
Solutions to Problems in Condensed Matter Physics 2

(Textbook: Michael P. Marder, Condensed Matter Physics, Wiley, 2000)

Contents page

Chapter 6 and 7 (“electrons”) 1

Chapter 11 (“phonons”) 6

Chapter 12 (“elasticity”) 8

Chapter 17 (“transport phenomena”) 10

Chapter 22 and 23 (“optical properties”) 16

Chapter 24 (“ordering”) 21

Chapter 25 and 26 (“magnetism”) 26

Chapter 27 (“superconductivity”) 33

(Niels Bohr Institute, February 2011)



1 Problems in Chapter 6 and 7 (“electrons”)

Solutions to the problems in Chapter 6

6.3 Pressure of a Fermi gas at zero temperature

The number of electrons N and the internal energy U , in the volume V , are

N = V

∫ ∞

0
D(ε)f(ε)dε, U = V

∫ ∞

0
εD(ε)f(ε)dε, (1)

The Fermi distribution function f(ε) and the density of states (per unit volume)
D(ε) are

f(ε) =
1

eβ(ε−µ) + 1
, D(ε) = A

√
ε, A =

√
2m3

π2�3
. (2)

At zero temperature

f(ε) = θ(εF − ε), εF =
�
2k2F
2m

, kF =
(
3π2n

)1/3
(3)

Introducing the step function and D(ε) = A
√
ε in (1), we may determine U(0) and

an alternative expression for A:

N = V

∫ εF

0
A
√
εdε = 2

3V Aε
3/2
F ⇒ A =

3n

2ε
3/2
F

, U(0) = V 2
5Aε

5/2
F = 3

5NεF (4)

i.e. U ∝ εF ∝ k2F ∝ V −2/3 and the pressure at zero temperature is

P = −∂U(0)

∂V
=

2

3

U

V
= 2

5nεF =
(3π2)2/3n5/3�2

5m
(5)

in sharp contrast to a classical gas, where the zero-temperature pressure is zero.

6.4 Density of states in low dimensions

The density of states in �k-space is D�k = 2/(2π)d in d dimensions (6.34)

D(ε) =

∫
[d�k]δ(ε − ε�k) ≡

∫
D�kδ(ε − ε�k)d

�k =
2

(2π)d

∫
δ(ε − ε�k)d

�k (1)

Introducing “spherical coordinates” in d dimensions and k = |�k|, then

d�k =

⎧⎨
⎩

2 dk , d = 1
2πk dk , d = 2
4πk2dk , d = 3

(2)

The factor 2 in the one-dimensional case appears because the one-dimensional wave
vector may assume both positive and negative values, whereas k ≥ 0 per definition.

ε�k = εk =
�
2k2

2m
⇒ k =

√
2mεk
�

, dk =

(
m

2�2εk

)1/2

dεk ⇒ (3)

D(ε) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

2π

∫ ∞

0
2 δ(ε − εk)

(
m

2�2εk

)1/2

dεk =

√
2m

π�
ε−1/2, d = 1

2

(2π)2

∫ ∞

0
2π

√
2mεk
�

δ(ε − εk)

(
m

2�2εk

)1/2

dεk =
m

π�2
, d = 2

2

(2π)3

∫ ∞

0
4π

2mεk
�2

δ(ε − εk)

(
m

2�2εk

)1/2

dεk =

√
2m3

π2�3
ε1/2, d = 3
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6.5 Fermi pancakes

Thin layer of Ag: Lx = Ly = L = 106 Å and Lz = d.

The density of electrons is the same as the density of atoms (one conduction
electron per Ag atom), i.e. n = 5.86 · 1022 cm−3 = 0.0586 Å−3, according to the
properties given in the periodic table on the front page of Marder. The wave
function of the “free” electrons should vanish at the boundaries z = 0 and z = d.
This condition is fulfilled if assuming the one-electron wave function to be

ψ(x, y, z) ∝ ei(kxx+kyy) sin (pqz) , q =
π

d
, p = 1, 2, . . . (1)

The electron states are characterized by the two-dimensional wave vector �k =
(kx, ky, 0) and the “band index” p. The eigenenergies are (k2 = k2x + k2y):

ε
p�k

=
�
2

2m

(
k2 + p2q2

)
≥ ε

1�0
=

�
2q2

2m
(2)

At T = 0 (T � TF), as assumed implicitly in the exercise, the occupied states are
all those with energies smaller than εF. The number of electrons in the pth band,
Np, is zero if ε

p�0
> εF. In the opposite case:

Np = L2
∫ kp

0

2

(2π)2
2πk dk = L2 k

2
p

2π
(3)

where kp is the Fermi wave number of the pth band, i.e. the largest value of k of
occupied states in the pth band, as determined by

ε
p �kp

=
�
2

2m

(
k2p + p2q2

)
= εF ⇒ k2p =

2mεF
�2

− p2q2 = q2
(
εF
ε
1�0

− p2
)

(4)

(a) In the first case d = 4.1 Å or q = π/d = 0.76624 Å−1, and

ε
1�0

=
�
2q2

2m
=

(1.054572 · 10−27 × 0.76624 · 108)2
2× 9.109389 · 10−28 × 1.602177 · 10−12

eV = 2.2369 eV (5)

Assuming the Fermi energy to be smaller than the lowest energy of the (p = 2)
band, εF < ε

2�0
= 4ε

1�0
, then only the (p = 1) states are occupied, in which case N1

has to be equal the total number N of free electrons:

N = L2dn = N1 = L2 k
2
1

2π
⇒ k1 =

√
2πdn = 1.22866 Å

−1
(6)

Introducing this result in (3) we get the Fermi energy and the band width W of
the occupied states:

εF = ε
1 �k1

= ε
1�0

[
(k1/q)

2 + 1
]
= 7.99 eV, W = εF − ε

1�0
= 5.75 eV (7)

which is in accordance with our starting assumption of εF < ε
2�0

= 8.948 eV. These
results may be compared with that obtained for bulk Ag:

εF(bulk) =W (bulk) =
�
2

2m

(
3π2n

)2/3
= 5.50 eV (8)
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(b) In the case of d = 8.2 Å, q = π/d = 0.38312 Å−1 and ε
1�0

= 0.5592 eV. In order
to determine εF in this case, we need to include more bands than the lowest one.
The number of bands turns out to be 3, and

N = N1+N2+N3 ⇒ 2πdn = q2
[(

εF
ε
1�0

− 12
)
+

(
εF
ε
1�0

− 22
)
+

(
εF
ε
1�0

− 32
)]

(9)

Solving this equation with respect to εF/ε1�0, we get εF/ε1�0 = 11.523, which is

larger than 32 but smaller than 42, in accordance with the assumption that all
electrons are found in the three lowest bands. Hence the results are:

εF = 6.44 eV, W = εF − ε
1�0

= 5.89 eV (10)
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Solutions to the problems in Chapter 7

7.1 Normals to surfaces

�r = (x1, x2, x3) = �s(t) is the parametrization of a curve lying within the surface
defined by f(�r) = ε. Since f(�s(t)) is a constant ε, the derivative of this function
is 0:

d

dt
f(�s(t)) =

∑
α

∂f

∂xα

dsα
dt

= ∇f · d�s
dt

= 0 (1)

Because �s(t) may be any arbitrary curve lying within the surface, the same is true
for the curve tangent d�s(t)/dt, and (1) is only generally valid if ∇f is normal to
the surface.

7.3 Van Hove singularities

(a) The problem becomes the same as the one considered in problem 7.1 if making
the replacements �k → �r and ε

n�k
→ f(�r), hence ∇�k

ε
n�k

is perpendicular to the
energy surface defined by ε

n�k
= ε.

(b) The energy is assumed to be ε
n�k

= εmax − k2, and in the two-dimensional case

D(ε) =

∫
[d�k]δ(ε − ε

n�k
) =

2

(2π)2

∫ ∞

0
2πk δ(ε − εmax + k2) dk

=
1

2π

∫ ∞

0
δ(ε − εmax + k2)d(k2) =

1

2π
θ(εmax − ε)

(1)

The density of states is zero if ε > εmax and 1/(2π) when ε < εmax.

(c) In the three dimensional case, the result is

D(ε) =

∫
[d�k]δ(ε − ε

n�k
) =

2

(2π)3

∫ ∞

0
4πk2 δ(ε − εmax + k2) dk

=
1

2π2

∫ ∞

0
k δ(ε − εmax + k2)d(k2) =

1

2π2
√
εmax − ε θ(εmax − ε)

(2)

Solution to HS’s problem 1

Heat capacity of a two-dimensional electron gas

GaAs/AlGaAs heterostructure (see Marder Section 19.5):

n = 1011 cm−2, ε =
�
2k2

2m∗ , m∗ = 0.067me (1)

The present situation corresponds to the case (a) of the previous problem 6.5 in
Marder, i.e. the gas is purely two-dimensional in the sense that only the (p = 1)
band needs to be considered, and �k is a two-dimensional vector with the length k =√
k2x + k2y. The most important quantity is the Fermi energy, which is determined

by evaluating N at zero temperature:

n =
N

A
=

∫
k≤kF

D�kd
�k =

2

(2π)2

∫ kF

0
2πk dk =

k2F
2π

⇒ kF =
√
2πn (2a)
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The same result is obtained by using that, according to problem 6.4 or equation
(6.35), D(ε) = m∗/π�2 in the two-dimensional case:

n =

∫ εF

0
D(ε) dε =

m∗εF
π�2

⇒ εF =
nπ�2

m∗ or kF =
√
2πn (2b)

Introducing the numbers, and using that kF = 1 Å
−1

corresponds to a Fermi energy
εF = 3.81 eV when the mass is me, then we get

kF = 0.793 · 10−2 Å
−1
, εF =

(
0.793 · 10−2

)2
0.067

3.81 eV = 3.58 meV (3)

This Fermi energy corresponds to a Fermi temperature TF = εF/kB = 41.5 K.

1) T = 1 K is much smaller than the Fermi temperature and the heat capacity
may be determined by the leading order expression (6.77)

cV =
π2

3
D(εF)k

2
BT =

π

6

T

TF
k2FkB , as D(εF) =

m∗

π�2
=

k2F
2πεF

=
k2F

2πkBTF
(4)

In the case of a sample with the area A = 1 cm2 the result is

CV (el) = AcV = A
π

6

1

41.5
(0.793·106 cm−1)2×1.38066·10−23 J/K = 1.1 · 10−13 J/K

(5)
The explicit result is CV (el) = Aπm∗k2BT/(3�

2). Hence, the small value of CV is
not due to the low electron density n but to the two-dimensionality of the system
and the small effective mass.

2) In order to estimate the phonon contribution to the heat capacity we shall use
the Debye model (Section 13.3.2 in Marder). The Debye temperature of GaAs is
ΘD = 344 K (which value is not changed much when some of the Ga ions are
replaced by Al ions). Using (13.70), (13.75) in Marder (2.Ed.) and

∫ ∞

0

x4ex

(ex − 1)2
dx =

4π4

15
⇒ cV =

12π4

5
nAkB

(
T

ΘD

)3

(T � ΘD) (6)

According to Table 2.5 (page 27) in Marder, GaAs has the zincblende structure (∼
diamond structure) with the lattice parameter a = 5.63 Å. In this structure there
are 8 atoms per unit cell, and the density of atoms is nA = 8/a3 = 4.48 ·1022 cm−3.
[The mean atomic mass (periodic table) is (69.72 + 74.92)/2 = 72.3 u, implying a
mass density ρ = 5.38 g cm−3]. Assuming V = 1 cm3 and T = 1 K, the phonon
contribution becomes

CV (ph) =
12π4

5
×4.48 ·1022×1.38066 ·10−23

(
1

344

)3

J/K = 3.55 · 10−6 J/K (7)

which is much larger than the electronic contribution. Utilizing that CV (el) ∝ T
and CV (ph) ∝ T 3, the temperature T0 at which the two contributions are equal,
is determined by (T0 in K)

1.10 · 10−13 T0 = 3.55 · 10−6 T 3
0 ⇒ T0 = 1.8 · 10−4K (8)
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A more fair comparison would be to consider a film of thickness ∼ 100 µm, i.e.
A = 1 cm2 and V = 10−2 cm3, in which case T0 = 1.8 mK, a temperature within
an accessible range (however, the reduction of the size of the sample makes it more
difficult to determine the heat capacity).

