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Threefold symmetric magnetic two-ion coupling in hcp rare-earth metals
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The heavy rare-earths crystallize in the hcp structure.
Most of the magnetic couplings between two ions in these
metals are independent of the two different orientations of the
hexagonal layers. However, trigonal anisotropy terms may oc-
cur, reflecting that the c-axis is only a threefold axis. In the
presence of a trigonal coupling the symmetry is reduced, and
the double-zone representation in the c-direction ceases to be
valid. The strong interaction between the transverse optical
phonons and the acoustic spin waves propagating in the c-
direction of Tb detected more than twenty years ago, was the
first example of a trigonal coupling found in these systems. A
few years ago a careful neutron-diffraction study of the c-axis
modulated magnetic structures in Er showed the presence of
higher harmonics at positions along the c-axis translated by
odd multiple of 2π/c. This indicates distortions of the struc-
tures due to trigonal couplings, and the same characteristic
phenomenon has now also been observed in Ho. Addition-
ally, mean-field calculations show that a trigonal coupling in
Ho is required, in order to explain the increase of the com-
mensurable effects observed for the 8 and 10 layered periodic
structures, when a field is applied along the c-axis.1
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I. INTRODUCTION

The dominant magnetic couplings in the rare-earth
metals are the single-ion anisotropy terms due to the
crystalline electric field acting on the magnetic 4f -
electrons, and the RKKY-exchange interaction by which
the 4f -moments on pairs of ions are coupled indirectly
through the intermediary of the conduction electrons. To
a first approximation, assuming the conduction electrons
to behave as free electrons, the indirect exchange leads
effectively to a Heisenberg Hamiltonian for the coupling
between the 4f moments. The conduction electrons at
the Fermi surfaces of the rare-earth metals are predomi-
nantly d-electron-like, and orbital modifications of the ex-
change coupling introduce anisotropic two-ion couplings
in the magnetic Hamiltonian in addition to the Heisen-
berg interaction. Generally, it is not easy to separate
two-ion anisotropy effects from those due to the single-
ion crystal-field terms. The most direct identification of
anisotropy effects caused by the two-ion terms is based
on symmetry considerations. For example, the single-ion

1Proceedings of the European Conference “Physics of Mag-
netism 96”, Poznań 1996

anisotropy and the Heisenberg exchange may occasion-
ally leave accidental degeneracies in the magnetic exci-
tation spectrum, which may be lifted only if anisotropic
two-ion couplings are present. This happens for the spin
waves at the K–H edge in the Brillouin-zone of ferro-
magnetic Tb, and for the singlet-doublet excitations in
the basal-plane of paramagnetic Pr. Additionally, there
is the indirect but weighty evidence that anisotropic com-
ponents of the two-ion couplings are required in order
to explain the excitation spectra in Tb and Er, see the
reviews [1,2]. The indications are that the coupling be-
tween the different moments in the rare-earth metals in-
volves a great variety of anisotropic interactions besides
the isotropic Heisenberg interaction. The only limitation
seems to be the one set by symmetry. This is, however,
illusory to some extent as the symmetry of the magnetic
ground state may be lower than that given by the 4f -
moments, involving as it does a specification of the mo-
ments due to the conduction electrons.

The heavy rare-earth metals are all hexagonal close-
packed and the magnetically ordered phases of the 4f -
moments found in these metals are either the ferromag-
net or they are antiferromagnetically modulated along
the c-axis. In these structures the individual hexagonal
layers are uniformly magnetized in a direction which in
the antiferromagnetic case changes from one layer to the
next. The uniformity of each hexagonal layer means that
the Hamiltonian has to obey the symmetry operations
that leave the hexagonal layers unchanged. The general
Hamiltonian for the 4f -moments valid in this situation
has been derived from symmetry arguments [3,4]. The
possible contributions may be divided into two classes.
The first one comprises terms that are invariant with re-
spect to either an arbitrary rotation or to a rotation by
60◦ of the coordinate system around the c-axis. The sec-
ond class contains terms which reflect the fact that the
c-axis is only a threefold symmetry axis of the lattice; the
trigonal couplings. The terms of principal importance,
the single-ion anisotropy and the Heisenberg exchange
all belong to the first class. These terms do not depend
on the two orientations of the hexagonal layers if each
layer is uniformly magnetized, corresponding to an effec-
tive periodicity of the lattice of c/2 instead of c along the
c-axis, or an effective reciprocal lattice vector of length
4π/c. If it is found that this double-zone representation
does not apply, then it may be deduced that significant
trigonal couplings are present as they are the only ones
that may distinguish between the two sublattices. Ef-
fects due to trigonal couplings have now been positively
identified in three of the heavy rare-earth metals, and in
the following we shall review these indications found in
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Tb, Ho, and Er.

