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7.2 Beyond the MF-RPA theory

When the temperature is raised, the available magnetic scattering inten-
sity, from eqn (4.2.7) proportional to J(J +1), is divided more and more
equally among the (2J)! different dipolar transitions, and in the high-
temperature limit half the intensity is transferred to the emissive part of
the spectrum. This means that the different crystal-field excitations be-
come weaker and less dispersive, and correspondingly correlation effects
become less important as the temperature is raised. An additional mech-
anism diminishing the correlation effects at elevated temperatures is the
scattering of the excitations against random fluctuations, neglected in
the MF-RPA theory. In this theory, all the ions are assumed to be in
the same MF state, thus allowing an entirely coherent propagation of
the excitations. However, at non-zero temperatures, the occupations of
the different crystal-field levels differ from site to site, and these single-
site fluctuations lead to a non-zero linewidth for the excitations. In
fact, if two-ion interactions are important, such fluctuations already ex-
ist at zero temperature, as the MF ground state

∏
i |0i > cannot be

the true ground state, because
∑

i |0i >< 0i | does not commute with
the two-ion part of the Hamiltonian. Hence, the occupation n0 of the
‘ground-state’ is reduced somewhat below 1 even at T = 0. The re-
sponse functions derived above already predict such a reduction of n0

but, as discussed earlier in connection with eqn (3.5.23), the MF-RPA
theory is not reliable in this order. A more satisfactory account of the
influence of fluctuations, both at zero and non-zero temperatures, can
only be obtained by calculations which go beyond the MF-RPA.

One way to proceed to higher order is to postpone the use of the
RPA decoupling to a later stage in the Green-function hierarchy gener-
ated by the equations of motion. Returning to our derivation of the MF-
RPA results in Section 3.5; instead of performing the RPA decoupling on
the Green function 〈〈aνξ(i)aν′µ′(j) ; ars(i

′)〉〉, as in eqn (3.5.16), we first
apply this decoupling to the higher-order Green functions appearing in
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the equation of motion of this function. This method requires rather ex-
tensive manipulation, but it is essentially straightforward, and we shall
not discuss the details here. It has been applied to the (J = 1)-model,
corresponding to Pr (Jensen 1982b), and the results may be interpreted
by replacing the crystal-field splitting and the exchange coupling by
renormalized quantities, while the excitations acquire a linewidth pro-
portional to the fluctuations in the single-site population factors. As
may be seen in Fig. 7.3, this self-consistent RPA gives a good account of
the temperature dependence of the excitations on the hexagonal sites in
Pr, and fits the results of Houmann et al. (1975b) somewhat better than
their MF model. The mode of lowest energy varies very rapidly with

Fig. 7.3. The temperature dependence of the excitation energies at
three different wave-vectors for the hexagonal sites in Pr. The dashed
lines give the results of a MF calculation, and the full curves are based
on the self-consistent RPA. The lowest-lying mode is the incipient soft
mode, whose q and longitudinal polarization correspond to the antiferro-
magnetic structure which may be induced in Pr by various perturbations.
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temperature, but does not become soft, so Pr remains paramagnetic
down to very low temperatures. However, these calculations indicate
that R0 � 0.92, so that the exchange is very close to the critical value
which would drive this incipient soft mode to zero energy. As we shall
discuss in Section 7.4.1, under these circumstances a variety of pertur-
bations may induce magnetic ordering.

A more elegant technique for obtaining such results is based on
a diagrammatic-expansion technique. The introduction of this method
requires a further development and refinement of the mathematical anal-
ysis of the Green functions, which falls outside the scope of this book.
Nevertheless, we wish to discuss some essential problems connected with
the use of the technique for rare earth systems, so we will present it very
briefly and refer to the books by Abrikosov et al. (1965), Doniach and
Sondheimer (1974), and Mahan (1990) for more detailed accounts.