Solution to the problem in Chapter 11

11.2 Zinc in copper

Copper is a monovalent fcc and zinc a divalent hcp (not fcc) metal. At a small
concentration of Zn++, the crystal structure is fcc until the Fermi surface touches
some point on the edge of the Brillouin zone:

(a) In the nearly free electron approximation, the Fermi wave vector is (nearly)
determined as in the free electron case,

n =

∫
|�k|≤k

F

D�kd
�k =

2

(2π)3

∫ kF

0
4πk2dk =

1

3π2
k3F ⇒ kF =

(
3π2n

)1/3
(1)

Defining c to be the concentration of Zn++ ions and a to be the lattice parameter
of the fcc lattice, then the electron density is

n =
4

a3
[(1− c) + 2c] =

4

a3
(1+ c) ⇒ kF =

[
12π2

a3
(1 + c)

]1/3
=

4.9109

a
(1+ c)1/3

(2)
(b) The primitive unit vectors of the face-centered cubic lattice are, (2.2):

�a1 =
a

2
(1, 1, 0), �a2 =

a

2
(1, 0, 1), �a3 =

a

2
(0, 1, 1) (3)

and the corresponding primitive vectors of the reciprocal lattice are

�b1 = 2π
�a2 × �a3

�a1 · �a2 × �a3
=

2π

a
(1, 1,−1), �b2 =

2π

a
(1,−1, 1), �b3 =

2π

a
(−1, 1, 1)

(4)
The boundaries of the 1. Brillouin zone are established by the planes perpendicular
to ±�bi at the distance k1 = |�bi|/2 from the origin. Hence the shortest distance from
the origin to the zone boundaries is

k1 =
|�bi|
2

=
π
√
3

a
=

5.4414

a
(5)

kF(c = 0) is smaller than k1, and kF(c) becomes equal to k1 at the zinc concentra-
tion c = c1

4.9109(1 + c1)
1/3 = 5.4414 ⇒ c1 = 0.36 (6)

The experimental phase diagram (see Fig. 4 in Chapter 21 of Kittel) shows a
transition from fcc to bcc, for increasing c values, at about the Zn concentration
determined here.
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(c) The primitive unit vectors of the body-centered cubic lattice are, (2.3):

�a1 =
a

2
(1, 1,−1), �a2 =

a

2
(1,−1, 1), �a3 =

a

2
(−1, 1, 1) (7)

and the corresponding primitive vectors of the reciprocal lattice are

�b1 =
2π

a
(1, 1, 0), �b2 =

2π

a
(1, 0, 1), �b3 =

2π

a
(0, 1, 1) (8)

Notice, that the reciprocal of the bcc lattice is fcc, and equivalently, that the
reciprocal lattice of fcc is the bcc lattice.

In the case of bcc there are 2 atoms per cubic unit cell, hence

n =
2

a3
(1 + c), kF =

[
6π2

a3
(1 + c)

]1/3
=

3.8979

a
(1 + c)1/3 (9)

The shortest distance from the origin to the boundaries of the 1. Brillouin zone is

k2 =
|�bi|
2

=
π
√
2

a
=

4.4429

a
and k2 = kF when c = c2 = 0.48 (10)

Once again, this is about the right Zn concentration at which the Cu-Zn alloy
system shows a change of crystal structure (from bcc to a complex γ structure).

If the atomic density is assumed to stay constant at the transition fcc→bcc, the
Fermi wave vector is the same on each side of the phase line, but the lattice pa-
rameter a is changed, abcc = (1/2)1/3afcc = 0.794 afcc. The cubic lattice parameter
a also changes (increases) gradually with the Zn concentration, in between the
phase lines, since nCu = 1.33nZn, however, all the possible variations of a have
no influence on the arguments above. β-brass is the alloy with c = 0.5, and it
shows an order-disordered phase transition at about 470 ◦C, which we are going
to discuss later on.

Citation from Kittel: “Why is there a connection between the electron concentra-
tions at which a new phase appears and at which the Fermi surface makes contact
with the Brillouin zone? We recall that the energy bands split into two at the
region of contact on the zone boundary [Marder, Chapter 8, (8.24)]. If we add
more electrons to the alloy at this stage, they will have to be accommodated in
the upper band or in states of high energy near the zone corners of the lower band.
Both options are possible, and both involve an increase of energy. Therefore it
may be energetically favorable for the crystal structure to change to one which
can contain a Fermi surface of larger volume (more electrons) before contact is
made with the zone boundary. In this way H. Jones made plausible the sequence
of structures fcc, bcc, γ, hcp with increasing electron concentration.”
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Solutions to the problems in Chapter 12

12.4 Elastic constants

(a) The application of a uniform external gas pressure (no shear stress) implies a
uniform dilations of an isotropic solid, where only exx = eyy = ezz are non-zero, or

eαβ = δαβ
V − V0
3V0

=
∆V

3V0
(1)

where V0 is the zero-pressure equilibrium volume. Introducing this in the free
energy expression for an isotropic solid (12.23)

F = 1
2

∫ [
λ
(∑

α

eαα

)2
+ 2µ

∑
αβ

e2αβ

]
d�r = 1

2(V0 +∆V )

[
λ

(
∆V

V0

)2

+ 2µ
3

9

(
∆V

V0

)2
]

(2)
the bulk modulus is found to be

B = V
∂2F

∂V 2
= λ+ 2

3µ (3)

(when V → V0). This result is also obtained from the bulk modulus in the cubic
case (12.19), B = [c11 + 2c12]/3, by replacing the elastic constants with the Lamé
constants of the isotropic solid, c12 = λ, c44 = µ, and c11 = c12 + 2c44 = λ+ 2µ.

(b) According to (12.31), or Fig. 12.2, Young’s modulus Y is defined to be Y =
σzz/ezz, when applying a uniform stress σzz in the z direction. In the cubic case,
the diagonal elements of stress and strain tensors are related by, (12.14)-(12.17),

⎛
⎝σxxσyy
σzz

⎞
⎠ = c

⎛
⎝ exxeyy
ezz

⎞
⎠ , c =

⎛
⎝ c11 c12 c12
c12 c11 c12
c12 c12 c11

⎞
⎠ (4)

[the “off-diagonal elements relations” are σα = c44eα, where α = 4, 5, 6. In the
case of α = 4 this equation reads σyz = 2c44eyz ]. In order to determine ezz when
σzz is non-zero, we need to determine the inverse matrix. The determinant of c is
D = c311 +2c312 − 3c11c

2
12 = (c11 +2c12)(c11 − c12)

2, and the inverse matrix is found
to be

c
−1

=

⎛
⎝A B B
B A B
B B A

⎞
⎠ , A =

c11 + c12
(c11 + 2c12)(c11 − c12)

, B = − c12
c11 + c12

A (5)

showing that ezz = Aσzz, hence

Y = A−1 =
(c11 + 2c12)(c11 − c12)

c11 + c12
(6)

[In order to complete the cubic case, then Poisson’s ratio (12.34) is −B/A or

ν =
c12

c11 + c12
, and the shear modulus is G = c44 ].
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12.5 Waves in cubic crystals

(a) Combining (12.14) and (12.16) we may write the free energy of a cubic solid as

F = 1
2

∫
d�r

[
c11

(
e2xx + e2yy + e2zz

)
+ 2 c12

(
exxeyy + exxezz + eyyezz

)

+2 c44

(
e2xy + e2yx + e2xz + e2zx + e2yz + e2zy

) ]
= 1

2

∫
d�r
∑
αβ

σαβeαβ

(1)

which shows that the stress-strain relations are

σαα = c11eαα + c12
∑
β �=α

eββ , σαβ = 2 c44eαβ (α 
= β), eαβ ≡ 1

2

(
∂uα
∂rβ

+
∂uβ
∂rα

)

(2)
Introducing these relations in the equations of motion, (12.25), we get

ρüα =
∑
β

∂σαβ
∂rβ

= c11
∂2uα
∂r2α

+
∑
β �=α

[
c12

∂2uβ
∂rα∂rβ

+ c44
∂

∂rβ

(
∂uα
∂rβ

+
∂uβ
∂rα

)]
(3)

(b) Introducing a plane-wave solution

�u(�r, t) = �u0 ei(
�k·�r−ωt) (4)

into these equations (3), we get

−ρω2u0α = −c11k2αu0α − c12
∑
β �=α

kαkβu
0
β − c44

∑
β �=α

(
k2βu

0
α + kαkβu

0
β

)
(5)

leading to the following matrix equation for determining �u0 and ω(
c11k

2
α + c44

∑
β �=α

k2β − ρω2
)
u0α + (c12 + c44)

∑
β �=α

kαkβu
0
β = 0 (6)

(c) In the case of waves propagation along [100], the k-vector is �k = (k, 0, 0) and
the matrix equation is diagonal:(

c11k
2 − ρω2

)
u01 = 0,

(
c44k

2 − ρω2
)
u02 = 0,

(
c44k

2 − ρω2
)
u03 = 0 (7)

The sound velocities are

cl =
ω

k
=

√
c11
ρ
, �u0 ‖ �k (longitudinal)

ct =
ω

k
=

√
c44
ρ
, �u0 ⊥ �k (transverse)

(8)

i.e. one longitudinal and two degenerate transverse sound waves. Table 12.1 shows
that c11 = 165 GPa, c44 = 79.24 GPa, and c12 = 64 GPa in the case of silicon.
From the periodic table: the atomic density is n = 4.99 ·1022 cm−3 and the atomic
mass is 28.09 u implying ρ = 28.09× 1.66054 · 10−27[kg]× 4.99 · 1028[m−3] = 2328
kg/m3. Introducing these numbers in (8), we get

cl = 8420 m/s , ct = 5830 m/s (9)
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(d) Waves propagating along [111], in which case we assume �k = (k/
√
3)(1, 1, 1),

and the eigenvalue equation for determining λ = ρω2 is found to be⎛
⎝A− λ B B

B A− λ B
B B A− λ

⎞
⎠
⎛
⎝u01u02
u03

⎞
⎠ =

⎛
⎝ 0
0
0

⎞
⎠ (10a)

where
λ = ρω2, A = 1

3(c11 + 2c44)k
2, B = 1

3 (c12 + c44)k
2 (10b)

The characteristic determinant is

(A−λ)
(
(A− λ)2 −B2

)
−2B

(
(A− λ)−B2

)
= (A+2B−λ)(A−B−λ)2 = 0 (11)

Introducing the solution λ = A + 2B in (10a), we get u01 = u02 = u03 or �u0 ‖ �k,
whereas the two other degenerate solutions λ = A− B imply u01 + u02 + u03 = 0 or

�u0 · �k = 0. Hence the sound velocities are

cl =
ω

k
=

√
c11 + 2c12 + 4c44

3ρ
= 9340 m/s , �u0 ‖ �k (longitudinal)

ct =
ω

k
=

√
c11 − c12 + c44

3ρ
= 5080 m/s , �u0 ⊥ �k (transverse)

(12)

Solutions to the problems in Chapter 17

17.4 AC conductivity

In the presence of a time-dependent (uniform) electrical field

�E = �E0e
−iωt (1)

we may use the general solution of the Boltzmann equation given by (17.24), before
the integration with respect to t′ is performed:

g = f −
∫ t

−∞
dt′ e(t

′−t)/τεe−iωt
′
�v�k · �E0 e

∂f(t′)
∂µ

(2)

Considering only effects which are linear in the applied field (the linearized solution
of the Boltzmann equation), then �v�k = �v�k(t

′) and f(t′) within the integral may be
replaced by their time-independent equilibrium values at zero field, and the time
integration may be performed straightforwardly

g = f − τε
1− iωτε

�v�k · �E0 e
∂f

∂µ
e−iωt = f − τε

1− iωτε
�v�k · �E e

∂f

∂µ
(3)

