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CRYSTAL-FIELD EXCITATIONS IN

THE LIGHT RARE EARTHS

A magnetic ion in a rare earth metal experiences a crystalline electric
field from the surroundings, which gives rise to an overall splitting of
the order 10–20meV of the ionic ground-state J-multiplets. Crystal-
field excitations are collective normal modes of the system, associated
with transitions between the different levels of the ground-state multi-
plets. Even though there is an obvious qualitative difference between
the crystal-field excitations in paramagnetic Pr and the spin waves in
the isotropic ferromagnet Gd, it is not in general easy to give a precise
prescription for differentiating between the two types of excitation. The
spin-wave modes are derived from the precession which the moments ex-
ecute when placed in a magnetic field. The two transverse components
of a single moment change in time in a correlated fashion in such a pre-
cession, and this phase-locking is only possible when the time-reversal
symmetry is broken. Hence the spin waves may be considered as the
magnetic excitations related to the broken time-reversal symmetry of
a magnetically ordered phase. However, spin waves may exist in the
paramagnetic phase in the vicinity of the phase transition, if the time-
reversal symmetry is broken locally. In the ordered phase, there may
be additional magnetic excitations, associated either with the longitu-
dinal fluctuations of the moments, or with further transitions between
the MF levels, made possible by a strong mixing of the |Jz >-states in
the crystal field, as discussed in Section 5.3.2. Depending on the cir-
cumstances, these additional excitations may be named crystal-field or
molecular-field excitations. The effects of the crystal field, relative to
that of the exchange field, are important in the four heavy rare earths
Tb – Er, but not sufficiently to produce other well-defined magnetic ex-
citations, in addition to the spin waves. In their paramagnetic phases,
the temperature is sufficiently high, compared with the crystal-field split-
tings, that potential crystal-field excitations have such low intensity, and
are so damped, as to be unobservable. Among the rare earth metals,
crystal-field excitations are consequently only found in the light half of
the series, and in Tm (McEwen et al. 1991) where, as discussed in the
previous section, the crystal-field effects are relatively stronger because
of the de Gennes scaling of the exchange.

We shall therefore concentrate our discussion on Pr, the paradigm
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of crystal-field systems. We begin by using the RPA to analyse a num-
ber of model systems which, though oversimplified, contain much of the
essential physics of the magnetic excitations, sometimes known as mag-
netic excitons, observed on both the hexagonal and the cubic sites in Pr.
In the following section, it is shown how effects neglected in the RPA
modify the energies and lifetimes of these excitations. The perturba-
tions of the crystal-field system by the lattice, the conduction electrons,
and the nuclei are then considered. This discussion is largely parallel to
that of spin-wave systems in Chapter 5; the magnetoelastic interactions
couple the phonons to the magnetic excitations and modify the elastic
constants, and the conduction electrons limit the lifetimes of the excita-
tions, especially at small q, while themselves experiencing a substantial
increase in effective mass. The major effect of the hyperfine interaction
has no counterpart in spin-wave systems, however, since it is able to
induce collective electronic–nuclear ordering at low temperatures, and
hence affect all magnetic properties drastically. Because the hexagonal
sites in Pr constitute an almost-critical system, relatively small pertur-
bations are able to drive it into a magnetically-ordered state. The effect
of the internal interactions with the nuclei and magnetic impurities, and
external perturbations by uniaxial stress or a magnetic field, are consid-
ered. Finally, we discuss a number of specific aspects of the magnetic
excitations in Pr, in the paramagnetic and ordered phases.

7.1 MF-RPA theory of simple model systems

The general procedure for calculating the RPA susceptibility was out-
lined in Section 3.5. If we consider the Hamiltonian

H =
∑
i

HJ(Ji)− 1

2

∑
ij

Ji ·J (ij) ·Jj , (7.1.1)

which includes a general two-ion coupling between the dipolar moments,
and assume the system to be in the paramagnetic state, we find the RPA
susceptibility to be

χ(q, ω) =
{
1− χ

o
(ω)J (q)

}−1
χ

o
(ω), (7.1.2)

which is a simple generalization of eqn (3.5.8), as in (6.1.7). The essence
of the problem therefore lies in the calculation of the non-interacting sus-
ceptibility χ

o
(ω), as determined by the single-ion Hamiltonian HJ(Ji).

In the case of a many-level system, where J is large, this normally re-
quires the assistance of a computer. Analytical expressions for χ(q, ω)
may, however, be obtained for systems where the number of crystal-field
levels is small, i.e. between 2–4 states corresponding to J = 1

2 , 1, or
3
2 .

Such small values of J are rare, but the analysis of these models is also
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useful for systems with larger J , if the higher-lying levels are not coupled
to the ground state, and are so sparsely populated that their influence is
negligible. According to Kramers’ theorem, the states are at least dou-
bly degenerate in the absence of an external magnetic field, if 2J is odd.
In order to construct simple models with relevant level-schemes, we may
consider a singlet–singlet or a singlet–triplet configuration, instead of
systems with J = 1

2 or J = 3
2 . These models may show some unphysical

features, but these do not normally obscure the essential behaviour.
The simplest level scheme is that of the singlet–singlet model. This

may be realized conceptually by lifting the degeneracy of the two states
with J = 1

2 with a magnetic field, and then allowing only one of the
components of J perpendicular to the field to interact with the neigh-
bouring ions. This is the so-called Ising model in a transverse field.
Assuming the coupled components to be along the α-axis, we need only
calculate the αα-component of χ

o
(ω). The lower of the two levels, at

the energy E0, is denoted by |0 >, and the other at E1 by |1 >. The
single-ion population factors are n0 and n1 respectively, and the use of
eqn (3.5.20) then yields

χ o
αα(ω) =

2n01M
2
α∆

∆2 − (h̄ω)2
, (7.1.3)

whereMα = |< 0|Jα| 1>| is the numerical value of the matrix element of
Jα between the two states, while the two other (elastic) matrix elements
are assumed to be zero. ∆ = E1 − E0 is the energy difference, and
n01 = n0 − n1 is the difference in population between the two states.
From eqn (7.1.2), we have immediately, since only Jαα(q) is non-zero,

χαα(q, ω) =
2n01M

2
α∆

E2
q − (h̄ω)2

, (7.1.4a)

where the dispersion relation is

Eq =
[
∆
{
∆− 2n01M

2
αJαα(q)

}]1/2
. (7.1.4b)

These excitations are actually spin waves in this case of extreme axial
anisotropy, but they have all the characteristics of crystal-field excita-
tions. The energies are centred around ∆, the energy-splitting between
the two levels, and the bandwidth of the excitation energies, due to
the two-ion interaction, is proportional to the square of the matrix el-
ement, and to the population difference, between them. These factors
also determine the neutron-scattering intensities which, from (3.2.18)
and (4.2.3), are proportional to

Sαα
d (q, ω) =

1

1− e−βh̄ω

n01M
2
α∆

Eq

{
δ
(
h̄ω − Eq

)− δ
(
h̄ω + Eq

)}
� M2

α

∆

Eq

{
n0δ

(
h̄ω − Eq

)
+ n1δ

(
h̄ω + Eq

)}
.

