Solutions to the problems in Chapter 6

6.3 Pressure of a Fermi gas at zero temperature

The number of electrons N and the internal energy U, in the volume V, are

$$
\begin{equation*}
N=V \int_{0}^{\infty} D(\varepsilon) f(\varepsilon) d \varepsilon, \quad U=V \int_{0}^{\infty} \varepsilon D(\varepsilon) f(\varepsilon) d \varepsilon \tag{1}
\end{equation*}
$$

The Fermi distribution function $f(\varepsilon)$ and the density of states (per unit volume) $D(\varepsilon)$ are

$$
\begin{equation*}
f(\varepsilon)=\frac{1}{e^{\beta(\varepsilon-\mu)}+1}, \quad D(\varepsilon)=A \sqrt{\varepsilon}, \quad A=\frac{\sqrt{2 m^{3}}}{\pi^{2} \hbar^{3}} \tag{2}
\end{equation*}
$$

At zero temperature

$$
\begin{equation*}
f(\varepsilon)=\theta\left(\varepsilon_{\mathrm{F}}-\varepsilon\right), \quad \varepsilon_{\mathrm{F}}=\frac{\hbar^{2} k_{\mathrm{F}}^{2}}{2 m}, \quad k_{\mathrm{F}}=\left(3 \pi^{2} n\right)^{1 / 3} \tag{3}
\end{equation*}
$$

Introducing the step function and $D(\varepsilon)=A \sqrt{\varepsilon}$ in (1), we may determine $U(0)$ and an alternative expression for A :

$$
\begin{equation*}
N=V \int_{0}^{\varepsilon_{\mathrm{F}}} A \sqrt{\varepsilon} d \varepsilon=\frac{2}{3} V A \varepsilon_{\mathrm{F}}^{3 / 2} \Rightarrow A=\frac{3 n}{2 \varepsilon_{\mathrm{F}}^{3 / 2}}, \quad U(0)=V \frac{2}{5} A \varepsilon_{\mathrm{F}}^{5 / 2}=\frac{3}{5} N \varepsilon_{\mathrm{F}} \tag{4}
\end{equation*}
$$

i.e. $U \propto \varepsilon_{\mathrm{F}} \propto k_{\mathrm{F}}^{2} \propto V^{-2 / 3}$ and the pressure at zero temperature is

$$
\begin{equation*}
P=-\frac{\partial U(0)}{\partial V}=\frac{2}{3} \frac{U}{V}=\underline{\frac{2}{5} n \varepsilon_{\mathrm{F}}}=\frac{\left(3 \pi^{2}\right)^{2 / 3} n^{5 / 3} \hbar^{2}}{5 m} \tag{5}
\end{equation*}
$$

in sharp contrast to a classical gas, where the zero-temperature pressure is zero.

6.4 Density of states in low dimensions

The density of states in \vec{k}-space is $D_{\vec{k}}=2 /(2 \pi)^{d}$ in d dimensions (6.34)

$$
\begin{equation*}
D(\varepsilon)=\int[d \vec{k}] \delta\left(\varepsilon-\varepsilon_{\vec{k}}\right) \equiv \int D_{\vec{k}} \delta\left(\varepsilon-\varepsilon_{\vec{k}}\right) d \vec{k}=\frac{2}{(2 \pi)^{d}} \int \delta\left(\varepsilon-\varepsilon_{\vec{k}}\right) d \vec{k} \tag{1}
\end{equation*}
$$

Introducing "spherical coordinates" in d dimensions and $k=|\vec{k}|$, then

$$
d \vec{k}=\left\{\begin{array}{ccc}
2 d k & , & d=1 \tag{2}\\
2 \pi k d k & , & d=2 \\
4 \pi k^{2} d k & , & d=3
\end{array}\right.
$$

The factor 2 in the one-dimensional case appears because the one-dimensional wave vector may assume both positive and negative values, whereas $k \geq 0$ per definition.

