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The dipole moment

A displacement of a point charge q from the point charge −q by a vector x gives

rise to an electric dipole moment p = q x (where |x| has to be small compared

with any other distances considered). A certain dipole at r, within the volume

Ω, contributes to the polarization P(r) as determined by

P(r)Ω =

∫ t

J(t′)dt′ =
∫ t

q ẋ(t′)dt′ = q x = p(r) (1.1)

and the (averaged) polarization in the volume V is

P =
1

V

∑
i

p(ri) =
N

V
p = np (1.2)

if all dipole moments are equal p(ri) = p. The scalar potential at r due to a

dipole at origo is

φ(r) =
q

r+
− q

r−
=

p · r
r3

⇒ E(r) = −∇φ(r) = 3
(p · r)r
r5

− p

r3
(1.3)

as obtained, when x� r, from r± = r∓ (x/2) cos θ and pr cos θ = p · r. In the

presence of an electric field E, the energy of a dipole moment at the position r
is

U = qφ
(
r+ 1

2x
)
− qφ

(
r− 1

2x
)

= q
(
φ(r) + 1

2x · ∇φ(r)
)
− q

(
φ(r)− 1

2x · ∇φ(r)
)

= qx · ∇φ(r) = −p(r) ·E(r)

(1.4)

The combination of (1.3) and (1.4) determines the field energy of two dipoles

p1(r1) and p2(r2) to be

U12 = −3
(p1 · r12)(p2 · r12)

r512
+

p1 · p2

r312
, r12 = r1 − r2 (1.5)

We shall consider an ellipsoidal sample of a homogeneous dielectric material.

Classical electrostatics shows that the polarization P, and thus also the electric
field E inside the ellipsoid, is uniform in the presence of an applied uniform

electric field E0. We shall assume this to be the situation, in which case the

total field Ecell acting on a certain dipole in the system is the same for all

sites and equal to the field Ecell(0) acting on the dipole placed in the center
of the sample. The dipole–dipole interaction (1.5) is of long range. It declines

proportional to r−3, but the number of dipoles at the distance r increases as

r2 and, as a consequence, the distribution of dipoles near the surface affects

the dipole in the center no matter how far the distance is to the surface. In
order to handle this enormous span of length scales, we make a cut between the

microscopic world of a discrete lattice of dipoles and the macroscopic continuous

material with its uniform polarization. The cut to be used is the surface of a

sphere centered at the dipole considered. The radius of this sphereRC should be
large compared with the lattice spacing, but smaller than the shortest distance

to the surface (or smaller than the size of crystallites in a polycrystalline sample
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or the size of the domains in the case of an ordered material). The total field is

the sum of the applied field and the field due to all other dipoles in the sample,

i.e. the energy of the dipole at r = 0 is

U(0) = −p · Ecell(0) = −p ·E0 −
∑
ri �=0

[
3
(p · ri)2
r5i

− p2

r3i

]
(1.6)

Introducing the cut and applying a continuous approximation for the macro-
scopic contribution of the dipoles outside the sphere, we get

U(0) = −p ·E0 −
∑

ri<RC

[
3
(p · ri)2
r5i

− p2

r3i

]
−
∫ sample

sphere

[
3
(p · r)2
r5

− p2

r3

]
dr

Ω
(1.7)

Ω is the volume per dipole moment, and defining z to be along the direction of

the dipole moments of length p = PΩ, the lattice sum may be written

∑
ri<RC

[
3
(p · ri)2
r5i

− p2

r3i

]
= pPΩ

∑
ri<RC

3z2i − x2i − y2i − z2i

(x2i + y2i + z2i )
5/2

= pPξ (1.8)

The field Pξ due to the lattice sum vanishes by symmetry in the case of a cubic

system. This is true no matter the direction of the z axis compared to the

lattice vectors, but it is only true when the cutting surface is that of a sphere