Introducing this expression into (17.43)-(17.44) we get the frequency-dependent
conductivity (valid in the limit of �E0 → �0)

σαβ(ω) = e2
∫
[d�k]

τε
1− iωτε

vαvβ
∂f

∂µ
(4)

or in the case of a cubic or an isotropic (free electron) system:

σ(ω) =
ne2

m∗
τ

1− iωτ
=
ne2τ

m∗
1 + iωτ

1 + (ωτ)2
(5)
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17.5 Current driven by thermal gradient

We shall consider a metal subject to a constant temperature gradient

∇T =

(
∂T

∂x
, 0, 0

)
and ε�k = εk =

1
2m

∗�v2�k (1)

According to (17.60), (17.62), and (17.68) the electrical current, in the case of
G = 0, is

�j = L12
(
−∇T

T

)
, L12 = −1

e
L(1) = −1

e

π2

3
(kBT )

2 σ ′(εF) (2)

The assumption of an isotropic mass, (1), implies σ(ε) to be diagonal, and accord-
ing to (17.64) the diagonal element is

σαα(ε) = e2τ

∫
d�kD�k v

2
�kα
δ(ε − ε�k) = e2τ

∫
dεkD(εk)

1
3�v

2
�k
δ(ε − εk) (3)

The integration of v2�kα over all solid angles, at a constant |�k|, is 1/3 of the result

deriving from Tr v2�kα
= �v2�k

and using �v2�k
= 2εk/m

∗, we get

σαα(ε) = e2τD(ε)
2ε

3m∗ ⇒ σ′αα(ε) =
2e2τ

3m∗
[
D(ε) + εD′(ε)

]
(4)

This result is introduced in (2)

�j =
1

e

π2

3
(kBT )

2 2e
2τ

3m∗D(εF)

(
1 + εF

D′(εF)
D(εF)

)
∇T
T

(5)

In terms of the heat capacity cV = (π2/3)k2BTD(εF), (6.77), we finally get

jx =
2eτcV
3m∗

∂T

∂x

(
1 + εF

D′(εF)
D(εF)

)
=
eτcV
m∗

∂T

∂x
(6)

where the last equality sign is valid only if D(ε) ∝ √
ε.

17.8 Hall effect – elementary argument

The Hall effect geometry: The applied field �E is along the x axis leading to a current �j in

this direction, i.e. an electron (hole) current in the minus (plus) x direction. The magnetic

part of the Lorenz force �F ∝ �j × �B is in the minus y direction, when �B is along z, leading

to opposite signs of the resulting charge distributions in the electron and hole cases.
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(a) The equation of motion, when assuming the Drude model, is

m�̇v = −e
(
�E +

�v

c
× �B

)
− m�v

τ
(1)

in the case of electrons with charge −e. Using �B = (0, 0, B), then we get �v × �B =
(vyB,−vxB, 0) and since the current, by geometry, is constrained to be along x,
the steady state is characterized by vx being constant and vy = 0. These conditions
imply

mv̇y = −e
(
Ey −

vx
c
B

)
− 0 = 0 ⇒ Ey =

vx
c
B (2)

(b) The current is �j = (jx, 0, 0) with jx = −nevx, and the Hall coefficient is

R =
Ey
B jx

=
vx
c
B

1

B(−nevx)
= − 1

nec
, Ey = RB jx (3)

The electric field in the x direction may be determined from v̇x = 0, or

mv̇x = −eEx −
mvx
τ

= 0 ⇒ Ex = −me
τ
vx = −me

τ

jx
(−ne) =

mjx
ne2τ

=
jx
σ

(4)

i.e. Ex is determined by the Drude resistivity σ−1 as in the case of B = 0.

17.9 Hall effect – Boltzmann equation

The Boltzmann equation in the relaxation-time approximation is given by (17.17)
and (17.18)

dg

dt
=
∂g

∂t
+ �̇r · ∂g

∂�r
+ �̇k · ∂g

∂�k
= −g − f

τ
(1)

When the state is uniform in space and steady in time, this equation reduces to

�̇k · ∂g
∂�k

= −g − f

τ
(2)

The semiclassical equation of motion is

��̇k = −e
(
�E +

1

c
�v�k × �B

)
, �v�k = �̇r =

1

�

∂ε�k
∂�k

=
��k

m∗ (3)

where the second equation expresses that the mass tensor is assumed to be isotropic
for simplicity. Like in Problem 17.4 we are only interested in the response (current)
which is linear in the electric field. This means that g may be replaced by f in
products on the left hand side of (2) which already involve �E. The linearized
version of the Boltzmann equation (2) is therefore

− e
�

�E · ∂f
∂�k

− e

�c
�v�k × �B · ∂(g − f)

∂�k
= −g − f

τ
(4)

when using that �v�k × �B · ∂f
∂�k

= 0 because
∂f

∂�k
is parallel with �v�k

, as

∂f

∂�k
=

∂f

∂ε�k

∂ε�k
∂�k

= −∂f
∂µ

��v�k (5)
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(a) The geometry is the same as applied in problem 17.8, hence we define �B =
(0, 0, B) and assume the resulting �E = (Ex, Ey, 0) to be perpendicular to �B. In
this geometry, we guess that the solution has the form

g = f + a kx + b ky (6)

Introducing this in eq. (4) and utilizing (5), we get

e�

m∗
∂f

∂µ

(
Ex kx + Ey ky

)
− eB

m∗c

(
a ky − b kx

)
= −a kx + b ky

τ
(7)

Since kx and ky are independent variables, this equation leads to two independent
conditions, which determine a and b to be

a =
Ex − ωcτEy
1 + (ωcτ)2

(
−e�τ
m∗

)
∂f

∂µ
, b =

Ey + ωcτEx
1 + (ωcτ)2

(
−e�τ
m∗

)
∂f

∂µ
(8)

where we have introduced the cyclotron frequency ωc =
eB

m∗c
.

The α component of the current density �j is, according to Marder’s eq. (17.43),

jα = −e
∫
[d�k] v�kα(g�k − f�k) = −e

∫
[d�k] v�kα

(
a kx + b ky

)

= −em
∗

�

∫
[d�k]

(
a v2�kxδαx + b v2�kyδαy

) (9)

where the last equality sign follows because the off-diagonal terms vanish, when
the mass tensor is assumed to be diagonal (isotropic). Using the same procedure
as in Marder’s eqs. (17.44)-(17.50), we have

−em
∗

�

∫
[d�k] v2�kα

(
−e�τ
m∗

)
∂f

∂µ
= e2τ

∫
[d�k] v2�kα

∂f

∂µ
=
ne2τ

m∗ ≡ σ0 (10)

and combining the three equations (8)-(10), we finally get

jx =
Ex − ωcτEy
1 + (ωcτ)2

σ0 , jy =
Ey + ωcτEx
1 + (ωcτ)2

σ0 (11)

In the case where �E is assumed to be along the z axis parallel to the field, we have
to add a term cz kz to the trial function g in (6). In this situation, the magnetic
field does not contribute to the Boltzmann equation, and we get jz = σ0Ez. Hence,
for a system with an isotropic mass m∗, the total conductivity tensor is found to
be

σ =
σ0

1 + (ωcτ)
2

⎛
⎝ 1 −ωcτ 0
ωcτ 1 0
0 0 1 + (ωcτ)

2

⎞
⎠ , ωc =

eB

m∗c
(12)

when the magnetic field B is applied along the z axis.

This result may also be expressed in terms of the Hall coefficient R, where

ωcτ = −RBσ0, or R = − 1

nec
(13)
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The resistivity tensor ρ, defined by the relation �E = ρ�j, is the inverse of the

conductivity tensor and is particularly simple

ρ = σ −1 =
1

σ0

⎛
⎝ 1 ωcτ 0
−ωcτ 1 0
0 0 1

⎞
⎠ =

1

σ0

⎛
⎝ 1 −σ0RB 0
σ0RB 1 0

0 0 1

⎞
⎠ (14)

which is in perfect agreement with the results derived from the Drude model (prob-

lem 17.8). The calculations in section 17.4.8 assume ωcτ 
 1, in which case the

diagonal elements of σ may be neglected in comparison with the off-diagonal ones,

σxx = σyy � 0 and σxy = −σyx � −(ωcτ)
−1.

Solution to HS’s problem 3

Hall effect of a two-dimensional electron gas

A two-dimensional electron gas with an anisotropic dispersion

ε = a(k2x + k2y) + b(k4x + k4y), a > 0, b > 0 (1)

Introducing the polar angle θ in the (kx, ky)-coordinate system of the reciprocal

lattice, the dispersion relation may be written

ε = a k2 + 1
4b (3 + cos 4θ)k4, kx = k cos θ, ky = k sin θ (2)

reflecting directly the four-fold, cubic symmetry of the dispersion.

1) The equation determining the constant energy contour is obtained by solving

(2) with respect to k2

k2 = k2(ε) =
2a

b(3 + cos 4θ)

[(
1 +

bε

a2
(3 + cos 4θ)

)1/2

− 1

]
(3)

In the case of bε � a2, the square root may be expanded, and to second order

(
√
1 + x = 1 + 1

2x− 1
8x

2) the result is

k2(ε) � ε

a

(
1− 3bε

4a2

)
− bε2

4a3
cos 4θ (4)

In the figure below (to the left) I show a constant energy contour, which differs

visible from a circle. It is obtained by a numerical evaluation of (3) (Mathematica

program) in the case of a = b = 1 and ε = 2 (assuming dimensionless quantities).

The thin line shows the average length of �k(ε). The figure to the right show the

corresponding |∇�k
ε�k| as a function of the angle θ. The gradient, and hence the

velocity �v�k = ∇�k
ε�k/�, is perpendicular to the constant energy contour. Notice

that |�v�k| is smallest along the 〈11〉 directions, where |�k(ε)| has its maxima.
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2) The Boltzmann equation in the relaxation-time approximation, (17.17)-(17.18),

dg

dt
=
∂g

∂t
+ �̇r · ∂g

∂�r
+ �̇k · ∂g

∂�k
= −g − f

τ
⇒ �̇k · ∂g

∂�k
= −g − f

τ
(5)

when considering the steady state of a uniform system. The fields are assumed to
be �E = (E, 0, 0) and �B = (0, 0, B), and the semiclassical equation of motion is

��̇k = −e
(
�E +

1

c
�v�k × �B

)
, �v�k = �̇r =

1

�

∂ε�k
∂�k

(6)

Introducing this in the right-hand part of (5) we get

− e
�

(
�E +

1

c
�v�k × �B

)
·
(
∂(g − f)

∂�k
+
∂f

∂�k

)
= −g − f

τ
(7)

where
∂f

∂�k
=

∂f

∂ε�k

∂ε�k
∂�k

= ��v�k
∂f

∂ε�k
(8)

This gradient is perpendicular to �v�k
× �B, and the linearized version of (7) is

−e�E · �v�k
∂f

∂ε�k
− e

�c
�v�k × �B · ∂(g − f)

∂�k
= −g − f

τ
(9)

Since (g − f) is going to scale with E, the term neglected, − e
�

�E · ∂(g − f)

∂�k
, is of

second order in E. Inserting �E = (E, 0, 0) and �B = (0, 0, B) in (9), we finally get

−evxE
∂f

∂ε�k
=

[
eB

�c

(
vy
∂

∂kx
− vx

∂

∂ky

)
− 1

τ

]
(g − f) (10)

3) With the assumption of g − f = kyF (ε), we find

vy
∂(g − f)

∂kx
− vx

∂(g − f)

∂ky
= vyky

dF

dε

∂ε

∂kx
− vxF − vxky

dF

dε

∂ε

∂ky

= vyky
dF

dε
�vx − vxF − vxky

dF

dε
�vy = −vxF

(11)
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When introducing this result in (10) and neglecting 1/τ , we get

−evxE
∂f

∂ε�k
=
eB

�c
[−vxF (ε)] ⇒ F (ε) =

�cE

B

∂f

∂ε�k
(12)

The current in the y direction is then

jy = −e
∫
[d�k]vy(g − f) = −e�cE

B

∫
[d�k]vyky

∂f

∂ε�k

= −e�cE
B

∫
dkx

∫
dkyD�k

∂ε�k
∂(�ky)

ky
∂f

∂ε�k
= −ecE

B

∫
dkx

∫
dkyD�kky

∂f

∂ky

=
ecE

B

∫
dkx

∫
dkyD�kf =

ecE

B

∫
[d�k]f =

necE

B
= − 1

RB
E, R = − 1

nec

(13)

when performing the y integration by parts, where D�k = 2/(2π)2 is a constant and

the boundaries of the integral is the boundaries of the first Brillouin zone. (13) is
the usual high-field result for the off-diagonal conductivity σyx = −1/(RB).

