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Solution to HS’s problem 1

Heat capacity of a two-dimensional electron gas

GaAs/AlGaAs heterostructure (see Marder Section 19.5):

n = 1011 cm−2, ε =
�
2k2

2m∗ , m∗ = 0.067me (1)

The present situation corresponds to the case (a) of the previous problem 6.5 in
Marder, i.e. the gas is purely two-dimensional in the sense that only the (p = 1)
band needs to be considered, and �k is a two-dimensional vector with the length k =√
k2x + k2y. The most important quantity is the Fermi energy, which is determined

by evaluating N at zero temperature:

n =
N

A
=

∫
k≤k

F

D�k
d�k =

2

(2π)2

∫ kF

0
2πk dk =

k2F
2π

⇒ kF =
√
2πn (2a)

The same result is obtained by using that, according to problem 6.4 or equation
(6.35), D(ε) = m∗/π�2 in the two-dimensional case:

n =

∫ εF

0
D(ε) dε =

m∗εF
π�2

⇒ εF =
nπ�2

m∗ or kF =
√
2πn (2b)

Introducing the numbers, and using that kF = 1 Å
−1

corresponds to a Fermi energy
εF = 3.81 eV when the mass is me, then we get

kF = 0.793 · 10−2 Å
−1

, εF =

(
0.793 · 10−2

)2
0.067

3.81 eV = 3.58 meV (3)

This Fermi energy corresponds to a Fermi temperature TF = εF/kB = 41.5 K.

1) T = 1 K is much smaller than the Fermi temperature and the heat capacity
may be determined by the leading order expression (6.77)

cV =
π2

3
D(εF)k

2
BT =

π

6

T

TF

k2FkB , as D(εF) =
m∗

π�2
=

k2F
2πεF

=
k2F

2πkBTF

(4)

In the case of a sample with the area A = 1 cm2 the result is

CV (el) = AcV = A
π

6

1

41.5
(0.793·106 cm−1)2×1.38066·10−23 J/K = 1.1 · 10−13 J/K

(5)
The explicit result is CV (el) = Aπm∗k2BT/(3�

2). Hence, the small value of CV is
not due to the low electron density n but to the two-dimensionality of the system
and the small effective mass.

2) In order to estimate the phonon contribution to the heat capacity we shall use
the Debye model (Section 13.3.2 in Marder). The Debye temperature of GaAs is
ΘD = 344 K (which value is not changed much when some of the Ga ions are
replaced by Al ions). Using (13.70), (13.75) in Marder (2.Ed.) and

∫ ∞

0

x4ex

(ex − 1)2
dx =

4π4

15
⇒ cV =

12π4

5
nAkB

(
T

ΘD

)3

(T � ΘD) (6)
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According to Table 2.5 (page 27) in Marder, GaAs has the zincblende structure (∼
diamond structure) with the lattice parameter a = 5.63 Å. In this structure there
are 8 atoms per unit cell, and the density of atoms is nA = 8/a3 = 4.48 ·1022 cm−3.
[The mean atomic mass (periodic table) is (69.72 + 74.92)/2 = 72.3 u, implying a
mass density ρ = 5.38 g cm−3]. Assuming V = 1 cm3 and T = 1 K, the phonon
contribution becomes

CV (ph) =
12π4

5
×4.48 ·1022×1.38066 ·10−23

(
1

344

)3

J/K = 3.55 · 10−6 J/K (7)

which is much larger than the electronic contribution. Utilizing that CV (el) ∝ T
and CV (ph) ∝ T 3, the temperature T0 at which the two contributions are equal,
is determined by (T0 in K)

1.10 · 10−13 T0 = 3.55 · 10−6 T 3
0 ⇒ T0 = 1.8 · 10−4K (8)

A more fair comparison would be to consider a film of thickness ∼ 100 µm, i.e.
A = 1 cm2 and V = 10−2 cm3, in which case T0 = 1.8 mK, a temperature within
an accessible range (however, the reduction of the size of the sample makes it more
difficult to determine the heat capacity).