(7.1.5)
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The approximate expression is obtained by using h̄ω � ±∆ in the tem-
perature denominator.

The above results are only valid as long as the excitation energies
remain positive for all q. The mode of lowest energy is found at the wave-
vector Q at which Jαα(q) has its maximum. Introducing the critical
parameter

R(T ) = 1− χ o
αα(0)

χαα(Q, 0)
, (7.1.6a)

which, in the present approximation, depends on T through n01:

R(T ) = 1− (
EQ/∆

)2
= n01R0 ; R0 =

2M2
αJαα(Q)

∆
, (7.1.6b)

we find that the excitation energies are all positive as long as R(T ) <
1. This parameter increases monotonically when the temperature is
lowered and, if the zero-temperature value R0 is greater than one, the
energy EQ of the soft mode vanishes at a temperature T = TN (or TC if
Q = 0) determined by R(TN ) = 1. Correspondingly, the susceptibility
χαα(Q, 0) becomes infinite at this temperature. This indicates that the
system undergoes a second-order phase transition, from a paramagnetic
phase to one which has the same symmetry as the soft mode. In this case,
this means that 〈Jαi〉 = 〈Jα〉 cos (Q ·Ri + ϕ), where the MF equations
have a non-zero solution for 〈Jα〉 below, but not above, TN .

We shall assume ferromagnetic ordering with Q = 0. For the Ising
model in a transverse field, the development of a ferromagnetic moment
below TC corresponds to a rotation of the moments away from the di-
rection of the ‘transverse field’. The MF Hamiltonian in the (|0> |1>)-
basis is

HMF(i) =

(
E0 −δ
−δ E1

)
; δ = MαJαα(0)〈Jα〉. (7.1.7)

Introducing the new eigenstates

|0′ > = cos θ|0> +sin θ|1>
|1′ > = cos θ|1> − sin θ|0>,

(7.1.8a)

we find that the coupling parameter δ, due to the molecular field, gives
rise to a non-zero moment < 0′ |Jα|0′ >= Mα sin 2θ in the ground state.
Because it is a singlet, the ground state |0> in the paramagnetic phase is
necessarily ‘non-magnetic’, in zero field. This condition does not apply
in the ordered phase, so the nomenclature induced-moment system is
frequently used. In the ordered phase, the splitting between the two
singlets is ∆/ cos 2θ, and 〈Jα〉 = n01Mα sin 2θ (where n0 and n1 are now



316 7. CRYSTAL-FIELD EXCITATIONS IN THE LIGHT RARE EARTHS

the population factors of the new eigenstates). The condition that HMF

should be diagonal in the new basis requires that

cos 2θ =
1

n01R0

, (7.1.8b)

which only has a solution if n01R0 ≥ 1, in accordance with the critical
condition R(TC) = 1. The MF susceptibility is

χ o
αα(ω) =

2n01M
2
α∆cos 2θ

(∆/ cos 2θ)2 − (h̄ω)2
+β(n0+n1−n2

01)M
2
α sin2 2θ δω0, (7.1.9)

revealing that there are now two kinds of excitation. The first is a
continuation of the paramagnetic inelastic branch, with the dispersion
relation

E2
q =

∆

cos 2θ

( ∆

cos 2θ
− 2n01M

2
αJ (q) cos2 2θ

)
, (7.1.10)

which is again positive at all wave-vectors, consistent with the stabil-
ity of the ordered phase. EQ therefore vanishes when T approaches TC

from above or below, and this kind of second-order phase transition is
frequently known as a soft-mode transition. In addition to the inelastic
mode, there appears a diffusive mode which, within the RPA, is purely
elastic. The diffusive mode, but not the inelastic branch, has a parallel
in the spectrum of the longitudinal fluctuations of a Heisenberg ferro-
magnet, described by eqn (3.5.27), since the spectrum analysed here is
longitudinal relative to the polarization of the spontaneously ordered
moment.

The behaviour discussed above is typical for a system where the
crystal-field ground state is a singlet. The most characteristic feature
of such a system is that the two-ion coupling must exceed a certain
threshold value, relative to the crystal-field splitting, in order to force
the system into a magnetically-ordered state at low temperatures. In
this case, the condition is that the ratio R0 must be greater than one.
The general (MF) condition is that χ o

αα(0)Jαα(Q) > 1, for at least one
of the α-components, where χ o

αα(0) is the paramagnetic susceptibility
at zero temperature. This condition is a consequence of the fact that
the single-ion susceptibility remains finite in the zero-temperature limit,
if the ground state is non-degenerate. If the ground state is degenerate,
on the other hand, one or more components of the static single-ion sus-
ceptibility contains an elastic contribution proportional to 1/kBT , and
its divergence in the T = 0 limit results in an ordering of the moments,
within the MF approximation, no matter how weak the two-ion cou-
pling. Fluctuations not included in the MF theory modify the critical
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condition for J (Q), but the qualitative behaviour is unchanged. It is
therefore possible to realize a system in which the moments are rela-
tively strongly coupled to each other, but which remains paramagnetic
at low temperatures, i.e. a crystal-field system in which cooperative ef-
fects are important. Perhaps the best example is elemental Pr, which is
only slightly undercritical, with R0 � 0.92, and therefore exhibits a rich
variety of unusual magnetic phenomena.