Instead of the retarded Green function, introduced in eqn (3.3.12),
we consider the Green function defined as the τ -ordered ensemble aver-
age: Gτ

BA(τ1 − τ2) ≡ −〈Tτ B̂(τ1)Â(τ2)〉. Here B̂(τ) is the equivalent of
the time-dependent operator in the Heisenberg picture, eqn (3.2.1), with
t replaced by −ih̄τ . The τ -ordering operator Tτ orders subsequent oper-
ators in a sequence according to decreasing values of their τ -arguments,
i.e. Tτ B̂(τ1)Â(τ2) = B̂(τ1)Â(τ2) if τ1 ≥ τ2 or Â(τ2)B̂(τ1) otherwise. Re-
stricting ourselves to considering the Green function Gτ

BA(τ) only in the
interval 0 ≤ τ ≤ β, where β = 1/kBT , we may represent it by a Fourier
series (corresponding to letting the function repeat itself with the period
β):

Gτ
BA(τ) = −〈Tτ B̂(τ)Â〉 =

1
β

∑
n

Gτ
BA(iωn) e−ih̄ωnτ ; h̄ωn =

2πn

β
.

(7.2.1a)
n is an integer and the ωn are called the Matsubara frequencies. The
Fourier coefficients are determined by

Gτ
BA(iωn) =

∫ β

0

Gτ
BA(τ) eih̄ωnτdτ. (7.2.1b)

The most important property of the τ -ordered Green function is that
it can be calculated by perturbation theory using the Feynman–Dyson
expansion. By dividing the Hamiltonian into two parts, H = H0 + H1,
and denoting the ensemble average with respect to the ‘unperturbed’
Hamiltonian H0 by an index ‘0’, it can be shown that

Gτ
BA(τ) = − 〈TτU(β, 0)B̂(τ)Â(0)〉0

〈U(β, 0)〉0
, (7.2.2a)
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where

U(β, 0) = 1 −
∫ β

0

H1(τ1)dτ1 + · · ·

· · · + (−1)n

n!

∫ β

0

· · ·
∫ β

0

TτH1(τ1)· · ·H1(τn)dτ1 · · · dτn + · · · (7.2.2b)

which is suitable for a diagrammatic representation in which the denom-
inator in (7.2.2a) just eliminates all ‘un-linked’ diagrams. Furthermore,
it can be shown that the retarded Green function is the analytic contin-
uation of the τ -ordered function to the real axis in the complex ω-plane,
or

χBA(ω) = − lim
ε→0+

Gτ
BA(iωn → ω + iε), (7.2.3)

and we shall therefore use the frequency arguments iωn and ω to distin-
guish between respectively the τ -ordered and the retarded Green func-
tion.

Considering the simplest case of the Ising model, we wish to calcu-
late the Fourier transform of G(ij, τ) = −〈TτJiα(τ)Jjα〉. We take H0 to
be the single-ion crystal-field Hamiltonian, and the perturbation H1 is
then the two-ion part. With this partition, the ensemble average 〈 〉0 of
a product of operators belonging to different sites is just the product of
the averages of the operators, i.e. 〈JiαJjα〉0 = 〈Jiα〉0〈Jjα〉0 if i �= j. This
concentrates attention on the Green function for a single site G(ii, iωn),
for which the perturbation expansion leads to a series corresponding to
that considered in the CPA calculation, eqn (5.6.9). The only differences
are that K(i, ω) is replaced by the αα-component K(iωn′) and, more sig-
nificantly, that the products (ciχ

o(ω))p = ci (χ o(ω))p are replaced by
the 2pth order cumulant averages or semi-invariants

S(2p) =
1
βp

∫ β

0

dτ1 · · ·
∫ β

0

dτ2p

〈
Tτ

2p∏
l=1

Jiα(τl)
〉
0

2p∏
l=1

exp
(
ih̄ωnlτl

)
, (7.2.4)

with the conditions
∑

l ωnl = 0 and ωn1 = ωn. The lowest-order semi-
invariant is S(2) = −g(iωn) = 2n01M

2
α∆/

[
∆2 − (ih̄ωn)2

]
, which is the

Fourier transform of 〈TτJiα(τ)Jiα〉0, and −g(iωn → ω) = −g(ω) =
χ o(ω). The calculation of the fourth- and higher-order cumulants is
more involved. It is accomplished basically by utilizing the invariance
of the trace (i.e. of the ensemble average) to a cyclic permutation of
the operators, as is discussed, for instance, by Yang and Wang (1974)
and Care and Tucker (1977). If the operators are proportional to Bose
operators this results in Wick’s theorem, which here implies that S(2p)

