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Solutions to the problems in Chapter 6

6.3 Pressure of a Fermi gas at zero temperature

The number of electrons N and the internal energy U , in the volume V , are

N = V

∫ ∞

0
D(ε)f(ε)dε, U = V

∫ ∞

0
εD(ε)f(ε)dε, (1)

The Fermi distribution function f(ε) and the density of states (per unit volume)
D(ε) are

f(ε) =
1

eβ(ε−µ) + 1
, D(ε) = A

√
ε, A =

√
2m3

π2�3
. (2)

At zero temperature

f(ε) = θ(εF − ε), εF =
�
2k2F
2m

, kF =
(
3π2n

)1/3
(3)

Introducing the step function and D(ε) = A
√
ε in (1), we may determine U(0) and

an alternative expression for A:

N = V

∫ εF

0
A
√
εdε = 2

3V Aε
3/2
F ⇒ A =

3n

2ε
3/2
F

, U(0) = V 2
5Aε

5/2
F = 3

5NεF (4)

i.e. U ∝ εF ∝ k2F ∝ V −2/3 and the pressure at zero temperature is

P = −∂U(0)

∂V
=

2

3

U

V
= 2

5nεF =
(3π2)2/3n5/3�2

5m
(5)

in sharp contrast to a classical gas, where the zero-temperature pressure is zero.

6.4 Density of states in low dimensions

The density of states in �k-space is D�k
= 2/(2π)d in d dimensions (6.34)

D(ε) =

∫
[d�k]δ(ε − ε�k) ≡

∫
D�k
δ(ε − ε�k)d

�k =
2

(2π)d

∫
δ(ε − ε�k)d

�k (1)

Introducing “spherical coordinates” in d dimensions and k = |�k|, then

d�k =

⎧⎨
⎩

2 dk , d = 1
2πk dk , d = 2
4πk2dk , d = 3

(2)

The factor 2 in the one-dimensional case appears because the one-dimensional wave
vector may assume both positive and negative values, whereas k ≥ 0 per definition.

ε�k = εk =
�
2k2

2m
⇒ k =

√
2mεk
�

, dk =

(
m

2�2εk

)1/2

dεk ⇒ (3)

D(ε) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

2π

∫ ∞

0
2 δ(ε − εk)

(
m

2�2εk

)1/2

dεk =

√
2m

π�
ε−1/2, d = 1

2

(2π)2

∫ ∞

0
2π

√
2mεk
�

δ(ε − εk)

(
m

2�2εk

)1/2

dεk =
m

π�2
, d = 2

2

(2π)3

∫ ∞

0
4π

2mεk
�2

δ(ε − εk)

(
m

2�2εk

)1/2

dεk =

√
2m3

π2�3
ε1/2, d = 3



2 The problems of 1st week (“electrons”)

6.5 Fermi pancakes

Thin layer of Ag: Lx = Ly = L = 106 Å and Lz = d.

The density of electrons is the same as the density of atoms (one conduction
electron per Ag atom), i.e. n = 5.86 · 1022 cm−3 = 0.0586 Å−3, according to the
properties given in the periodic table on the front page of Marder. The wave
function of the “free” electrons should vanish at the boundaries z = 0 and z = d.
This condition is fulfilled if assuming the one-electron wave function to be

ψ(x, y, z) ∝ ei(kxx+kyy) sin (pqz) , q =
π

d
, p = 1, 2, . . . (1)

The electron states are characterized by the two-dimensional wave vector �k =
(kx, ky, 0) and the “band index” p. The eigenenergies are (k2 = k2x + k2y):

ε
p�k

=
�
2

2m

(
k2 + p2q2

)
≥ ε

1�0
=

�
2q2

2m
(2)

At T = 0 (T � TF), as assumed implicitly in the exercise, the occupied states are
all those with energies smaller than εF. The number of electrons in the pth band,
Np, is zero if ε

p�0
> εF. In the opposite case:

Np = L2
∫ kp

0

2

(2π)2
2πk dk = L2 k

2
p

2π
(3)

where kp is the Fermi wave number of the pth band, i.e. the largest value of k of
occupied states in the pth band, as determined by

ε
p �kp

=
�
2

2m

(
k2p + p2q2

)
= εF ⇒ k2p =

2mεF
�2

− p2q2 = q2
(
εF
ε
1�0

− p2
)