II. THE MAGNON–PHONON INTERACTION IN
TERBIUM

Tb is ferromagnetic below TC � 220 K with the mo-
ments lying in the basal plane along a b-direction. The
properties of the spin waves in this phase have been
studied experimentally in great detail by inelastic neu-
tron scattering [3]. The dispersion relation of the excita-
tions observed at 53 K with the scattering vector along
the c-axis is shown in Fig. 1. The results are plotted
in the reduced zone showing that the acoustic magnons
(MA) interact both with the acoustic (TA‖) and the op-
tical (TO‖) phonons. Hybridization effects due to lin-
ear couplings between the magnons and phonons have
been observed at several places in the Brillouin zone,
nearly every time a magnon branch happens to be close
to a phonon branch. The strongest one observed is the
acoustic-optical resonance producing the energy gap ∆
shown in Fig. 1, which was detected for the first time
by Nielsen et al. [5]. The phonons that are coupled to
the magnons in Fig. 1 are in both cases the transverse
ones polarized parallel with the magnetization vector [3].
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Fig. 1. The dispersion relations for the magnons
and phonons propagating in the c-direction of Tb
at 53 K. The normal modes (solid lines) are mixed
magnon–phonon states, and energy gaps appear at
the crossing points of the unperturbed dispersion re-
lations (dashed lines). The acoustic magnons (MA)
interact both with the acoustic (TA‖) and the optical
(TO‖) transverse phonons polarized parallel with the
magnetization.

The neutron cross section of these phonons vanishes when
the scattering vector is along the c-axis, and the peaks
due to the normal modes are only observable due to the
magnon part of their state vectors, which is larger the
closer the normal mode is to the unperturbed magnon
branch (indicated by the short dashed line in Fig. 1).
The magnon–phonon interactions have also been stud-
ied in the phase where the moments have been rotated
by an external field so to be along an a-axis. The mag-
nitudes of the couplings are found to be the same, but
whereas the normal coupling still involves the MA and
the TA‖ modes, the acoustic-optical coupling now occurs
between the magnons (MA) and the optical transverse
phonons polarized perpendicular to the magnetization
vector (TO⊥).

Group theoretical arguments [6] show that the double-
zone representation is valid for the pure phonons, so the
acoustic-optical coupling may only derive from the mag-
netic part of the Hamiltonian, and as discussed in the
Introduction this is an unambiguous indication for the
presence of a trigonal coupling. Including these couplings
in the Hamiltonian it is found, that they may indeed pro-
duce an acoustic-optical interaction between the excita-
tions propagating along the c-axis. The selection rules
determined by the symmetry elements of the 4f -moment
system have been derived in two independent ways [3,6].
They show that an acoustic-optical interaction is only al-
lowed between the MA mode and the TO⊥ mode in the
b-axis magnet and between the MA and the TO‖ modes
in the a-axis magnet, corresponding to the observations
if the two cases are interchanged. Thus the neutron scat-
tering results for the acoustic-optical magnon–phonon in-
teraction in the c-direction of Tb, are in disagreement
with the general results based on the symmetry of the
4f -moment system.

The acoustic-optical coupling derives from a two-ion
coupling which depends on the displacements of the ions.
Because all the relevant two-ion couplings in these met-
als are due to the conduction electrons, the violation of
the selection rules must be caused by these electrons.
As discussed by Liu [7] all the energy levels of the band
electrons are degenerate across the Brillouin zone sur-
face AHL if the spin–orbit coupling is neglected. The
spin–orbit coupling lifts the degeneracies in this plane
(except along the line AL) and thus enables the elec-
trons to distinguish between the two sublattices. The
conduction electrons may mediate trigonal couplings, but
only because the band-electron states are modified by the
relativistic spin–orbit coupling. In the ordered phase,
where the conduction electrons are polarized by the ex-
change field of the 4f -moments, the spin–orbit coupling
also gives rise to a mixing of the spin states of the band
electrons, so that they are not pure spin up or spin down
states relative to the direction of the 4f -moments. The
spin-density wave of the conduction electrons induced
by the 4f -moments is not necessarily polarized collinear
with these moments. Although the average polarization
of the conduction electrons is parallel to the 4f -moments,
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the direction of the polarization vector may vary in space
within the single unit cells. The properties of the strong
magnon–phonon interaction in the c-direction of Tb can
only be explained in one way. It has to involve the spin–
orbit coupled band electrons to allow the coupling to oc-
cur between acoustic and optical modes, as proposed by
Liu [7]. In addition it must depend in a direct way on the
oscillating perpendicular component of the spin-density
wave, in order to explain why the polarization of the
transverse phonons coupled to the magnons is the oppo-
site of that predicted by the general symmetry arguments
above. This remarkable conclusion was reached about
twenty years ago [3], and it deserves more attention than
it has been given hitherto.