Bose =[S(2)
]p. The determination of the cumulant averages is facilitated by
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expressing the angular-momentum components as linear combinations
of the standard-basis operators introduced by eqn (3.5.11). These are
not Bose operators, so the ‘contractions’ determined by the commutators
of the different operators are not c-numbers, but operators which give
rise to new contractions. In the singlet–singlet Ising model, the result is

G(ii, iωn) = G(iωn) = g(iωn)

− 1
n2

01

[
(n0 + n1)g(iωn)K(iωn) +

1
β

∑
n′

g(iωn′)K(iωn′)u(n, n′)
]

g(iωn)

+ · · · (7.2.5a)

with

u(n, n′) =
g(iωn)
M2

α

+
g(iωn′)

M2
α

(ih̄ωn′)2 + ∆2

2∆2
+ 1

2

(
n0 + n1 − n2

01

)
β.

(7.2.5b)
The sum over the Matsubara frequencies may be transformed into an
integral over real frequencies, but it may be advantageous to keep the
frequency sum in numerical calculations. Before proceeding further, we
must clarify a few points. The first is that H1 cannot, in general, be
consider as being ‘small’ compared to H0. However, each time a term
involving the two-ion coupling is summed over q, we effectively gain a
factor 1/Z, where Z is the co-ordination number. Hence, if we use 1/Z
as a small expansion parameter, the order of the different contributions
may be classified according to how many q-summations they involve.
In the equation above, K(iωn′) is derived from one summation over q,
as in (5.6.17), so the series can be identified as being equivalent to an
expansion in 1/Z. The second point to realize is that it is of importance
to try to estimate how the expansion series behaves to infinite order. A
truncation of the series after a finite number of terms will produce a re-
sponse function with incorrect analytical properties. If we consider the
corresponding series determining G(q, iωn), it is clear that any changes
in the position of the poles, i.e. energy changes and linewidth phenom-
ena, are reflected throughout the whole series, whereas a (small) scaling
of the amplitude of the response function, which might be determined by
the first few terms, is not particularly interesting. In other words, what
we wish to determine is the first- (or higher-) order correction in 1/Z to
the denominator of the Green function, i.e. to determine the self-energy
Σ(q, iωn), defined by

G(q, iωn) =
g(iωn)

1 + g(iωn)
{Jαα(q) + Σ(q, iωn)

} , (7.2.6)

assuming the MF-RPA response function to be the starting point. A
systematic prescription for calculating the Green function to any finite
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order in 1/Z has been given by Stinchcombe (1973), see also Vaks et al.
(1968). The zero-order result is obtained by the ‘boson’ approximation
S(2p) � [S(2)]p. As is apparent from (7.2.5a), this corresponds to the
replacement of the second and subsequent terms on the r.h.s. by the in-
finite series generated by −g(iωn)K(iωn)G(iωn), leading to an equation
for the single-site Green function which is the equivalent to the Dyson
equation for bosons (or fermions), or to the CPA equation with c = 1.
The q-dependent Green function may be obtained from the single-site
function by the same procedure as in the CPA case, eqns (5.6.10–17).
In this approximation, the final Green function is that given by the MF-
RPA, corresponding to Σ(q, iωn) = 0 in (7.2.6). This does not involve
any q-summation and may therefore be classified as the (1/Z)0-order re-
sult. In the cumulant-expansion, developed by Stinchcombe (1973) and
others, the difference S(4)−(S(2))2 is included, to the next order in 1/Z,
as an additional vertex appearing in the interaction chain-diagrams of
G(q, iωn), independently of the appearance of the S(2)-vertices. A dif-
ferent approach, which is made possible by the isolation of the single-site
Green function in (7.2.5a), is to generalize this equation once more, so
that it becomes a Dyson equation, by replacing g(iωn) with G(iωn) in
the second term on the r.h.s. of (7.2.5a), retaining the correct coefficient
in this term. The effective-medium equation (5.6.13), with c = 1, is
valid to first order in 1/Z, so that