$$
\begin{gather*}
\varepsilon_{\vec{k}}=\varepsilon_{k}=\frac{\hbar^{2} k^{2}}{2 m} \Rightarrow k=\frac{\sqrt{2 m \varepsilon_{k}}}{\hbar}, \quad d k=\left(\frac{m}{2 \hbar^{2} \varepsilon_{k}}\right)^{1 / 2} d \varepsilon_{k} \Rightarrow \tag{3}\\
D(\varepsilon)= \begin{cases}\frac{2}{2 \pi} \int_{0}^{\infty} 2 \delta\left(\varepsilon-\varepsilon_{k}\right)\left(\frac{m}{2 \hbar^{2} \varepsilon_{k}}\right)^{1 / 2} d \varepsilon_{k}= \\
\frac{2}{(2 \pi)^{2}} \int_{0}^{\infty} 2 \pi \frac{\sqrt{2 m \varepsilon_{k}}}{\hbar} \delta\left(\varepsilon-\varepsilon_{k}\right)\left(\frac{m}{2 \hbar^{2} \varepsilon_{k}}\right)^{1 / 2} d \varepsilon_{k}=\frac{\sqrt{2 m}}{\pi \hbar} \varepsilon^{-1 / 2}, & d=1 \\
\frac{2}{\pi \hbar^{2}}, & d=2 \\
(2 \pi)^{3} & \int_{0}^{\infty} 4 \pi \frac{2 m \varepsilon_{k}}{\hbar^{2}} \delta\left(\varepsilon-\varepsilon_{k}\right)\left(\frac{m}{2 \hbar^{2} \varepsilon_{k}}\right)^{1 / 2} d \varepsilon_{k}= \\
\frac{\sqrt{2 m^{3}}}{\pi^{2} \hbar^{3}} \varepsilon^{1 / 2}, & d=3\end{cases}
\end{gather*}
$$

6.5 Fermi pancakes

Thin layer of Ag: $L_{x}=L_{y}=L=10^{6} \AA$ and $L_{z}=d$.
The density of electrons is the same as the density of atoms (one conduction electron per Ag atom), i.e. $n=5.86 \cdot 10^{22} \mathrm{~cm}^{-3}=0.0586 \AA^{-3}$, according to the properties given in the periodic table on the front page of Marder. The wave function of the "free" electrons should vanish at the boundaries $z=0$ and $z=d$. This condition is fulfilled if assuming the one-electron wave function to be

$$
\begin{equation*}
\psi(x, y, z) \propto e^{i\left(k_{x} x+k_{y} y\right)} \sin (p q z), \quad q=\frac{\pi}{d}, \quad p=1,2, \ldots \tag{1}
\end{equation*}
$$

The electron states are characterized by the two-dimensional wave vector $\vec{k}=$ $\left(k_{x}, k_{y}, 0\right)$ and the "band index" p. The eigenenergies are $\left(k^{2}=k_{x}^{2}+k_{y}^{2}\right)$:

$$
\begin{equation*}
\varepsilon_{p \vec{k}}=\frac{\hbar^{2}}{2 m}\left(k^{2}+p^{2} q^{2}\right) \geq \varepsilon_{1 \overrightarrow{0}}=\frac{\hbar^{2} q^{2}}{2 m} \tag{2}
\end{equation*}
$$

At $T=0\left(T \ll T_{\mathrm{F}}\right)$, as assumed implicitly in the exercise, the occupied states are all those with energies smaller than ε_{F}. The number of electrons in the p th band, N_{p}, is zero if $\varepsilon_{p \overrightarrow{0}}>\varepsilon_{\mathrm{F}}$. In the opposite case:

$$
\begin{equation*}
N_{p}=L^{2} \int_{0}^{k_{p}} \frac{2}{(2 \pi)^{2}} 2 \pi k d k=L^{2} \frac{k_{p}^{2}}{2 \pi} \tag{3}
\end{equation*}
$$

where k_{p} is the Fermi wave number of the p th band, i.e. the largest value of k of occupied states in the p th band, as determined by

$$
\begin{equation*}
\varepsilon_{p \overrightarrow{k_{p}}}=\frac{\hbar^{2}}{2 m}\left(k_{p}^{2}+p^{2} q^{2}\right)=\varepsilon_{\mathrm{F}} \quad \Rightarrow \quad k_{p}^{2}=\frac{2 m \varepsilon_{\mathrm{F}}}{\hbar^{2}}-p^{2} q^{2}=q^{2}\left(\frac{\varepsilon_{\mathrm{F}}}{\varepsilon_{1 \overrightarrow{0}}}-p^{2}\right) \tag{4}
\end{equation*}
$$