Solutions to the problems in Chapter 22 and 23

22.2 Faraday rotation

The combination of the semiclassical equation of motion and the Drude relaxation-

time model leads to the following equation of motion for the electrons (when ��̇k =
m∗�̇v = m∗�̈r)

�̈r = − e

m∗c
�̇r × �B − e

m∗
�E − �̇r

τ
or �̈r +

�̇r

τ
+

e

m∗c
�̇r × �B = − e

m∗
�E (1)

The (applied) magnetic field is assumed along ẑ. The electrical field vector, due
to an incident light wave, is assumed to be circular polarized in the plane perpen-
dicular to z

�B = (0, 0, B), �E = �E± = E0(x̂± iŷ) e−iωt (2)

If the light wave propagates in the positive z direction, i.e. E ∝ ei(qz−ωt), then the
plus (minus) sign in (2) corresponds to the left (right) circular polarization. In the
case of the right circular polarization, the end point of the E-vector is making a
right-handed screw line in the direction of propagation at a certain time t (see for
instance Griffiths, “Introduction to electrodynamics”, p. 374).

(a) Introducing the expressions for the fields in (1), the equation may be solved,
with respect to �̇r, by assuming

�̇r = A±(x̂± iŷ) e−iωt (3)

Because (x̂± iŷ)× ẑ = −ŷ ± ix̂ = ±i(x̂± iŷ), we get from (1)[
(−iω) + 1

τ
± i

eB

m∗c

]
A±(x̂± iŷ)e−iωt = − e

m∗E0(x̂± iŷ)e−iωt (4)

or

A± = −eE0

m∗

[
(−iω) + 1

τ
± i

eB

m∗c

]−1

= −eE0

m∗
τ

1− iωτ ± iωcτ
, ωc =

eB

m∗c
(5)
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where ωc is the cyclotron frequency (section 21.2). The current density and the
conductivity tensor are determined from

�j = −ne�̇r, �j = σ �E (6)

The calculations show that �̇r = (A±/E0)
�E and defining �j± = j0(x̂ ± iŷ), then

�j+ = σ++
�E+ + σ+−�E− = σ+�E+ and �j− = σ−+

�E+ + σ−−�E− = σ−�E−. The
current has the same circular polarization as the electric field, i.e. the conductivity
tensor is diagonal with respect to the choice of sign, σ+− = σ−+ = 0. The diagonal
components are (σ++ ≡ σ+ and σ−− ≡ σ−)

σ± = −neA
±

E0

=
σ0

1− iωτ ± iωcτ
, σ0 =

ne2τ

m∗ (7)

(b) In the case of ωτ 
 1 and ω 
 ωc, we get

σ± =
σ0

1− iωτ ± iωcτ
=

σ0
(−iωτ)

[
1 +

i

ωτ
∓ ωc
ω

]−1

� iσ0
ωτ

(
1− i

ωτ
± ωc
ω

)
(8)

(c) The dielectric constant, (20.14), is

ε± = 1 +
4πi

ω
σ± � 1− ω2

p

ω2

(
1− i

ωτ
± ωc
ω

)
(9)

where ωp is the plasma frequency introduced by (20.32) or (23.7)

ω2
p =

4πne2

m∗ =
4πσ0
τ

(10)

The index of refraction, (20.18), is

ñ± = n± + iκ± =
√
ε± � 1− ω2

p

2ω2

(
1− i

ωτ
± ωc
ω

)
, ω 
 ωp (11)

The Faraday rotation θ of the polarization vector per unit length along the sample
is then found to be

θ =
ω

2c

(
n− − n+

)
=
ω

2c
· 2 ω

2
p

2ω2

ωc
ω

=
ω2
pωc

2c ω2
(12)

Notice, that the sign of θ is determined by the sign of ωc, or B, i.e. if �B is along the
negative z direction then θ is negative. If the active carriers are holes rather than
electrons, we may perform exactly the same calculation except that e is replaced
by −e in all expressions (m∗ is then the positive hole mass), hence the sign of θ,
like the Hall voltage, depends on the kind of carriers.

Derivation of the expression for the Faraday rotation angle: Assuming the incident
light wave to be linearly polarized along the x axis at z = 0, then we want to find
the angle of rotation of the polarization vector in the xy plane as a function of z.

�E(z)/E0 =
1
2(x̂+ iŷ)ei(q+z−ωt) + 1

2(x̂− iŷ)ei(q−z−ωt) (13)
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At z = 0, the polarization vector is parallel to x̂, �E(0)/E0 = x̂e−iωt. Introducing
ψ = 1

2(q+ + q−)z and ∆ψ = 1
2 (q+ − q−)z, or q+z = ψ + ∆ψ and q−z = ψ −∆ψ,

then we get

�E(z)/E0 =
[
1
2(x̂+ iŷ)ei∆ψ + 1

2(x̂− iŷ)e−i∆ψ
]
ei(ψ−ωt) (14)

The polarization vector at z is determined by the factor in the square bracket,
which is found to be

1
2(x̂+ iŷ)(cos∆ψ+ i sin∆ψ) + 1

2(x̂− iŷ)(cos∆ψ− i sin∆ψ) = x̂ cos∆ψ− ŷ sin∆ψ

This expression shows that the polarization vector at z is making the angle θz =
−∆ψ = −1

2(q+ − q−)z with the x axis. According to (20.18) q± = ωn±/c, and the
rotation angle per unit length, along the direction of light propagation, is

θ = −1
2(q+ − q−) =

ω

2c

(
n− − n+

)
(15)

In the case where the carriers are electrons, then θ > 0, which sign corresponds to
a counter-clockwise or left-handed rotation of the polarization vector along z.

23.3 Helicon waves

(a) From the Maxwell equations (23.71) and (23.72) we find

−c∇×
(
∇× �E

)
= ∇× ∂B

∂t
=

1

c

∂2�E

∂t2
+

4π

c

∂�j

∂t
=

1

c

∂2�E

∂t2
+

4πσ

c

∂�E

∂t
(1)

when utilizing the linear relation �j(ω) = σ(ω)�E(ω). Assuming

�E = �E0 e
i(�k·�r−ωt), �k = (0, 0, k), k0 ≡

ω

c
(2)

we get from the left- and right-hand sides of (1)

−c (i�k)×
(
(i�k)× �E

)
=

1

c
(−iω)2�E+

4πσ

c
(−iω)�E = −ω

2

c

(
1 + i

4πσ

ω

)
�E = −ω

2

c
ε �E

(3)
when introducing the dielectric tensor ε, (20.14). Leaving out the common phase
factor, we finally get

�k ×
(
�k × �E0

)
+ k20 ε

�E0 = �0 (4)

(b) Symmetry analysis of the relation �j = σ �E: The conducting sample is assumed
to be isotropic (in the shape of a sphere, if surface effects are of importance). In the
presence of a magnetic field �B = Bẑ, the sample, or alternatively the coordinate
axes, may be rotated any angle around the z axis without changing the coordinate
representation (the matrix equation) for the tensor relation between �j and �E. If
the coordinate axes are rotated by an angle of 90 degrees around the z axis, then
(jx, jy, jz) is renamed (−jy, jx, jz) and (Ex, Ey, Ez) is replaced by (−Ey, Ex, Ez),
whereas the components σαβ determined by the sample are kept unchanged:

⎧⎨
⎩
jx = σxxEx + σxyEy + σxzEz
jy = σyxEx + σyyEy + σyzEz
jz = σzxEx + σzyEy + σzzEz

→
⎧⎨
⎩
−jy = −σxxEy + σxyEx + σxzEz
jx = −σyxEy + σyyEx + σyzEz
jz = −σzxEy + σzyEx + σzzEz

(5)
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A comparison of the two sets of relations then shows that σxx = σyy, σxy = −σyx,
and σzx = σzy = σxz = σyz = 0.

[Extension of the symmetry arguments: At zero field, the isotropic sample is insen-
sitive to a rotation around any arbitrary direction and σαβ = σxxδαβ , which result
shows that σxy → 0 when B → 0. A reflection of the system with respect to, for

instance, the yz plane implies that the axial vector �B along ẑ is reversed, whereas
it is the x components of the polar vectors �j and �E which change sign. Because of
this different behaviour of the polar and axial vectors it is straightforwardly shown
that σxy changes sign if �B is reversed, whereas nothing happens with the diagonal
elements. This symmetry element is in accordance with the general Onsager rela-
tion σαβ(−B) = σβα(B). Hence, in the case of an isotropic sample the diagonal
components may only involve terms quadratic (even powers) in B, whereas the
off-diagonal ones are linear (of odd powers) in B.]

These symmetry relations are consistent with the results obtained in the previous
problems 17.9 and 22.2, and they apply as well for the dielectric tensor ε, or

ε =

⎛
⎝ εxx εxy 0
−εxy εxx 0

0 0 εzz

⎞
⎠ (6)

Introducing this in (4) in combination with �k× (�k× �E0) = −k2�E0 +
�k(�k · �E0), the

result is ⎛
⎝−k2 + εxxk

2
0 εxyk

2
0 0

−εxyk20 −k2 + εxxk
2
0 0

0 0 εzzk
2
0

⎞
⎠
⎛
⎝E0

x
E0
y

E0
z

⎞
⎠ = �0 (7)

which only has a non-zero solution for �E0, if the characteristic determinant van-
ishes, or if

εzz

[(
(k/k0)

2 − εxx

)2
+ ε2xy

]
= 0 (8)

We are going to utilize the solution of problem 22.2 in the following. Here σ± is
defined by the vector relation �j± = σ±�E± in the xy plane, or

jx + ijy =

{
σ+(Ex + iEy)
σxxEx + σxyEy + i(−σxyEx + σxxEy) = (σxx − iσxy)(Ex + iEy)

(9)

showing that σ+ = σxx − iσxy and correspondingly, (9) in the solution of 22.2,

ε± = εxx ∓ iεxy ⇒ εxx = 1
2(ε

+ + ε−), εxy =
1
2(ε

+ − ε−)i (10)

The latter relations reduce (8) to the diagonal form

εzz

[
(k/k0)

2 − ε+
] [

(k/k0)
2 − ε−

]
= 0 (11)

(c) The situation is exactly the one considered in problem 22.2, and the result
found there is [combining (8) and (9) in the solution of 22.2]

ε± = 1 +
4πi

ω

σ0
1− iωτ ± iωcτ

= 1 + i
ω2
p

ω

τ

1− iωτ ± iωcτ

= 1 +
ω2
p

ω

1
1
iτ − ω ± ωc

= 1− ω2
p

ω

1

ω̃ ∓ ωc
, ω̃ = ω +

i

τ

(12)
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or finally

ε± = 1− ω2
p

ωω̃

1± (ωc/ω̃)

1− (ωc/ω̃)
2 , ωc =

eB

m∗c
, ω2

p =
4πσ0
τ

=
4πne2

m∗ (13)

which result agrees with the expression for εxx = (ε+ + ε−)/2 given by (23.82).