Pr crystallizes in the double hexagonal-close-packed (dhcp) struc-
ture, illustrated in Fig. 1.3, with the stacking sequence ABAC along the
c-axis. This implies that there are two non-equivalent types of site of
different symmetry in the crystal. The ions in A layers are in an ap-
proximately cubic environment, with nearest neighbours close to the fcc
configuration, while those in the B and C layers experience a crystal
field of hexagonal symmetry and form together an hcp structure. The
tripositive Pr ion, with two 4f electrons, is a non-Kramers ion (S = 1,
L = 5, and J = 4 for the ground-state multiplet) allowing the occurrence
of singlet crystal-field states. Experimental observations, particularly of
neutron scattering, have revealed that both kinds of site in fact have
a singlet as the ground state. The lowest states of the hexagonal ions
are the singlet |Jζ = 0 > followed by the doublet |Jζ = ±1 >, with
an energy difference of ∆h � 3.5meV, as illustrated in Fig. 1.16. If
the distortion of the point symmetry of the cubic ions, due to the non-
ideal c/a ratio, is neglected, their ground state is the Γ1-singlet, with
the Γ4-triplet lying ∆c � 8.4meV above it. A complete survey of the
classification and energies of crystal-field states in cubic surroundings
has been given by Lea, Leask, and Wolf (1962). The possibility that
the Γ4 state is split into a singlet and a doublet, due to the deviation
from cubic symmetry, has not yet been investigated experimentally. At
temperatures well below 40K (∼ 3.5meV), only the two ground states
are populated significantly, and Pr may be considered to be a coupled
singlet–doublet and singlet–triplet system. Furthermore, the difference
between ∆h and ∆c is so large, compared to the two-ion interactions,
that the excitation spectrum can be divided into two parts, related re-
spectively to the crystal-field transitions on each kinds of ion. The weak
coupling of the two components may be accounted for by second-order
perturbation theory (Jensen 1976a), leading to an effective decoupling,
with the two-ion parameters replaced by slightly different, effective val-
ues. Hence, at low temperature, Pr may be treated as a combination of a
singlet–doublet system on an hcp lattice and a singlet–triplet system on
a simple hexagonal lattice. Of these, the singlet–doublet system is much
the more important because of the smaller value of the crystal-field split-
ting. The singlet–doublet scheme corresponds to an effective J = 1 and,
if the two doublet states are defined to be |1s>=

(|+1>+ |− 1>
)
/
√
2
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and |1a >=
(|+1> −|−1>

)
/
√
2i, the only non-zero matrix elements of

J are < 1a |Jζ |1s >= i and < 0 |Jξ|1s >=< 0 |Jη|1a >=
√
J(J + 1)/2,

plus their Hermitian conjugates. In Pr, the matrix element of Jζ is a
factor of

√
10 smaller than the other matrix elements. This means that

the transformation of the (J = 4) ion of Pr to an effective J = 1 system
introduces a scaling of the two-ion couplings Jξξ(q) and Jηη(q) by a
factor of 10, compared to Jζζ(q), and the latter may therefore be ne-
glected to a first approximation. Hence the (J = 1) XY -model is an
appropriate low-temperature description of the hexagonal ions in Pr.

The RPA theory of the XY -model, in the singlet–doublet case, is
nearly identical to that developed above for the Ising model in a trans-
verse field. One difference is that n0 + n1 + n2 = n0 + 2n1 = 1, instead
of n0+n1 = 1, but since this condition has not been used explicitly (the
population of any additional higher-lying levels is neglected), it may be
considered as accounted for. The other modification of the above results
is that there are now two components of χ(q, ω) which are important:
χ o
xx(ω) = χ o

yy(ω) are given by the same expression as χ o
αα(ω) in eqn

(7.1.3) (with Mα = 1 when J = 1), whereas χ o
xy(ω) ≡ 0 (the (xyz)-axes

are assumed to coincide with the (ξηζ)-axes). This means that, for a
Bravais lattice, there are two poles at positive energies in the RPA sus-
ceptibility (7.1.2) at each q-vector. As long as Jxy(q) = 0, one of the
modes describes a time variation of Jx alone, and the other Jy alone,
and their dispersion relations are both given by eqn (7.1.4b), with α set
equal to x or y. It is interesting to compare this result with the spin-
wave case. Although the magnetic response is there also determined by
a 2 × 2 matrix equation, it only leads to one (spin-wave) pole at posi-
tive energies, independently of whether the two-ion coupling is isotropic.
The cancellation of one of the poles is due to the specific properties of
χ o
xy(ω) in (5.1.3), produced by the molecular field (or the broken time-

reversal symmetry) in the ordered phase. In the case considered above,
the two modes may of course be degenerate, but only if Jxx(q) is equal
to Jyy(q). In an hcp system, such a degeneracy is bound to occur, by
symmetry, if q is parallel to the c-axis. If the degeneracy is lifted by
anisotropic two-ion couplings, which is possible in any other direction in
q-space, the x- and y-modes mix unless q is parallel to a b-axis. The va-
lidity of the results derived above is not restricted to the situation where
the doublet lies above the singlet. If the XY -model is taken literally,
all the results apply equally well if ∆, and hence also n01, is negative.
However, if the z-components are coupled to some extent, as in Pr, the
importance of this interaction is much reduced at low temperature if ∆
is positive. In this case the zz-response, which is purely elastic,

χzz(q, ω) � χ o
zz(ω) = 2βn1δω0
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is frozen out exponentially in the low-temperature limit.

As shown in Fig. 7.1, the dispersion relations for the magnetic exci-
tations on the hexagonal sites in Pr, measured by Houmann et al. (1979),
illustrate many of the characteristic features of the (J = 1) XY -model.
As mentioned above, when q is along ΓM, the excitations are pure x-
or y-modes. The hexagonal ions constitute an hcp structure, so there
are an optical and an acoustic mode for each polarization. The excita-
tion energies (7.1.4) are then generalized analogously to eqn (5.1.9), and
since J2(0) is negative in this case, the lower two branches are the opti-
cal modes. From intensity measurements of the type illustrated in Fig.
4.2, it may readily be deduced that the lowest branch is the longitudinal
optical y-mode. The experimental dispersion relations show clearly that
Jxx(q) and Jyy(q) have very different dependences on wave-vector, and
that the anisotropic component is a substantial fraction of the two-ion
coupling.

Fig. 7.1. Dispersion relations for the magnetic excitations propagat-
ing on the hexagonal sites of Pr at 6K. In the basal plane, the squares
and circles denote the experimental results for the acoustic and optical
modes respectively. The double degeneracy of these excitations is lifted
by anisotropic exchange, and the lower and upper branches correspond
respectively to polarizations predominantly parallel and transverse to the
wave-vector. The double-zone representation is used for the ΓA direction,
along which the two transverse excitations are degenerate by symmetry,

and therefore form a single branch.
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The singlet–triplet model, relevant in the case of cubic symmetry
and, with some modifications, also for the cubic ions in Pr, introduces
one new feature; each component of the single-ion susceptibility includes
a mixture of an elastic and an inelastic response. In surroundings with
cubic symmetry, χ

o
(ω) is proportional to the unit tensor, and the diag-

onal component is

χ o(ω) =
2n01M

2
1∆

∆2 − (h̄ω)2
+ 2βn1M

2
2 δω0, (7.1.11)

where now n0 + 3n1 = 1. This result follows from the circumstance
that Jx, for instance, has a matrix element between the singlet state
and one of the triplet states, and a matrix element between the two
other triplet states, the numerical values of which are denoted by M1

and M2 respectively. In the Γ1 − Γ4 case with J = 4, corresponding to
Pr, M1 =

√
20/3 and M2 = 1/2. The inelastic χ(q, ω �= 0) is equivalent

to (7.1.4) for the singlet–singlet system, but with Mα replaced by M1.
Because of the elastic contribution, the critical condition R(TN ) = 1 is
now determined from

