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The tendency for the period of the helically ordered moments in holmium to lock into values which are
commensurable with the lattice is studied theoretically as a function of temperature and magnetic field. The
commensurable effects are derived in the mean-field approximation from numerical calculations of the free
energy of various commensurable structures, and the results are compared with the extensive experimental
evidence collected during the last ten years on the magnetic structures in holmium. In general the stability of
the different commensurable structures is found to be in accord with the experiments, except for the
t55/18 structure observed a few degrees belowTN in a b-axis field. The trigonal coupling recently detected
in holmium is found to be the interaction required to explain the increased stability of thet51/5 structure
around 42 K, and of thet51/4 structure around 96 K, when a field is applied along thec axis.
@S0163-1829~96!03730-7#

I. INTRODUCTION

The basic features of the magnetically ordered structures
in hexagonal close-packed Ho were established by Koehler
et al.,1 who found that the basal-plane moments are arranged
in a helical pattern at all temperatures belowTN.133 K. The
c-axis components order ferromagnetically atTC.20 K, re-
sulting in a conical ordering of the moments. The opening
angle of the cone was found to approach 80° in the zero-
temperature limit. The ordering wave vector for the basal-
plane moments is directed along thec axis and its magnitude
t ~in units of 2p/c) was observed to change monotonically
from about 0.28 atTN to about 0.167.1/6 at TC . Below
TC the wave vector stays constant, indicating that the mag-
netic structure is locked to the lattice periodicity and repeats
itself after each 12 hexagonal layers. The hexagonal anisot-
ropy is known2 to produce higher harmonics at (661)t, and
the fifth and seventh harmonics were clearly resolved by
Koehleret al. at low temperatures. They concluded that the
basal-plane moments in the cone phase bunch strongly
around the easyb directions, so that the angle between the
basal-plane component of one of the moments and the near-
est b axis is only about 5.8° in the zero-temperature limit.
The neutron diffraction experiments have been repeated with
higher resolution and with crystals of better quality by
Felcheret al.3 and by Pechan and Stassis,4 leading to only
minor modifications of the results of Koehleret al.

Koehler and collaborators5 also investigated the behavior
of the magnetic structure in holmium as a function of mag-
netic field applied in the basal plane. The theoretical predic-
tion for the magnetization process was that the helix would
change into a ferromagnet either directly or via an interme-
diate fan phase.6 This was confirmed to occur at low tem-
peratures, however, above 40–50 K Koehleret al. observed
a second fanlike phase.5 A few years ago this extra interme-
diate phase was explained, as being the helifan~3/2! phase,7,8

where the helifan structures are constructed from portions of
the helix and the fan following each other in a periodic way.

The next major advancement in the investigation of the
magnetic ordering in holmium came with the use of the new

technique of magnetic x-ray scattering, which utilizes the
intense radiation from a synchrotron source. The narrow ex-
perimental resolution obtainable with this technique made it
possible for Gibbset al.9 to detect two other commensurable
structures in holmium, witht52/11 and 5/27, in addition to
the one witht51/6, at temperatures below 25 K. These
commensurable values were explained by the spin-slip
model.9,10 In the limit of very strong hexagonal anisotropy
the moments would be confined to be aligned along one of
the six ~in the present case! b directions. The 12-layered
structure may be constructed from pairs of neighboring lay-
ers, in which the moments are along the sameb direction, by
allowing the moments to rotate 60° from one pair to the next.
This periodicity may then be changed by introducing regu-
larly spaced series ofspin slips, where at each spin slip a pair
is replaced by a single layer. For example, the 22-layered
2/11 structure may be obtained from the 12-layered structure
by introducing a spin slip after every five pairs of layers,
which we shall denote as the~222221! structure. The intro-
duction of a spin slip after every four pairs leads to the
~22221! structure corresponding tot55/27. In this structure
there is a spin slip for every nine layers, and as observed by
Gibbset al., this gives rise to a modulation of the lattice with
this period, i.e., charge scattering attc52/9.

The magnetic x-ray scattering technique provides very
good resolution, but the intensity is weak, thus preventing
the measurement of the scattering due to the higher harmon-
ics. In contrast, neutron diffraction reflections have high in-
tensities, although the resolution is relatively coarse. By the
use of a large Ho crystal, and a triple-axis neutron-scattering
spectrometer for isolating the purely elastic scattered neu-
trons, Cowley and Bates were able to determine the intensi-
ties due to all the harmonics in a number of the spin-slip
structures, in which the intensities extend over 4 orders of
magnitude.11 These results allowed them to derive the aver-
age turn angle between the bunched pairs to be about 10° at
the low temperatures, in accordance with the result of Koe-
hler et al.,1 and this value increases to about 20° at 30 K. In
addition they were able to detect some variation of the turn
angle from pair to pair. The magnitudes of the two modifi-
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cations of the ideal spin-slip structure which were derived
from the experiments were reproduced in a numerical model
calculation.12 The ultrasonic experiments made by Bates
et al.13 as a continuation of the experiments of Cowley and
Bates, showed anomalies in the sound velocities not only at
the temperatures where the system jumps between the three
commensurable structures described above, but also at about
25, 40, and 97 K. At these latter temperaturest is close to
the commensurable values 4/21, 1/5, and 1/4, corresponding
to the spin-slip structures~2221!, ~221!, and ~211!, respec-
tively.

The possibility that the magnetic structure may lock into
commensurable values at elevated temperatures was investi-
gated at Chalk River by Tindall, Steinitz, and
collaborators.14–24They monitored the position of the funda-
mental magnetic diffraction peak as a function of tempera-
ture at fields applied along thec direction or along theb
direction, and they found several plateaus in the temperature
variation oft. In the presence of ac-axis field of 30 kOe the
~221! and the~211! structures were found to be stable around
42 K and 96 K, respectively, in both cases within a tempera-
ture interval of 2–3 K. In ab-axis field of 14 or 30 kOe the
~211! structure is again stable for a couple of degrees, which
was also observed to be the case for the~21! structure,
t52/9, at about 75 K. Finally, they observedt to stay close
to the value 5/18 between 126 K and the Ne´el temperature,
when applying a field of 30 kOe along theb axis. The ob-
servations made close toTN and near 100 K have largely
been confirmed by the similar experiments of Venter and du
Plessis,25,26except that they did not observe a clear plateau at
t51/4 in ac-axis field around 96 K. However, they detected
an anomalous behavior of the scattering intensity close to
this temperature.