(the reason for making the cut of this shape). If the system is not cubic, the
lattice sum may be calculated straightforwardly by numerical methods as it

converges quite rapidly. The macroscopic contribution is∫ sample

sphere

[
3
(p · r)2
r5

− p2

r3

]
dr

Ω
= −pP

∫ sample

sphere
∇ ·

(
z

r3

)
dr

= pP

∫
sphere

z · dS
r3

− pP

∫
sample

z · dS
r3

= pP

(
4π

3
−Nzz

) (1.9)

The first surface integral (over the sphere) is calculated straightforwardly using

z · dS = r cos θ(2πr2 sin θdθ) cos θ in spherical coordinates. The last integral
over the surface of the sample depends on the shape of the ellipsoid. It is 4π/3

in case it is a sphere, but, in general, it is a number between 0 (long thin cigar

along the z axis) and 4π (flat pancake). Combining the results above, the total

field is found to be

Ecell = E0 +

(
ξ +

4π

3
−N

)
P = E+

(
ξ +

4π

3

)
P (1.10)

The second expression derives from that the internal electric field is E =

E0−NP, and this way of writing the result is of more general applicability, since

it also applies when the surface charges are not determined alone by the homo-
geneous polarization of the bulk material. IntroducingD = E+4πP = εE, then

the permittivity ε is a material parameter, which is independent of the shape

of the system. Introducing the polarization coefficient α by p = αEcell and

assuming all tensors ε, ξ, and α to be diagonal, we get the Clausius–Mossotti

relation (valid for each of the three diagonal components)

ε =
3 + (8π − 3ξ)nα

3− (4π + 3ξ)nα
(1.11)
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Magnetic energy and domains

In order to derive the magnetic energy of a macroscopic sample of microscopic

dipoles or of supercurrent loops in a superconductor, we start out with the

classical description of the fields. Introducing the magneticH field, the Maxwell

equations to be considered are

∇×H =
4π

c
jext +

1

c

∂D

∂t
, ∇ ·B = 0 (2.1)

where

B = H+ 4πM , ∇ ·H = −4π∇ ·M (2.2)

The sample is assumed to be placed in a uniform applied field B0 = H0, and

the sources of the fields (the external currents) are assumed to lie outside the

reach of the fields Bd and Hd produced by the sample. The total fields are

H = H0 +Hd, B = B0 +Bd, Bd = Hd + 4πM (2.3)

The magnetic energy of the sample is the total magnetic energy minus the

magnetic energy of the space without the sample:

U =
1

4π

∫
all space

[∫
H · δB− 1

2H
2
0

]
dr (2.4)

As shown in the appendix,
∫
all space H0 · Bddr =

∫
all space Hd · Bddr = 0, and

the magnetic energy reduces to

U =

∫
sample

[
−M ·H0 − 1

2M ·Hd +

∫
H · δM

]
dr = −

∫
sample

[∫
M · δH0

]
dr

(2.5)

Two things are worth to be noticed. The energy only involves an integration
over the space occupied by the sample (where M is non-zero), and the applied

fieldH0 is the independent variable in the final expression. This is in accordance

with the experimental situation and is in contrast with the original expression

(2.4), which involves B as the independent variable. The magnetic energy U is
equal the magnetic contribution FM to the free energy of the sample, and

fM (r) = −
∫ H0

0
M(r,H′

0) · dH′
0 , FM =

∫
sample

fM(r)dr (2.6)

is of general applicability.

If a homogeneous sample in the shape of an ellipsoid is placed in a uniform field,

then the magnetization M is constant throughout the sample. The Maxwell
equations imply that the magnetic field within the sample, i.e. the internal field,

is reduced from the applied field by the “demagnetization field” NM, or that

Hd = −NM, or

H = Hi = H0 −NM , B = Bi = H0 −NM+ 4πM (2.7)

inside the sample. The demagnetization tensor N is the same one as introduced

in the case of an electric polarization, and it is diagonal with respect to the
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main axes of an ellipsoid. Assuming the field and thus also the magnetization

along a main axis z, then the demagnetization field is determined by Nzz,

which is a number lying between 0 (long thin needle along z) and 4π (thin disk

perpendicular to z). In the latter case the internal magnetic induction is the

same as the applied one B = B0 reflecting that all the magnetic field lines of

each individual magnetic moment are looping back through the sample.