The equations of motion of the coupled magnon–
phonon system are analyzed in Ref. [3]. The behaviour of
the normal modes depends slightly on whether the per-
pendicular component of the conduction-electron spins
is assumed parallel or perpendicular to the c-direction.
In the first case the four coupled modes in the b-axis
magnet combine into two doubly degenerate modes at A,
whereas this degeneracy is removed if the spin component
perpendicular to the 4f -moments is along the a-axis. In
Fig. 1 we have used the latter condition as it seems to be
the best choice in the comparison with the experiments.
However, experimentally it was not possible directly to
resolve the energy gap at A of about 0.3 meV, because
the intrinsic width of the spin waves is about 0.5 meV at
this wave vector [3].

There are some indications of similar acoustic-optical
magnon–phonon interaction in the cone phase of Er, see
Fig. 6.2 in Ref. [1]. The magnetic properties of Dy and Tb
are very similar, except that Dy is ferromagnetically or-
dered along an a-axis instead of a b-axis. The hybridiza-
tion of the magnon and phonon excitations observed at
4.7 K along the c-axis in Dy [8] may be explained in terms
of the normal coupling (with a magnitude of about 60%
of the coupling in Tb, corresponding to a scaling propor-
tional to the Stevens factor for a quadrupole coupling).
This indicates that the possible acoustic-optical coupling
in Dy is at least a factor of 3 smaller than the coupling
in Tb.

III. THE WOBBLING CYCLOID IN ERBIUM

In Er there are three distinctly different magnetic
phases, as reviewed by Koehler [9]. The phase between
TN � 84 K and T ′

N � 52 K is a sinusoidal longitudinal
phase with the ordering vector τ � 2

7τ c, corresponding
to a period of approximately 7 layers (τ c is the reciprocal
lattice vector along the c-axis of length τc = 2π/c). Be-
tween T ′

N and TC � 18 K there is a modulated ordering
of both the longitudinal and the basal-plane components
of the moments, and τ decreases from 2

7τc to 1
4τc. At TC

there is a first order transition to a cone phase which has
a ferromagnetic moment along the c-axis and a helical

ordered basal-plane component at τ � 5
21τc.

If anisotropy effects can be neglected the two-ion ex-
change leads to a modulated structure with the wave vec-
tor τ at which the exchange coupling has its maximum.
The free energy of the modulated structure is minimized
when all the moments are parallel to one plane and have
a constant length. Hence the ordered structure favoured
by the exchange is circularly polarized, corresponding to
a helix if the plane determined by the moments is per-
pendicular to τ , or a cycloid if τ is parallel to this plane.
The orientation of the plane spanned by the moments is
determined by the anisotropy terms. In the rare earths
the dominant one is the single-ion quadrupole coupling,
and the sign of this term defines the system to be ei-
ther an easy-planar system like Tb or Ho, or an easy
c-axis system like Er or Tm. The ordering vector in
these systems is along the c-axis, and in the easy-planar
case the helical ordering minimizes at the same time
the free-energy contributions from the exchange coupling
and from the anisotropy (neglecting a relatively weak
anisotropy within the basal plane). In the easy c-axis
systems the anisotropy energy is minimized when the
moments are aligned parallel or antiparallel to the c-axis,
which is only satisfied partly by the cycloidal structure
preferred by the exchange coupling. The requirement
that the length of the ordered moments should stay about
constant is the more relaxed the higher the temperature
is, and the magnetic phase just below TN is longitudi-
nally polarized with the length of the moments changing
sinusoidally along the c-axis. At decreasing temperatures
higher-order (2n + 1)-harmonics develop (proportionally
to (T − TN )(2n+1)/2 in the mean-field approximation),
corresponding to a “squaring up” of the variation of the
length of the moments. If the axial anisotropy is very
large the system stays in the longitudinal phase at all
temperatures below TN , as happens in Tm, where the or-
dered moments end up as a commensurable square wave
in the low temperature limit. The higher-order odd har-
monics are not favourable for the exchange energy. In the
case of Er, where the ratio between the axial anisotropy
and the exchange energies is smaller than in Tm, the
system is driven into a compromise at T ′

N between the
two competing terms in the free energy, namely the el-
liptically polarized cycloidal structure. In this structure
the moments approach their saturation value with less
cost in exchange energy than the square wave, but at the
expense of the anisotropy energy.