The low temperature domain, below 40 K, has been care-
fully investigated by Cowleyet al.27 in a c-axis field of
10–50 kOe. In spite of a rather monotonic variation, with
field or temperature, of the position of the fundamental mag-
netic satellite they found by measuring the position of the
higher harmonics that the diffraction pattern was determined
in many cases by a superposition of neutrons scattered from
domains with different commensurablet values. Small dif-
ferences int, which may be difficult to resolve at the funda-
mental wave vectors, are enhanced so to be distinguishable
when considering, e.g., the fifth or seventh harmonics.

There have been made a number of theoretical studies of
commensurable structures in model systems. The simplest
one, the anisotropic next-nearest-neighboring Ising~ANNNI !
model has been investigated in detail both at zero field28–30

and in an applied field.31 TheXY model with sixfold anisot-
ropy, which is more closely related to holmium, has recently
been discussed by Sasaki,32 in the limit of large anisotropy,
and by Senoet al.33 Steinitzet al.34 have made some quali-
tative considerations on the connection between the spin-slip
model and the field-dependent commensurable effects ob-
served in holmium. Plumer has analyzed a model, which
includes most of the couplings present in holmium, in order
to understand the stability of the 1/4-phase observed near 96
K in a c-axis field.35 However, the explanation he proposed
relies on adding a large symmetry-breaking term to the free
energy which seems difficult to justify. Here we shall present
a mean-field calculation of the stability of the different com-

mensurable phases based on a realistic model for holmium.
The model includes not only the terms considered by
Plumer, but also the trigonal coupling which has recently
been detected in neutron diffraction measurements by Simp-
sonet al.36 The trigonal coupling induces a net ferromagnetic
moment in the basal plane whent51/4, and a misalignment
of the field by as little as 1° is sufficient for explaining the
observed lockin of this structure, in accordance with the con-
jecture made by Jensen and Mackintosh.37 The basal-plane
threefold anisotropy caused by the trigonal coupling in the
case of a cone structure has also strong implications on the
~221! structure in ac-axis field near 42 K.

The model used in the calculations is developed in the
next section. The stability of the different commensurable
structures is investigated in Sec. III. The free energy of the
various structures is calculated numerically within the mean-
field approximation. The advantage of this method is that it
is possible to account for most of the complexities of the real
system, whereas one disadvantage is that there is a limit to
the number of different layers one may handle numerically
with the sufficient precision. In the present calculations we
consider structures with a repeat length of up to 500 layers,
leading to a resolution which should be superior to even the
most precise experiments. The work is summarized and con-
cluded in Sec. IV.

II. THE MEAN-FIELD MODEL OF HOLMIUM

The model is based on the magnetization and spin-wave
measurements, and is similar to the one applied in previous
numerical analyses of the magnetic structures and excitations
in holmium.7,12,37–41The Hamiltonian comprises the single-
ion anisotropy, the Zeeman term, the Heisenberg exchange
coupling, the classical magnetic dipole-dipole interaction,
and the trigonal coupling:
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225JxJy1JyJx . The x, y, andz axes are assumed to be
along thea, b, andc axes of the HCP lattice, respectively.
The Fourier transforms of the couplings are defined in the
standard way, and we shall use the shorthand notation
J(q) for J(q), whenq is along thec axis. The interplanar
exchange parametersJn are then defined by

J~q!5J012(
n>1
Jncos~nqc/2!. ~2.2!

The classical dipole interaction is included in the coupling
J(q) of the basal-plane moments, in which case the coupling
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of thec components isJcc(q)5J(q)1JD(q). The classical
contribution vanishes at zero wave vector,JD(0)[0,
whereas atqÞ0

JD~q!52Jdd$0.91910.0816cos~qc/2!20.0006cos~qc!%,

~2.3!
where the coupling constant in holmium is

Jdd54p~gmB!2N/V50.0349 meV. ~2.4!

The jump, which the dipole couplingJD(q) makes at zero
wave vector, is observable in the excitation spectrum, and it
explains without introducing any further two-ion
anisotropy,38 why the system prefers the cone structure
rather than the ‘‘tilted helix’’ belowTC .

The trigonal coupling was discovered to be present in
erbium by Cowley and Jensen.42 This coupling reflects the
fact that thec axis is a threefold symmetry axis, and its
contribution to the mean-field Hamiltonian for thei th ion is
given by

DHMF~ iPp8th plane!5~21!p(
n>1
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where the argumentp6n denotes an ion in the uniformly
magnetized (p6n)th hexagonal layer. This equation, which
defines the interplanar coupling parameters@K31

21#n , shows
that the coupling changes sign from one sublattice to the
next. Both in the cone phase and in the cycloidal phase of
erbium, the trigonal coupling gives rise to additional neutron
diffraction peaks when the scattering vector is along thec
axis. These peaks would not be there if the magnetic struc-
tures were independent of the different orientation of the
basal planes in the two hexagonal sublattices. The equivalent
phenomenon has also now been observed in holmium by
Simpsonet al.,36 who fitted the intensities of the extra reflec-
tions by a set of three interplanar parameters for the trigonal
coupling.

We have reanalyzed the experiments of Simpsonet al.36

and derived a set of anisotropy parameters, which accounts
both for the low temperature magnetization curves, as pre-
cisely as the previous model,38 and for the neutron diffrac-
tion results. The effects of all three trigonal couplings of the
fourth rank,42 and combinations of the three couplings were
investigated, and in agreement with Simpsonet al. we find
that the trigonal coupling introduced by Eq.~2.5! ~the cou-
pling applied in erbium!, is the one which leads to the best
fit. The small differences between the ways the neutron dif-
fraction results are fitted are insignificant compared with the
experimental uncertainties, but the interplanar coupling pa-
rameters derived here are, quite remarkably, a factor of 4–5
smaller than those obtained by Simpsonet al.This large dif-
ference is surprising, but may be explained by the high de-
gree of compensation which occurs between the different

terms in the mean-field Hamiltonian~2.5!. The degree of
compensation depends on the structure considered, and in the
analysis of the commensurable structures discussed in the
next section we found that the trigonal coupling derived by
Simpsonet al.has unacceptably strong implications in some
cases. The alternative trigonal coupling derived here circum-
vents these difficulties, and is therefore a more likely possi-
bility. The modified set of interplanar coupling parameters
for the trigonal coupling is given in Table I. The correspond-
ing crystal-field parametersBl

