\vec{A}_s} \rangle + 4 J \langle \sigma_{\vec{B}_s} \rangle + \mu_{\rm B} H \right] -\beta \left[12 J \langle \sigma_{\vec{A}_s} \rangle + \mu_{\rm B} H \right] = 4\beta J \left(\langle \sigma_{\vec{B}_s} \rangle - \langle \sigma_{\vec{A}_s} \rangle \right) = -8\beta J \left(1 + 2 \langle \sigma_{\vec{A}_s} \rangle \right)$$
(8)

Introducing an effective order parameter Q and J = -|J|, we finally get

$$f(Q) \equiv \tanh^{-1}\left(\frac{Q+1}{2}\right) + \tanh^{-1}\left(\frac{3Q-1}{2}\right) = 8\beta|J|Q, \quad Q = -1 - 2\langle\sigma_{\vec{A}_s}\rangle \tag{9}$$

In the disordered phase both the A_s and the B_s sites are occupied by an A atom with the probability $\frac{3}{4}$ or $\langle \sigma_{\vec{A}_s} \rangle = \langle \sigma_{\vec{B}_s} \rangle = (-1)\frac{3}{4} + (+1)\frac{1}{4} = -\frac{1}{2}$. This result is in accordance with (7) and $Q = -1 - 2\langle \sigma_{\vec{A}_s} \rangle = 0$. In the completely ordered phase at zero temperature, all A (B) atoms are placed on the A_s (B_s) sites implying that $\langle \sigma_{\vec{A}_s} \rangle = -1$ and $\langle \sigma_{\vec{B}_s} \rangle = 1$ and hence Q = 1.

The numerical solution of (9) is discussed in a Mathematica program. The system orders at a first-order transition, when f(Q) = Q f'(Q) [the line $y = \alpha Q$ with $\alpha = f'(Q_c)$ is parallel to the tangent of f(Q) at $Q = Q_c$, and this line just touches f(Q) at $Q = Q_c$, when $f(Q_c) = \alpha Q_c$. This then becomes a solution to (9) if choosing $\alpha = 8\beta |J|$]. The solution is $Q = Q_c = 0.3455$ and defining the effective temperature scale $t = (8\beta |J|)^{-1}$ then Q jumps from zero to Q_c at the temperature $t = t_c = 1/f'(Q_c) = 0.4143$. The calculated variation of Q as a function of t is shown in the figure.

