
Problems in Solid State Physics II (2005-2010)

Problem 2005-I
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In an fcc crystal, the Fermi surface
consists of an electron-like sphere cen-
tered at (000) and a hole-like sphere
around (111). The two lowest lying
electronic bands are shown on the fig-
ure, and the energies are assumed to
be:

Band 1, close to (111):

εh(
�k) = εh −

�
2(�k − �k(111))

2

2mh

.

Band 2, close to (000): εe(
�k) = εe +

�
2�k2

2me
, εe = εh −∆ .

Here �k(111) is the position of the reciprocal lattice point (111) [the one closest

to �k ]. The system is assumed to contain two band electrons per unit cell.

1) What would happen if the energy difference ∆ = εh − εe were negative?

Determine the following quantities in the zero temperature limit, when ∆ is
positive (and � εF ). The results should be expressed in terms of the principal
model parameters εh, ∆, me, mh, and τ , a constant relaxation time assumed
to be the same for both bands:

2) εF , the Fermi energy.

3) n and p, the electron and hole densities, respectively.

4) γ = cV /T , where cV is the specific heat per unit volume.

5) σ, the (isotropic) conductivity.

In the presence of a magnetic field B along the z axis, the xy part of the
conductivity tensor for an isotropic, one-band system may be written:

σ =
σ0

1 + (RBσ0)
2

(
1 RBσ0−RBσ0 1

)

where σ0 is the zero-field conductivity and R is the Hall coefficient.

6) What is the Hall coefficient of the present two-band system in the limit
|RBσ0| � 1?

7) Calculate the electron density n, when ∆ = 0.1 eV, and me = mh = m
(m is the mass of the electron).
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Problem 2005-II

The band energies of the conduction electrons in a tetragonal crystal is given
by

ε(�k) =
�
2

2m1

(k2x + k2y) +
�
2

2m2

k2z . (1)

1) Describe the Fermi surface within the �k-space.

2) Write down the electrical conductivity tensor σ (at zero magnetic field),
when assuming a constant relaxation time τ . The density of the conduction
electrons is n.

3) Determine the density of states D(ε) of the conduction electrons.

The system may be mapped on an isotropic one by the following transforma-
tion

�k′ = T �k =

(
kx, ky,

√
m1

m2

kz

)
, T =

⎛
⎜⎜⎝
1 0 0
0 1 0

0 0
√

m1
m2

⎞
⎟⎟⎠ (2)

The semiclassical equation of motion for ��̇k is transformed into the equivalent
one

��̇k′ = −e �E′ − e

c
�v′ × �B′ (3)

when introducing ��v′ = ∂ε/∂�k′ and when replacing �E and �B by the trans-

formed field vectors �E′ and �B′.

4) Derive the expressions for the primed vectors �v′, �E′ and �B′ in terms of the
corresponding unprimed ones. Express the results both in terms of the

Cartesian components and in terms of T [like in eq. (2) in the case of �k′].

The primed conductivity tensor is defined by �j ′ = −ne〈�v′〉 = σ ′�E′.

5) Determine the relation between σ and σ ′ (in terms of T ).

In the presence of a magnetic field B along the x axis, the resistivity tensor
for an isotropic (m1 = m2) system may be written:

ρ =

⎛
⎜⎝ σ−1

0 0 0

0 σ−1
0 −RB

0 RB σ−1
0

⎞
⎟⎠ (4)

where σ0 is the zero-field conductivity and R = −(nec)−1 is the Hall coefficient.

6) Determine the resistivity tensor in the present, more general case (m1 �=
m2). What is the resulting Hall coefficient?
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Problem 2005-III

We shall consider a semimetal where there is an equal concentration n of
electrons with mass me and holes of mass mh, i.e. p = n. The equation-of-
motion for the electrons is

me�̇ve = −e

(
�E +

�ve
c
× �B

)
−me

�ve
τ
, (1)

when assuming the Drude model. The semimetal is placed in a constant mag-
netic field, applied along the z axis, and a time-dependent, circularly polarized
electric field, applied perpendicular to the magnetic one:

�B = B ẑ, �E = E e−iωt (x̂+ i ŷ) (2)

(B and E are constants and α̂ is the unit vector along the α axis).

1) Show that �ve = vee
−iωt(x̂+ i ŷ) is a solution of (1) in the presence of the

fields given by (2), and derive the expression for the constant ve.

