Solutions to the problems in Chapter 6

6.3 Pressure of a Fermi gas at zero temperature

The number of electrons N and the internal energy U, in the volume V| are
N= v/ D(e)f(e)de, U = v/ eD(e) f(e)de, (1)
0 0

The Fermi distribution function f(e) and the density of states (per unit volume)
D(e) are
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Introducing the step function and D(e) = Ay/e in (1), we may determine U(0) and
an alternative expression for A:
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ie. U xep k:l% x V~2/3 and the pressure at zero temperature is
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in sharp contrast to a classical gas, where the zero-temperature pressure is zero.

6.4 Density of states in low dimensions

The density of states in k-space is D.=2 /(27)% in d dimensions (6.34)
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Introducing “spherical coordinates” in d dimensions and k = |lg\, then
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The factor 2 in the one-dimensional case appears because the one-dimensional wave
vector may assume both positive and negative values, whereas k > 0 per definition.
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2 The problems of 1st week (“electrons”)

6.5 Fermi pancakes
Thin layer of Ag: L, =L, =L = 10% A and L, = d.

The density of electrons is the same as the density of atoms (one conduction
electron per Ag atom), i.e. n = 5.86 - 10?2 cm™3 = 0.0586 A~3, according to the
properties given in the periodic table on the front page of Marder. The wave
function of the “free” electrons should vanish at the boundaries z = 0 and z = d.
This condition is fulfilled if assuming the one-electron wave function to be

(kyz+kyy)
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The electron states are characterized by the two-dimensional wave vector k =

(k;,k,,0) and the “band index” p. The eigenenergies are (k* = k2 + kJ):
Y ¢

At T =0 (T < Ty), as assumed implicitly in the exercise, the occupied states are

all those with energies smaller than ep. The number of electrons in the pth band,

Np, is zero if 5;;6 > ep. In the opposite case:
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where k,, is the Fermi wave number of the pth band, i.e. the largest value of k of
occupied states in the pth band, as determined by
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(a) In the first case d = 4.1 A or ¢ = 7/d = 0.76624 A~ and

K¢ (1.054572- 10727 x 0.76624 - 10°)?
2m 2 x 9.109389 - 10—28 x 1.602177 - 10—12

€ eV =2.2369eV  (5)
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Assuming the Fermi energy to be smaller than the lowest energy of the (p = 2)
band, ep < €o = 4516’ then only the (p = 1) states are occupied, in which case N,
has to be equal the total number N of free electrons:
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N =L*n=N, =17

Introducing this result in (3) we get the Fermi energy and the band width W of
the occupied states:

eF = ey =g (ki/@)* +1] =7.99 eV, W =ep—e5=5T5eV  (7)

which is in accordance with our starting assumption of e < €95 = 8.948 eV. These
results may be compared with that obtained for bulk Ag:
h2 5 \2/3
ex (bulk) = W (bulk) = - (37%n) " =5.50 eV (8)
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(b) In the case of d = 8.2 A, ¢ = n/d = 0.38312 A~! and €,5 = 0.5592 eV. In order
to determine e in this case, we need to include more bands than the lowest one.
The number of bands turns out to be 3, and

N =N, +Ny+Ny = 2rndn = ¢* [(5—F - 12> + <€—F - 22> + <€—F = 32” 9)
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Solving this equation with respect to ep /515, we get 5F/516 = 11.523, which is

larger than 32 but smaller than 42, in accordance with the assumption that all

electrons are found in the three lowest bands. Hence the results are:

EF = 6.44 eV, W = EF — 516 = 5.89 eV (10)
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The two first figures show the en-
ergy bands as functions of k£ in
the cases (a) and (b), where the
unit of k is the length of a recip-
rocal lattice vector 27 /a [r.lu.].
The last figure shows the Fermi
energy (and the band width) as a
function of the number of atomic
p layers of Ag. The crystal struc-
4 ture of Ag is fcc with the lattice
parameter ¢ = 4.09 A. This is
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4 The problems of 1st week (“electrons”)

Solutions to the problems in Chapter 7

7.1 Normals to surfaces

7 = (x1,z9,23) = 5(t) is the parametrization of a curve lying within the surface
defined by f(7) = e. Since f(5(t)) is a constant ¢, the derivative of this function

is 0:
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Because §(t) may be any arbitrary curve lying within the surface, the same is true
for the curve tangent ds(t)/dt, and (1) is only generally valid if Vf is normal to
the surface.

7.3 Van Hove singularities

(a) The problem becomes the same as the one considered in problem 7.1 if making
the replacements k£ — 7 and er = f(7), hence VEEnE is perpendicular to the
energy surface defined by € r=¢€

(b) The energy is assumed to be € ¢ = Emax — k%, and in the two-dimensional case
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The density of states is zero if € > ¢, and 1/(27) when € < ¢
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(c) In the three dimensional case, the result is
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