0 are derived from the low tem-
perature magnetization curves andTC , andB6

6 is determined
so that the averaged bunching angle is 5.8° in the 12-layered
structure in the low temperature limit. The values of these
parameters are given in Table II, and they are close to those
applied in the previous model.38

The variation of the ordering vector with temperature in
Ho has been analyzed by Pechan and Stassis,4 who found
that it agrees reasonably well with the prediction of the
theory of Elliott and Wedgwood.43 J(q) is proportional to
the susceptibility of the conduction electrons, which depends
strongly on the nesting between different parts of the Fermi
surface. The superzone energy gaps created due to the oscil-
lating polarization of the conduction electrons lead to a de-
crease of the maximum in the susceptibility and to a shift of
its position towards smaller wave vectors, as the degree of
polarization is increased. In addition, Andrianov44 has dis-
covered a relation,t5t0@(c/a)cr2c/a#1/2, between thec/a
ratio and the ordering wave vector, where (c/a)cr.1.582.
This relation is obeyed nearly universally by the rare-earth

TABLE I. The trigonal coupling parameters (1024 meV!.

n 1 2 3

@K31
21#n 0.7 0.4 0.2

TABLE II. The crystal-field parameters~meV!.

B2
0 B4

0 B6
0 B6

6

0.024 0.0 20.9531026 9.431026
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metals, indicating a strong correlation between thec/a ratio
and the nesting effects. A change of thec/a ratio will modify
the magnetic Hamiltonian in ways other than throughJ(q).
B2
0 is especially sensitive to thec/a ratio, as to a first ap-

proximation it is proportional to the difference betweenc/a
and its ideal value, and rather strong effects have recently
been discovered in thulium, when the system jumps from the
ferrimagnetic phase witht52/7 to the ferromagnetic
structure.45 In the model considered here we only account for
the temperature variation inJ(q), whereas additional mag-
netoelastic effects on the crystal-field parameters or changes
of J(q) as a function of field are neglected. The spin-wave
dispersion relation of Ho has been measured both at low
temperatures38,46,47and at elevated temperatures,48 and these
measurements have been used to derive the interplanar ex-
change parameters.38,39 In order to reproduce the correct
wave vectors at the different temperatures small adjustments
have been introduced, and for this purpose we have chosen
J3 as the variation parameter. The interplanar exchange pa-
rameters used in the model are given in Table III.

The structures discussed in the next section have been
calculated by a straightforward iteration procedure using the
parameters given in Tables I–III and Eqs.~2.3! and ~2.4!.
The calculations utilize the mean-field approximation, in
which Ja iJa j in Eq. ~2.1! is replaced by (2Ja i2^Ja i&)^Ja j&
and the trigonal term by Eq.~2.5!. The first step in the itera-
tion is to assume a distribution of expectation values of the
various operators. These values are then inserted in the
mean-field Hamiltonian for thei th ion, and after a diagonal-
ization of this Hamiltonian the partition function, the free
energy, and new expectation values for this ion are calcu-
lated. The calculation is carried out for each ion in one com-
mensurable period, and the procedure is repeated with the
new distribution of expectation values until a self-consistent
solution is achieved. At a given temperature and field the
free energies of structures with different~commensurable!
periods are compared in order to identify the most stable
structure. The energy differences between the various struc-
tures may be minute, and the calculations have to be done
with high numerical accuracy. In order to ensure in a given
case that the iteration has converged towards the state with
the lowest free energy and not to a metastable configuration,
many iterations are required, of the order of several thou-
sands, and many starting configurations have to be consid-
ered.

III. THE COMMENSURABLE STRUCTURES

A. Low temperature regime

Most of the commensurable structures are observed in the
low temperature regime ranging from zero to about 50 K.

The exchange constants are given in Table III at the end
points of this interval. In between we have used the quadratic
interpolation:

Jn~T!5~12a2!Jn~0!1a2Jn~50 K!, ~3.1!

wherea is the temperatureT, in units of K, divided by 50.
At zero field the lowest order spin-slip structures are par-

ticularly stable. Starting at about 40 K, we get the sequence
~221!, ~2221!, ~22221!, ~222221!, corresponding tot51/5,
4/21, 5/27, and 2/11, with a steady increase of the number of
pairs in between the spin-slip layers as the temperature is
reduced to about 20 K. One might expect this series to con-
tinue as the system is cooled further, but the 2/11 structure is
predicted to occur only in a small temperature interval of
about 0.8 K, and the intervals, where the subsequent spin-
slip structures are stable, become minute. Thus the system is
predicted to jump from the 2/11 structure to the pure pair-
layered 1/6 structure within an interval of 0.1 K. Metastable
states, or mixed states are expected to appear frequently in
the real system, which makes it difficult to decide whether
this particular prediction is in accord with the experiments,
but the temperature interval, in which the indications11,13 of
the intermediate structures are found is narrow with a width
of about 1 K.

In addition to the lowest order spin-flip structures, struc-
tures with mixed sequences are also found to be stable. With
one exception, the~222122221! structure (t53/16), which
is stable over a small interval of about 0.3 K, all the higher
order spin-slip structures occur between the~221! and the
~2221! structures, of which the most important one is the
~2212221! structure (t57/36). When approachingt51/5
from below, the main sequence of commensurable ordering
vectors is determined bytn(1)5n/(5n11) which is the se-
ries of rational fractions close to 1/5 with the smallest de-
nominators or shortest commensurable periods. Commensu-
rable structures with wave vectors lying in between those
determined bytn(1) may also be stable. In order to investi-
gate this in a systematic way we have used the proposal of
Selke and Duxbury that the structure most likely to appear
between two phases has a period which is the sum of the
periods of the structures in the two phases,33,49 suggesting
that the most probable intermediate values in the present case
are those determined by the second-order series
tn(2)5(2n11)/(10n17). For a further subdivision of the
steps made byt we have applied the third-order series
tn(3)5(3n11)/(15n18). In the interval betweent54/21
andt57/36 the most stable configuration is found to be the
t5(2)511/57 or ~22122212221! structure, whereas other
choices from thetn(1) or thetn(2) series are only found to
be stable in narrow temperature intervals. Fort larger than
7/36, the situation is changed. Structures defined by the se-
ries tn(1) as well astn(2) are stable in about equal inter-
vals, and forn>9, structures determined bytn(3) also ap-
pear. At these temperatures the intervals are so small that it is
difficult by the numerical calculations to distinguish the be-
havior from a truly continuous, incommensurable, variation
of t. The magnetic correlation length in thec direction of Ho
has been determined by x-ray scattering50 to be of the order
of 2000 layers, indicating that if the shortest commensurable
period becomes of the order of 200 layers, it is no longer

TABLE III. The inter-planar exchange parameters~meV! as
functions of temperature.