The high-resolution synchrotron x-ray studies of the
intermediate cycloidal phase of Er made by Gibbs et al.
[10] indicated the presence of a number of long-period
commensurable structures, which they explained to be
regular arrangements of 3 or 4 layers of moments with
an alternating positive or negative component along the
c-axis. The 7 layered structure observed close to T ′

N

which may be designed the (43)-structure, thus com-
prises 4 hexagonal planes of moments with a positive
c-component followed by 3 planes of moments with a neg-
ative c-component. As the temperature is lowered more
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and more triplets are replaced by quartets, until the sys-
tem just above TC only consists of quartets, which is the
(44)-structure with τ = 1

4τc. The small magnitude of the
magnetic x-ray cross-section makes it difficult to detect
the higher harmonics with this technique. A knowledge of
the higher harmonics is required for a final determination
of the structures. By the use of a large single crystal and
a triple-axis spectrometer for isolating the purely elas-
tic scattered neutrons, Cowley and Jensen [4] were able
to determine the intensities of most of the harmonics in
the commensurable structures of Er. The experimental
results were compared with the diffraction intensities of
the corresponding structures predicted by a mean-field
model. This comparison confirmed that the basic feature
of the commensurable structures is the one proposed by
Gibbs et al. Unexpectedly, the neutron experiments also
showed the presence of scattering peaks along the c-axis
at ±(2n + 1)τ + mτc for odd integer values of m. These
indicate that the magnetic structures depend on the two
orientations of the hexagonal layers in the hcp lattice,
implying that the structures are distorted by trigonal
couplings. The intensity of the largest one of the ex-
tra peaks is comparable with the intensity of the normal
(m even) 7. harmonic, showing that the distortions are
of some significance. The scattering peaks at odd values
of m may be reproduced by the mean-field model when
the following trigonal coupling term is included in the
Hamiltonian for the ith ion:

∆HMF (i ∈ p’th plane) = (−1)p
∑
n≥1

[
K21

31

]
n

×
[
{O2

3(i) − 1
2 〈O2

3(i)〉}〈Jy(p + n) − Jy(p − n)
〉

+ {O−2
3 (i) − 1

2 〈O−2
3 (i)〉}〈Jx(p + n) − Jx(p − n)

〉

− (−1)n{Jyi − 1
2 〈Jyi〉}

〈
O2

3(p + n) − O2
3(p − n)

〉

− (−1)n{Jxi − 1
2 〈Jxi〉}

〈
O−2

3 (p + n) − O−2
3 (p − n)

〉]
.

(1)

The argument p±n denotes an ion in the uniformly mag-
netized (p± n)th hexagonal layer, and the Stevens oper-
ators O±2

3 = 1
2 (JzO

±2
2 + O±2

2 Jz), where O2
2 = J2

x − J2
y

and O−2
2 = JxJy + JyJx. The x-, y-, and z-axes are as-

sumed to be along the a-, b-, and c-axes of the hcp lattice,
respectively. In the lowest order there are three possibil-
ities for a trigonal coupling which is consistent with the
symmetry elements of the hcp lattice. The main effects
of the three fourth-rank couplings are the same, but there
are some quantitative differences and the coupling given
by Eq. (1) is found to be the best choice in Er [4], and
also in Ho [11,12]. The coupling changes sign from one
sublattice to the next, and in the case of a cycloidal struc-
ture in the x–z plane (the a–c plane) described by one
harmonic at τ , the coupling introduces a field in the y-
direction with two periodicities given by the wave vectors
2τ ± τ + τc. Including the higher harmonics this corre-
sponds to the case of Er, where the hexagonal anisotropy

determines the a-axis to be the easy planar axis. The
field in the y-direction due solely to the trigonal coupling
causes a wobbling of the cycloid out of the a–c plane, and
the structures predicted by the mean-field model in the
cycloidal phase are all described by the expansions:

〈Ja(p)〉 =
∑

s=1,3,...

(−1)(s−1)/2Aa(s) sin[sτ pc/2]

〈Jb(p)〉 =
∑

s=1,3,...

(−1)(s−1)/2Ab(s) sin[s(τ + τc) pc/2]

〈Jc(p)〉 =
∑

s=1,3,...

(−1)(s−1)/2Ac(s) cos[sτ pc/2].