Returning to the first expression in (2.5) for the magnetic energy, then the

integration ofH with respect to M requires a knowledge of the relation between

the magnetization of the sample and the internal magnetic field. Introducing

the characteristic material parameter, the magnetic susceptibility tensor (at

zero field)

χαβ ≡ ∂Mα

∂Hβ

∣∣∣∣
H=0

(2.8)

we get in the uniform case

u =
1

V
U = −MH0 +

1
2NzzM

2 + 1
2χzzH

2 = −1
2MH0 (2.9)

when assuming the field and magnetization along z (as long as M = χzzH).

The magnetization of a uniform sample of microscopic dipoles is

M =
1

V

∑
i


µi (2.10)

If these magnetic dipoles are only coupled mutually by the classical dipole field,

then we may calculate the energy directly in the same way as in the case of

electric dipoles (the P and M fields are equivalent and E corresponds to H not

to B). The energy of a dipole moment 
µ placed in the middle of the sample is:

U(r = 0) = −
µ ·Hcell = −
µ ·
(
H0 +

∑
i

3ri(
µi · ri)− 
µir
2
i

r5i

)
(2.11)

and using the procedure explained in the previous section on “the dipole mo-

ment”, we get

Hcell = H0 +

(
ξ +

4π

3

)
M−N〈M〉 = H+

(
ξ +

4π

3

)
M (2.12)

In the paramagnetic phase there is only one domain, and defining a “non-

interacting” susceptibility χ0 (the susceptibility when the dipole field is ne-

glected) by M = χ0Hcell, we get

χ =
M

H
=

χ0

1− (4π3 + ξ)χ0

, H =
H0

1 +Nχ
(2.13)

Systems exist where this susceptibility diverges at a sufficiently low temperature

TC , i.e. where [(4π/3) + ξ]χ0 → 1, in which case the system is a ferromagnet

below TC , an ordering produced exclusively by the classical dipole–dipole in-

teraction (one example is LiHoF4 where TC = 1.5 K).
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In the other extreme case of a ferromagnet, |
µ| and hence |M| = M is a

constant. Introducing this in (2.11) and (2.12) and summing over all sites, the

average energy density is found to be

u = −〈Mz〉H0 +
1
2Nzz〈Mz〉2 − 1

2

(
4π

3
+ ξ

)
M2 (2.14)

Here 〈Mz〉 is the magnetization, along the direction of the applied field, aver-

aged over the sample, which average is equal to M if there is only one domain.
In terms of this average, the expression is of general validity, since it is the dipo-

lar energy density of the sample also in the presence of many different domains

(the cutting sphere is assumed to lie within one domain with the magnetization

|M| =M). The minimization of (2.14) with respect to 〈Mz〉 leads to

〈Mz〉 =
H0

Nzz
and H = 0 , when H0 < NzzM (2.15)

and

〈Mz〉 =M and H = H0 −NzzM , when H0 > NzzM (2.16)

The magnetization rises linearly with H0 and attains the saturation value M

when H0 = Hd = NzzM . The internal field is the most natural choice for

the field variable when investigating the material parameters of the sample, as

used in the definition of χ in (2.8). In terms of H the magnetization is a step
function, 〈Mz〉 =M as soon as H is non-zero.

In this account we have neglected the energy cost due to the domain walls
between the different domains. This energy cost should be included in a realis-

tic model together with a more direct evaluation of the demagnetization field,

which would change from one domain to the next. However, if the domain walls

are easily created as is the case if the magnetic anisotropy is weak, the simple

averaging of the domain effects is acceptable. In the case of hard magnetic sys-
tems (large magnetic anisotropy) the situation is complicated and irreversible

hysteresis phenomena become important (permanent magnets).