11.2 Zinc in copper

Copper is a monovalent fcc and zinc a divalent hcp (not fcc) metal. At a small
concentration of Zn++, the crystal structure is fcc until the Fermi surface touches
some point on the edge of the Brillouin zone:

(a) In the nearly free electron approximation, the Fermi wave vector is (nearly)
determined as in the free electron case,

n =

∫
|�k|≤kF

D�k
d�k =

2

(2π)3

∫ kF

0
4πk2dk =

1

3π2
k3F ⇒ kF =

(
3π2n

)1/3
(1)

Defining c to be the concentration of Zn++ ions and a to be the lattice parameter
of the fcc lattice, then the electron density is

n =
4

a3
[(1− c) + 2c] =

4

a3
(1+ c) ⇒ kF =

[
12π2

a3
(1 + c)

]1/3
=

4.9109

a
(1+ c)1/3

(2)
(b) The primitive unit vectors of the face-centered cubic lattice are, (2.2):

�a1 =
a

2
(1, 1, 0), �a2 =

a

2
(1, 0, 1), �a3 =

a

2
(0, 1, 1) (3)

and the corresponding primitive vectors of the reciprocal lattice are

�b1 = 2π
�a2 × �a3

�a1 · �a2 × �a3
=

2π

a
(1, 1,−1), �b2 =

2π

a
(1,−1, 1), �b3 =

2π

a
(−1, 1, 1)

(4)
The boundaries of the 1. Brillouin zone are established by the planes perpendicular
to ±�bi at the distance k1 = |�bi|/2 from the origin. Hence the shortest distance from
the origin to the zone boundaries is

k1 =
|�bi|
2

=
π
√
3

a
=

5.4414

a
(5)
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kF(c = 0) is smaller than k1, and kF(c) becomes equal to k1 at the zinc concentra-
tion c = c1

4.9109(1 + c1)
1/3 = 5.4414 ⇒ c1 = 0.36 (6)

The experimental phase diagram (see Fig. 4 in Chapter 21 of Kittel) shows a
transition from fcc to bcc, for increasing c values, at about the Zn concentration
determined here.

(c) The primitive unit vectors of the body-centered cubic lattice are, (2.3):

�a1 =
a

2
(1, 1,−1), �a2 =

a

2
(1,−1, 1), �a3 =

a

2
(−1, 1, 1) (7)

and the corresponding primitive vectors of the reciprocal lattice are

�b1 =
2π

a
(1, 1, 0), �b2 =

2π

a
(1, 0, 1), �b3 =

2π

a
(0, 1, 1) (8)

Notice, that the reciprocal of the bcc lattice is fcc, and equivalently, that the
reciprocal lattice of fcc is the bcc lattice.

In the case of bcc there are 2 atoms per cubic unit cell, hence

n =
2

a3
(1 + c), kF =

[
6π2

a3
(1 + c)

]1/3
=

3.8979

a
(1 + c)1/3 (9)

The shortest distance from the origin to the boundaries of the 1. Brillouin zone is

k2 =
|�bi|
2

=
π
√
2

a
=

4.4429

a
and k2 = kF when c = c2 = 0.48 (10)

Once again, this is about the right Zn concentration at which the Cu-Zn alloy
system shows a change of crystal structure (from bcc to a complex γ structure).

If the atomic density is assumed to stay constant at the transition fcc→bcc, the
Fermi wave vector is the same on each side of the phase line, but the lattice pa-
rameter a is changed, abcc = (1/2)1/3afcc = 0.794 afcc. The cubic lattice parameter
a also changes (increases) gradually with the Zn concentration, in between the
phase lines, since nCu = 1.33nZn, however, all the possible variations of a have
no influence on the arguments above. β-brass is the alloy with c = 0.5, and it
shows an order-disordered phase transition at about 470 ◦C, which we are going
to discuss later on.

Citation from Kittel: “Why is there a connection between the electron concentra-
tions at which a new phase appears and at which the Fermi surface makes contact
with the Brillouin zone? We recall that the energy bands split into two at the
region of contact on the zone boundary [Marder, Chapter 8, (8.24)]. If we add
more electrons to the alloy at this stage, they will have to be accommodated in
the upper band or in states of high energy near the zone corners of the lower band.
Both options are possible, and both involve an increase of energy. Therefore it
may be energetically favorable for the crystal structure to change to one which
can contain a Fermi surface of larger volume (more electrons) before contact is
made with the zone boundary. In this way H. Jones made plausible the sequence
of structures fcc, bcc, γ, hcp with increasing electron concentration.”