2) Show that the frequency-dependent conductivity of this system, with p =
n, is

σ(ω) = i
e2n(me +mh)

(
ω + i

τ

)
memh

(
ω − ωe +

i
τ

) (
ω + ωh +

i
τ

) , (3a)

where

ωe =
eB

mec
, ωh =

eB

mhc
. (3b)

3) Use this result (3) to determine the zero-frequency conductivity σ(0), when
the magnetic field B = 0.

4) Determine the frequency-dependent conductivity σ(ω) in the limit
(ωe, ωh) � ω � 1/τ .

5) Derive the dispersion relation, ω = ω(q), for the transverse light waves in
this medium from the relation ω2ε(ω) = c2q2, when assuming (ωe, ωh) �
ω � 1/τ and ε(ω) � 1.

6) Calculate the velocity of these “Alfvén” waves in the case of B = 10 kG,
n = 1019 cm−3, and me = mh = 9× 10−28 g.
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Problem 2006: The Ising model in a transverse field

In the non-interacting case the Hamiltonian of any single site in the crystal is

H1 = −Γ σx − µBH σz , Γ > 0 (1)

where σα are the Pauli spin-operators, [σx, σy] = 2iσz . In the Heisenberg
representation the equation of motion of an operator A is

dA

dt
=

i

�
[H, A] (2)

1) Determine the equation of motion for σz
(
calculate

d2σz

dt2

)
.

The site is in equilibrium with the surroundings of temperature T = 1/(kBβ).
The density of sites in the crystal is n = N/V , and the field is assumed to be
H = Hω(t) = H0e

−iωt.

2) Show that the (non-interacting) frequency-dependent susceptibility is

χ0(ω) ≡ nµB
〈σz(t)〉 − 〈σz〉

Hω(t)

∣∣∣∣
Hω→0

= nµ2B
4Γ tanh(βΓ)

4Γ2 − (�ω)2
(3)

where 〈σz(t)〉 is the thermal average of the time-dependent operator atHω = 0,
and 〈σz〉 is the same, when neglecting the time-dependent part of σz(t).

We now turn to the interacting case, where the Hamiltonian is

H = −J
∑
<ij>

σzi σ
z
j +

∑
i

H1(i) , J > 0 (4)

<ij> denotes the sum over all distinct z nearest-neighbour pairs of sites.

3) In the paramagnetic phase nµB〈σzi (t)〉 = χ(ω)Hω(t). Show that, within the
mean-field approximation, the susceptibility in the interacting case is

χ(ω) =
χ0(ω)

1− χ0(ω)
zJ
nµ2

B

(5)

4) Make use of χ(0) for deriving an equation, which determines the Curie
temperature TC. Find the condition that this equation has a solution and
make a sketch of TC as a function of Γ ≥ 0.

5) Determine the excitation energies �ω, i.e. the resonance energies at which
χ(ω) diverges, when T ≥ TC. Sketch the excitation energies as functions
of T ≥ TC (and, if you have time, make a guess of what happens with the
excitations below TC).
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Problem 2007: Surface plasmons

We are going to consider surface plas-
mons propagating on an y–z interface be-
tween a simple metal at x > 0 and air at
x < 0. The dielectric constant of air is
ε1 = 1 and the conductivity tensor of the
metal is assumed to be (at k � kF )

σ = σ(�k, ω) =
ne2τ

m

1

1− iωτ
(1)

1) Determine the dielectric constant of the metal ε2 = ε = ε(ω) in terms of the
cyclic plasma frequency ωp in the limit of ωτ � 1.

2) In the case of no external charges (or currents), the solution of the Maxwell
equations is assumed to be of the form

�E =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
�E1 = A

(
1, 0,

iλ

k

)
eλx ei(kz−ωt) , x < 0

�E2 = A

(
1

ε
, 0,

iλ

k

)
eελx ei(kz−ωt) , x > 0

(2)

Show that this solution fulfills the boundary conditions at the x = 0 interface,
�E1 × �̂x = �E2 × �̂x and �D1 · �̂x = �D2 · �̂x, and that ∇ · �E = 0 for x �= 0. What are
the necessary conditions on λ and ε, if this solution should be characterized
as a surface (interface) wave?