R(T ) =
(
2n01M

2
1 + 2β∆n1M

2
2

)Jαα(Q)

∆
. (7.1.12)

The inelastic neutron-scattering spectrum is also determined by eqn
(7.1.4) with Mα = M1 and α = x, y, or z, when the off-diagonal cou-
pling is neglected. The only difference is that there may now be three
different branches, depending on the polarization. In addition to the in-
elastic excitations, the spectrum also includes a diffusive, elastic mode.
In order to determine its contribution to the scattering function, δω0 in
(7.1.11) may be replaced by δ2/

{
δ2 − (h̄ω)2

}
, and if the limit δ → 0 is

taken at the end, the result is found to be:

Sαα
d (q, ω ≈ 0) =

χ o(0)− χ o(ω → 0)

β{1− χ o(ω → 0)Jαα(q)}{1− χ o(0)Jαα(q)}δ(h̄ω)

= 2n1M
2
2

(
∆

Eq

)2
χαα(q, 0)

χ o(0)
δ(h̄ω). (7.1.13)

The two-ion coupling is assumed to be diagonal, and χ o(ω → 0) is
the static susceptibility without the elastic contribution. The scatter-
ing function at q = Q, integrated over small energies, diverges when
T approaches TN , as it also does in the singlet–singlet system. In the
latter case, and in the singlet–doublet system, the divergence is related
to the softening of the inelastic mode (EQ → 0 when T → TN ), as
in eqn (7.1.5). In the singlet–triplet system, it is the intensity of the
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elastic, diffusive mode which diverges, whereas the intensity of the in-
elastic mode stays finite and its energy is still non-zero at the transition.
Within the simple MF-RPA theory, the critical behaviour has changed,
because of the elastic term in the crystal-field susceptibility, so that the
transition is no longer accompanied by a soft mode. The energy of the
inelastic mode at q = Q, when T is close to TN , depends on ∆ and on
how large the elastic term is at the transition. If this elastic contribution
is small, the energy of the inelastic mode may be so small that it be-
comes overdamped because of the influence of the critical fluctuations,
and therefore indistinguishable from the divergent diffusive peak. How-
ever, if the inelastic mode is sufficiently separated in frequency from
the low-frequency critical fluctuations, it may persist as a reasonably
well-defined excitation even near the phase transition.

The dhcp structure of Pr has four atoms per unit cell, so there
are four branches of the dispersion relation for each polarization. If the
hexagonal and cubic sites are decoupled, these decompose into two sets,
each comprising two modes, which may be described as acoustic and
optical, propagating on the sites of a particular symmetry. The com-
plementary excitations to those of Fig. 7.1 propagate on the cubic sites,
and their dispersion relations, also studied by Houmann et al. (1979),
are illustrated in Fig. 7.2. If the hexagonal sites are ignored, the cubic
sites lie on a simple hexagonal lattice, so that a double zone may be

Fig. 7.2. Dispersion relations for the excitations propagating on the
cubic sites of Pr at 6K, plotted in the Brillouin zone of the dhcp structure.
The upper and lower branches in the basal plane are respectively the
acoustic and optical modes. The polarization vector of these excitations
is perpendicular to the c-axis. In contrast to Fig. 7.1, no splitting of
these branches by anisotropic two-ion coupling is observed, within the

experimental resolution of about 0.5meV.



322 7. CRYSTAL-FIELD EXCITATIONS IN THE LIGHT RARE EARTHS

used. However, it is both more convenient and, in general, more correct
to use the true Brillouin zone for the dhcp structure, as in Fig. 7.2.
The excitations in this figure are polarized in the plane, and may also
be described by (7.1.4), with parameters appropriate to the cubic sites.
The z-modes were not observed in these experiments, on account of the
neutron scans employed. The dispersion is much smaller than that on
the hexagonal sites and, in particular, it is negligible in the c-direction,
indicating very weak coupling between planes of cubic ions normal to
this axis. Again in contrast to the hexagonal ions, the splitting between
modes of different polarization is not resolved, demonstrating that the
anisotropy in the two-ion coupling is smaller.

7.2 Beyond the MF-RPA theory

When the temperature is raised, the available magnetic scattering inten-
sity, from eqn (4.2.7) proportional to J(J+1), is divided more and more
equally among the (2J)! different dipolar transitions, and in the high-
temperature limit half the intensity is transferred to the emissive part of
the spectrum. This means that the different crystal-field excitations be-
come weaker and less dispersive, and correspondingly correlation effects
become less important as the temperature is raised. An additional mech-
anism diminishing the correlation effects at elevated temperatures is the
scattering of the excitations against random fluctuations, neglected in
the MF-RPA theory. In this theory, all the ions are assumed to be in
the same MF state, thus allowing an entirely coherent propagation of
the excitations. However, at non-zero temperatures, the occupations of
the different crystal-field levels differ from site to site, and these single-
site fluctuations lead to a non-zero linewidth for the excitations. In
fact, if two-ion interactions are important, such fluctuations already ex-
ist at zero temperature, as the MF ground state

∏
i |0i > cannot be

the true ground state, because
∑

i |0i >< 0i | does not commute with
the two-ion part of the Hamiltonian. Hence, the occupation n0 of the
‘ground-state’ is reduced somewhat below 1 even at T = 0. The re-
sponse functions derived above already predict such a reduction of n0

but, as discussed earlier in connection with eqn (3.5.23), the MF-RPA
theory is not reliable in this order. A more satisfactory account of the
influence of fluctuations, both at zero and non-zero temperatures, can
only be obtained by calculations which go beyond the MF-RPA.

One way to proceed to higher order is to postpone the use of the
RPA decoupling to a later stage in the Green-function hierarchy gener-
ated by the equations of motion. Returning to our derivation of the MF-
RPA results in Section 3.5; instead of performing the RPA decoupling on
the Green function 〈〈aνξ(i)aν′µ′(j) ; ars(i

′)〉〉, as in eqn (3.5.16), we first
apply this decoupling to the higher-order Green functions appearing in
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the equation of motion of this function. This method requires rather ex-
tensive manipulation, but it is essentially straightforward, and we shall

not discuss the details here. It has been applied to the (J = 1)-model,
corresponding to Pr (Jensen 1982b), and the results may be interpreted

by replacing the crystal-field splitting and the exchange coupling by
renormalized quantities, while the excitations acquire a linewidth pro-
portional to the fluctuations in the single-site population factors. As

may be seen in Fig. 7.3, this self-consistent RPA gives a good account of
the temperature dependence of the excitations on the hexagonal sites in

Pr, and fits the results of Houmann et al. (1975b) somewhat better than
their MF model. The mode of lowest energy varies very rapidly with

Fig. 7.3. The temperature dependence of the excitation energies at
three different wave-vectors for the hexagonal sites in Pr. The dashed
lines give the results of a MF calculation, and the full curves are based
on the self-consistent RPA. The lowest-lying mode is the incipient soft
mode, whose q and longitudinal polarization correspond to the antiferro-
magnetic structure which may be induced in Pr by various perturbations.
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temperature, but does not become soft, so Pr remains paramagnetic
down to very low temperatures. However, these calculations indicate
that R0 � 0.92, so that the exchange is very close to the critical value
which would drive this incipient soft mode to zero energy. As we shall
discuss in Section 7.4.1, under these circumstances a variety of pertur-
bations may induce magnetic ordering.