(2)

p is the numbering of the layers in the period, and the
sums over s include terms up to half the number of lay-
ers in one commensurable period. All the amplitudes
Aα(s) in the three expressions are positive. Ac(s) de-
creases monotonically with increasing s as does Aa(s)
in general, while the behaviour of Ab(s) is more com-
plicated. The relative phases of the different terms are
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Fig. 2. The wobbling cycloidal structure in the
2(44443)-phase of Er at 29 K. The lines are the calcu-
lated angular moments projected, respectively, onto
the b–c and the perpendicular a–c plane in the up-
per and lower part of the figure. The circles are the
corresponding results deduced from the experimental
intensities as explained in the text. The (a, b, c)-axes
shown are of length J = 7.5, corresponding to the sat-
urated 4f -moment, but the b-components have been
multiplied by a factor of 2. The moments are labeled
by the numbering p of the layers in the period. The
second half of the 38-layered commensurable period
is related to the first half of the period shown, in the
way that the b-components are the same whereas the
a- and c-components have their signs changed.
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consistent with the conditions that 〈Jc〉 approaches the
square wave, Ac(s) = 4J/πs in the saturated case, while
the a and b components are smallest/largest when 〈Jc〉 is
largest/smallest. The neutron diffraction intensities de-
termine only the amplitudes, but assuming the phases to
be those predicted by the mean-field calculations, the
intensities may be used for a derivation of the mag-
netic structures. The 38 layered 2(44443)-structure de-
termined in this way from the experimental scattering
intensities, is compared in Fig. 2 with the result pre-
dicted by the mean-field model [4]. The two structures
are very similar. The main difference is that the configu-
ration of moments obtained experimentally is somewhat
more open in the a–c plane than that deduced from the
mean-field model.

The magnon–phonon interaction in Tb discussed in the
preceding section, violates the conditions determined by
the symmetry of the isolated 4f -moment system. The
trigonal coupling in Er is undoubtedly established in the
similar way as the magnon–phonon interaction in Tb, via
the spin–orbit coupled conduction electrons. One may
ask whether this also implies that the trigonal coupling
breaks the symmetry of the local moment system in Er.
The definition used above, that the x- and y-axes are
respectively along the a- and b-directions, implies that
the Hamiltonian in (1) is consistent with the symmetry
of the 4f -moment system, whereas if we interchange the
definition of the two axes and assume the x-axis to be
along a b-direction, the symmetry is broken in the same
fashion as in Tb. In the case of a cycloidal structure
in the a-c plane, the symmetry-breaking trigonal cou-
pling would produce not a dipole field but a quadrupole
field in the x-direction perpendicular to the y–z plane of
the cycloid. This trigonal coupling would therefore not
lead to any non-planar distortions of the cycloid at the
highest temperatures below T ′

N , where the field due to
the trigonal coupling is weak. The mean-field calcula-
tions indicate that the modified trigonal coupling would
only give rise to additional neutron-scattering peaks at
temperatures well below T ′

N (below 25–30 K). This is in
contradiction with the experimental observations, where
the non-planar distortions are seen as soon as the basal-
plane moments order. In the cycloidal phase the system
may choose among six orientations of the plane of the cy-
cloid, and the presence of the different domains makes it
very difficult to decide experimentally, which of the two
basal-plane components corresponds to which of the neu-
tron scattering peaks. However, the knowledge that the
sixfold anisotropy term in Er determines the a-axis to be
the easy planar axis, and that the non-planar distortion
of the cycloidal structure appears immediately below T ′

N ,
guaranties that the dominant part of the trigonal cou-
pling in Er is consistent with the symmetry properties of
the 4f -moment system. The different behaviour of the
trigonal couplings in Tb and Er must be due to the fact
that in Tb it is to an external component (the lattice),
whereas the coupling considered in Er is an internal one
within the 4f -moment system.

IV. THE COMMENSURABLE MAGNETIC
STRUCTURES IN HOLMIUM

The basal-plane moments in Ho are arranged in a he-
lical pattern at all temperatures below TN � 133 K [9].
The c-components order ferromagnetically at TC � 20 K,
resulting in a conical ordering of the moments, where the
opening angle approaches 80◦ in the zero temperature
limit. The wave vector of the helix decreases monotoni-
cally from about 0.28 τ c at TN to about 0.167 τ c � 1

6τ c

at TC . Below TC the ordering wave vector stays con-
stant, indicating that the magnetic structure is locked to
the lattice periodicity and repeats itself after every 12
hexagonal layers.

The tendency for the period of the magnetic ordered
structures in the rare-earths to lock into values which
are commensurable with the lattice, is determined by
a complex interplay between the exchange coupling and
the magnetic anisotropy terms. The exchange coupling
is the main factor for determining the magnetic order-
ing wave vector, whereas the anisotropy is decisive for
the polarization of the magnetic structure. If only axial
anisotropy were important in Ho the free energy would
be minimized by a regularly spiraling helix in the basal
plane, at the wave vector at which the exchange has its
maximum. Any anisotropy within the hexagonal layers
distorts the helix. The sixfold anisotropy term induces
harmonics at (6 ± 1)τ (to a first approximation) corre-
sponding to a bunching of the moments around the easy
b-directions, and these harmonics are clearly observed in
the neutron diffraction experiments [9]. The discrete-
ness and the finite value of the size of the local moments
mean that the free energy not only depends on the am-
plitudes of the harmonics but also on their phases. In
the incommensurable structures only the relative phases
are important, whereas the anisotropy energy associated
with the distortion of the simple sinusoidal ordering of
the moments depends strongly on the absolute phase in
the commensurable case (the “umklapp” terms). The
system therefore has an extra possibility for reducing the
anisotropy energy in the commensurable case in com-
parison with the incommensurable one. The strength of
the commensurable effect then depends on how well the
gain in anisotropy energy counterbalances the increase
in the exchange energy, when the ordering wave vector is
shifted from the value that minimizes the exchange en-
ergy to the commensurable value. In the longitudinally
polarized case, Er between TN and T ′