(d) The atomic density (front page) of aluminium metal is 6.02 · 1022 cm−3. Ac-
cording to Table 6.1, the number of conduction electrons per atom is 3, i.e. the
electron density in Al3+-metal is n = 18.06 · 1022 cm−3. The cyclic plasma fre-
quency is ωp = 5.64(15) · 1015 rad/s, when n = 1022 cm−3 and m∗ = m, see (23.3).
[Incidentally, the unit of a cyclic frequency is not Hz but rad/s or just s−1. The
unit Hz (hertz) is reserved for the case of cycles per second, ν = ω/(2π).] In the
case of Al-metal,

ωp = 24 · 1015 s−1, νp = 3.8 · 1015 Hz, �ωp = 16 eV (14)

The cyclotron frequency may be expressed in terms of the fundamental magnetic
quantity, the Bohr magneton:

µB =
e�

2mc
= 5.788383 · 10−9 eV/G ⇒ �ωc = �

eB

m∗c
= 2

m

m∗ µBB (15)

Assuming m∗ = m and B = 1 T = 10 kG = 104 G, we get

�ωc = 0.12 meV, νc = 2.8 · 1010 Hz, ωc = 18 · 1010 s−1 (16)

The numbers show that ωc � 10−5ωp � ωp. In the case of ω ≈ ωc, the fraction in
the expression for ε± is of the order of 1010, and the adding of one to this fraction
has no effect at all.

(e) Assuming ω � ωp we get from equation (12)

ε± = − ω2
p

ω(ω ∓ ωc +
i
τ )

� − ω2
p

ω(ω ∓ ωc)
, ωcτ 
 1 (17)

In most cases ε± < 0, which implies a purely imaginary refraction index ñ =√
ε and therefore no light propagation. However, there is one situation, where

electromagnetic waves with ω � ωp are capable to propagate through the sample,
which one is determined by the solution ε+, when ω < ωc (or ε− if the carriers
are holes). Hence, when placing a metal like aluminium in a strong magnetic
field, it is possible for low-frequency light to propagate through the metal, but low
temperature and high purity is demanded in order to secure that the damping is
small, ωcτ 
 1.

The dispersion relation for these “helicon” waves is determined by (11) and (17):

k2 = k20ε
+ =

(
ω

c

)2 ω2
p

ω(ωc − ω)
⇒ ω =

ωc(ck)
2

ω2
p + (ck)2

� ωc
ω2
p

(ck)2, k � ωp
c
(18)

showing that the dispersion is not linear but quadratic in k in the long wavelength
limit. The name of the waves is a derivative of “helix” and refers to the circu-
lar polarization of the waves (ε+ corresponds to left circular polarization) – the
polarization vector of the helicon wave is forming a helix along the z direction.
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The helicon resonance is related to the Hall effect, and the result may be written
in a simple form in terms of the Hall coefficient R = −(nec)−1:

ω =
B|R|
4π

(ck)2 (cgs-Gaussian units) (19)

In the experiments of, for instance, R. Bowers, C. Legendy and F. Rose, Phys.
Rev. Lett. 7, 339 (1961), wavelengths of the order of 1 cm are considered. In the
case of Al-metal, λ = 1 cm corresponds to a helicon frequency of ν = 1.77 Hz at
B = 10 kG. In sodium (n = 2.54 · 1022 cm−3) this frequency is 12.3 Hz. Bowers et
al. observed a standing wave resonance in a Na sample of length l = 4 mm at 32
Hz and 10 kG. The resonance condition is l = λ/2, and our simple model predicts
λ/2 to be about 3.1 mm at the same frequency and field.

Solutions to the problems in Chapter 24

24.4 Mean field theory

The antiferromagnetic two-dimensional Ising model on a square lattice. In this
lattice, the number of nearest neighbours is z = 4. The Hamiltonian is supposed
to be

H = −
∑
〈�R�R′〉

J σ�Rσ�R′ −
∑
�R

HµBσ�R = −1

2

∑
�R�R′

J σ�Rσ�R′ −
∑
�R

HµBσ�R, J < 0 (1)

where H = E in the usual representation of σ�R = ±1. Because J is negative, the

ground state is not the ferro- but the antiferromagnet. In the sums, �R and �R′

are nearest neighbours, and the antiferromagnetic ground state is assumed to be
determined by the mean field values

(〈σ�R〉, 〈σ�R′〉) =
{
(σ↑, σ↓), �R ⊂ sublattice A

(σ↓, σ↑), �R ⊂ sublattice B
(2)

The two sublattices of the square lattice: A

shown by filled and B by open circles. The fig-

ure shows the case, where the site at �R belongs
to the A-sublattice, in which case 〈σ�R

〉 = σ↑.

Its four nearest neighbours at positions �R′, then
all belong to the B sublattice and 〈σ�R′ 〉 = σ↓.

(a) In the mean-field (MF) approximation we get, when inserting (2) in (1),

E
MF
= − 1

2

∑
�R�R′

J
(
σ�R〈σ�R′〉+ σ�R′〈σ�R〉 − 〈σ�R〉〈σ�R′〉

)
−HµB

∑
�R

σ�R

= −
∑
�R�R′

J 〈σ�R′〉σ�R −HµB
∑
�R

σ�R + 1
2NzJσ↑σ↓

= −
N/2∑
�R⊂A

(
zJσ↓ + µBH

)
σ�R −

N/2∑
�R⊂B

(
zJσ↑ + µBH

)
σ�R + 1

2NzJσ↑σ↓

(3)
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Because of the MF-approximation, the total energy E =
∑
�R E�R is the sum of the

individual contributions of each site, and the partition function of the total system

Z =
∑
all E

e−βE =
∏
�R

( ∑
all E�R

e−βE�R

)
=
∏
�R

Z�R (4)

is reduced so to become the product of the partition functions Z�R for the individual

sites, see for instance (6.40). For the sites, where �R belongs to the sublattice A
(↑), we get, when omitting the constant energy term 1

2zJσ↑σ↓,

Z↑ =
∑
σ=±1

e−β[−(zJσ↓+µBH)σ] =
∑
σ=±1

eβ(zJσ↓+µBH)σ = 2 cosh
[
zJσ↓ + µBH

]
(5)

which implies that

〈σ�R〉 = σ↑ =
1

Z↑

∑
σ=±1

σ eβ(zJσ↓+µBH)σ = tanh
[
β(zJσ↓ + µBH)

]
(6)

Notice that the omission of a constant energy term does not affect the calculation
of a thermal expectation value. Z↓ and σ↓ are determined equivalently

Z↓ = 2 cosh
[
zJσ↑ + µBH

]
, σ↓ = tanh

[
β(zJσ↑ + µBH)

]
(7)

and the (total) free energy is

F = −N
2
kBT

(
lnZ↑ + lnZ↓

)
+N 1

2zJσ↑σ↓ =

− N

2
kBT

{
ln
[
2 cosh (zJσ↓ + µBH)

]
+ ln

[
2 cosh (zJσ↑ + µBH)

]}
+
N

2
zJσ↑σ↓

(8)
The constant energy term neglecting in the partition functions adds to F.

(b) The self-consistent equations determining σ↑ and σ↓ are derived above.

(c) In the paramagnetic phase, T > TN, σ↑ and σ↓ vanish in the limit H → 0.
Expanding tanh to leading order, tanhx � x, we get from (6) and (7)

σ↑ = tanh
[
β(zJσ↓ + µBH)

]
� β(zJσ↓ + µBH)

σ↓ = tanh
[
β(zJσ↑ + µBH)

]
� β(zJσ↑ + µBH)

⎫⎪⎬
⎪⎭ σ↑ = σ↓ =

µBHβ

1− zJβ
(9)

The expectation values σ↑ and σ↓ are equal and are proportional to the field. The
magnetization is M = (N/V )µB(σ↑ + σ↓)/2 and the susceptibility is defined as
χ =M/H in the limit of zero field, and we find

χ =
N

V

µ2B
kBT − zJ

≡ N

V

µ2B
kB(T −Θ)

, Θ = −z|J |
kB

= −TN (10)

The paramagnetic Curie, or Curie–Weiss, temperature Θ is defined by (24.41),
χ ∝ (T −Θ)−1. In the present system Θ is negative (J is negative), and |Θ| is, as
we shall see, the same as the “Néel temperature”, TN, below which the system is
antiferromagnetically ordered at zero field.
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(d) The Néel temperature is the temperature below which the self-consistent equa-

tions for σ↑ and σ↓ have a non-zero solution at zero field. The solution is obtained

by assuming σ↑ = −σ↓, and H = 0, in which case we get

σ↑ = tanh
[
β(−z|J |)(−σ↑)

]
= tanh(βz|J |σ↑) = tanh(ασ↑) (11)

This equation is the same as considered in the case of the ferromagnet, (24.56), and

it has a non-zero solution, when the coefficient α ≥ 1. The Néel temperature TN
is the temperature at which α = z|J |β = 1, or TN = z|J |/kB. The paramagnetic

susceptibility, which diverges at the transition, is obtained by applying a field with

the same symmetry as the ordered phase. The application of a “staggered” field,

whereH�R
= +H at the A sites and −H at the B sites determines straightforwardly

(using σ↑ = −σ↓) the staggered susceptibility to be

χstag =
N

V

µB(σ↑ − σ↓)
2H

=
N

V

µ2B
kB(T − TN)

(12)

which diverges at TN.

(e) Spin-flip transition: In the ordered phase, the application of a small field along

z, in the “up” direction, does not change σ↑ = 1 or σ↓ = −1. However, if the field

becomes sufficiently large, the spins antiparallel to the field are going to flip so to

become parallel to the field. This first-order spin-flip transition happens, when the

Zeeman-energy gain is able to compensate for the loss of exchange energy.

Introducing dimensionless quantities, then

σ↑ = tanh

(−σ↓ + h

t

)
, σ↓ = tanh

(−σ↑ + h

t

)
, h =

µBH

z|J | , t =
T

TN
(13)

In the limit of t → 0, then the introduction of σ↑ = 1 in the second equation

implies σ↓ = −1 if 1 > h > 0 and σ↓ = 1 if h > 1. The first equation then predicts

σ↑ = 1 in both cases, hence assuring that this is the self-consistent solution. Using

ln[2 coshx] = ln[ex + e−x] → ln e|x| = |x| for x → ±∞, the free energy is found to

be determined by

f =
F

Nz|J | = − t

2

{
ln

[
2 cosh

(−σ↓ + h

t

)]
+ ln

[
2 cosh

(−σ↑ + h

t

)]}
− 1

2σ↑σ↓

→ − t

2

{−σ↓ + h

t
+

∣∣∣∣−σ↑ + h

t

∣∣∣∣
}
− 1

2σ↑σ↓ =

{
−1

2 , 0 < h < 1

−h+ 1
2 , h > 1

(14)

Hence, the free energies of the antiferromagnetic phase f = −1/2 and of the spin-

flipped phase f = −h + 1/2 are equal at the transition at h = 1. At a finite

temperature the spin-flip transition is smeared out due to thermal effects. The

figure below shows the numerical calculated “magnetization”, (σ↑ + σ↓)/2, as a

function of the field h at various values of temperature t.
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24.6 Superlattices

Model of Cu3Au – In the fcc lattice, the sites in the

centers of the six faces are namedAs and the 8 corners

are named Bs as indicated on the figure by, respec-

tively, black and white spheres. There is 8/8 = 1

Bs site and 6/2 = 3 As sites per unit cell. The dis-
tance between nearest neighbours is a/

√
2, and the

coordination number is z = 12. The kind of nearest

neighbours of the two kind of sites are

As-site: 8 As sites and 4 Bs sites.

Bs-site: 12 As sites.