T ~K! J0 J1 J2 J3 J4 J5 J6

0 0.300 0.09 0.00620.0140 20.006 20.002 0.0
50 0.290 0.10 0.01020.0290 20.005 0.008 20.004
72 0.267 0.11 0.01020.0377 20.001 0.004 20.003
96 0.245 0.11 0.01020.0463 0.006 0.0 0.0
125 0.210 0.11 0.01020.0640 0.006 0.0 0.0
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possible experimentally to distinguish commensurable order-
ing, repeating itself coherently about ten times, from an in-
commensurable phase. The nonzero resolution characterizing
the numerical calculations is a limitation, when comparing
the results with more exact analytic results, but not in a com-
parison with a real system, which suffers from impurities,
stacking faults, and other imperfections. Hence we expect
that experimentallyt will change continuously, at least when
it is larger than about 0.197 until it, at a first-order transition,
jumps to the commensurable valuet51/5. The model calcu-
lations predict a lockin at this wave vector between 41.47 K
and 43.70 K, and thatt returns to incommensurable values
above 43.70 K. The calculated results for the variation oft at
zero field, in the low temperature regime, are shown in Fig.
1.

The stability of the different commensurable structures
are influenced by a field along thec axis. The calculations
indicate that the main features of the phase diagram are the
same as at zero field, but there are a few significant changes.
There is an overall shift of the stable regimes of the com-
mensurable structures towards lower temperatures, the more
pronounced the lower the temperature is. The 2/11 phase and
the spin-slip structures lying in between this phase and the
1/6 phase become more stable, until the field is so large that
the overall temperature shift removes these phases, which

happens between 25 and 35 kOe. Finally, the most important
change is, that the stability of thet51/5 phase is much
increased by the field.

The first of these effects is explained by the condition that
the moments in the spin-slip layers have a largerc-axis sus-
ceptibility than the moments in the pair layers, i.e., the more
spin-slip layers a structure contains the more Zeeman energy
it gains in ac-axis field. The experimental results of Cowley
et al.,27 obtained at ac-axis field of 10–50 kOe, which are
included in Fig. 1, reflect this effect. Figure 2 shows a more
direct comparison of the experiments of Cowleyet al. with
the calculated field dependence of the ordering wave vector
at 10 K. The experimental results shown in Fig. 2 are derived
from the position of the primary magnetic satellite near
(002), which leads to a more gradual change of the wave
vector than if the contributions from different domains with
different stable or metastable structures are separated, as
shown in Fig. 1. The comparison in Fig. 2 demonstrates that
the calculated shift of the ordering wave vector at a given
temperature~i.e., at fixed values of the coupling constants!
due to thec-axis field is of the same magnitude as observed
experimentally. The calculated results at zero temperature
are similar to the results in Fig. 2 at 10 K, except that the
values of the transition fields are shifted upwards by about 5
kOe. The strong field dependence oft should be taken into
consideration in the comparison between the experiments
and the theoretical results in Fig. 1. In this comparison it may
also be important that the 2/11 structure, in contrast to most
of the other spin-slip structures, has a moment in the basal
plane, and that the 3/16 structure, in between the 5/27 and
the 4/21 structures, is much more susceptible to a basal-plane

FIG. 1. The ordering wave vector in Ho as a function of tem-
perature below 50 K. The calculated results are shown by the hori-
zontal solid lines, which are connected with vertical thin solid or
thin dashed lines corresponding, respectively, to the results obtained
at zero or at a field of 10 kOe applied along thec axis. The symbols
show the experimental results of Cowleyet al. ~Ref. 27! at various
values of thec-axis field as defined in the figure. The thick dashed
line, between 35 and 48 K, indicates the variation oft derived by
Tindall et al. ~Ref. 22! from the position of the primary magnetic
diffraction peak in ac-axis magnetic field of 30 kOe. The smooth
curve shown by the thin solid line is the temperature dependent
position of the maximum inJ(q), as determined by Eq.~3.1!.

FIG. 2. The ordering wave vector in Ho as a function of a
c-axis field at 10 K. The solid line is the theoretical result, and the
triangles pointing up or down are the experimental results of Cow-
ley et al. ~Ref. 27! obtained at increasing or decreasing field values,
respectively. The systematic difference between the two sets of re-
sults indicates that hysteresis effects are important. The experimen-
tal results are derived from the position of the principal magnetic
satellite, and thus include implicitly an averaging of the ordering
wave vector over the different domains.
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field than the two neighboring structures. This means that a
small misalignment of thec-axis field would favor princi-
pally these two structures.

At not too high temperatures, the hexagonal anisotropy
energy decreases with the relative magnetization,s, propor-
tional to approximatelys21, whereas the trigonal anisotropy
changes likes7. The hexagonal anisotropy dominates at the
lowest temperatures, and is responsible for the commensu-
rable spin-slip structures, but as the temperature is increased
the trigonal anisotropy becomes relatively more important.
At 40 K s.0.925, implying that the hexagonal anisotropy
energy has decreased by a factor of 5 compared with its
value in the zero-temperature limit, whereas the trigonal an-
isotropy is only reduced by a factor of 1.7. Within perturba-
tion theory the contribution of the trigonal interaction, Eq.
~2.5!, to the free energy is of second order in the helical
phase, whereas a first-order contribution appears if the
c-axis moments are nonzero. To a first approximation this
contribution is proportional to

DF}(
p

~21!pJiJ'
3 cos~3fp!, ~3.2!

whereJi andJ' are the components of the moments parallel
and perpendicular to thec axis, respectively, andfp is the
angle the perpendicular component of the moments in the
pth layer makes with thex or a axis. When only the trigonal
coupling is considered, then every seconda axis is an easy
axis in one of the sublattices and the other threea-axes are
the easy axes in the other sublattice. Figure 3 shows the
hodographs of the basal-plane moments calculated at 42.185
K in zero field and in the presence of a field of 10 kOe along
the c-axis. The figure indicates that the threefold anisotropy
term induced by thec-axis field, Eq.~3.2!, is capable of
rotating the moments about 30°, so that the moments in the
two spin-slip layers, which at zero field are along ab axis
become oriented along ana axis. The hexagonal anisotropy
energy does not depend on the distinction between the two
sublattices and is changed by the same amount as obtained
by rotating the zero-field hodograph the relatively small
angle in the opposite direction. The small rotation does not

cost much in hexagonal anisotropy energy, whereas the gain
in trigonal anisotropy energy is substantial.