A more elegant technique for obtaining such results is based on
a diagrammatic-expansion technique. The introduction of this method
requires a further development and refinement of the mathematical anal-
ysis of the Green functions, which falls outside the scope of this book.
Nevertheless, we wish to discuss some essential problems connected with
the use of the technique for rare earth systems, so we will present it very
briefly and refer to the books by Abrikosov et al. (1965), Doniach and
Sondheimer (1974), and Mahan (1990) for more detailed accounts.

Instead of the retarded Green function, introduced in eqn (3.3.12),
we consider the Green function defined as the τ -ordered ensemble aver-
age: Gτ

BA(τ1 − τ2) ≡ −〈Tτ B̂(τ1)Â(τ2)〉. Here B̂(τ) is the equivalent of
the time-dependent operator in the Heisenberg picture, eqn (3.2.1), with
t replaced by −ih̄τ . The τ -ordering operator Tτ orders subsequent oper-
ators in a sequence according to decreasing values of their τ -arguments,
i.e. Tτ B̂(τ1)Â(τ2) = B̂(τ1)Â(τ2) if τ1 ≥ τ2 or Â(τ2)B̂(τ1) otherwise. Re-
stricting ourselves to considering the Green function Gτ

BA(τ) only in the
interval 0 ≤ τ ≤ β, where β = 1/kBT , we may represent it by a Fourier
series (corresponding to letting the function repeat itself with the period
β):

Gτ
BA(τ) = −〈Tτ B̂(τ)Â〉 = 1

β

∑
n

Gτ
BA(iωn) e

−ih̄ωnτ ; h̄ωn =
2πn

β
.

(7.2.1a)
n is an integer and the ωn are called the Matsubara frequencies. The
Fourier coefficients are determined by

Gτ
BA(iωn) =

∫ β

0

Gτ
BA(τ) e

ih̄ωnτdτ. (7.2.1b)

The most important property of the τ -ordered Green function is that
it can be calculated by perturbation theory using the Feynman–Dyson
expansion. By dividing the Hamiltonian into two parts, H = H0 +H1,
and denoting the ensemble average with respect to the ‘unperturbed’
Hamiltonian H0 by an index ‘0’, it can be shown that

Gτ
BA(τ) = − 〈TτU(β, 0)B̂(τ)Â(0)〉0

〈U(β, 0)〉0
, (7.2.2a)
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where

U(β, 0) = 1−
∫ β

0

H1(τ1)dτ1 + · · ·

· · ·+ (−1)n

n!

∫ β

0

· · ·
∫ β

0

TτH1(τ1)· · · H1(τn)dτ1 · · · dτn + · · · (7.2.2b)

which is suitable for a diagrammatic representation in which the denom-
inator in (7.2.2a) just eliminates all ‘un-linked’ diagrams. Furthermore,
it can be shown that the retarded Green function is the analytic contin-
uation of the τ -ordered function to the real axis in the complex ω-plane,
or

χBA(ω) = − lim
ε→0+

Gτ
BA(iωn → ω + iε), (7.2.3)

and we shall therefore use the frequency arguments iωn and ω to distin-
guish between respectively the τ -ordered and the retarded Green func-
tion.

Considering the simplest case of the Ising model, we wish to calcu-
late the Fourier transform of G(ij, τ) = −〈TτJiα(τ)Jjα〉. We take H0 to
be the single-ion crystal-field Hamiltonian, and the perturbation H1 is
then the two-ion part. With this partition, the ensemble average 〈 〉0 of
a product of operators belonging to different sites is just the product of
the averages of the operators, i.e. 〈JiαJjα〉0 = 〈Jiα〉0〈Jjα〉0 if i �= j. This
concentrates attention on the Green function for a single site G(ii, iωn),
for which the perturbation expansion leads to a series corresponding to
that considered in the CPA calculation, eqn (5.6.9). The only differences

are that K(i, ω) is replaced by the αα-componentK(iωn′) and, more sig-
nificantly, that the products (ciχ

o(ω))p = ci (χ
o(ω))p are replaced by

the 2pth order cumulant averages or semi-invariants

S(2p) =
1

βp

∫ β

0

dτ1 · · ·
∫ β

0

dτ2p
〈
Tτ

2p∏
l=1

Jiα(τl)
〉
0

2p∏
l=1

exp
(
ih̄ωnlτl

)
, (7.2.4)

with the conditions
∑

l ωnl = 0 and ωn1 = ωn. The lowest-order semi-
invariant is S(2) = −g(iωn) = 2n01M

2
α∆/

[
∆2 − (ih̄ωn)

2
]
, which is the

Fourier transform of 〈TτJiα(τ)Jiα〉0, and −g(iωn → ω) = −g(ω) =
χ o(ω). The calculation of the fourth- and higher-order cumulants is
more involved. It is accomplished basically by utilizing the invariance
of the trace (i.e. of the ensemble average) to a cyclic permutation of
the operators, as is discussed, for instance, by Yang and Wang (1974)
and Care and Tucker (1977). If the operators are proportional to Bose

operators this results in Wick’s theorem, which here implies that S(2p)
Bose =[S(2)

]p
. The determination of the cumulant averages is facilitated by
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expressing the angular-momentum components as linear combinations
of the standard-basis operators introduced by eqn (3.5.11). These are
not Bose operators, so the ‘contractions’ determined by the commutators
of the different operators are not c-numbers, but operators which give
rise to new contractions. In the singlet–singlet Ising model, the result is

G(ii, iωn) = G(iωn) = g(iωn)

− 1

n2
01

[
(n0 + n1)g(iωn)K(iωn) +

1

β

∑
n′

g(iωn′)K(iωn′)u(n, n′)
]
g(iωn)

+ · · · (7.2.5a)

with

u(n, n′) =
g(iωn)

M2
α

+
g(iωn′)

M2
α

(ih̄ωn′)2 +∆2

2∆2
+ 1

2

(
n0 + n1 − n2

01

)
β.