In most magnetic material the classical dipole–dipole interaction is weak com-

pared to other ”two-ion interactions” (exchange interactions), and the differ-

ence between χ0 and χ in (2.13) may safely be neglected. However, the long

range nature of the coupling implies that it is important, in most cases, to

account for the demagnetization field, i.e. to realize that the internal field is
H = H0−Nzz〈Mz〉, and that the system may possibly be divided into different

domains. The approximative inclusion of the dipole–dipole interaction, where

χ 	 χ0, corresponds to the use of Hcell 	 H in (2.11), and thus that the energy

of the dipole moment 
µ is U(r = 0) 	 −
µ ·H. – Hence, when focussing on the
material parameters or the principal behaviour of a certain system, we normally

assume that we are left with only one magnetic domain and that the magnetic

field variable is the internal field H. The thermodynamic quantities are then

derived from the partition function Z according to

F = −kBT lnZ , S = −∂F
∂T

, U = F + TS (2.17)
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and

M = − 1

V

∂F

∂H
, χαβ = − 1

V

∂2F

∂HαHβ

, C =
∂U

∂T
= T

∂S

∂T
(2.18)

where the expressions for M and χ are the results derived from (2.7) and (2.8),
when approximating H0 by H in (2.7). The thermodynamic magnetization

derived from the free energy is actually the one, which determines what are the

microscopic dipoles in (2.10).

In the mean-field approximation the interactions between the magnetic mo-

ments are replaced by effective fields acting on the single moments and H =∑
l Hl as for non-interacting moments. In this case, the partition function

Z =
∏
Zl (= ZN for a uniform system) and all thermodynamic quantities are

derived from the partition functions of the single moments. Determining the n

eigenstates and eigenvalues of the Hamiltonian for the lth site we may introduce

the population factor pi of the ith level

Hl|i〉 = εi|i〉 , pi =
e−βεi

Zl
,

n∑
i=1

pi = 1 (kBT = 1/β) (2.19)

where the last identity follows from Zl =
∑

i e
−βεi . The ith population factor is

the probability that the ith level is occupied. Immediate consequences of this
interpretation of pi are

U = N〈Hl〉 = N
n∑

i=1

εipi (2.20)

and

Mα =
N

V
〈µα〉 =

N

V

n∑
i=1

〈i|µ̂α|i〉 pi (2.21)

which results agree with those obtained from the thermodynamic definitions

and relations (see the solution to HS’s problem 4).

Appendix

The Maxwell equations are

∇ ·D = 4πρext , ∇ ·B = 0

∇×E = −1

c

∂B

∂t
, ∇×H =

4π

c
jext +

1

c

∂D

∂t

(a.1)

where

D = E+ 4πP , B = H+ 4πM

∇ ·P = −ρint , c∇×M+
∂P

∂t
= jint

(a.2)

The work done by the “surroundings” on the system (a certain volume in space)

derives exclusively from the current density jext applied in the outside world,

and the energy gain of the system is

δU = −
∫
dr (jext ·E) δt = −

∫
dr

(
c

4π
∇×H− 1

4π

∂D

∂t

)
· E δt (a.3)
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The second term is the electric part of the energy (when ρext = 0):

δUE =
1

4π

∫
dr
∂D

∂t
· E δt = 1

4π

∫
drE · δD (a.4)

whereas the first term in (a.3) is the magnetic energy part δUM . Using the

identity ∇ · (a× b) = b · ∇ × a− a · ∇ × b, we get

δUM = −
∫
dr

c

4π

[
H · ∇ ×E +∇ · (H×E)

]
δt (a.5)

Due to the divergence theorem of Gauss, the second volume integral over “all

space” may be written as an integral of H × E over a closed surface lying

infinitely far away from the system and its surroundings. Here all fields vanish
and the second integral is zero, which implies that