Both structures in Fig. 3 look like spin-slip structures,
except that the roles of thea and theb axes have been
interchanged in the two cases. However, at these tempera-
tures the basal-plane anisotropy energy is reduced so much
that the spin-slip model is no longer particularly useful, since
the angle between the moments in the pair layers is not much
smaller than the smallest angle between moments belonging
to neighboring pairs. The commensurable structures witht
slightly different from 1/5 are not spin-slip structures. In-
stead they consist of portions of the 1/5 structure separated
by domain walls in which phase shifts are introduced via a
relatively smooth adjustment of the turn angles. If the width
of the walls is much smaller than the distance between them,
then the coupling between the walls is negligible and the free
energy changes linearly with the density of walls, corre-
sponding to a linear variation of the free energy witht. A
detailed discussion of the behavior of systems with domain
walls is given by Fisher and Szpilka.51 Figure 4 shows the
free energy calculated in the two cases, for various commen-
surable values oft in the proximity oft51/5. In the case of
Hc510 kOe, the free energy varies linearly between 0.198
and 0.2 and between 0.2 to 0.202, whereas the variation is
parabolic at zero field, except that the free energy att51/5
is slightly smaller than the minimum value of the parabola.
Leaving out the result att51/5, the free energies of the
zero-field commensurable structures are fitted by a third de-
gree polynomial with a standard deviation of about 1027

meV, which is the curve shown in the figure~the numerical
accuracy by which the free energy is calculated is 1028–
1029 meV!. This smooth change of the free energy is con-
sistent with the estimated incommensurable variation oft on
both sides of the temperature interval where thet51/5 struc-

FIG. 3. The hodograph of the basal-plane moments of the 10-
layered~221! structure calculated at 42.185 K in zero field and in
the presence of a field of 10 kOe along thec axis. The two hodo-
graphs are rotated about 30° relatively to each other as indicated by
the arrow.

FIG. 4. The free energy of the commensurable structures at
42.185 K as a function of the ordering wave vector calculated at
zero field and at a field of 10 kOe applied along thec axis. The
energy scales used in the two cases are displaced with respect to
each other as indicated on the figure. The plus signs denote the free
energy of the structures calculated with commensurable periods be-
tween about 100 and 500 hexagonal layers.
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ture is stable. The free energy in the zero-field case is nev-
ertheless going to change linearly witht for t sufficiently
close to 1/5, whenut21/5u is smaller than about 0.0007.

The difference between the behavior of the free energy at
zero and atHc510 kOe is related to the different widths of
the domain walls. Figure 5 shows the turn angles in the two
cases calculated at 42.815 K. In both casest is slightly
smaller than 1/5 corresponding to an average turn angle
slightly smaller than 36°. The width of the domain walls,
denoted by the arrows, is about 100 layers in zero field and
about 70 layers atHc510 kOe. However, the phase shift
accomplished by one domain wall is different in the two
cases: 12° in the zero-field case and 24°, a factor 2 larger, in
the case ofHc510 kOe. These numbers imply that the do-
main walls at zero field start to overlap with each other when
1/52t is larger than 0.0007, whereas whenHc510 kOe the
overlap starts to occur only when 1/52t is nearly a factor of
3 larger. These same numbers also describe the situation at
t values larger than 1/5.

At decreasing temperatures the slope of the linear section
in the free energy decreases, numerically, fort smaller than
1/5, and the opposite fort larger than 1/5. The 1/5 phase is
the stable one until the temperature is lowered to the point
where the slope becomes zero. At this temperature it costs no
energy to create domain walls, as long as the distance be-
tween them is larger than their width. This leads to a vertical
decrease of thet value at this temperature. At a slightly
lower temperature the density of the domain walls will be so
large that the walls overlap each other, and there will be only
one equilibrium configuration, corresponding to the curva-
ture in the free-energy function at the minimum being non-
zero. The change oft as a function of temperature will ac-
cordingly be more gradual. The transition between the 1/5
structure and other structures is predicted to occur in a
~quasi!continuous51 way in both the cases considered, but at

zero field the transition regime is so narrow that the transi-
tion is indistinguishable from a first-order one, within the
present numerical resolution.

The lockin of the structure att51/5 is strongly enhanced
by thec-axis field. As shown in Fig. 6, the interval in which
the 1/5 structure is calculated to be stable increases rapidly,
from about 2.2 K to about 10 K, between zero and a field of
10 kOe along thec axis. This strong increase is also percep-
tible on either side of the 1/5 phase. Here commensurable
effects are resolved even very close to the transition regions
at 10 kOe, in contrast to the incommensurable behavior in-
dicated by the calculations at zero field. The large field-
induced enhancement of the commensurable effects is pro-
duced solely by the trigonal coupling. We have repeated the
calculations using the previous model38 which neglects the
trigonal coupling. In this case the zero-field structure is
found to be stable within an interval of 2.8 K, and this inter-
val is reduced in ac-axis field, by a factor of 2 at a field of
30 kOe. The effective hexagonal anisotropy decreases faster
than the free-energy differences between the different struc-
tures when the basal-plane moments are reduced by the field.

Tindall et al.22 have observed a plateau in the variation of
t at 1/5 over a temperature range of 2–3 K whenHc530
kOe, see Fig. 1, which disappears at zero field. It is probably
very difficult to obtain experimental results on commensu-
rable effects which can be trusted quantitatively in a com-
parison with the results derived from a mathematical model
of an ideal system. The commensurable effects are based on
very small differences in the free energy and impurities and
defects are likely to be important. Furthermore, the results of
Cowley et al.27 in Fig. 1 show that, at low temperatures,
several metastable configurations may be present in the crys-
tal at the same time. The occurrence of metastable structures
should be most pronounced at low temperatures, as also in-
dicated by the behavior of the hysteresis effects, however,
mixed phases are still observed at 35 K, see Fig. 1. Taking
these effects into consideration, it seems reasonable that the
calculated lockin at zero field of the 1/5 structure within an
interval of about 2 K, may be smoothed out in the tempera-
ture variation of the average position of the fundamental
magnetic scattering peak. We may instead refer to the low-
field anomalies observed near 40 K in ultrasonic13 and
magnetization15 measurements. The observed field enhance-

FIG. 5. The turn angles of the moments in different hexagonal
layers numbered along thec axis, calculated at zero field and in the
presence of ac-axis field of 10 kOe at the same temperature, 42.185
K, as considered in Figs. 3 and 4. The domain walls indicated by
the arrows lead to negative phase shifts of the regular 1/5-structural
parts on each side of the walls, which are 12° at zero field and
24° in the case ofHc510 kOe.