N , it is the finite size
effect of the moments rather than the anisotropy, which
is responsible for the higher harmonics (the squaring-up
process) and thus also for the commensurable effects.

Ho was chosen by Gibbs et al. [13] as a test material
for an investigation of the magnetic x-ray cross-section,
using the intense radiation from a synchrotron source.
Although the magnetic scattering intensity is weak, the
narrow resolution in the x-ray experiments made it pos-
sible to detect two other commensurable structures in
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Ho below 25 K, at τ = 2
11τc and 5

27 τc besides the one
at τ = 1

6τc. These commensurable structures were inter-
preted in terms of the spin-slip model [13]. In the limit of
very strong hexagonal anisotropy the moments would be
confined to be aligned along one of the six (in the present
system) b-directions. The 12-layered structure is then
constructed from pairs of neighbouring layers with the
moments along the same b-direction, where the moments
rotate 60◦ from one pair to the next. The periodicity may
be changed by introducing regularly spaced series of spin
slips, where at each spin slip a pair is replaced by a single
layer. For example, the 22 layered 2/11-structure may be
obtained from the 12-layered structure by introducing a
spin slip after every 5 pairs, which we shall denote as
the (222221)-structure. The introduction of a spin slip
after every 4 pairs leads to the (22221)-structure with
τ = 5

27τc. In this structure the distance between the spin
slips is 9 layers creating a distortion of the lattice with
this period, which was detected by Gibbs et al. [13] as
charge scattering at 2

9τc. The hexagonal anisotropy in
Ho is large at low temperatures, and the angle between
the moments in the pair layers is small but not zero.
The neutron diffraction experiments [9] determined the
angle between the basal-plane components in the pair
layers of the 12-layered structure to be 11.6◦ in the zero
temperature limit. The high-resolution neutron scatter-
ing experiments of Cowley and Bates [14] confirmed the
applicability of the spin-slip model for Ho at low temper-
atures, but also showed that the structures differ more
and more from the ideal spin-slip structures when the
system is heated, so that at 30 K the angle between the
pair moments has increased to about 20◦. The hexag-
onal anisotropy energy is proportional to approximately
σ21 at low temperatures, where σ is the relative magne-
tization, implying that a slight decrease in σ leads to a
strong reduction of this energy. For instance σ � 0.925
at 40 K, and the hexagonal anisotropy energy is reduced
by a factor of 5 compared with its value in the low tem-
perature limit. This means that the effects of the sixfold
anisotropy term around 40 K and above this tempera-
ture, are so small that the spin-slip model may no longer
be useful.

The commensurable effects at elevated temperatures
in Ho have been studied by Tindall, Steinitz and collab-
orators, who monitored the position of the fundamental
magnetic neutron diffraction peak as a function of tem-
perature, at fields applied along the c-axis or along a
b-direction, see [15,16] and references therein. A field
applied in the basal plane introduces a dipole anisotropy
term within this plane. This low-rank term may very well
explain [12] the commensurable effects observed around
75 K and 100 K, when τ is close to 2

9τc and 1
4τc respec-

tively, but it is difficult to understand the lock-in at 5
18τc

detected in a b-axis field of 30 kOe between 126 K and
TN . When the field is applied in the c-direction the
Zeeman term does not introduce any anisotropy in the
plane of the helix, and if only the hexagonal anisotropy

were important the commensurable effects should de-
crease with the field (neglecting the possible effects of
a small misalignment of the applied field), because the
hexagonal anisotropy energy decreases faster than the
exchange energy due to the helical components, when
the moments are rotated out of the plane by the external
field. Nevertheless, the neutron diffraction experiments
[15,16] showed that both the τ = 1

5τc structure around
42 K and the τ = 1

4τc structure around 96 K were stable
within a couple of degrees, when a field of about 30 kOe
was applied along the c-axis, whereas these plateaus in
the temperature variation of τ disappeared at zero field.