(7.2.5b)
The sum over the Matsubara frequencies may be transformed into an
integral over real frequencies, but it may be advantageous to keep the
frequency sum in numerical calculations. Before proceeding further, we
must clarify a few points. The first is that H1 cannot, in general, be
consider as being ‘small’ compared to H0. However, each time a term
involving the two-ion coupling is summed over q, we effectively gain a
factor 1/Z, where Z is the co-ordination number. Hence, if we use 1/Z
as a small expansion parameter, the order of the different contributions
may be classified according to how many q-summations they involve.
In the equation above, K(iωn′) is derived from one summation over q,
as in (5.6.17), so the series can be identified as being equivalent to an
expansion in 1/Z. The second point to realize is that it is of importance
to try to estimate how the expansion series behaves to infinite order. A
truncation of the series after a finite number of terms will produce a re-
sponse function with incorrect analytical properties. If we consider the
corresponding series determining G(q, iωn), it is clear that any changes
in the position of the poles, i.e. energy changes and linewidth phenom-
ena, are reflected throughout the whole series, whereas a (small) scaling
of the amplitude of the response function, which might be determined by
the first few terms, is not particularly interesting. In other words, what
we wish to determine is the first- (or higher-) order correction in 1/Z to
the denominator of the Green function, i.e. to determine the self-energy
Σ(q, iωn), defined by

G(q, iωn) =
g(iωn)

1 + g(iωn)
{Jαα(q) + Σ(q, iωn)

} , (7.2.6)

assuming the MF-RPA response function to be the starting point. A
systematic prescription for calculating the Green function to any finite
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order in 1/Z has been given by Stinchcombe (1973), see also Vaks et al.
(1968). The zero-order result is obtained by the ‘boson’ approximation
S(2p) � [S(2)]p. As is apparent from (7.2.5a), this corresponds to the
replacement of the second and subsequent terms on the r.h.s. by the in-
finite series generated by −g(iωn)K(iωn)G(iωn), leading to an equation
for the single-site Green function which is the equivalent to the Dyson
equation for bosons (or fermions), or to the CPA equation with c = 1.
The q-dependent Green function may be obtained from the single-site
function by the same procedure as in the CPA case, eqns (5.6.10–17).
In this approximation, the final Green function is that given by the MF-
RPA, corresponding to Σ(q, iωn) = 0 in (7.2.6). This does not involve
any q-summation and may therefore be classified as the (1/Z)0-order re-
sult. In the cumulant-expansion, developed by Stinchcombe (1973) and
others, the difference S(4)−(S(2))2 is included, to the next order in 1/Z,
as an additional vertex appearing in the interaction chain-diagrams of
G(q, iωn), independently of the appearance of the S(2)-vertices. A dif-
ferent approach, which is made possible by the isolation of the single-site
Green function in (7.2.5a), is to generalize this equation once more, so
that it becomes a Dyson equation, by replacing g(iωn) with G(iωn) in
the second term on the r.h.s. of (7.2.5a), retaining the correct coefficient
in this term. The effective-medium equation (5.6.13), with c = 1, is
valid to first order in 1/Z, so that

G(q, iωn) =
G(iωn)

1 +G(iωn)
{Jαα(q) −K(iωn)

} (7.2.7a)

and, in combination with the Dyson equation for the single-site Green
function, this leads to a q-dependent Green function derived from

Σ(q, iωn) = Σ(iωn) =

1

n2
01

[
(n0 + n1 − n2

01)K(iωn) +
1

βg(iωn)

∑
n′

g(iωn′)K(iωn′)u(n, n′)
]
,

(7.2.7b)
where K(iωn) is determined self-consistently, as in (5.6.17),

K(iωn) =
∑
q

Jαα(q)G(q, iωn)
/∑

q

G(q, iωn). (7.2.7c)

The result obtained in this way is close to that derived by Galili and
Zevin (1987) using a more elaborate renormalization procedure, but in
addition to the simplifications attained by utilizing the effective-medium
approximation, the procedure which we have adopted has allowed us to
achieve a fully self-consistent result. We note that, in the application
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of the equations of motion, the population factors take the realistic val-
ues which may be calculated from eqn (3.5.23) using the more accurate
Green functions, whereas the population factors here are by definition
the unperturbed MF values. This means that the renormalization of the
different RPA parameters predicted by the real part of Σ(ω) includes
the possible effects on the population factors. Σ(ω) is the continuation
of Σ(iωn) on to the real frequency-axis, and the imaginary part of Σ(ω),
which is equal to (n0 + n1 −n2

01)/n
2
01 times Im

[
K(ω)

]
, since the sum in

(7.2.7b) is real, predicts a non-zero linewidth for the crystal-field excita-
tions. Introducing the spectral density of the excited states, at positive
energies E = h̄ω,

N (E) =
2

N

∑
q

Im
[
G(q, E/h̄)

]
πE G(q, 0)

� 1

N

∑
q

δ(Eq − E),

which may be compared with (3.3.17), we find that, at frequencies where
|g(ω)K(ω)| is small compared to one,

Im
[
K(ω)

] � πn01M
2
αN (h̄ω)∆

/
h̄ωg2(ω),

corresponding to a linewidth 2Γq of the excitation at q, half of which is

Γq � n0 + n1 − n2
01

n2
01

(
∆2 − E2

q

2Eq

)2

πN (Eq). (7.2.8a)

The linewidth is proportional to the density of states and to the squared
energy-difference between the excitation and the crystal-field level (pro-
portional to J 2

αα(q)), where the q-dependences of the two factors rough-
ly balance each other. When Eq is close to ∆, this result is no longer

valid. Instead, at h̄ω = ∆̃, where ∆̃ is the effective crystal-field splitting
determined by Re

[
Σ(∆̃/h̄)

]
= −1

/
g(∆̃/h̄), we find that Re

[
K(∆̃/h̄)

]
=

0 and

Γq(Eq = ∆̃) � n0 + n1 − n2
01

n2
01

1

πN (∆̃)
. (7.2.8b)