The correct solution to the equations (24.62) and (24.63) is not (24.64), but

f(σ�R, σ�R′) =
εBB − εAA

4
(σ�R + σ�R′)−

2εAB − εAA − εBB
4

σ�R σ�R′ (24.64′)

when leaving out the constant term C1 = (2εAB+ εAA+ εBB)/4. This modification
affects the definition of the effective parameters in (24.67), which should read

µBH = µ− εBB − εAA
2

z , J =
2εAB − εAA − εBB

4
(24.67′)

(a) In the present system we have a 3:1 mixture of A and B atoms. The effective
Hamiltonian equals the energy minus the chemical potential times the difference
between the numbers of B and A atoms, is (leaving out the constant contribution)

H = E− µ
∑
�R

σ�R = −J
∑
〈�R�R′〉

σ�Rσ�R′ − µBH
∑
�R

σ�R (1)

We are going to use the same choice as Marder, that σ�R = 1 or −1 signifies a site
occupied by, respectively, a B or an A atom. With this choice, the effective energy
parameters are those given by (24.67′) above. In the mean-field approximation

H
MF
= − J

∑
〈�R�R′〉

(
σ�R〈σ�R′〉+ σ�R′〈σ�R〉 − 〈σ�R〉〈σ�R′〉

)
− µBH

∑
�R

σ�R =
∑
�R

H�R
(2)
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where

∑
〈�R�R′〉

(
σ�R〈σ�R′〉+σ�R′〈σ�R〉

)
=

1

2

∑
�R�R′

(
σ�R〈σ�R′〉+ σ�R′〈σ�R〉

)
=
∑
�R

σ�R

( ∑
�R′ (nn)

〈σ�R′〉
)

=
N∑
�Bs

σ�Bs

(
12 〈σ�As

〉
)
+

3N∑
�As

σ�As

(
8 〈σ�As

〉+ 4 〈σ�Bs
〉
)

(3)
Here N is the number of unit cells (or Bs sites), and σ�R = σ�As

(σ�Bs
), if �R = �As

(�Bs) is the position of an As (Bs) site. The (grand) partition function of the total
system is the product of the individual partition functions for each site, because
H =

∑
�RH�R

, and in the case of an As site (omitting the constant energy term)

ZAs
=
∑
σ=±1

e
β[J(8 〈σ

�As
〉+4 〈σ

�Bs
〉)+µBH]σ (4)

implying that

〈σ�As
〉 = 1

ZAs

∑
σ=±1

σ e
β[J(8 〈σ

�As
〉+4 〈σ

�Bs
〉)+µBH]σ

=tanh
{
β
[
8 J 〈σ�As

〉+ 4 J 〈σ�Bs
〉+ µBH

]} (5)

and equivalently

〈σ�Bs
〉 = tanh

{
β
[
12 J 〈σ�As

〉+ µBH
]}

(6)

(b) σ�R = +1 for the B atoms and the number of these atoms is equal the number
of unit cells N , whereas the number of A atoms is 3N . These conditions imply

∑
�R

σ�R =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N − 3N = −2N

N∑
�Bs

σ�Bs
+

3N∑
�As

σ�As
= N〈σ�Bs

〉+ 3N〈σ�As
〉 ⇒ 〈σ�Bs

〉 = −2−3 〈σ�As
〉

(7)
(c) The chemical potential, or effectively µBH, has to be adjusted so that the two
equations (5) and (6) are in accordance with the relation 〈σ�Bs

〉 = −2 − 3 〈σ�As
〉.

The effective Zeeman term may be eliminated:

tanh−1〈σ�As
〉 − tanh−1〈σ�Bs

〉 = β
[
8 J 〈σ�As

〉+ 4 J 〈σ�Bs
〉+ µBH

]
−β
[
12 J 〈σ�As

〉+ µBH
]
= 4βJ

(
〈σ�Bs

〉 − 〈σ�As
〉
)
= −8βJ

(
1 + 2〈σ�As

〉
) (8)

Introducing an effective order parameter Q and J = −|J |, we finally get

f(Q) ≡ tanh−1
(
Q+ 1

2

)
+ tanh−1

(
3Q− 1

2

)
= 8β|J |Q, Q = −1− 2〈σ�As

〉 (9)

In the disordered phase both the As and the Bs sites are occupied by an A atom
with the probability 3

4 or 〈σ�As
〉 = 〈σ�Bs

〉 = (−1)34 + (+1)14 = −1
2 . This result is in

accordance with (7) and Q = −1−2〈σ�As
〉 = 0. In the completely ordered phase at
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zero temperature, all A (B) atoms are placed on the As (Bs) sites implying that
〈σ�As

〉 = −1 and 〈σ�Bs
〉 = 1 and hence Q = 1.

The numerical solution of (9) is discussed
in a Mathematica program. The system

orders at a first-order transition, when

f(Q) = Qf ′(Q) [the line y = αQ with

α = f ′(Qc) is parallel to the tangent

of f(Q) at Q = Qc, and this line just
touches f(Q) at Q = Qc, when f(Qc) =

αQc. This then becomes a solution to

(9) if choosing α = 8β|J |]. The solution

is Q = Qc = 0.3455 and defining the ef-
fective temperature scale t = (8β|J |)−1

then Q jumps from zero to Qc at the

temperature t = tc = 1/f ′(Qc) = 0.4143.

The calculated variation of Q as a func-

tion of t is shown in the figure.

Solutions to the problems in Chapter 25 and 26

25.2 Classical electrons in a magnetic field

The spin degree-of-freedom does not occur in classical physics. The elementary
particles do neither exist, but accepting their existence, they only interact with
the electromagnetic fields because of their charges, and with the gravitational field
because of their masses. The classical Hamiltonian H of a many-body system (see
for instance Goldstein) is a function of the independent canonical variables (�ri, �pi)
of all the particles. The canonical impulse �pi, independent of �ri, is defined in terms
of the LagrangianL = L(�ri,�̇ri, · · ·) as �pi = ∂L/∂�̇ri (or, in terms of the Hamiltonian
theory, as the generator of an infinitesimal translation �ri → �ri + δ�ri).

(a) If the external constraints (fields) are independent of time, the Hamiltonian
is equal the total (kinetic plus potential) energy of the system. In this case the
classical partition function is

Z = e−βF =
1

hn

∫
d�r1d�p1 · · · d�rnd�pn e−βH(�r1,�p1,···,�rn,�pn) (1)

(b) In the presence of a time-independent electromagnetic field, �E only contributes
to the potential energy as determined by the scalar potential. The magnetic field
�B only affects the velocities of the particles via the vector potential �A = �A(�r),
where �B = ∇× �A. For the ith particle with mass mi and charge qi, the canonical
impulse is

�pi = mi�̇ri +
qi
c
�A ⇒ Ti =

1
2mi(�̇ri)

2 =
1

2mi

(
�pi −

qi
c
�A

)2

(2)

[The magnetic field needs not to be uniform in space, but only to be constant in
time – the case of a spatial uniform field is discussed in the next problem 25.4].
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(c) The canonical impulse �pi appears in the Hamiltonian only via the kinetic energy
Ti. Assuming H in (1) to be the Hamiltonian function of the system, when the
magnetic field is zero (but including the potential energy contributions of the
electric field), then the introduction of the magnetic field implies that

H(�r1,�p1, · · · ,�rn,�pn) → H
(
�r1,�p1 −

q1
c
�A(�r1), · · · ,�rn,�pn −

qn
c
�A(�rn)

)
(3)

The partition function Z in the presence of the magnetic field is then

Z(�B) =
1

hn

∫
d�r1d�p1 · · · d�rnd�pn e−βH

(
�r1,�p1−

q1
c
�A(�r1),···,�rn,�pn−

qn
c
�A(�rn)

)

=
1

hn

∫
d�r1d�p1

′ · · · d�rnd�pn′ e−βH(�r1,�p1
′,···,�rn,�pn′) = Z(�0)

(4)

The integration with respect to the canonical impulse �pi may be performed before

the �ri-integrations. Introducing the following change of variables �pi
′ = �pi− qi

c
�A(�ri),

then d�pi
′ = d�pi, since

�A(�ri) is independent of �pi. This transformation of variables

therefore leads to the same integral as in (1). The elimination of �B in the partition
function means, for instance, that the magnetic susceptibility of a classical equilib-
rium system is zero. This result is called the Bohr–van Leeuwen theorem. Notice,
that it is important for the argumentation that the system is in equilibrium (the
basis for the use of the partition function).

25.4 Quantum electrons in a magnetic field

The Hamiltonian of an electron with charge −e in a magnetic field �B is

H =
1

2m

(
�p+

e

c
�A

)2

(1)

The choice of the “Landau gauge”

�A = (0, B x, 0) ⇒ �B = ∇× �A = (0, 0, B) , ∇ · �A = 0 (2)

i.e. this vector potential corresponds to a spatial uniform field �B in the z direction.
Since the divergence of �A is zero, the two quantum mechanical operators �A and �p
commute, �p = (�/i)∇ in the �r-representation. Introducing this choice of gauge in
(1), we get

H =
1

2m

[
p2x +

(
py +

eB

c
x

)2

+ p2z

]
(3)

The wave function of the electron is assumed to be

ψ(�r) = u(x) ei(yky+zkz) (4)

and the eigenvalue equation is

Hψ = ei(yky+zkz)
1

2m

[
p2x +

(
�ky +

eB

c
x

)2

+ (�kz)
2

]
u(x) (5)

When the common phase factor is deleted, this eigenvalue equation is reduced to
one, which only involves a determination of u(x), and the equation may be written:

Hu(x) =

[
p2x
2m

+ 1
2mω2

c (x− x0)
2 + εz

]
u(x) (6)
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where

ωc =
eB

mc
, x0 = − �ky

mωc
, εz =

�
2k2z
2m

(7)

Equation (6) is the eigenvalue equation for the one-dimensional harmonic oscillator,
displaced to be centered around x = x0 and shifted in energy by the constant (with
respect to x) energy εz. Hence, the final eigenstates are classified by (ky , kz) and
the occupation number ν, and the energy eigenvalues are

εν,ky ,kz =
(
ν + 1

2

)
�ωc +

�
2k2z
2m

, ν = 0, 1, 2, · · · (8)

This is the result (25.48) utilized in the analysis of the Landau diamagnetism.

26.2 Ferromagnetic ground state

We are going to discuss the ferromagnetic ground state of the Heisenberg model
for an arbitrary integer/half-integer value of S. The Heisenberg Hamiltonian is

H = −
∑
〈ll′〉

Jll′
�Sl · �Sl′ = −1

2

∑
l �=l′

Jll′
�Sl · �Sl′ (1)

according to (26.21) in Marder. The possibility of Jll 
= 0 may be excluded, since
such a term would contribute only by a constant term JllS(S + 1) to the energy.

The components of �Sl fulfill the usual spin-commutator relations

[Slx, Sl′y] = i δll′ Slz , [Sly, Sl′z] = i δll′ Slx , [Slz, Sl′x] = i δll′ Sly (2)

(a) Defining the following operator: Sz =
∑
l

Slz
(3)

then the commutator of this operator with a single term �Sl · �Sl′ in (1) is

[Sz ,
�Sl · �Sl′ ] = [Sz ,

�Sl] · �Sl′ + �Sl · [ Sz , �Sl′ ]
= [Slz , Slx]Sl′x + [Slz , Sly]Sl′y + Slx [Sl′z , Sl′x] + Sly [Sl′z , Sl′y]

= i SlySl′x − i SlxSl′y + i SlxSl′y − i SlySl′x = 0

(4)

showing that [Sz , H ] = 0. The Sz-representation for each site is defined by
Slz|ml〉 = ml|ml〉, whereml = −S,−S+1, . . . , S, and Sz

∏
l |ml〉 = (

∑
lml)

∏
l |ml〉.

Most of these eigenstates are highly degenerated except for the two “singlets”,∏
l |ml = ±S 〉 =

∏
l | + S 〉 or

∏
l | − S 〉. Because Sz and H commute the two

non-degenerate eigenstates of Sz are also eigenstates to H, and

H
∏
l

|ml = ±S 〉 = −1
2NJ(

�0)S2
∏
l

|ml = ±S 〉, J(�k) =
∑
l′
Jll′e

−i�k·(�rl−�rl′ ) (5)

(b) Defining �S = �S�R + �S �R′ and using �S2 = (�S�R + �S �R′)
2 = �S2

�R
+ �S2

�R′ + 2�S�R · �S �R′

〈Ψ|�S2 |Ψ〉 =
{
S(S + 1) + S(S + 1) + 2〈Ψ|�S�R · �S �R′ |Ψ〉
S(S+ 1), S = 0, 1, · · · , 2S (6)

which shows that 〈Ψ|�S�R · �S �R′ |Ψ〉 attains its maximum value, when S = 2S, and

Max{〈Ψ|�S�R · �S �R′ |Ψ〉} = 1
2 [2S(2S + 1)− 2S(S + 1)] = S2 (7)
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(c) The eigenvalue of H in (5) for the fully polarized states requires that each pair
of operators in (1) contributes by their maximum. Hence, if all exchange constants
Jll′ ≥ 0, then the eigenvalue in (5) is the lowest possible value, i.e. the two fully
polarized states are the two degenerate ground states.