3) Show that ∇ × ∇ × �E = −∇2�E, when x �= 0. In this case the remaining
Maxwell equations lead to the “wave equation”

∇2�E =
1

c2
∂2 �D

∂t2
, x �= 0 (3)

Use this equation to determine λ and k as functions of ω, ε, and c, and state
the condition which ε has to fulfill.

4) Derive the final relation between (kc)2 and ω2 in terms of ωp (when ωτ � 1).
What are the simplified relations in the two limits kc � ωp and kc � ωp. Make
a sketch of ω as a function of kc.

5) Determine the relation between λ and k in the limit of kc � ωp, and describe
the polarization of the surface wave in this limit. – In potassium metal the
density of the conduction electrons is n = 1.33 · 1022 cm−3. Calculate the
plasma frequency, the wave number k = kp at which value kc = ωp, and the
ratio between this kp and the Fermi wave number kF in potassium.

(opgavesættet er slut)
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Problem 2008: Thermodynamics of a superconductor

We are going to consider a type 1 superconductor. The sample, in the shape of
a long thin needle, is placed in a uniform field H0 applied along the direction
of the needle. Neglecting surface effects (λ ≈ 0 and ξ ≈ 0 compared with the
dimensions of the sample), the superconductor is in a uniform state and the
differential of its Gibbs free energy is

dG = −SdT − VM · dH0 (1)

where S is the entropy, T is the temperature, M is the magnetization, and V
is the volume of the superconductor.

1) Explain why the free energy may be written

G = Gs(T,H0) =
V

8π

[
H2

0 −H2
c (T )

]
+Gn(T ) (2)

where Hc(T ) is the critical field of the superconductor. Gn(T ) is the free
energy of the metal in the normal state, which is assumed to be unaffected by
the applied field.

2) Empirically, the critical field is determined from its zero temperature value
Hc(0) according to

Hc(T ) = Hc(0)
(
1− t2

)
, t =

T

Tc
(3)

where Tc is the critical temperature. Show that this expression for the critical
field predicts the heat capacity at zero field to be

Cs =
V

2πTc
H2

c (0)
(
3t2 − 1

)
t+ Cn, (t ≤ 1) (4)

where Cn is the heat capacity of the normal metal.

3) The BCS-theory predicts the energy gain of the superconducting state at
zero temperature to be

U = Gs(0, 0)−Gn(0) = −∑
�k

(E�k
− |ξ�k|)2
2E�k

(5)

Here ξ�k = ε�k − εF is the energy of the band electrons relatively to the Fermi

energy εF , and E�k
=
√
ξ2�k

+∆2, where ∆ is the BCS energy gap. Show that

U = −1

4
V D(εF )∆

2 (6)

when ∆ � εF . Here D(ε) is the density of states per unit volume of the band

electrons. Hints: (i) The summation in (5) only involves the different �k states
– there is no σ-sum over two different spin states. (ii) Because ∆ � εF , the
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term in the �k-sum is only non-zero, when ξ�k ≈ 0 or ε�k ≈ εF , and the density
of states D(εk) stays approximately constant at D(εF ). (iii) Finally,

∫ ∞
0

(√
x2 + 1− x

)2
√
x2 + 1

dx =
1

2
(7)

4) The relation between the BCS energy gap and the transition temperature
is ∆ = α kBTc, where α = π/eγ � 1.764. Use this relation for calculating the
ratio

Cs − Cn

Cn
, T = Tc (8)

when assuming that Tc � TF is so small that only the normal metallic elec-
trons contribute to Cn (i.e. that the phonon contributions may be neglected).

5) Make a sketch of the heat capacity as a function of temperature, from
slightly above Tc to zero temperature, based on the results above (neglecting
phonon contributions); i.e., assume a certain behaviour of the heat capacity
of the normal metal and show the corresponding relative variation of the heat
capacity of the superconductor.

The density of band electrons in Al metal is n = 3 × 6.02 · 1022 cm−3 and
Tc = 1.18 K. Use these numbers for calculating εF , ∆, and Hc(0) in the case
of aluminium using estimates deriving from the free-electron model whenever
needed. Notice, there is a misprint in Marder’s equation (6.33). It should
read:

D (EF ) =
3

2

n

EF
= 4.11× 10−2[n · Å3

]1/3eV−1Å
−3

(6.33)

(opgavesættet er slut)
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Problem 2009: Transport due to electrons belonging to
a single band

The energies ε(�k) of the electrons in one particular band in a cubic crystal are
assumed to be described by the tight-binding model, i.e.