δUM = −
∫
drH · ∇ ×E δt =

1

4π

∫
drH · ∂B

∂t
δt =

1

4π

∫
drH · δB (a.6)

According to equation (2.3), the magnetic fields Hd and Bd = Hd + 4πM, are

the fields produced by a magnetic sample. The fields within the sample are

given by (2.7) (in the homogeneous case). Outside the sample M = 0 and
Bd = Hd, but this field is not easy to calculate. It is clear from Maxwell

equations that ∇ · Bd = 0 and also ∇ × Hd = 0, since ∇ × H0 accounts for

all the external currents. Because ∇ × Hd = 0 it is possible to determine a

potential field ψ so that Hd = −∇ψ. Hence∫
all space

Hd ·Bd dr = −
∫

∇ψ ·Bd dr = −
∫

[∇ · (ψBd)− ψ∇ ·Bd] dr

= −
∫

∇ · (ψBd) dr = − lim
r→∞

∫
surface

ψBd · dS = 0

(a.7)

because ψBd must become vanishing small sufficiently far away from the sample

(ψBd ∝ r−5 for a dipole field). By the same arguments, the integral where Hd

is replaced by H0 is also found to be vanishing small. Now ∇×H0 is not zero,

but it is sensible to assume that the applied field is generated by currents jext
“outside” the space where Bd is of any importance, or that the surface integral

has vanished before ∇×H0 = 0 is violated.

Introducing δB = δ(H + 4πM) in (a.6), then

UM =
1

4π

∫
dr

∫
H · δ (H+ 4πM) =

1

8π

∫
drH2 +

∫
dr

∫
H · δM (a.8)

where

1

8π

∫
drH2 =

1

8π

∫
dr
[
H2

0 + 2H0 ·Hd +H2
d

]

=
1

8π

∫
dr
[
H2

0 + 2H0 · (Bd − 4πM) +Hd · (Bd − 4πM)
]

=
1

8π

∫
drH2

0 −
∫
dr
(
M ·H0 +

1
2M ·Hd

)
(a.9)

introducing this result in (a.8), we get the expression for the magnetic energy

of the sample given by (2.5), when subtracting the background energy.
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Pauli paramagnetism

Figure 25.3 in Marder (p. 718 or p. 770) may easily be misunderstood (he has

just changed the numbers of spin-up and spin-down electrons without moving

the electronic bands up or down). Replace it by the following figure:

D|(ε)D|(ε)

εF

ε

The Hamiltonian for the band electrons are changed, when applying a field

along the z axis, H = (0, 0,H):

∆H =
∑
i

2µBH · si =
∑
i

µBHσz(i) (3.1)

implying that the spin-up and spin-down bands are shifted rigidly up and down

by an equal amount:

ε↑(q) = ε(q) + ∆ , ε↓(q) = ε(q) −∆ , ∆ = µBH (3.2)

The Fermi energy is common for the spin-up and spin-down electrons, and

the spin-up electrons in the cross-hatched area on the figure are removed and

appear instead as spin-down electrons in the corresponding cross-hatched spin-
down area. To a first approximation the small changes of the total density of

states between εF and εF±∆ may be neglected (at least in the limit of H → 0),

and the two spin-components of the density of states:

D↑(ε) =
1
2D(ε−∆) , D↓(ε) =

1
2D(ε+∆) (3.3)

may both be approximated with 1
2D(εF) at ε = εF. This means that, at zero

temperature, the field-induced magnetization of the band electrons is

M = µB(n↓ − n↑) 	 µB

(
D↓(εF)∆ +D↑(εF)∆

)
	 µBD(εF)∆ = µ2BD(εF)H

(3.4)

or that the zero-temperature susceptibility is

χ =
M

H
= µ2BD(εF) (3.5)
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The Hall effect

Marder has made a few mistakes in his discussion of the Hall effect: Figure 17.5

is showing the orbits in 
k-space (reciprocal space), and assuming 
B to point
out of the page, then the k-vector of the electron-like orbit moves the opposite

way of what is shown in the figure to the left.