The lowest exited states are linear combination of the states, where all ml = S
except that ml = S− 1 for one particular site. Naming the product of these states
for |l〉, where l is the site at which ml = S − 1, then it is straightforward to show
that the eigenstates of H constructed from these states are the Fourier transforms
of |l〉. These excited states are characterized by the wave vector �k of the Fourier
transformation, and the energy difference between one excited �k-state and the
ground state is the spin wave energy, S[J(�0) − J(�k)]. Hence, these lowest excited
states, the one-magnon states, are exact solutions to the Heisenberg Hamiltonian
– but this is no longer the case if proceeding to the two-magnon states, where the
eigenvalue of Sz is NS − 2.

26.4 Diagonalizing spin waves

The result derived in (26.62) may be written in a reduced form:

ĥ =
1

2z|J |S
(
H +Nz|J |S2

)
=

1

2z

∑
�δ�k

[
2a+�k

a�k +
(
a+�k
a+−�k + a�ka−�k

)
cos(�k ·�δ)

]

=
∑
�k

[
a+�k
a�k +

1
2

(
a+�k
a+−�k + a�ka−�k

)
B�k

]
, B�k =

1

z

∑
�δ

cos(�k ·�δ)
(1)

The operators are defined by (26.51) in terms of al and its hermitean conjugate
a+l , which are the annihilation and creation operators, also named Bose operators,
of a harmonic oscillator at the site l. These operators obey the Bose commutator
relations [al, a

+
l′ ] = δll′ and [a+l , a

+
l′ ] = [al, al′ ] = 0, which imply

[a�k, a
+
�k′
] =

1

N

∑
ll′

[
al e

i�k·�rl, a+l′ e
−i�k′·�rl′

]
=

1

N

∑
ll′
δll′e

i�k·�rl−i�k′·�rl′ =
1

N

∑
l

ei(
�k−�k′)·�rl

(2)
or that the Fourier transforms of the Bose operators, diagonal with respect to the
site index, are Bose operators in reciprocal space

[a�k, a
+
�k′
] = δ�k�k′ , [a�k, a�k′ ] = 0 , [a+�k

, a+�k′
] = 0 (3)

which are diagonal with respect to the wave vector index (notice that the wave
vector �k is assumed to be a discrete variable). The Hamiltonian (1) is not diag-
onal in the number representations of the harmonic oscillators, since it involves
a+�k
a+−�k + a�ka−�k. One way to solve an eigenvalue problem is to make a canonical

transformation of the Hamiltonian to one for which the eigenvalue equations have
been solved. In the present case, we want to find a new Bose operator γ�k

, in

terms of which ĥ only depends on the number operators γ+�k
γ�k
, in which case ĥ is

“diagonal”. This procedure is called the Bogoliubov transformation:

a�k = u�kγ�k + v�kγ
+

−�k , a+�k
= u∗�kγ

+
�k
+ v∗�kγ−�k = u�kγ

+
�k
+ v�kγ−�k (4)
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The last equation indicates that u�k and v�k are assumed to be real functions. This
is a valid simplification in the present case, but it is not a general requirement.
The demand that the new operators should also be Bose operators implies

[a�k, a
+
�k′
] = [u�kγ�k + v�kγ

+

−�k , u�k′γ
+
�k′
+ v�k′γ−�k′ ] = u�ku�k′δ�k�k′ − v�kv�k′δ−�k−�k′ = δ�k�k′ (5)

and, similarly, [a�k
, a�k′

] = u�k
v�k′
δ�k−�k′ − v�k

u�k′
δ−�k�k′ = 0. Hence, the fulfillment of the

Bose commutator relations for γ�k requires

u2�k − v2�k = 1 , u�kv−�k − v�ku−�k = 0 (6)

Inserting (4) in (1) we get

ĥ =
∑
�k

[(
u�kγ

+
�k
+ v�kγ−�k

) (
u�kγ�k + v�kγ

+

−�k
)
+ 1

2B�k

{(
u�kγ

+
�k
+ v�kγ−�k

)

×
(
u−�kγ

+

−�k + v−�kγ�k
)
+
(
u�kγ�k + v�kγ

+

−�k
) (
u−�kγ−�k + v−�kγ

+
�k

)}] (7)

Collecting corresponding terms and replacing −�k with �k in some of the terms
(utilizing B�k = B−�k and γ�kγ−�k = γ−�kγ�k), then (7) is reduced to

ĥ =
∑
�k

[ (
u2�k +B�ku�kv−�k

)
γ+�k
γ�k +

(
v2−�k +B�ku�kv−�k

)
γ�kγ

+
�k

+
{
2u�kv�k +B�k

(
u�ku−�k + v�kv−�k

)}
1
2

(
γ+�k
γ+−�k + γ�kγ−�k

) ] (8)

In order to diagonalize this Hamiltonian we have to search for values of u�k and

v�k, where the last term in (8) vanishes and the requirements of (6) are fulfilled.
In order to simplify the search, we make the ansatz u−�k = u�k

, which is consistent

with the different conditions only if v−�k = v�k. In this case the equations are

2u�kv�k = −B�k
(
u2�k + v2�k

)
, u2�k − v2�k = 1 (9)

Introducing v2�k
= u2�k

− 1 in the squared version of the first equation, we get an

equation of second degree in u2�k. Determining the solution of this equation subject

to the condition v2�k
> 0 or u2�k

> 1, we get

u2�k =
1 + ε�k
2ε�k

, v2�k =
1− ε�k
2ε�k

, 2u�kv�k = −
B�k
ε�k
, ε�k =

√
1−B2

�k
(10)

According to the definition in (1), |B�k| ≤ 1 implying 0 ≤ ε�k
≤ 1. This is the same

solution as given by equations (26.63) and (26.64) in Marder, since u�k = cosh (α�k)

and v�k = sinh (α�k) imply u2�k − v2�k = 1 and tanh (2α�k) = 2u�kv�k/(u
2
�k
+ v2�k) = −B�k.

Introducing the solution (10) in (8) we finally get

ĥ =
∑
�k

[
1
2

(
ε�k + 1

)
γ+�k
γ�k +

1
2

(
ε�k − 1

)
γ�kγ

+
�k

]
=
∑
�k

[
1
2

(
ε�k − 1

)
+ ε�kγ

+
�k
γ�k

]

H = −Nz|J |S2 − z|J |S
∑
�k

(
1− ε�k

)
+
∑
�k

E�k γ
+
�k
γ�k

E�k = 2z|J |S ε�k , 〈γ+�k γ�k〉 = n�k = [eβE�k − 1]−1

(11)
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The antiferromagnetic Néel state, where the spins of the two sublattices are either
+S or −S is not an eigenstate of the Hamiltonian. The second term of H, dis-
cussed by Marder, shows that the ground state energy is smaller than that derived
from the Néel state. Additionally, the magnitude |〈Sz(l)〉| is smaller than S at
zero temperature. This “zero-point” reduction of the antiferromagnetic moment
is determined by the site average of |〈0|Sz(l)|0〉| = S − 〈0|a+l al|0〉, where |0〉 is the
product ground state of the N independent harmonic oscillators, γ�k|0〉 = 0,

∆S =
1

N

∑
l

〈0|a+l al|0〉 =
1

N

∑
�k

〈0|a+�k a�k|0〉 =

1

N

∑
�k

〈
0
∣∣∣ (u�kγ+�k + v�kγ−�k

) (
u�kγ�k + v�kγ

+

−�k
) ∣∣∣0〉 =

1

N

∑
�k

v2�k =
1

N

∑
�k

1− ε�k
2ε�k

(13)

which number is calculated [P.W. Anderson, Phys. Rev. 86, 694 (1952)] to be 0.078
in the case of a simple cubic lattice (z = 6).

Solution to HS’s problem 4

Localized atoms: heat capacity and magnetic susceptibility

1) In the case of non-interacting atoms, the total energy is the sum of the con-
tributions from each site E =

∑
l El. This implies that the partition function is

the product of the partition functions determined for each site (see also the note
“Magnetic energy and domains”), and when the atoms are identical:

Z =
N∏
l=1

Zl = ZN , Zl = Z =
∑
i

e−βεi = eβ∆ + 1 + e−β∆ (1)

The free energy is

F = −kBT lnZ = −NkBT lnZ = −NkBT ln
(
eβ∆ + 1 + e−β∆

)
(2)

The internal energy is U = F + TS, where the entropy is

S = −∂F
∂T

= NkB lnZ +NkBT
1

Z

∂Z

∂T
⇒

U = F + TS = NkBT
2 1

Z

∂Z

∂T
= −N 1

Z

∂Z

∂β
= N

1

Z

∑
i

εie
−βεi

(3)

Introducing the population factor for the ith level (the probability that this level
is occupied):

pi ≡
e−βεi

Z
⇒ U = N

∑
i

εipi = −N∆
eβ∆ − e−β∆

eβ∆ + 1 + e−β∆
(4)

Notice, that
∑
i pi = 1. In terms of the population factors, the thermal expectation

value of any single site operator Â is 〈Â〉 =
∑
i〈i|Â|i〉pi, and the entropy is S =

−NkB
∑
i pi ln pi.
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2) In the limit kBT 
 ∆ or β∆ � 1, we have from (1)

Z � 1 + β∆+ 1
2 (β∆)2 + 1 + 1− β∆+ 1

2(β∆)2 = 3 + (β∆)2 ⇒

F � −NkBT ln
[
3 + (β∆)2

]
= −NkBT ln 3

[
1 + 1

3 (β∆)2
]
= −NkBT ln 3− N∆2

3kBT

S = −∂F
∂T

= NkB ln 3− N∆2

3kBT 2
, U = F + TS = −2N∆2

3kBT
(5)

The heat capacity may be determined either as

C =
∂U

∂T
=

2N∆2

3kBT 2
or C = T

∂S

∂T
= T (−2)

(
− N∆2

3kBT 3

)
=

2N∆2

3kBT 2
(6)

3) The derivative of F with respect to ∆ is

∂F

∂∆
= −NkBT

1

Z

∂Z

∂∆
= −NkBT (βp1 + 0 · p2 − βp3) = N(p3 − p1) � − 2N∆

3kBT
(7)

The last equality is most simply obtained from F derived in (5). In the presence of
a magnetic field H, applied along the z axis, the Hamiltonian is specified in terms
of the Zeeman interaction

H =
∑
l

Hl = −gµBH
∑
l

Slz, S = 1 (8)

The Hamiltonian of one of the sites is diagonal in the Sz-representation and the
eigenenergies are⎧⎨

⎩
|Sz = −1〉 ⇒ εi = gµBH = ∆ (i = 3)
|Sz = 0〉 ⇒ εi = 0 (i = 2)
|Sz = 1〉 ⇒ εi = −gµBH = −∆ (i = 1)

(9)

Hence the Hamiltonian (8) leads to the case considered when gµBH = ∆, and the
derivative of F with respect to ∆ is proportional to the magnetization, or

M = − 1

V

∂F

∂H
= −(gµB)

V

∂F

∂∆
� N

V

2 (gµB)
2

3kBT
H, χ =

M

H

∣∣∣∣
H→0

=
N

V

2 (gµB)
2

3kBT
(10)

The susceptibility is calculated in the limit of H or ∆ → 0, hence the expression
derived is valid at all T . Notice, that M may also be obtained from

MV = gµB
∑
l

〈Slz〉 = NgµB
∑
i

〈i|Sz |i〉 pi = NgµB(p1 − p3) (11)

The result for χ in (10) is Curie’s law in the case of S = 1, see (25.31)-(25.32).