ε(�k) = E0

[
3− cos(akx)− cos(aky)− cos(akz)

]
, (1)

where a is the cubic lattice parameter (or lattice spacing). (kx, ky, kz) are the

components of �k along the three cubic axes of the lattice, and E0 is a positive
constant.

1) Find the energy minimum εmin and maximum εmax of the band (the answer

should include both the energies and the corresponding �k). Determine the
threshold value of the Fermi energy εF, where the Fermi surface starts to
touch the boundaries of the (first) Brillouin zone.

There are electrons placed in other bands contributing to the total conductivity
σtot. Here we are going to discuss only the separate contribution from the
electrons in the band determined by eq. (1). The other bands only serve
the purpose that the number of electrons placed in the present band may be
varied in a continuous way. What is the basic rule, within the semiclassical
approximation, which allows us to consider the separate conductivity σi due
to the ith band, and how is σtot determined in terms of the different σi?

2) Show that the effective conductivity mass m∗ of the cubic system, intro-
duced by eq. (17.50) in Marder, is determined by:

m0

m∗ =
m0

3n

∫
[d�k]f�kTr(M

−1) = 1− 〈ε〉
3E0

, m0 =
�
2

E0a
2
, (2)

where

〈ε〉 = 1

n

∫
[d�k]f�kε(

�k), n =
∫
[d�k]f�k , (3)

and f�k
is the Fermi function at the energy ε(�k).

3) In this question we shall consider the limit ε(�k) ≤ εF � E0 and T � TF.

Write down a simplified expression for ε(�k) valid in this limit. Determine εF
and 〈ε〉 in terms of the model parameters (E0 and a) and the density n of the
electrons (charge −e), and write down the corresponding expression for the
conductivity based on eq. (2), when assuming a constant relaxation time τ .

4) Find 〈ε〉 and σ in the case where n = 2/a3. Determine the conductivity in
the limit 0 < εmax − εF � E0 to the same accuracy as obtained in the previ-
ous question (apply arguments rather than calculations). The Fermi surface
supports closed but no open orbits, when εF is lying in two different intervals.
Specify the two intervals and the corresponding Hall coefficients R.

(opgavesættet er slut)
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Problem 2010: Magnetic properties of band electrons

We are going to consider the electrons in a single band of a metallic crystal.
The energies ε�k

of the band electrons are assumed to lead to the following

density of states per unit volume

D0(ε) =
1

V

∑
�k,σ

δ(ε− ε�k) =
2

V

∑
�k

δ(ε− ε�k) =

⎧⎨
⎩
D 0 < ε < W

0 ε < 0 , W < ε
(1)

σ is the spin variable which takes on two values ↑ or ↓. The density of electrons
occupying the band is n0 = N/V , where N is the number of unit cells in the
volume V .

1) What is the value of the constant D in terms of the density n0 and the
bandwidth W ? What is the Fermi energy ε0F of the present system?

The coulomb interaction between the electrons leads to spin dependent ex-
change effects because of the Pauli principle. Assuming that most of the spin
independent contributions are accounted for by ε�k

, a simplified version of the

total Hamiltonian is

H =
∑
�k

ε�k

(
n̂�k↑ + n̂�k↓

)
+

U

N

∑
�k,�k′

n̂�k↑ n̂�k′↓ + µBH
∑
�k

(
n̂�k↑ − n̂�k↓

)
(2)

in the presence of a field H applied along the z axis. Here n̂�kσ
= 0 or 1 is the

operator for the number of electrons in the state |�k, σ〉. When applying the
mean-field approximation this Hamiltonian may be written

H ∼= HMF = E0 +
∑
�k,σ

E�kσ
n̂�kσ, E�kσ

= ε�k +∆σ (3)

2) Find the energies ∆↑, ∆↓ and E0. Express the results in terms of the

parameters introduced by Eq. (2) and the spin-up and spin-down electron
densities n↑ and n↓, where

nσ =
1

V

∑
�k

〈n̂�kσ〉 =
1

V

∑
�k

f�kσ (4)

〈n̂�kσ〉 is the thermal expectation value of n̂�kσ
and is equal to the Fermi function

f�kσ. How is f�kσ
determined in the present mean-field approximation (write

down the expression for the Fermi function and the general condition that
determines the chemical potential µ)?