The trigonal coupling, Eq. (1), leads to a small out-
of-plane distortion of the helix, and the first hint of the
presence of this coupling in Ho was found in the neutron
diffraction results of Cowley and Bates [1,14]. Within
perturbation theory the contribution of the trigonal cou-
pling to the free energy of the helix is of second order,
whereas a first-order contribution appears if the c-axis
moments are non-zero

∆F ∝
∑

p

(−1)pJ‖J
3
⊥ cos(3φp). (3)

J‖ and J⊥ are the components of the moments parallel
and perpendicular to the c-axis, respectively, and φp is
the angle the perpendicular component of the moments
in the pth layer makes with the x- or a-axis. Thus if only
the trigonal anisotropy is important for the cone struc-
ture, then every second a-axis is an easy axis in one of the
sublattices and the other three a-axes are the easy axes
in the other sublattice. Effects due to the trigonal cou-
pling were clearly resolved in the cone phase of Er [4],
and through a careful examination [11] of the neutron
diffraction spectra obtained in the presence of a c-axis
field, it has recently been established that the trigonal
coupling distorts the cone structures in Ho. The trigo-
nal anisotropy energy is proportional to about σ7 in the
cone phase, implying that its importance relatively to
the hexagonal anisotropy (∝ σ21) increases rapidly with
temperature. The energy also depends strongly on a c-
axis field, so the trigonal term has the potential for being
able to explain the increase of the commensurable effects
observed in Ho at elevated temperatures when a field is
applied along the c-axis.

The commensurable effects in Ho have been analyzed
within the mean-field approximation [12]. The model
constructed is similar to the one applied in previous nu-
merical analyses of the magnetic structures and excita-
tions in Ho [17], but includes also the trigonal coupling.
The model gives a good account of the magnetization
curves, the spin-wave energies and the neutron diffrac-
tion results at low temperatures. The intensities of the
scattering peaks due to the trigonal coupling are fitted us-
ing a set of three inter-planar parameters, [K21

31]n, n = 1,
2 and 3, assuming the coupling to be the normal one al-
lowed by symmetry. The RKKY-interaction depends on
the polarization of the conduction electrons, leading to a
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temperature dependence of the interaction as indicated
by the variation of the ordering wave vector. The spin
wave energies have been measured at several tempera-
tures. The results have been used for determining the
effective exchange coupling at these temperatures [17],
and the exchange coupling at the intermediate tempera-
tures is obtained by interpolation. The possible, stable
or metastable, commensurable structures at a given field
and temperature as determined by this model, are estab-
lished by an iteration of the mean-field equations. By a
comparison of the free energy of the different structures
the most stable configuration may be identified.

The model calculations predict strong commensurable
effects in the spin-slip regime at low temperatures, be-
low 35 K, due to the hexagonal anisotropy. This regime
has been carefully investigated by Cowley et al. [18] in
a c-axis field of 10–50 kOe. In spite of a rather mono-
tonic variation, with field or temperature, of the position
of the fundamental satellite they found by measuring the
position of the higher harmonics, that the diffraction pat-
tern was determined in many cases by a superposition of
neutrons scattered from domains with different commen-
surable τ -values. Small differences in τ , which may be
difficult to resolve at the fundamental wave vectors, are
enhanced so to be distinguishable when considering for
example the fifth or the seventh harmonic. In Fig. 3 is
shown the experimental results of Cowley et al. compared
with the results derived from the model calculations at
zero field and in a c-axis field of 50 kOe. There is an
overall field-dependent shift of the stable intervals of the
commensurable structures towards lower temperatures,
which is more pronounced the lower the temperature is.
This shift is reasonable well described by the model and
occurs because the moments in the spin-slip layers have a
larger c-axis susceptibility than the moments in the pair
layers, i.e. the more spin-slip layers a structure contains
the more Zeeman energy it gains in a c-axis field. In this
comparison it may be important that the 2/11-structure
and the 3/16-structure (lying in between the 5/27- and
4/21-structures) in contrast to the neighbouring struc-
tures have a non-zero dipole moment and also a non-
zero quadrupole moment in the basal-plane. This means
that a small misalignment of the c-axis field and magne-
toelastic distortions would favour principally these two
structures. The most important effect predicted by the
mean-field model is the behaviour of the lock-in of the 10
layered 1/5-structure near to 42 K. The lock-in interval
is calculated to be about 2.2 K at zero field and to in-
crease rapidly to become 10 K at a c-axis field of 10 kOe,
whereupon it stays more or less constant between 10 and
50 kOe. This temperature range was not included in the
experiment of Cowley et al., but the effect agrees quali-
tatively with the observations of Tindall et al. [16], who
only studied the behaviour of the first harmonic. The
hysteresis effects detected by Cowley et al. may possibly
explain why the lock-in intervals determined by Tindall
et al. are somewhat smaller (zero at zero field and 2–3 K
at 30 kOe) than predicted by the theory.
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Fig. 3. The ordering wave vector in Ho as a function
of temperature below 50 K. The calculated results are
shown by the horizontal solid lines connected with
vertical thin solid or thin dashed lines corresponding
respectively to the results obtained at zero or at a
field of 50 kOe applied along the c-axis. The symbols
show the experimental results of Cowley et al. [18]
obtained at the various values of the c-axis field de-
fined in the figure. The smooth curve shown by the
thin solid line is the temperature dependent position
of the maximum in the exchange coupling assumed in
the model.