The derivation of the Hall effect, in section 17.4.8, does not account for that the

velocities of most of the electrons are only weakly perturbed by the magnetic

field. The more accurate treatment of the Boltzmann equation referred to the

problem 17.9, leads to the result that

ρ =
1

σ0

⎛
⎝ 1 −RBσ0 0
RBσ0 1 0

0 0 1

⎞
⎠ , σ0 =

ne2τ

m∗ (4.1)

in the case of B = (0, 0, B). The resistivity tensor ρ = (σ)
−1

is defined by

E = ρ j, see Eq. (17.98). In order to get this result, the band mass tensor has
to be isotropic (equals to m∗ times the unit matrix).

Inverting the resistivity tensor one finds

σ =
σ0

1 + (RBσ0)
2

⎛
⎝ 1 RBσ0 0
−RBσ0 1 0

0 0 1 + (RBσ0)
2

⎞
⎠ (4.2)

In the limit of |RBσ0| � 1 then σ has the same B dependence as given by
Eq. (17.99), but R should be placed in the denominators, rather than in the

numerators, of the different matrix elements in Eq. (17.99):

σ =

⎛
⎜⎜⎜⎜⎝

1

R2B2σ0

1

RB
0

− 1

RB

1

R2B2σ0
0

0 0 σ0

⎞
⎟⎟⎟⎟⎠ , |RBσ0| � 1 (4.3)
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The Ginzburg–Landau free energy

The “Landau–Ginzburg” free energy presented by Marder in Eq. (27.27) is

derived from the total magnetic contribution to the free energy density:

FM =
1

4π

∫
d
r

V

[∫

H · δ
B

]
=

1

8π

∫
d
r

V
B2 −

∫
d
r

V

[∫

M · δ
B

]
(5.1)

by the use of 
B = 
H +4π 
M . Introducing the vector potential, 
B = ∇× 
A and

applying the vector identity ∇ · (
a×
b) = 
b · ∇×
a−
a · ∇ ×
b, the last integral
may be written∫

d
r

V

[∫

M · δ
B

]
=

∫
d
r

V

[∫

M · ∇ × δ
A

]
=∫

d
r

V

[∫
δ
A · ∇ × 
M

]
−
∫
d
r

V
∇ ·

[∫
( 
M × δ
A)

]
=

∫
d
r

V

[∫
δ
A · ∇ × 
M

]
(5.2)

Because of Gauss theorem, the integral of the divergence may be written as an
integral over a surface outside the sample, where 
M = 
0, and this integral is

zero. Introducing the internal current density 
j(
r) of the sample, then ∇× 
M =

j/c and we finally get

FM =

∫
d
r

V

[
1

8π
B2 − 1

c

∫

j · δ
A

]
(5.3)

in agreement with the magnetic part of F in Eq. (27.27), when introducing

the superconducting current given by Eq. (27.29a). Formally, this expression is

right, but one has to be careful with the integration of B2 as the integral should

really be performed over “all space” (the field outside the sample is modified
when 
M is non-zero). Furthermore, the independent variable in (5.3) is 
B,

whereas the actual one is the applied field, and in order to change variable one

has to perform a Legendre transformation:

G̃M = FM − 1

4π

∫
d
r

V

H · 
B = − 1

4π

∫
d
r

V

[∫

B · δ 
H

]
(5.4)

Both the two complications are circumvented by applying instead the magnetic

energy expression (2.6) derived in the section “Magnetic energy and domains”:

GM = −
∫
d
r

V

[∫

M · δ 
H

] (
= G̃M +

1

8π

∫
d
r

V
H2
)

(5.5)

The integrand in (5.5) is only non-zero within the sample and 
H is the indepen-

dent variable. [Here and in (5.4), we neglect the extra complication discussed

in problem 27.1, that the internal field 
H = 
Hi may differ from the applied one.