(a) In the first case $d=4.1 \AA$ or $q=\pi / d=0.76624 \AA^{-1}$, and

$$
\begin{equation*}
\varepsilon_{1 \overrightarrow{0}}=\frac{\hbar^{2} q^{2}}{2 m}=\frac{\left(1.054572 \cdot 10^{-27} \times 0.76624 \cdot 10^{8}\right)^{2}}{2 \times 9.109389 \cdot 10^{-28} \times 1.602177 \cdot 10^{-12}} \mathrm{eV}=2.2369 \mathrm{eV} \tag{5}
\end{equation*}
$$

Assuming the Fermi energy to be smaller than the lowest energy of the $(p=2)$ band, $\varepsilon_{\mathrm{F}}<\varepsilon_{2 \overrightarrow{0}}=4 \varepsilon_{1 \overrightarrow{0}}$, then only the ($p=1$) states are occupied, in which case N_{1} has to be equal the total number N of free electrons:

$$
\begin{equation*}
N=L^{2} d n=N_{1}=L^{2} \frac{k_{1}^{2}}{2 \pi} \quad \Rightarrow \quad k_{1}=\sqrt{2 \pi d n}=1.22866 \AA^{-1} \tag{6}
\end{equation*}
$$

Introducing this result in (3) we get the Fermi energy and the band width W of the occupied states:

$$
\begin{equation*}
\varepsilon_{\mathrm{F}}=\varepsilon_{1 \overrightarrow{k_{1}}}=\varepsilon_{1 \overrightarrow{0}}\left[\left(k_{1} / q\right)^{2}+1\right]=7.99 \mathrm{eV}, \quad W=\varepsilon_{\mathrm{F}}-\varepsilon_{1 \overrightarrow{0}}=\underline{5.75 \mathrm{eV}} \tag{7}
\end{equation*}
$$

which is in accordance with our starting assumption of $\varepsilon_{\mathrm{F}}<\varepsilon_{2 \overrightarrow{0}}=8.948 \mathrm{eV}$. These results may be compared with that obtained for bulk Ag :

$$
\begin{equation*}
\varepsilon_{\mathrm{F}}(\text { bulk })=W(\text { bulk })=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n\right)^{2 / 3}=5.50 \mathrm{eV} \tag{8}
\end{equation*}
$$

(b) In the case of $d=8.2 \AA, q=\pi / d=0.38312 \AA^{-1}$ and $\varepsilon_{10}=0.5592 \mathrm{eV}$. In order to determine ε_{F} in this case, we need to include more bands than the lowest one. The number of bands turns out to be 3, and

$$
\begin{equation*}
N=N_{1}+N_{2}+N_{3} \Rightarrow 2 \pi d n=q^{2}\left[\left(\frac{\varepsilon_{\mathrm{F}}}{\varepsilon_{1 \overrightarrow{0}}}-1^{2}\right)+\left(\frac{\varepsilon_{\mathrm{F}}}{\varepsilon_{1 \overrightarrow{0}}}-2^{2}\right)+\left(\frac{\varepsilon_{\mathrm{F}}}{\varepsilon_{1 \overrightarrow{0}}}-3^{2}\right)\right] \tag{9}
\end{equation*}
$$