Around 100 K the spin-slip model no longer applies.
The hexagonal anisotropy only manages to rotate the
moments by about one tenth of a degree. At this tem-
perature the ordering wave vector is close to 1

4τc, but the
model indicates only a marginal lock-in to the 8 layered
structure. In the presence of a c-axis field of 30 kOe,
the trigonal coupling increases the bunching effect by a
factor of 4, but the lock-in interval is still estimated to
be very small, about 0.1 K. In analogy with the fifth and
seventh harmonics induced by the hexagonal anisotropy,
the first-order term in the free energy due to the trigonal
coupling induces a second and a fourth harmonic. Be-
cause of the factor (−1)p in Eq. (3) these harmonics are
translated a reciprocal lattice vector along the c-axis (half
of a reciprocal lattice vector in the double-zone scheme),
which means that the fourth harmonic appears at zero
wave vector when τ = 1

4τc. In other words, in the case
of a cone structure with a period of 8 layers the trigonal
coupling leads to a ferromagnetic component perpendic-
ular to the c-axis. Although it is small, this component
has a determining effect in forming the commensurable
structure. The lock-in interval increases proportionally
to

√
θ, where θ is the angle the field makes with the c-

axis, and even the slightest deviation of the field from
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perfect alignment along the c-axis will produce a sizable
lock-in effect. The lock-in interval is calculated to be
2.7 K at θ = 1◦ at the field of 30 kOe. Both this value
and the very weak lock-in effect at zero field are consis-
tent with the observations made by Noakes, Tindall and
collaborators [15] (the hysteresis effects discussed above
should be of less importance at this high temperature).
At a larger tilt angle of the field the lock-in interval is
estimated to increase up to a value of 8–12 K.

V. SUMMARY

The trigonal couplings have a number of surprising ef-
fects on the magnetic properties of the rare-earth hcp
metals. The acoustic-optical magnon–phonon interaction
in Tb (and possibly also in Er) is strong and depends in
a direct fashion on the spin–orbit coupled band-electron
states, as shown by its symmetry-breaking properties.
The trigonal coupling between the 4f -moments derived
in the cases of Er and Ho is relatively weak compared
with the Heisenberg exchange coupling, but because of
its low-symmetry properties, the effects due to this cou-
pling are so distinct that they may be isolated in an un-
ambiguous way.

In Er the trigonal coupling produces a non-planar
distortion of the cycloidal structures and probably also
causes the lock-in effect at τ = 5

21τc in the cone phase.
The cone angle in Er is so small (� 28◦) that the hexago-
nal anisotropy is unimportant. In Ho the influence of the
trigonal coupling on the structures is clearly resolved in
the neutron scattering experiments, and the explanation
of the increased stability of the 10-layered periodic struc-
ture around 42 K and of the 8-layered structure around
96 K, observed when applying a field along the c-axis,
relies totally on the presence of the trigonal anisotropy.

The ferromagnetic structures (Gd and the low temper-
ature phases in Tb and Dy) or the longitudinally polar-
ized c-axis modulated structures (Tm and Er between TN
and T ′

N) are not affected by the trigonal coupling. There-
fore the only remaining candidates among the heavy rare
earths to be investigated for the possible structural ef-
fects of the trigonal coupling, are Tb and Dy in their
high-temperature helical phases. Of these two only Dy
may be a realistic possibility, because the helical phase
in Tb only occurs in a narrow temperature range.

The trigonal coupling in the rare-earth metals is me-
diated by the conduction electrons, and may thus be
considered to be one of the anisotropic components of
the RKKY-interaction. It occurs only because the con-
duction electrons are affected by the spin–orbit coupling,
and because of this dependence it is the equivalent of the
Dzyaloshinsky–Moriya interaction in the magnetic tran-
sition metals. The spin–orbit effects on the band elec-
trons in the rare-earth metals are stronger than in the
transition metals, and the localized moments in the 4f -
metals (except Gd) have a large orbital component. In

combination the two factors may explain why the trigo-
nal coupling in the rare-earth metals is relatively much
larger than the very weak Dzyaloshinsky–Moriya inter-
action in the transition metals.
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