Since the derivation of this energy does not involve a Legendre transformation,
one may argue that this is the “Helmholtz” (FM ) and not the “Gibbs” (GM )

free energy]. Using (5.5) rather than (5.1) as the starting point then (5.3) is

replaced by

GM =

∫
d
r

V

[∫

M · δ(4π 
M )−

∫

M · δ
B

]
=

∫
d
r

V

[
2πM2 − 1

c

∫

j · δ
A

]
(5.6)

Hence, the only difference is that B2/(8π) in the Ginzburg–Landau free energy

expression Eq. (27.27) is being replaced by 2πM2.
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Henrik Smith’s problems

HS’s problem 1: Heat capacity of a two-dimensional electron gas.

We consider a two-dimensional gas of electrons in a GaAs/AlGaAs heterostruc-

ture. The areal density is n = 1011 cm−2 and the dispersion relation of the

electrons is given by

ε =
h̄2k2

2m∗ .

Here k is the magnitude of the two-dimensional wave vector and ε the single-

particle energy. The quantity m∗ is the effective mass, given by m∗ = 0.067me,

where me is the electron mass.

1) Calculate the heat capacity of the electron gas at the temperature T = 1 K,

taking its area to be 1 cm2.

2) Compare the value obtained in 1) with an estimate of the phonon contri-

bution to the heat capacity for a GaAs crystal of volume 1 cm3 at the same

temperature – the Debye temperature of GaAs is θD = 344 K. At what tem-

perature are the two contributions equal to each other?

HS’s problem 3: Hall effect of a two-dimensional electron gas.

In this problem we consider a two-dimensional electron gas with an anisotropic

dispersion relation given by

ε�k = ε = a(k2x + k2y) + b(k4x + k4y),

where a and b are constants that are taken to be positive.

1) Sketch a curve of constant energy and indicate the direction of the velocity


v�k = ∂ε�k/∂(h̄

k) at selected points on the curve.

2) We assume that the electric field points in the x direction, while the mag-

netic field is in the z direction, perpendicular the plane in which the electrons

move. Show that the linearized Boltzmann equation in the relaxation-time

approximation can be written as

−evxE
∂f

∂ε�k
=

[
eB

h̄c

(
vy
∂

∂kx
− vx

∂

∂ky

)
− 1

τ

]
(g − f)

where g is the distribution function and f its value in equilibrium.

3) When the magnetic field is sufficiently high, we may neglect the relaxation

term −(g−f)/τ . Show that the Boltzmann equation in this limit is satisfied by

a solution of the form g = f +kyF (ε) and determine F . Find the ratio between

the electric field and the current density jy in the y direction, and show that

its value can be expressed in terms of the number, n, of electrons per unit area.
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HS’s problem 4: Localized atoms: heat capacity and magnetic sus-

ceptibility.

We consider N identical atoms which are localized at different sites in a lattice.

The atoms are assumed to be non-interacting. The non-degenerate energy levels
εi (i = 1, 2, 3) of an atom are assumed to be given by

ε1 = −∆, ε2 = 0, ε3 = ∆,

where ∆ is a positive constant.

1) Determine the partition function Z and the internal energy U as a function

of the temperature T .

2) In this and the following question we consider only the high temperature

limit, kT � ∆. Expand the partition function and calculate the internal energy,

the free energy F and the entropy S to lowest non-trivial order in ∆. Determine

the specific heat C = ∂U/∂T and show that the result agrees with the one
obtained from C = T∂S/∂T .

3) Determine the derivative of F with respect to ∆ in the high-temperature

limit. Assuming that ∆ is proportional to the magnitude of an applied magnetic

field, what is the physical significance of this derivative? Compare your result

to (25.31) and explain the connection.

4) Find the leading contribution to C in the limit of low temperatures (kT � ∆)

and use this together with the result in 2) to sketch the specific heat as a
function of temperature.