G(q, iωn) =
G(iωn)

1 + G(iωn)
{Jαα(q) − K(iωn)

} (7.2.7a)

and, in combination with the Dyson equation for the single-site Green
function, this leads to a q-dependent Green function derived from

Σ(q, iωn) = Σ(iωn) =
1

n2
01

[
(n0 + n1 − n2

01)K(iωn) +
1

βg(iωn)

∑
n′

g(iωn′)K(iωn′)u(n, n′)
]
,

(7.2.7b)
where K(iωn) is determined self-consistently, as in (5.6.17),

K(iωn) =
∑
q

Jαα(q)G(q, iωn)
/ ∑

q

G(q, iωn). (7.2.7c)

The result obtained in this way is close to that derived by Galili and
Zevin (1987) using a more elaborate renormalization procedure, but in
addition to the simplifications attained by utilizing the effective-medium
approximation, the procedure which we have adopted has allowed us to
achieve a fully self-consistent result. We note that, in the application
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of the equations of motion, the population factors take the realistic val-
ues which may be calculated from eqn (3.5.23) using the more accurate
Green functions, whereas the population factors here are by definition
the unperturbed MF values. This means that the renormalization of the
different RPA parameters predicted by the real part of Σ(ω) includes
the possible effects on the population factors. Σ(ω) is the continuation
of Σ(iωn) on to the real frequency-axis, and the imaginary part of Σ(ω),
which is equal to (n0 + n1 −n2

01)/n2
01 times Im

[
K(ω)

]
, since the sum in

(7.2.7b) is real, predicts a non-zero linewidth for the crystal-field excita-
tions. Introducing the spectral density of the excited states, at positive
energies E = h̄ω,

N (E) = 2

N

∑
q

Im
[
G(q, E/h̄)

]
πE G(q, 0)

� 1

N

∑
q

δ(Eq − E),

which may be compared with (3.3.17), we find that, at frequencies where
|g(ω)K(ω)| is small compared to one,

Im
[
K(ω)

] � πn01M
2
αN (h̄ω)∆

/
h̄ωg2(ω),

corresponding to a linewidth 2Γq of the excitation at q, half of which is

Γq � n0 + n1 − n2
01

n2
01

(
∆2 − E2

q

2Eq

)2

πN (Eq). (7.2.8a)

The linewidth is proportional to the density of states and to the squared
energy-difference between the excitation and the crystal-field level (pro-
portional to J 2

αα(q)), where the q-dependences of the two factors rough-
ly balance each other. When Eq is close to ∆, this result is no longer
valid. Instead, at h̄ω = ∆̃, where ∆̃ is the effective crystal-field splitting
determined by Re

[
Σ(∆̃/h̄)

]
= −1

/
g(∆̃/h̄), we find that Re

[
K(∆̃/h̄)

]
=

0 and

Γq(Eq = ∆̃) � n0 + n1 − n2
01

n2
01

1

πN (∆̃)
. (7.2.8b)