FIG. 6. The calculated lockin temperature interval,DT, of the
1/5 phase as a function of thec-axis field.
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ment of the lockin of the 1/5 phase is in contradiction with
the behavior expected if the trigonal coupling were negli-
gible. Zeeman effects due to a small misalignment of the
c-axis field are estimated to be of no importance, so, quali-
tatively, the enhancement may only be explained by the
trigonal coupling. The question left open is whether the ob-
served plateau of about 2 K at 30 kOe isconsistent with the
calculated range of the lockin of about 10 K.

B. High temperature regime

The high temperature regime is here considered to extend
from 40 to 50 K and up toTN . In this temperature range the
anisotropy within the basal plane is relatively weak, and the
spin-slip model no longer applies. Instead the additional an-
isotropy introduced by an external field will play a much
more important role. The value oft changes continuously in
most of the interval, and detectable commensurable effects
are only expected for structures with short commensurable
periods, and we have limited ourselves to the study of the
following three cases: the 18-layered 2/9 structure, the
8-layered 1/4 structure, and the 36-layered 5/18 structure ap-
pearing, respectively, around 75 K, 100 K, and 130 K.

Assuming the average slopedt/dT near 75 K to be 0.001
K 21, we calculate the lockin interval of the 2/9 structure to
be 0.5 K at zero field. This value is nearly unchanged in a
field of 30 kOe along thec axis. According to the magneti-
zation measurements the transition to the fan structure, via
intermediate helifan structures, occurs at a field of about 18
kOe applied along ab axis.52,12At 14 kOe the system is still
in the helical phase, but the helix is strongly distorted by the
field, the magnitude of the second~or seventh! harmonic of
the basal-plane moments has grown to be almost the same as
in the fan phase, and the 2/9 structure is found to be stable in
an interval of 3.6 K. These commensurable effects for the 2/9
structure are found to be nearly independent of the trigonal
anisotropy. The only weak tendency for the system to lock in
at t52/9 at zero field or in the presence of ac-axis field
seems to be in accordance with experiments. Tindall and
collaborators have not reported any lockin of the 2/9 struc-
tures in these two cases, whereas they observed a plateau in
the t variation with a width of about 2 K in thepresence of
a b-axis field of 14 kOe,24 which is consistent with the cal-
culated behavior.

In the helical phase, the field perpendicular to the helical
axis leads to a slight reduction of thet value. The transition
to the fan phase is accompanied by a further reduction of
t, hereafter in the fan phase there is a steady increase oft
with increasing field until the system becomes ferromag-
netic. The possibility that the ordering wave vector may
change was not included in the original analysis of the helix-
fan transition by Nagamiyaet al.6 It has been observed by
Koehleret al.5 at 50 K, wheret changes from 0.208 at zero
field to be 0.170 in the fan phase, a change which was found
to agree with the model calculations.7 At 80 K t is about
0.230 at zero field and is calculated to be reduced to 0.199
when the helical structure is changed into a fan at 18 kOe. In
the fan phaset increases and is 0.222 at 30 kOe at the
transition to the ferromagnet. The magnitude of these
changes int decreases linearly with increasing temperatures
and is a factor of 3 smaller at 100 K. This means that the

temperature dependence oft in the interval between 80 and
100 K is a factor of 2 larger at a field of 20 kOe, just above
the helix-fan transition, than at zero field. This prediction
may be compared with the experimental results of Tindall
et al.21 shown in Fig. 5 of their paper. This figure shows that
t changes from about 0.18 at 81 K to about 0.23 at 95 K,
when a field of 30 kOe is applied along ab axis. This change
is a factor of 3 larger than indicated by the calculation at 30
kOe, but it is comparable with the prediction at 20 kOe. In
the fan phase the average basal-plane moment is about
6mB , which leads to a demagnetization field in the case of a
sphere of about 8 kOe, and it is therefore quite likely that the
applied field of 30 kOe should be reduced by about 10 kOe
in the comparison with the model calculations. Domain ef-
fects combined with the large value of the demagnetization
field may also be the reason why Tindallet al.21 observed the
magnetic satellite to split into two peaks in some of the
scans, the observed splitting int of 0.007 corresponds to a
field difference of 4–5 kOe. Tindallet al. do not report any
particular lockin effects for the structures shown in their Fig.
5. This is consistent with the model calculations which also
do not indicate any significant commensurable effects for
these structures.

The change oft as a function of a basal-plane field is still
of some magnitude around 100 K, and the calculated effect
agrees well with the observation of Venteret al.25 At 100 K
the helix-fan transition is predicted to occur at a field of 18
kOe. At fields just below this value the 1/4-phase is found to
be stable within an interval of about 2 K, the interval is 2.0 K
at 16 kOe assumingdt/dT50.001 28 K21, whereas this
interval is reduced by a factor of 2 or more in the fan phase.
Tindall et al.19,21,24have observed a lockin of the 1/4 struc-
ture in an interval of about 1 K at 14 kOe andabout 1.5 K at
30 kOe, and Venteret al.25 have made the similar observa-
tion that the 1/4 structure is stable within an interval of about
1 K atHb517 and 23 kOe. The system is most likely to be
still in the helical phase at 14 and 17 kOe. The positions of
these lockins, just below 100 K in both cases, and their
widths are in good agreement with that predicted in the he-
lical case. The present model indicates that the stability of
the 1/4 structure should decrease when the system jumps into
the fan phase, which is somewhat in disagreement with the
experiments. We have two remarks to add to this minor dis-
crepancy. First, the~effective! anisotropy parameters are de-
termined from the behavior of the system at low tempera-
tures, and their values may have changed at these high
temperatures. An increase of the axial anisotropyB2

0 stabi-
lizes the 1/4 structure in the fan phase, but does not have
much effect on the helical structure. Second, it is uncertain
whether the system is in the fan phase at the fields of 23 and
30 kOe. The relatively large demagnetization field in the
case of the fan may lead to a mixing of the phases, and in
addition there is the likely possibility that the structures are
helifans,7 in which case the commensurable effects are larger
than they would be in the fan phase.