The first result (7.2.8a) for Γq, but not (7.2.8b), agrees with that ob-
tained by the cumulant-expansion method of Stinchcombe (1973) and
others. One modification which appears when this method is used is
that K(ω) in (7.2.7b) is replaced by K(ω){1 − G(ω)K(ω)}. This is a
(1/Z)2-correction, which however becomes important when h̄ω ≈ ∆,
and in this theory Γq(Eq = ∆) = 0, in contrast to the result (7.2.8b).
In order to decide which of the two procedures leads to the most trust-
worthy results, we have to some extent to rely on the effective-medium
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approximation. It is known (Yonezawa 1968) that the cumulant ex-
pansion, in solving the dilute RPA equation (5.6.8), includes all terms
proportional to P2(ij) = 〈cicj〉 − c2, but that this occurs at the ex-
pense of ‘self-containedness’, leading to unphysical features in the final
results. Compared to this, the CPA neglects some of the products of
P2(ii)P2(jj) for neighbouring sites, which are of the order (1/Z)2 (see
the discussion following (5.6.17)), but it is self-contained and the results
are well-behaved and accurate if Z is not small, as discussed by Elliott
et al. (1974). Hence, referring to the analyses of the dilute systems, we
expect the effective-medium approximation to be more adequate than
the unrestricted cumulant expansion in the first order of 1/Z. More im-
portantly, the Hartree–Fock decoupling of the higher-order cumulants,
i.e. S(6) = (S(2))3 + 3S(2){S(4) − (S(2))2} to first order in 1/Z, which
is one of the basic ideas behind the cumulant-expansion method consid-
ered here, does not appear to be a good approximation. The effective-
medium model is not solved ‘exactly’, as this would require a determi-
nation of the whole series for G(iωn) in (7.2.5a), but a consideration
of the second- and higher-order diagrams in this series indicates that
the Dyson-equation generalization is much more reasonable. The sum
rules, like (3.3.18) or the ‘monotopic restriction’ discussed by Haley and
Erdös (1972), are satisfied to the considered order in 1/Z. This is ob-
viously true for the unrestricted cumulant expansion, but it also holds
for the effective-medium approximation, as this is derived directly from
the behaviour of the single sites. One may ask (Galili and Zevin 1987)
whether there exists any other ‘conservation law’ which permits a more
stringent distinction between the various possibilities. For this purpose,
we propose to use the condition that the resultant Green function should
be independent of adding the following constant to the Hamiltonian:

∆H = −λ
∑
i

Ji ·Ji = −N λJ(J + 1), (7.2.9)

corresponding to a replacement of J (q) by J (q) + λ. This change does
not affect the effective-medium equation (5.6.9), other than by adding
the constant to J (q), so K(iωn) is still determined by (7.2.7c), with λ
added on the r.h.s. A replacement of K(iωn) by K(iωn) + λ in (7.2.5a)
does not make any difference, as (1/β)

∑
n′ g(iω′

n)u(n, n
′) = −g(iωn)

when n0 + n1 = 1, so that JiαJiα is a constant. The additions of λ to
both J(q) and K(iωn) cancel out in the q-dependent Green function
expressed in terms of the single-site Green function, as may be seen
from (7.2.7a), so that the final result is independent of λ. This is not
the case when the unrestricted cumulant expansion is used. Formally,
the occurrence of λ is a (1/Z)2-effect, but this is an unphysical feature
which is a serious defect, since λ may assume an arbitrary value. This
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variational test is related to the sum rules (like that considered in eqn
(4.2.7) or below), but it has the advantage that it applies directly to the
q-dependent Green function without involving any additional summa-
tions with respect to q or ωn. For a final comparison of the two meth-
ods, we may utilize the fact that the single-site series can be summed
exactly in an Ising system with no crystal-field splitting. The result
is G(ω) = −βδω0〈J2

αexp{ 1
2βK(0)J2

α}〉0
/〈exp{ 1

2βK(0)J2
α}〉0, which co-

incides with that deduced by Lines (1974b, 1975) from his correlated
effective-field theory. When J = 1/2, the above method produces the
correct result G(0) = g(0) = −β/4. For the (J = 1)-Ising model,
G(0) = −2β [2 + exp{− 1

2βK(0)} ]−1, which may be compared with the
prediction G(0) = −2β [3− 1

2βK(0)]−1 of eqns (7.2.5–7). On the other
hand, the unrestricted cumulant expansion, to first order in 1/Z, leads
to spurious contributions of second and higher powers in K(0) and, for
instance, suggests a second-order term in the denominator of G(0) which
is a factor of 14 larger than the correct value. We note that corrections
to the effective-medium theory only appear in the order (1/Z)3 in the
single-site Green function. This comparison is discussed in more detail
by Jensen (1984), in a paper where the 1/Z-expansion, in the effective-
medium approximation, is combined with the CPA, thereby removing
some of the difficulties encountered in the RPA and mentioned at the
end of Section 5.6.

In a crystal-field system, the single-site fluctuations lead to a non-
zero linewidth of the excitations, to first order in 1/Z. This reflects the
relative importance of corrections to the RPA, compared to spin-wave
systems. In the latter, the excitation operators are, to a good approxi-
mation, Bose operators, neglecting the ‘kinematic’ effects, which means
that a non-zero linewidth only appears in the second-order of 1/Z. The
linewidth 2Γq derived above is exponentially small at low temperatures,
but becomes important when kBT ≈ ∆. The linewidth as a function
of ω, Γq(ω) ∝ Im

[
K(ω)

]
, is only non-zero as long as h̄ω lies within the

excitation energy-band, which roughly corresponds to that determined
by the RPA. This means that the linewidth, in this approximation, be-
gins to decrease at higher temperatures when the RPA-excitation band
becomes sufficiently narrow. The behaviour in both limits is modified
by higher-order effects. Within the framework of the 1/Z-expansion,
the effective-medium approximation ceases to be valid in second order.
The leading-order scattering effects are due to the single-site fluctuations
and, if the interactions are long-range, the correlation of the fluctuations
on neighbouring sites only leads to minor modifications (provided that
the system is not close to a second-order phase transition). In this kind
of system, the effective-medium method should be satisfactory, and in
order to avoid the complications encountered in more elaborate theo-
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ries, we confine ourselves to the (1/Z)2-corrections which can be de-
termined within this approximation. This provides a better estimate
of the effects due to the single-site fluctuations, but neglects the pos-
sible q-dependence of the self-energy. The correct (1/Z)2-terms in the
effective-medium theory are obtained by introducing S(6) in the third
term of the single-site series in eqn (7.2.5). This calculation has been
carried out by Jensen et al. (1987) for the (J = 1)-singlet–doublet case,
and the most important effect of the second-order terms is to replace
the MF population-factors in (7.2.7b) by approximately the actual pop-
ulation of the excitonic states. Furthermore, Γq(ω) becomes non-zero
outside the excitation band, and it stays non-zero (although small) in
the T = 0 limit.