The first result (7.2.8a) for Γq, but not (7.2.8b), agrees with that ob-
tained by the cumulant-expansion method of Stinchcombe (1973) and
others. One modification which appears when this method is used is
that K(ω) in (7.2.7b) is replaced by K(ω){1 − G(ω)K(ω)}. This is a
(1/Z)2-correction, which however becomes important when h̄ω ≈ ∆,
and in this theory Γq(Eq = ∆) = 0, in contrast to the result (7.2.8b).
In order to decide which of the two procedures leads to the most trust-
worthy results, we have to some extent to rely on the effective-medium
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approximation. It is known (Yonezawa 1968) that the cumulant ex-
pansion, in solving the dilute RPA equation (5.6.8), includes all terms
proportional to P2(ij) = 〈cicj〉 − c2, but that this occurs at the ex-
pense of ‘self-containedness’, leading to unphysical features in the final
results. Compared to this, the CPA neglects some of the products of
P2(ii)P2(jj) for neighbouring sites, which are of the order (1/Z)2 (see
the discussion following (5.6.17)), but it is self-contained and the results
are well-behaved and accurate if Z is not small, as discussed by Elliott
et al. (1974). Hence, referring to the analyses of the dilute systems, we
expect the effective-medium approximation to be more adequate than
the unrestricted cumulant expansion in the first order of 1/Z. More im-
portantly, the Hartree–Fock decoupling of the higher-order cumulants,
i.e. S(6) = (S(2))3 + 3S(2){S(4) − (S(2))2} to first order in 1/Z, which
is one of the basic ideas behind the cumulant-expansion method consid-
ered here, does not appear to be a good approximation. The effective-
medium model is not solved ‘exactly’, as this would require a determi-
nation of the whole series for G(iωn) in (7.2.5a), but a consideration
of the second- and higher-order diagrams in this series indicates that
the Dyson-equation generalization is much more reasonable. The sum
rules, like (3.3.18) or the ‘monotopic restriction’ discussed by Haley and
Erdös (1972), are satisfied to the considered order in 1/Z. This is ob-
viously true for the unrestricted cumulant expansion, but it also holds
for the effective-medium approximation, as this is derived directly from
the behaviour of the single sites. One may ask (Galili and Zevin 1987)
whether there exists any other ‘conservation law’ which permits a more
stringent distinction between the various possibilities. For this purpose,
we propose to use the condition that the resultant Green function should
be independent of adding the following constant to the Hamiltonian:

∆H = −λ
∑

i

Ji ·Ji = −N λJ(J + 1), (7.2.9)

corresponding to a replacement of J (q) by J (q) + λ. This change does
not affect the effective-medium equation (5.6.9), other than by adding
the constant to J (q), so K(iωn) is still determined by (7.2.7c), with λ
added on the r.h.s. A replacement of K(iωn) by K(iωn) + λ in (7.2.5a)
does not make any difference, as (1/β)

∑
n′ g(iω′

n)u(n, n′) = −g(iωn)
when n0 + n1 = 1, so that JiαJiα is a constant. The additions of λ to
both J(q) and K(iωn) cancel out in the q-dependent Green function
expressed in terms of the single-site Green function, as may be seen
from (7.2.7a), so that the final result is independent of λ. This is not
the case when the unrestricted cumulant expansion is used. Formally,
the occurrence of λ is a (1/Z)2-effect, but this is an unphysical feature
which is a serious defect, since λ may assume an arbitrary value. This
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variational test is related to the sum rules (like that considered in eqn
(4.2.7) or below), but it has the advantage that it applies directly to the
q-dependent Green function without involving any additional summa-
tions with respect to q or ωn. For a final comparison of the two meth-
ods, we may utilize the fact that the single-site series can be summed
exactly in an Ising system with no crystal-field splitting. The result
is G(ω) = −βδω0〈J2

αexp{ 1
2βK(0)J2

α}〉0
/〈exp{ 1

2βK(0)J2
α}〉0, which co-

incides with that deduced by Lines (1974b, 1975) from his correlated
effective-field theory. When J = 1/2, the above method produces the
correct result G(0) = g(0) = −β/4. For the (J = 1)-Ising model,
G(0) = −2β [2 + exp{− 1

2βK(0)} ]−1, which may be compared with the
prediction G(0) = −2β [3 − 1

2βK(0)]−1 of eqns (7.2.5–7). On the other
hand, the unrestricted cumulant expansion, to first order in 1/Z, leads
to spurious contributions of second and higher powers in K(0) and, for
instance, suggests a second-order term in the denominator of G(0) which
is a factor of 14 larger than the correct value. We note that corrections
to the effective-medium theory only appear in the order (1/Z)3 in the
single-site Green function. This comparison is discussed in more detail
by Jensen (1984), in a paper where the 1/Z-expansion, in the effective-
medium approximation, is combined with the CPA, thereby removing
some of the difficulties encountered in the RPA and mentioned at the
end of Section 5.6.