Around 100 K the hexagonal anisotropy energy is very
small and the calculations indicate that the basal-plane turn
angle at zero field only differs by up to 0.12° from the av-
erage value of 45° for the 8-layered,t51/4, structure at zero
field. The application of a field along thec axis implies that
the first-order trigonal contribution, Eq.~3.2!, becomes non-

4028 54JENS JENSEN



zero and the trigonal anisotropy leads to a variation of the
turn angle between 44.5° and 45.5° atHc530 kOe. This
modification is still small, and the model calculations indi-
cate only very weak commensurable effects, a lockin tem-
perature interval of the order of 0.1 K both at zero field and
when Hc530 kOe. In analogy with the fifth and seventh
harmonics induced by the hexagonal anisotropy, the first-
order trigonal anisotropy induces a second and a fourth har-
monic, but because of the factor (21)p in Eq. ~3.2! these
harmonics are translated by a reciprocal lattice vector along
the c axis ~the half of a reciprocal lattice vector in the
double-zone scheme!, which means that the fourth harmonic
appears at zero wave vector whent51/4. In other words, in
the case of a cone structure witht51/4 the trigonal coupling
leads to a ferromagnetic component perpendicular to the
cone axis. The two extra peaks observed in the cone phase
in, for instance, the 2/11 structure36 may be classified as
arising from these harmonics, and in the cone phase of er-
bium, wheret55/21 is close to 1/4, the fourth harmonic is
observed close to the nuclear peak,53 see also the discussion
in Ref. @42#. In the present case the ferromagnetic moment is
along a b axis and is calculated to be 0.043mB when
Hc530 kOe, corresponding to an average rotation of the
moments towards theb axis by about 0.4°.

The estimated moment is small, but the energy differ-
ences determining the commensurable effects are also small,
and the basal-plane moment has a profound influence on the
system, as soon as the field has a nonzero component per-
pendicular to thec axis. The Zeeman energy gained by the
1/4 structure, in comparison with the neighboring structures,
is proportional to the angleu between thec axis and the
direction of the field, at small values of the angle. At the
temperature where thet51/4 structure is stable atu50, the
free energy of the structures increases quadratically with
t21/4, which leads to a lockin temperature interval,DT, of
the 1/4 structure proportional toAu. In this simple estimate
we have neglected the small commensurable effect atu50,
and the possibility that the structures witht slightly different
from 1/4 may be able to develop a net moment in the basal
plane. The size of the effect is illustrated in Fig. 7, which
shows the calculated lockin interval as a function ofu in a
field of 30 kOe.DT increases likeAu at small values ofu
and is about 12 K atu530°. Between 30° and 40° the helix
is only stable in part of the interval and is replaced by the fan
structure in the other part. Foru larger than about 40° only
the fan is stable andDT decreases to about 1 K at 90°. As
mentioned above the hexagonal anisotropy is very small at
these temperatures and foru larger than about 0.5° the re-
sults shown in Fig. 7 are independent of whether the field is
lying in thea-c or theb-c plane. The transitions between the
1/4 structure and the surrounding incommensurable struc-
tures are established via the creation of domain walls and are
continuous, equivalently to the case oft close to 1/5.

The vertical slope ofDT as a function ofu at the origin
means that even the slightest deviation of the field from per-
fect alignment along thec axis will produce a sizable lockin
effect, e.g.,DT is calculated to be 2.7 K atu51° when
H530 kOe. Both this value and the very weak lockin effect
at zero field are in good agreement with the observations
made by Noakes and collaborators,16,17who saw no sign of a

lockin at zero field but detected plateaus att51/4 with a
temperature range 2–2.5 K in ac-axis field of 17–30 kOe.
The lockin effect is independent of the direction of the field
component in the basal plane, but it is not necessarily easy
for the 1/4 structure to adjust itself to even a slow spatial
variation in the direction of the field, because a rotation of
the ferromagnetic moment in the basal plane requires a shift
in the ~average! phase angle for the 1/4 structure which is
about one-quarter of the angle the moment is rotated. This
effect, in combination with the presence of magnetic do-
mains, may explain why Venteret al.25 did not detect any
clear plateau att51/4 in ac-axis field.

The mean-field properties of the 36-layered,t55/18,
structure just below the Ne´el temperature have also been
investigated. At zero field and at a temperature of 125 K, the
model predicts only a marginal lockin effect, of the order of
0.05 K. The calculations indicate an increase of the effect
when a field is applied in the basal plane, but the increase is
not substantial, only about a factor 1.5 in a field of 30 kOe.
At this field it is assumed that the structure is a fan, as the
helix-fan transition is estimated to occur at a field of about
20 kOe. The lockin effects predicted at these temperatures
are far below what might be considered to be observable
effects, in contradiction with the experimental results. Neu-
tron diffraction experiments show a clear lockin effect for
the 5/18 structure between 126 K andTN.132.9 K at a field
of 30 kOe along theb direction,21,23 which is accompanied
by ultrasonic anomalies in the propagation of longitudinal
sound waves along thec direction.26 This lockin phenom-
enon so close to the ordering temperature lies outside the
range of what might be explained by a mean-field model. In
the mean-field approximation the anisotropy energies are
nearly eliminated close toTN due to thermal fluctuations.
However, it might be possible that these fluctuations behave
somewhat systematically such as to favor commensurable
structures, analogously to the commensurable effects in-
duced by quantum fluctuations according to the analysis of
Harriset al.54

FIG. 7. The calculated lockin temperature interval,DT, of the
1/4 phase as a function of a field of 30 kOe applied in a direction
making the angleu with thec direction. The midpoint of the inter-
val is between 95 and 97 K in the helical case and lies between 102
and 100 K in the fan phase.
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IV. DISCUSSION AND CONCLUSION

The coupling between the periods of the lattice and of the
magnetic structures in the rare earths is determined by a
complex interplay between the exchange coupling and the
magnetic anisotropy terms. The exchange coupling is the
main factor for determining the magnetic ordering wave vec-
tor, whereas the anisotropy is decisive for the polarization of
the magnetic structure. If only axial anisotropy were impor-
tant in holmium the free energy would be minimized by a
regularly spiraling helix in the basal plane, at the wave vec-
tor at which the exchange has its maximum. Any anisotropy
within the hexagonal layers distorts the helix, which is re-
flected through the appearance of higher harmonics, as for
example the fifth and seventh harmonics due to the sixfold
hexagonal anisotropy term. The exchange energy is mainly
determined by the amplitudes of the harmonics, but the free
energy also depends on their phases. In the incommensurable
structures only the relative phase differences are important.
In contrast, the umklapp contributions to the free energy ap-
pearing if the harmonics are commensurable with the lattice,
depend on the absolute phase, and an adjustment of this
phase will quite generally allow the system to reduce the
anisotropy energy through the umklapp terms. The strength
of the commensurable effect then depends on how well the
gain in anisotropy energy counterbalances the increase in the
exchange energy, when the ordering wave vector is shifted
from the value which minimizes the exchange energy to the
commensurable value.