(4)

(a) In the first case d = 4.1 Å or q = π/d = 0.76624 Å−1, and

ε
1�0

=
�
2q2

2m
=

(1.054572 · 10−27 × 0.76624 · 108)2
2× 9.109389 · 10−28 × 1.602177 · 10−12

eV = 2.2369 eV (5)

Assuming the Fermi energy to be smaller than the lowest energy of the (p = 2)
band, εF < ε

2�0
= 4ε

1�0
, then only the (p = 1) states are occupied, in which case N1

has to be equal the total number N of free electrons:

N = L2dn = N1 = L2 k
2
1

2π
⇒ k1 =

√
2πdn = 1.22866 Å

−1
(6)

Introducing this result in (3) we get the Fermi energy and the band width W of
the occupied states:

εF = ε
1 �k1

= ε
1�0

[
(k1/q)

2 + 1
]
= 7.99 eV, W = εF − ε

1�0
= 5.75 eV (7)

which is in accordance with our starting assumption of εF < ε
2�0

= 8.948 eV. These
results may be compared with that obtained for bulk Ag:

εF(bulk) =W (bulk) =
�
2

2m

(
3π2n

)2/3
= 5.50 eV (8)
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(b) In the case of d = 8.2 Å, q = π/d = 0.38312 Å−1 and ε
1�0

= 0.5592 eV. In order
to determine εF in this case, we need to include more bands than the lowest one.
The number of bands turns out to be 3, and

N = N1+N2+N3 ⇒ 2πdn = q2
[(

εF
ε
1�0

− 12
)
+

(
εF
ε
1�0

− 22
)
+

(
εF
ε
1�0

− 32
)]

(9)

Solving this equation with respect to εF/ε1�0, we get εF/ε1�0 = 11.523, which is

larger than 32 but smaller than 42, in accordance with the assumption that all
electrons are found in the three lowest bands. Hence the results are:

εF = 6.44 eV, W = εF − ε
1�0

= 5.89 eV (10)
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The two first figures show the en-
ergy bands as functions of k in
the cases (a) and (b), where the
unit of k is the length of a recip-
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The last figure shows the Fermi
energy (and the band width) as a
function of the number of atomic
layers of Ag. The crystal struc-
ture of Ag is fcc with the lattice
parameter a = 4.09 Å. This is
very nearly the thickness d as-
sumed in (a), i.e. this case corre-
sponds to a film with two atomic
layers of Ag atoms.
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4 The problems of 1st week (“electrons”)

Solutions to the problems in Chapter 7

7.1 Normals to surfaces

�r = (x1, x2, x3) = �s(t) is the parametrization of a curve lying within the surface
defined by f(�r) = ε. Since f(�s(t)) is a constant ε, the derivative of this function
is 0:

d

dt
f(�s(t)) =

∑
α

∂f

∂xα

dsα
dt

= ∇f · d�s
dt

= 0 (1)

Because �s(t) may be any arbitrary curve lying within the surface, the same is true
for the curve tangent d�s(t)/dt, and (1) is only generally valid if ∇f is normal to
the surface.

7.3 Van Hove singularities

(a) The problem becomes the same as the one considered in problem 7.1 if making
the replacements �k → �r and ε

n�k
→ f(�r), hence ∇�k

ε
n�k

is perpendicular to the
energy surface defined by ε

n�k
= ε.

(b) The energy is assumed to be ε
n�k

= εmax − k2, and in the two-dimensional case

D(ε) =

∫
[d�k]δ(ε − ε

n�k
) =

2

(2π)2

∫ ∞

0
2πk δ(ε − εmax + k2) dk

=
1

2π

∫ ∞

0
δ(ε − εmax + k2)d(k2) =

1

2π
θ(εmax − ε)

(1)

The density of states is zero if ε > εmax and 1/(2π) when ε < εmax.

(c) In the three dimensional case, the result is

D(ε) =

∫
[d�k]δ(ε − ε

n�k
) =

2

(2π)3

∫ ∞

0
4πk2 δ(ε − εmax + k2) dk

=
1

2π2

∫ ∞

0
k δ(ε − εmax + k2)d(k2) =

1

2π2
√
εmax − ε θ(εmax − ε)

(2)