In a crystal-field system, the single-site fluctuations lead to a non-
zero linewidth of the excitations, to first order in 1/Z. This reflects the
relative importance of corrections to the RPA, compared to spin-wave
systems. In the latter, the excitation operators are, to a good approxi-
mation, Bose operators, neglecting the ‘kinematic’ effects, which means
that a non-zero linewidth only appears in the second-order of 1/Z. The
linewidth 2Γq derived above is exponentially small at low temperatures,
but becomes important when kBT ≈ ∆. The linewidth as a function
of ω, Γq(ω) ∝ Im

[
K(ω)

]
, is only non-zero as long as h̄ω lies within the

excitation energy-band, which roughly corresponds to that determined
by the RPA. This means that the linewidth, in this approximation, be-
gins to decrease at higher temperatures when the RPA-excitation band
becomes sufficiently narrow. The behaviour in both limits is modified
by higher-order effects. Within the framework of the 1/Z-expansion,
the effective-medium approximation ceases to be valid in second order.
The leading-order scattering effects are due to the single-site fluctuations
and, if the interactions are long-range, the correlation of the fluctuations
on neighbouring sites only leads to minor modifications (provided that
the system is not close to a second-order phase transition). In this kind
of system, the effective-medium method should be satisfactory, and in
order to avoid the complications encountered in more elaborate theo-
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ries, we confine ourselves to the (1/Z)2-corrections which can be de-
termined within this approximation. This provides a better estimate
of the effects due to the single-site fluctuations, but neglects the pos-
sible q-dependence of the self-energy. The correct (1/Z)2-terms in the
effective-medium theory are obtained by introducing S(6) in the third
term of the single-site series in eqn (7.2.5). This calculation has been
carried out by Jensen et al. (1987) for the (J = 1)-singlet–doublet case,
and the most important effect of the second-order terms is to replace
the MF population-factors in (7.2.7b) by approximately the actual pop-
ulation of the excitonic states. Furthermore, Γq(ω) becomes non-zero
outside the excitation band, and it stays non-zero (although small) in
the T = 0 limit.

The (J = 1)-case has been analysed by Yang and Wang (1975), to
first order in 1/Z, and Bak (1975) independently derived the linewidth
and applied the result to Pr. Psaltakis and Cottam (1982) have consid-
ered the (J = 1)-model in the ordered phase, in the presence of uniaxial
anisotropy, where the ‘kinematic’ effects cannot be neglected. In the
paramagnetic singlet–doublet XY -model, the (1/Z)-results are close to
those derived above for the Ising model. If the xx- and yy-couplings are
assumed to be equal, it is found, to a good approximation, that n0 + n1

in eqn (7.2.7b) is replaced by n0 + 2n1 = 1, and that the frequency sum
in this equation is multiplied by a factor 3/2. If Jzz(q) is non-zero,
it gives rise to additional contributions to the average q-independent
self-energy. Furthermore, it also leads to a q-dependent contribution,
even in the first order of 1/Z. This occurs because the odd-rank cu-
mulants (corresponding to half-integral p in (7.2.4)) involving all three
components may be non-zero. The lowest-rank odd cumulant which is
non-zero is 〈TτJix(τ1)Jiy(τ2)Jiz(τ3)〉0. Although this formally leads to
a (1/Z)-contribution to the q-dependent part of Σ(q, ω), which is not
immediately compatible with the effective-medium results above, this
should be a minor term in systems with long-range interactions and, if
∆ is positive, its importance is much reduced at low temperatures under
all circumstances.

The results of calculations of the lifetimes of the long-wavelength
magnetic optical-modes in Pr, based on eqn (7.2.7), are compared with
the experimental results of Houmann et al. (1979) in Fig. 7.4. This
theory predicts very nearly the same temperature dependence of the en-
ergies as does the self-consistent RPA; the excitation depicted in Fig.
7.4 is the uppermost mode in Fig. 7.3. The theory to first order in
1/Z accounts very well for the temperature dependence of the energies,
lifetimes, and intensities of these excitations, without adjustable param-
eters. The low temperature results are similar to those of Bak (1975),
but the experiments at the highest temperatures in Fig. 7.4 are more
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Fig. 7.4. The temperature dependence of the neutron-scattering in-
tensities for the q = 0 magnetic optical-mode on the hexagonal sites of
Pr. The instrumental resolution and the overall scaling of the intensity
are extracted from the experimental results at 6K, and thereafter used
unchanged in the calculations, which are based on a 1/Z-expansion, as

described in the text.

accurately described by the effective-medium theory developed above,
than by his unrestricted cumulant expansion.