The commensurable effects depend in a detail way on the
anisotropy energy, and the most important result of the
present investigation of the commensurable structures in hol-
mium is that the increased stability of the 10-layered periodic
structure around 42 K and of the 8-layered periodic structure
around 96 K, observed when applying a field along thec
axis, can be understood. In both cases the explanation relies
totally on the trigonal coupling, adding to the evidence for
the presence of this coupling in holmium. The two cases are
also the only ones found where the trigonal coupling has any
significant effect on the stability of the commensurable struc-
tures. It should be stressed that, although the trigonal cou-
pling in combination with a small misalignment of the
c-axis field has the corresponding effect on the 8-layered
periodic structure as the large symmetry-breaking term con-
sidered by Plumer,35 the trigonal coupling is consistent with
the symmetry elements of the HCP lattice.

With a few exceptions the calculated ranges in which the
different commensurable structures are stable are larger than
indicated by the experiments, and these differences are most
noticeable at low temperatures. This may be explained by the
occurrence of metastable structures in the samples. The neu-
tron diffraction experiments of Cowleyet al.27 show that the
crystals may contain several domains with different struc-
tures below 40 K. As the temperature is raised the energy
barriers between the metastable structures decrease and the
thermal energies increase, so that the system may more eas-
ily reach thermal equilibrium. At low temperatures, in the
regime of the spin-slip structures, there is the additional pos-
sibility that the regularly spaced spin-slip layers in the equi-
librium state are disordered to some extent. The x-ray dif-
fraction measurements of Helgesenet al.50 indicate that this

is the case. They have observed a reduction of the longitudi-
nal correlation length between 40 and 20 K by a factor of 3,
a reduction which is partly removed when the spin-slip lay-
ers disappear at the lockin transition tot51/6 at about 20 K.

The only indisputable discrepancy between the theory and
the experiments is found in the behavior displayed by the
5/18 structure. The experiments21,23,26indicate that this struc-
ture locks in between 126 K andTN in a b-axis field of 30
kOe, whereas the calculations only show a marginal effect.
This discrepancy does not necessarily question the model,
but is more likely a consequence of the limited validity of the
mean-field approximation close to the magnetic phase tran-
sition. The fluctuations neglected in the calculations may be
so large in this case that their contribution to the free energy
is decisive for the commensurable effects. At temperatures
well belowTN we do not expect any major corrections to the
lockin intervals derived in the mean-field approximation.
Any discrepancy would rather be due to a failure of the
model than to the use of this approximation.

The model neglects anisotropy effects due to the magne-
toelastic couplings. These couplings may be as large in hol-
mium as in the other heavy rare-earth elements without af-
fecting much the calculated results. The magnetoelastic
contributions to the effective anisotropy are small compared
with the other contributions to the anisotropy. The only cases
where the magnetoelastic effects on the lockin phenomena
may be important are those where a magnetoelastic distor-
tion is present in one structure, but disappears at the transi-
tions to the neighboring structures. One example of this is
the helix-ferromagnetic transition in dysprosium. In hol-
mium, thet52/11 and 3/16 spin-slip structures both have
the distinct property that the averaged value of the quadru-
pole moments in the basal plane is nonzero~at zero field in
the basal plane!, and the magnetoelastic couplings may cause
the two structures to be more stable than predicted by the
model.

The neglect of the direct effects due to the magnetoelastic
couplings implies that all the parameters are assumed to stay
constant as functions of the field, at a fixed temperature. A
field dependence ofJ(q) is expected based on the Elliott-
Wedgwood theory,43 because the polarization of the conduc-
tion electrons is changed by the field. It is therefore interest-
ing to notice that the model is able to account for most of the
field dependence of the ordering wave vector in holmium,
observed both at low temperatures and at temperatures
around 80–100 K, without much need for invoking a field
dependence of the exchange coupling. The temperature de-
pendence of the exchange interaction is accounted for in a
phenomenological way in consistency with the behavior of
the spin-wave energies. The reason for the temperature varia-
tion is basically that the indirect exchange depends on the
polarization of the conduction electrons,43 a dependence
which may be accentuated by the magnetoelastic effects,
which are suggested to be present by the strong correlation
betweent and thec/a ratio.44 The polarization dependence
of the exchange coupling may also have the consequence
that the coupling itself depends on, whether the magnetic
ordering is commensurable with the lattice or not. This pos-
sibility is neglected in the model calculations and is probably
unimportant in holmium, where all the stepwise changes of
the ordering wave vector are small. For comparison, the
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change ofJ(q) which takes place at the helix-ferromagnetic
transition in dysprosium, is of some importance for this tran-
sition, as discussed for instance in Ref. 37.

The trigonal coupling derived in the present analysis is
somewhat smaller than the coupling considered by Simpson
et al.,36 and in comparison with the exchange coupling its
relative magnitude is ten times smaller in holmium than in
erbium.42 Nevertheless, the two commensurable effects in
holmium determined by the trigonal coupling are found to be
very pronounced, and more detailed experimental investiga-

tions of these two effects would be valuable. The lockin
temperature interval of the 1/5 structure is predicted to be
larger than indicated by the variation in the position of the
first harmonic, and a study of the behavior of the fifth or
seventh harmonics will be useful for a clarification of the
experimental situation. The strong lockin of the 1/4 structure
around 96 K indicated by the mean-field model, Fig. 7, de-
serves further studies, in which the field is applied by pur-
pose in a direction making a nonzero angle with thec axis,
or with the basal plane.
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