3) Evaluate the spin-dependent density of states

Dσ(ε) =
1

V

∑
�k

δ(ε− E�kσ
) (5)
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in terms of W , n0 and ∆σ. Calculate the magnetic susceptibility

χ = lim
H→0

(
M

H

)
, M = µB(n↓ − n↑) (6)

in the zero temperature limit, when assuming U to be small compared to W .

4) The energy density at zero temperature is

E

V
=

1

V
〈H〉 = 1

4
n0(W + U) +

1

4
n0(W − U)

(
M

µBn0

)2

−MH (7)

The zero-temperature susceptibility is going to diverge when U approaches a
critical value Uc. What is the critical value Uc? Write a short discussion of
the properties of the system in the two different cases, U < Uc and U > Uc.
Try to answer questions like: What is the ground state and the corresponding
energy density? What is the zero-temperature value of the magnetization M?
Make a sketch of the spin-dependent densities of states (when U > Uc). What
about the conductivity? What happens if we start to heat the system?

(opgavesættet er slut)
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Condensed Matter Physics 2
Skriftlig eksamen - April 2011

2-timers skriftlig prøve. Sædvanlige hjælpemidler er tilladte (bøger, noter og
lommeregner). Opgaverne m̊a gerne besvares med blyant.

Problem 1: Ferromagnet. Atoms with spin s = 1
2 are placed on an fcc

lattice with lattice constant a (primitive lattice vectors with length a√
2
) and

volume V . The atomic spin at the ith site �si interacts with its neighbours as
described by the Heisenberg Hamiltonian:

H = −1

2

∑
i,j

J(i, j)�si ·�sj (1)

J(i, j) = J1 > 0, if i and j are nearest neighbours

J(i, j) = J2 > 0, if i and j are next-nearest neighbours

J(i, j) = 0, if i and j are not nearest or next-nearest neighbours

a) Find the ground state energy (the internal energy at zero temperature)
of this spin system in terms of J1, J2, a, and V .

b) Show that the present spin system and the simple Ising model discussed
by Marder in Section 24.4 become equivalent when applying the mean-field
approximation. (Hint: assume the presence of an infinitesimal magnetic field
along the z axis).

c) Utilize this equivalence for determining the mean-field value for the
ordering temperature TC of the present spin system.

Problem 2: Non-interacting spin-dimer system. The lattice describing
the system has a basis that contains two identical atoms 1 and 2 with spins
�s1 and �s2. The spins have s = 1

2 and are coupled with each other. Any other
spin interactions between different pairs or “dimers” are neglected. Hence, the
spin Hamiltonian is

H = −J
N∑
i=1

�s1(i) ·�s2(i)− gµB �H ·
N∑
i=1

[
�s1(i) +�s2(i)

]
(2)

in the presence of a magnetic field �H . The density of spins is twice the number
of unit cells per unit volume, i.e. n = 2N/V .

a) Determine the eigenenergies for a single spin dimer in terms of J and

H (choose the z axis to be parallel with �H).

b) What is the magnetic susceptibility χ = ∂M
∂H

∣∣∣
H→0

of this system, if the

interaction J is neglected?

c) Determine χ in the temperature range where kBT � |J | in the two cases
J > 0 and J < 0 (use arguments rather than calculations in your answer).

(the problems are continuing on next page)
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Problem 3: Anisotropic band electrons. The band energies of the con-
duction electrons in a crystal with orthorhombic symmetry are given by

ε(�k) =
�
2k2x
2m1

+
�
2k2y
2m2

+
�
2k2z
2m3

(3)

where the x, y, and z axes are parallel with each one of the three orthorhombic

lattice vectors �a, �b, and �c. The density of the conduction electrons is n.

a) Describe the constant energy surface (Fermi surface) within reciprocal
space.

b) Write down the electrical conductivity tensor σ (at zero magnetic field)
when assuming a constant relaxation time τ .
Use this result for determining the direction of the current density �j when an
electric field �E is applied in a direction which is perpendicular to the z axis
and makes an angle of 45◦ with the x axis.

c) The density of states for the anisotropic band electrons is the same as
for free electrons, if the electron mass is replaced by an effective mass m∗.
Determine m∗ in terms of the three band masses m1, m2, and m3.
The low-temperature specific heat is cV = γT . Derive the expression for the
Sommerfeld constant γ in terms of the three band masses and the density n.
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