
33

Solutions to the problems in Chapter 27

27.1 Superconducting sphere

The free-energy density of a type-I superconductor is determined by the critical
field Hc. Since �B = �0 throughout the volume of the type-I superconductor, when
surface effects are neglected (λL ≈ 0 compared to the dimensions of the sample)

�Bi = �Hi + 4π �M = �0 ⇒ �M = − 1
4π

�Hi (1)

Assuming the sample to be a thin needle along the direction of the applied magnetic
field �H0 (along z), the demagnetization field �Hd = −Nz

�M ≈ �0. In this case,
the magnetic field within the sample is �Hi = �H0 and the magnetization is �M =
−�H0/(4π). According to eq. (6) in the note “Magnetic energy and domains”, the
magnetic energy density is then,
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[This energy density corresponds to G in Marder because �H0 is the independent
variable, see problem 27.2]. The total energy density is the sum of GM and the
field-independent condensation-energy density, GS . Since the two contributions
just outbalance each other at the critical field H0 = Hc, we have a measure for GS ,

G = GS + GM , GS = −H
2
c

8π
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If the sample has instead the shape of a sphere, then (1) and (3) still apply, but
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The internal field Hi is larger than the applied field and becomes equal the critical
one, when the applied field is H0 = (1 − D)Hc = 2

3Hc. This condition is not
necessarily critical, since the global free energy of the superconducting sphere is still
negative (as long asH0 <

√
1 −DHc). A detail discussion of the intermediate state

of the superconductor, when (1−D)Hc < H0 < Hc, may be found in Landau and
Lifshits, Electrodynamics of continuous media (Volume 8, 2nd Edition, page 189).
In the intermediate range of the applied field, local thermodynamic instabilities
are going to destroy superconductivity in parts of the sphere such that the effective
D is reduced sufficiently to sustain superconductivity in the remaining parts. The
assumption that the superconducting domain takes the form of a prolate ellipsoid
with radius a < R and constant height 2R (the largest volume for a certain value of
D) is the most obvious one, but this configuration turns out to be thermodynamical
unstable (the field in the normal part of the sphere is smaller than Hc near the
end points of the ellipsoid). Nevertheless, domains of superconductivity are going
to be present as long as H0 < Hc.
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27.2 Energy of normal-superconducting interfaces

(a) To start with we consider the limit of κ→ 0 or λL � ξ. Then B = 0 for x > 0
and according to (27.41) the wave function, which vanishes at x = 0 and saturates
at Ψ0 at large x, is

Ψ(x) = Ψ0 ψ(x) = Ψ0 tanh

(
x√
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)
(1)

The free energy density, the Ginzburg–Landau energy is, (27.27),
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Here Ψ2
0 = −α/β is the equilibrium value at large x, and the change in energy per

unit area, in comparison with the homogeneous case, is
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Introducing H2
c = 4πα2/β, (27.35), and ξ2 = −�

2/(2m∗α), (27.31), then (3) may
be written
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using ψ′ = (1 − ψ2)/(
√

2ξ), (27.40), in the last step. Applying this relation ones
more, we get
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which energy per unit area is positive and in agreement with (27.52) [∆G = ∆F

since �B = �0].

(b) Next we consider the opposite limit of ξ � λL, in which case Ψ(x) � Ψ0 and
the gradient ψ′ may be neglected. In this case the free energy density is
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where the first term is the zero-field contribution of the homogeneous supercon-
ductor, (2) when ψ′ = 0, and FM is the magnetic energy density in (27.27), when
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λ2
L = m∗c2/(16πe2Ψ2