Solving this equation with respect to $\varepsilon_{\mathrm{F}} / \varepsilon_{1 \overrightarrow{0}}$, we get $\varepsilon_{\mathrm{F}} / \varepsilon_{1 \overrightarrow{0}}=11.523$, which is larger than 3^{2} but smaller than 4^{2}, in accordance with the assumption that all electrons are found in the three lowest bands. Hence the results are:

$$
\begin{equation*}
\varepsilon_{\mathrm{F}}=6.44 \mathrm{eV}, \quad W=\varepsilon_{\mathrm{F}}-\varepsilon_{1 \overrightarrow{0}}=\underline{5.89 \mathrm{eV}} \tag{10}
\end{equation*}
$$

The two first figures show the energy bands as functions of k in the cases (a) and (b), where the unit of k is the length of a reciprocal lattice vector $2 \pi / a$ [r.l.u.]. The last figure shows the Fermi energy (and the band width) as a function of the number of atomic layers of Ag. The crystal structure of Ag is fcc with the lattice parameter $a=4.09 \AA$. This is very nearly the thickness d assumed in (a), i.e. this case corresponds to a film with two atomic layers of Ag atoms.

Solutions to the problems in Chapter 7

7.1 Normals to surfaces

$\vec{r}=\left(x_{1}, x_{2}, x_{3}\right)=\vec{s}(t)$ is the parametrization of a curve lying within the surface defined by $f(\vec{r})=\varepsilon$. Since $f(\vec{s}(t))$ is a constant ε, the derivative of this function is 0 :

$$
\begin{equation*}
\frac{d}{d t} f(\vec{s}(t))=\sum_{\alpha} \frac{\partial f}{\partial x_{\alpha}} \frac{d s_{\alpha}}{d t}=\nabla f \cdot \frac{d \vec{s}}{d t}=0 \tag{1}
\end{equation*}
$$

Because $\vec{s}(t)$ may be any arbitrary curve lying within the surface, the same is true for the curve tangent $d \vec{s}(t) / d t$, and (1) is only generally valid if ∇f is normal to the surface.

7.3 Van Hove singularities

(a) The problem becomes the same as the one considered in problem 7.1 if making the replacements $\vec{k} \rightarrow \vec{r}$ and $\varepsilon_{n \vec{k}} \rightarrow f(\vec{r})$, hence $\nabla_{\vec{k}} \varepsilon_{n \vec{k}}$ is perpendicular to the energy surface defined by $\varepsilon_{n \vec{k}}=\varepsilon$.
(b) The energy is assumed to be $\varepsilon_{n \vec{k}}=\varepsilon_{\max }-k^{2}$, and in the two-dimensional case

$$
\begin{align*}
D(\varepsilon) & =\int[d \vec{k}] \delta\left(\varepsilon-\varepsilon_{n \vec{k}}\right)=\frac{2}{(2 \pi)^{2}} \int_{0}^{\infty} 2 \pi k \delta\left(\varepsilon-\varepsilon_{\max }+k^{2}\right) d k \tag{1}\\
& =\frac{1}{2 \pi} \int_{0}^{\infty} \delta\left(\varepsilon-\varepsilon_{\max }+k^{2}\right) d\left(k^{2}\right)=\frac{1}{2 \pi} \theta\left(\varepsilon_{\max }-\varepsilon\right)
\end{align*}
$$

The density of states is zero if $\varepsilon>\varepsilon_{\max }$ and $1 /(2 \pi)$ when $\varepsilon<\varepsilon_{\max }$.
(c) In the three dimensional case, the result is

$$
\begin{align*}
D(\varepsilon) & =\int[d \vec{k}] \delta\left(\varepsilon-\varepsilon_{n \vec{k}}\right)=\frac{2}{(2 \pi)^{3}} \int_{0}^{\infty} 4 \pi k^{2} \delta\left(\varepsilon-\varepsilon_{\max }+k^{2}\right) d k \\
& =\frac{1}{2 \pi^{2}} \int_{0}^{\infty} k \delta\left(\varepsilon-\varepsilon_{\max }+k^{2}\right) d\left(k^{2}\right)=\frac{1}{2 \pi^{2}} \sqrt{\varepsilon_{\max }-\varepsilon} \theta\left(\varepsilon_{\max }-\varepsilon\right) \tag{2}
\end{align*}
$$