4) Defining x = β∆ the heat capacity derived from U in (4) is

C =
∂U

∂T
= − ∆

kBT 2

∂U

∂x
= N

∆2

kBT 2

∂

∂x

(
ex − e−x

ex + 1 + e−x

)
= N

∆2

kBT 2

ex + e−x + 4

(ex + 1 + e−x)2

= N
∆2

kBT 2

eβ∆ + e−β∆ + 4

(eβ∆ + 1 + e−β∆)2
→ N

∆2

kBT 2
e−∆/(kBT ) for T → 0

(12)
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The figure to the left shows the reduced heat capacity c = C/(NkB) as a function
of the reduced temperature t = kBT/∆ – the thin lines are the results for c(t) in
the high- and low-temperature limits, (6) and (12). This characteristic behaviour
of the heat capacity is called a Schottky anomaly. The number of levels involved in
the anomaly for an arbitrary value of S is (2S+1), i.e. 3 levels in the present case
of S = 1. This number may be determined from a heat capacity experiment by
evaluating the entropy in the high temperature limit, since S∞ = NkB ln(2S + 1)
for a general value of S. A measurement of C = T (∂S/∂T ) determines S, and

S =

∫ T

0

C

T
dT ⇒ s∞ =

S∞
NkB

=

∫ ∞

0

c

t
dt = ln(2S + 1) (13)
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Solutions to the problems in Chapter 27

27.1 Superconducting sphere

The free-energy density of a type-I superconductor is determined by the critical
field Hc. Since �B = �0 throughout the volume of the type-I superconductor, when
surface effects are neglected (λL ≈ 0 compared to the dimensions of the sample)

�Bi = �Hi + 4π �M = �0 ⇒ �M = − 1

4π
�Hi (1)

Assuming the sample to be a thin needle along the direction of the applied magnetic
field �H0 (along z), the demagnetization field �Hd = −Nz

�M ≈ �0. In this case,

the magnetic field within the sample is �Hi =
�H0 and the magnetization is �M =

−�H0/(4π). According to eq. (2.6) in the note “Magnetic energy and domains”, the
magnetic energy density is then,

1

V
FM = GM = −

∫
sample

d�r

V

[∫
�M · δ �H0

]
=

1

4π

∫ H0

0

�H ′
0 · d�H ′

0 =
H2

0

8π
(2)

[This energy density corresponds to G in Marder because �H0 is the independent
variable, see problem 27.2]. The total energy density is the sum of GM and the
field-independent condensation-energy density, GS . Since the two contributions
just outbalance each other at the critical field H0 = Hc, we have a measure for GS ,

G = GS + GM , GS = −H
2
c

8π
(3)
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If the sample has instead the shape of a sphere, then (1) and (3) still apply, but

�Hi =
�H0 +

�Hd =
�H0 −Nz

�M = �H0 +D�Hi, D ≡ Nz

4π
=

1

3
(sphere) (4)

implying

�Hi =
�H0

1−D
, G = GS + GM = −H

2
c

8π
+

H2
0

8π(1−D)
(5)

The internal field Hi is larger than the applied field and becomes equal the critical
one, when the applied field is H0 = (1 − D)Hc = 2

3Hc. This condition is not
necessarily critical, since the global free energy of the superconducting sphere is still
negative (as long asH0 <

√
1−DHc). A detail discussion of the intermediate state

of the superconductor, when (1−D)Hc < H0 < Hc, may be found in Landau and
Lifshits, Electrodynamics of continuous media (Volume 8, 2nd Edition, page 189).
In the intermediate range of the applied field, local thermodynamic instabilities
are going to destroy superconductivity in parts of the sphere such that the effective
D is reduced sufficiently to sustain superconductivity in the remaining parts. The
assumption that the superconducting domain takes the form of a prolate ellipsoid
with radius a < R and constant height 2R (the largest volume for a certain value of
D) is the most obvious one, but this configuration turns out to be thermodynamical
unstable (the field in the normal part of the sphere is smaller than Hc near the
end points of the ellipsoid). Nevertheless, domains of superconductivity are going
to be present as long as H0 < Hc.

27.2 Energy of normal-superconducting interfaces

(a) To start with we consider the limit of κ→ 0 or λL � ξ. Then B = 0 for x > 0
and according to (27.41) the wave function, which vanishes at x = 0 and saturates
at Ψ0 at large x, is

Ψ(x) = Ψ0 ψ(x) = Ψ0 tanh

(
x√
2ξ

)
(1)

The free energy density, the Ginzburg–Landau energy is, (27.27),

F = Ψ2
0

∫ L

0

dx

L

[
αψ2 + 1

2βΨ
2
0ψ

4 +
�
2

2m∗ (ψ
′)2
]

(2)
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Here Ψ2
0 = −α/β is the equilibrium value at large x, and the change in energy per

unit area, in comparison with the homogeneous case, is

L∆F = Ψ2
0

∫ ∞

0
dx

[
α (ψ2 − 1) + 1

2βΨ
2
0(ψ

4 − 1) +
�
2

2m∗ (ψ
′)2
]

(3)

Introducing H2
c = 4πα2/β, (27.35), and ξ2 = −�

2/(2m∗α), (27.31), then (3) may
be written

L∆F =
H2
c

4π

∫ ∞

0
dx

[
1
2

(
1− ψ2

)2
+ ξ2(ψ′)2

]
=
H2
c

4π

∫ ∞

0
dx
(
1− ψ2

)2
(4)

using ψ′ = (1 − ψ2)/(
√
2ξ), (27.40), in the last step. Applying this relation ones

more, we get

L∆F =
H2
c

4π

∫ ∞

0
dx
(
1− ψ2

)√
2 ξψ′ =

H2
c

√
2 ξ

4π

∫ 1

0

(
1− ψ2

)
dψ =

H2
c

√
2 ξ

4π

2

3
(5)

which energy per unit area is positive and in agreement with (27.52) [∆G = ∆F

since �B = �0].

(b) Next we consider the opposite limit of ξ � λL, in which case Ψ(x) � Ψ0 and
the gradient ψ′ may be neglected. In this case the free energy density is

F = FS + FM , FM =

∫
d�r

V

(
B2

8π
+

4e2

2m∗c2
A2Ψ2

0

)
=

∫
d�r

8πV

(
B2 +

A2

λ2L

)
(6)

where the first term is the zero-field contribution of the homogeneous supercon-
ductor, (2) when ψ′ = 0, and FM is the magnetic energy density in (27.27), when
λ2L = m∗c2/(16πe2Ψ2

0), (27.32), is inserted. The applied field is assumed to be

parallel to the interface, i.e. along z, and �B = �H0 in the normal metal [this con-
figuration leads to the largest possible energy gain]. Assuming �A to be along the
y direction, �A = (0, A(x), 0), then �B = ∇× �A = (0, 0, A′(x)) for x > 0. According
to (27.9), Bz = B(0) e−x/λL for x > 0, where B(0) = H0. Hence

A′(x) = B(x) = H0 e
−x/λL ⇒ A(x) = −λLH0 e

−x/λL (→ 0 for x→ ∞)

or [A(x)/λL]
2 = B2(x) = H2

0 e
−2x/λL

(7)

introducing this in (6), we get (for the field energy within the superconductor)

LFM =

∫ L

0
dx

2B2(x)

8π
=

∫ ∞

0
dx

H2
0

4π
e−2x/λL =

H2
0

8π
λL (8)

The magnetic free energy may also be calculated in a direct fashion

FM =
1

4π

∫
d�r

V

[∫
�H · δ�B

]
=

1

4π

∫ ∞

0

dx

L

[∫ H0

0
H e−x/λLdH

]
=
H2

0

8π

λL
L

(9)

when using δ�B = e−x/λLδ �H , and that the �H-field within the superconductor is
the same as the applied field in the normal metal. In this free energy density �B is
the independent variable. The thermodynamical potential which is at a minimum
in the equilibrium state, is the one where the applied magnetic field �H is the
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independent variable. The relevant thermodynamic potential to be minimized is
obtained by a Legendre transformation:

GM = FM − 1

4π

∫
d�r

V
�H · �B

(
= − 1

4π

∫
d�r

V

[∫
�B · δ �H

])

= FM − 1

4π

∫ ∞

0

dx

L
H2

0e
−λL/x = FM − H2

0

4π

λL
L

= −H
2
0

8π

λL
L

(10)

The magnetization in the superconductor is along the z axis and is determined
from �B = �H + 4π �M to be M = M(x) = −(1 − e−x/λL)H0/(4π). The allowance
of the magnetic �B-field to penetrate into the superconductor gives rise to the
energy density gain determined by (10) in comparison with the case of �B = �0 (or
λL = 0). Based on eq. (2.6) in the note “Magnetic energy and domains”, this gain
of magnetic energy density may be calculated in a direct fashion as

1

V
∆FM = −

∫
d�r

V

[∫
�M · δ �H

]
+

∫
d�r

V

[∫
�M · δ �H

]
�B=�0

=

∫ L

0

dx

L

∫ H0

0
dH

(
1− e−x/λL

) H
4π

−
∫ L

0

dx

L

∫ H0

0
dH

H

4π

=

∫ ∞

0

dx

L

∫ H0

0
dH

(
−e−x/λL

) H
4π

= −H
2
0

8π

λL
L

= GM

(11)

[The demagnetization field �Hd = −N �M is neglected in all the calculations, i.e.
the sample is assumed to be a thin rod along the field, see problem 27.1]. In case
the applied field is equal to the critical field, H0 = Hc, the interface is stable if,
roughly, 2

√
2 ξH2

c /(12π)− λLH
2
c /(8π) < 0 or if κ > 4

√
2/3. This value is reduced

when including interference between the two contributions, i.e. that λL becomes
larger close to the surface where |Ψ| is reduced.

27.3 Diffraction effects in Josephson junctions

The figure shows a weak link of nor-

mal metal (dashed lines) between two
parts of a superconductor. The mag-

netic field �H is applied in the z direc-

tion. �B = �0 within the superconduc-

tors, whereas �B = �H in the normal
metal. The magnetic flux through the

weak link is Φ = AB = AH , where the

area is A = dxdy.

(a) With the choice of the Landau gauge, the vector potential within the normal
metal is

�A = (0, xH, 0), ⇒ ∇× �A = (0, 0,H) = �B, ∇ · �A = 0 (1)

(see also problem 25.4).

(b) The path integral, calculated at a constant x, between the two superconductors
1 and 2 is ∫ 2

1
d�s · �A =

∫ dy

0
xH dy = Hdy x (2)



37 Problems in Chapter 27 (“superconductivity”)

The current density in the y direction between the two superconductors, (27.68a),
is independent of z (when staying within the cross-section of the normal metal):

j(x) = j0 sin

(
φ2 − φ1 +

2e

�c

∫ 2

1
d�s · �A

)
= j0 sin

(
φ2 − φ1 +

4π

Φ0

Hdy x

)
(3)

The magnetic flux quantum is here defined, (25.51), Φ0 = hc/e, however, in much
of the literature on superconductivity, the flux quantum is defined as the one
applying for Cooper-pairs, i.e. Φ0 = hc/e∗. The total current is

J =

∫ dz

0
dz

∫ dx

0
dx j(x) = dz j0

(
Φ0

4πHdy

)[
− cos

(
φ2 − φ1 +

4πHdy
Φ0

x

)]dx
0

= (dzdx)j0
Φ0

4πΦ

{
cos(φ2 − φ1)− cos

(
φ2 − φ1 +

4πΦ

Φ0

)} (4)

when introducing the total magnetic flux Φ = dxdyH. Defining J0 = dzdxj0 and
using the general cosine relation: cos(u− v)− cos(u+ v) = 2 sinu sin v, we finally
get

J = J0
Φ0

2πΦ
sin

(
φ2 − φ1 +

2πΦ

Φ0

)
sin

(
2πΦ

Φ0

)
(5)

(c) At zero voltage the phases of the wave functions in the superconductors 1 and
2, φ1 and φ2, are constant in time. The result (5) clearly shows that the maximum
current at a certain field and zero voltage is

Jmax = J0
Φ0

2πΦ

∣∣∣∣sin
(
2πΦ

Φ0

)∣∣∣∣ (6)