0), (27.32), is inserted. The applied field is assumed to be
parallel to the interface, i.e. along z, and �B = �H0 in the normal metal [this con-
figuration leads to the largest possible energy gain]. Assuming �A to be along the
y direction, �A = (0, A(x), 0), then �B = ∇× �A = (0, 0, A′(x)) for x > 0. According
to (27.9), Bz = B(0) e−x/λL for x > 0, where B(0) = H0. Hence
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introducing this in (6), we get (for the field energy within the superconductor)
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The magnetic free energy may also be calculated in a direct fashion
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when using δ�B = e−x/λLδ �H , and that the �H-field within the superconductor is
the same as the applied field in the normal metal. In this free energy density �B is
the independent variable. The thermodynamical potential which is at a minimum
in the equilibrium state, is the one where the applied magnetic field �H is the
independent variable. The relevant thermodynamic potential to be minimized is
obtained by a Legendre transformation:
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The magnetization in the superconductor is along the z axis and is determined
from �B = �H + 4π �M to be M = M(x) = −(1− e−x/λL)H0/(4π). The allowance of
the magnetic �B-field to penetrate into the superconductor gives rise to the energy
density gain determined by (10) in comparison with the case of �B = �0 (or λL = 0).
Based on eq. (6) in the note “Magnetic energy and domains”, this gain of magnetic
energy density may be calculated in a direct fashion as
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[The demagnetization field �Hd = −N �M is neglected in all the calculations, i.e.
the sample is assumed to be a thin rod along the field, see problem 27.1]. In
case the applied field is equal the critical field, H0 = Hc, the interface is stable if
2
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27.3 Diffraction effects in Josephson junctions

The figure shows a weak link of nor-
mal metal (dashed lines) between two
parts of a superconductor. The mag-
netic field �H is applied in the z direc-
tion. �B = �0 within the superconduc-
tors, whereas �B = �H in the normal
metal. The magnetic flux through the
weak link is Φ = AB = AH , where the
area is A = dxdy.

(a) With the choice of the Landau gauge, the vector potential within the normal
metal is

�A = (0, xH, 0), ⇒ ∇× �A = (0, 0,H) = �B, ∇ · �A = 0 (1)

(see also problem 25.4).

(b) The path integral, calculated at a constant x, between the two superconductors
1 and 2 is ∫ 2

1
d�s · �A =
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0
xH dy = Hdy x (2)

The current density in the y direction between the two superconductors, (27.68a),
is independent of z (when staying within the cross-section of the normal metal):
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The magnetic flux quantum is here defined, (25.51), Φ0 = hc/e, however, in much
of the literature on superconductivity, the flux quantum is defined as the one
applying for Cooper-pairs, i.e. Φ0 = hc/e∗. The total current is
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when introducing the total magnetic flux Φ = dxdyH. Defining J0 = dzdxj0 and
using the general cosine relation: cos(u− v) − cos(u+ v) = 2 sinu sin v, we finally
get
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(c) At zero voltage the phases of the wave functions in the superconductors 1 and
2, φ1 and φ2, are constant in time. The result (5) clearly shows that the maximum
current at a certain field and zero voltage is
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Comments concerning the Ginzburg–Landau free energy

The “Landau–Ginzburg” free energy presented by Marder in Eq. (27.27) is derived
from the total magnetic contribution to the free energy density:
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by the use of �B = �H + 4π �M . Introducing the vector potential, �B = ∇ × �A and
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Because of Gauss theorem the integral of the divergence may be written as an
integral over a surface (far) outside the sample, where �M = �0, and this integral is
zero. Introducing the internal current density�j(�r) of the sample, then ∇× �M = �j/c
and we finally get
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in agreement with the magnetic part of F in (27.27), when introducing the su-
perconducting current given by (27.29a). Formally, this expression is right, but
one has to be careful with the integration of B2 as the integral should really be
performed over “all space” (the field outside the sample is modified when �M is
non-zero). Furthermore, the independent variable is �B and not the applied field,
and in order to change variable one has to perform a Legendre transformation:
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Both the two complications are circumvented by applying instead the magnetic
energy expression (6) derived in the note “Magnetic energy and domains”:
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The integrand is only non-zero within the sample and �H is the independent vari-
able. [Here and in (4), we neglect the extra complication discussed in problem
27.1, that the internal field �H = �Hi may differ from the applied one. Since the
derivation of this energy does not involve a Legendre transformation, one may
argue that this is the “Helmholtz” (FM ) and not the “Gibbs” (GM ) free energy].
Using (5) rather than (1) as the starting point then (3) is replaced by
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or B2/(8π) is being replaced by 2πM2 in the Ginzburg–Landau free energy ex-
pression (27.27).