An analysis of the 1/Z-corrections to the MF-RPA theory for the
singlet–triplet model does not exist in the literature, to our knowledge.
We shall not attempt such an analysis here, but we will discuss one
aspect, that the elastic response due to the triplet states is predicted
to be a diffusive peak of non-zero width, to first order in 1/Z, within
the effective-medium approximation. In order to consider this matter,
we can omit the singlet and use instead the (J = 1) Heisenberg model,
corresponding to the above model with ∆ = 0. In this case, the diagonal
components of the single-site Green function are

G(iωn) = −2

3
β
{
1 − 1

6βK(0)
}
δn0 +

4
3(ih̄ωn)2

{
K(0) − K(iωn)

}
+ · · ·

(7.2.10)
to first order in 1/Z. In zero order, the response is purely elastic and
K(iωn) ∝ δn0. If this is introduced into (7.2.10), the second term pre-
dicts an inelastic contribution to G(ω), which further diverges propor-
tionally to ω−2 in the zero-frequency limit. This divergence indicates
that the elastic peak must broaden out to a Lorentzian, with a non-
zero half-width Γ, as in (3.3.10–11), corresponding to the replacement
of (h̄ω)2 in the denominator by (h̄ω)2 +Γ2, when the higher-order terms
in the series are included. The classification of K(iωn �= 0) as a higher-
order term in the series (7.2.9) is not consistent with a simple Lorentzian,
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and a more appropriate form turns out to be

G(ω) = G(0)
(

iΓ
h̄ω + iΓ

)2

= G(0)
Γ2

[
Γ2 − (h̄ω)2 + 2ih̄ωΓ

]
[
Γ2 + (h̄ω)2

]2 . (7.2.11a)

The real and imaginary parts of this retarded Green function are con-
nected by the Kramers–Kronig relation, and the expansion in powers of
Γ agrees with (7.2.10), when

G(0) = −2

3
β
{
1 − 1

6βK(0)
}

and Γ =
√

2K(0)/β. (7.2.11b)

In the high-temperature limit, K(0) � (2β/3N)
∑

q J 2(q), and hence
Γ is independent of T in this limit. The most important reason for
choosing the Green function given by (7.2.11a) is that it satisfies the
sum rule:

− 1
β

∑
n

∑
α=x,y,z

G(iωn) = −3
1
π

∫ ∞

0

d(h̄ω) Im
[
G(ω)

]
coth (βh̄ω/2)

= J(J + 1) = 2, (7.2.12)

to the degree of accuracy with which G(0) is determined (this is the same
sum rule considered in (4.2.7)). The original expansion series satisfies
this sum rule, to first order in 1/Z, but this property is not easily con-
served if a Lorentzian is chosen. The problem with the Lorentzian (with
approximately the same Γ as above) is that it decreases only slowly with
ω, and the tails lead to a divergence of the integral in (7.2.12), unless a
high-frequency cut-off is introduced. In this system, there is no natural
frequency-scale setting such a cut-off, and the only reasonable way of
determining it is through the sum-rule itself, which is rather unsatisfac-
tory.

In addition to the equations of motion and the Feynman–Dyson
linked-cluster-expansion method discussed here, there are other many-
body perturbation techniques which may be useful for analysing this
kind of system. The most important supplementary theories are those
based on the Mori technique (Mori 1965; Huber 1978; Ohnari 1980),
or similar projection-operator methods (Becker et al. 1977; Micnas and
Kishore 1981). However, no matter which theory is used, it cannot
circumvent the essential complication of crystal-field systems; the more
single-ion levels which are important, the greater is the complexity of the
dynamical behaviour. This principle is illustrated by the fact that the
methods discussed above have not yet been extended to systems with
more than two levels, singlet or degenerate, per site.