The (J = 1)-case has been analysed by Yang and Wang (1975), to
first order in 1/Z, and Bak (1975) independently derived the linewidth
and applied the result to Pr. Psaltakis and Cottam (1982) have consid-
ered the (J = 1)-model in the ordered phase, in the presence of uniaxial
anisotropy, where the ‘kinematic’ effects cannot be neglected. In the
paramagnetic singlet–doublet XY -model, the (1/Z)-results are close to
those derived above for the Ising model. If the xx- and yy-couplings are
assumed to be equal, it is found, to a good approximation, that n0 +n1

in eqn (7.2.7b) is replaced by n0 + 2n1 = 1, and that the frequency sum
in this equation is multiplied by a factor 3/2. If Jzz(q) is non-zero,
it gives rise to additional contributions to the average q-independent
self-energy. Furthermore, it also leads to a q-dependent contribution,
even in the first order of 1/Z. This occurs because the odd-rank cu-
mulants (corresponding to half-integral p in (7.2.4)) involving all three
components may be non-zero. The lowest-rank odd cumulant which is
non-zero is 〈TτJix(τ1)Jiy(τ2)Jiz(τ3)〉0. Although this formally leads to
a (1/Z)-contribution to the q-dependent part of Σ(q, ω), which is not
immediately compatible with the effective-medium results above, this
should be a minor term in systems with long-range interactions and, if
∆ is positive, its importance is much reduced at low temperatures under
all circumstances.

The results of calculations of the lifetimes of the long-wavelength
magnetic optical-modes in Pr, based on eqn (7.2.7), are compared with
the experimental results of Houmann et al. (1979) in Fig. 7.4. This
theory predicts very nearly the same temperature dependence of the en-
ergies as does the self-consistent RPA; the excitation depicted in Fig.
7.4 is the uppermost mode in Fig. 7.3. The theory to first order in
1/Z accounts very well for the temperature dependence of the energies,
lifetimes, and intensities of these excitations, without adjustable param-
eters. The low temperature results are similar to those of Bak (1975),
but the experiments at the highest temperatures in Fig. 7.4 are more
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Fig. 7.4. The temperature dependence of the neutron-scattering in-
tensities for the q = 0 magnetic optical-mode on the hexagonal sites of
Pr. The instrumental resolution and the overall scaling of the intensity
are extracted from the experimental results at 6K, and thereafter used
unchanged in the calculations, which are based on a 1/Z-expansion, as

described in the text.

accurately described by the effective-medium theory developed above,
than by his unrestricted cumulant expansion.

An analysis of the 1/Z-corrections to the MF-RPA theory for the
singlet–triplet model does not exist in the literature, to our knowledge.
We shall not attempt such an analysis here, but we will discuss one
aspect, that the elastic response due to the triplet states is predicted
to be a diffusive peak of non-zero width, to first order in 1/Z, within
the effective-medium approximation. In order to consider this matter,
we can omit the singlet and use instead the (J = 1) Heisenberg model,
corresponding to the above model with ∆ = 0. In this case, the diagonal
components of the single-site Green function are

G(iωn) = −2

3
β
{
1− 1

6βK(0)
}
δn0 +

4

3(ih̄ωn)
2

{
K(0)−K(iωn)

}
+ · · ·
(7.2.10)

to first order in 1/Z. In zero order, the response is purely elastic and
K(iωn) ∝ δn0. If this is introduced into (7.2.10), the second term pre-
dicts an inelastic contribution to G(ω), which further diverges propor-
tionally to ω−2 in the zero-frequency limit. This divergence indicates
that the elastic peak must broaden out to a Lorentzian, with a non-
zero half-width Γ, as in (3.3.10–11), corresponding to the replacement
of (h̄ω)2 in the denominator by (h̄ω)2+Γ2, when the higher-order terms
in the series are included. The classification of K(iωn �= 0) as a higher-
order term in the series (7.2.9) is not consistent with a simple Lorentzian,
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and a more appropriate form turns out to be

G(ω) = G(0)

(
iΓ

h̄ω + iΓ

)2

= G(0)
Γ2

[
Γ2 − (h̄ω)2 + 2ih̄ωΓ

][
Γ2 + (h̄ω)2

]2 . (7.2.11a)

The real and imaginary parts of this retarded Green function are con-
nected by the Kramers–Kronig relation, and the expansion in powers of
Γ agrees with (7.2.10), when

G(0) = −2

3
β
{
1− 1

6βK(0)
}

and Γ =
√
2K(0)/β. (7.2.11b)

In the high-temperature limit, K(0) � (2β/3N)
∑

q J 2(q), and hence
Γ is independent of T in this limit. The most important reason for
choosing the Green function given by (7.2.11a) is that it satisfies the
sum rule:

− 1

β

∑
n

∑
α=x,y,z

G(iωn) = −3
1

π

∫ ∞

0

d(h̄ω) Im
[
G(ω)

]
coth (βh̄ω/2)

= J(J + 1) = 2, (7.2.12)

to the degree of accuracy with which G(0) is determined (this is the same
sum rule considered in (4.2.7)). The original expansion series satisfies
this sum rule, to first order in 1/Z, but this property is not easily con-
served if a Lorentzian is chosen. The problem with the Lorentzian (with
approximately the same Γ as above) is that it decreases only slowly with
ω, and the tails lead to a divergence of the integral in (7.2.12), unless a
high-frequency cut-off is introduced. In this system, there is no natural
frequency-scale setting such a cut-off, and the only reasonable way of
determining it is through the sum-rule itself, which is rather unsatisfac-
tory.

In addition to the equations of motion and the Feynman–Dyson
linked-cluster-expansion method discussed here, there are other many-
body perturbation techniques which may be useful for analysing this
kind of system. The most important supplementary theories are those
based on the Mori technique (Mori 1965; Huber 1978; Ohnari 1980),
or similar projection-operator methods (Becker et al. 1977; Micnas and
Kishore 1981). However, no matter which theory is used, it cannot
circumvent the essential complication of crystal-field systems; the more
single-ion levels which are important, the greater is the complexity of the
dynamical behaviour. This principle is illustrated by the fact that the
methods discussed above have not yet been extended to systems with
more than two levels, singlet or degenerate, per site.
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7.3 Perturbations of the crystal-field system

In this section, we shall discuss various effects of the surrounding medium
on a crystal-field system. The first subject to be considered is the mag-
netoelastic coupling to the lattice. Its contribution to the magnetic-
excitation energies may be described in terms of frequency-dependent,
anisotropic two-ion interactions, and we include a short account of the
general effect of such terms. We next consider the coupling to the con-
duction electrons, which is treated in a manner which is very parallel
to that used for spin-wave systems in Section 5.7. Finally, we discuss
the hyperfine interaction between the angular momenta and the nuclear
spins, which becomes important at the lowest temperatures, where it
may induce an ordering of the moments in an otherwise undercritical
singlet-ground-state system.

7.3.1 Magnetoelastic effects and two-ion anisotropy

The magnetoelastic interactions which, in the kind of system we are
considering, primarily originate in the variation of the crystal-field pa-
rameters with lattice strain, produce a number of observable phenomena.
The lattice parameters and the elastic constants depend on temperature
and magnetic field, the crystal-field excitation energies are modified, and
these excitations are coupled to the phonons. In addition, the magneto-
elastic coupling allows an externally applied uniaxial strain to modify
the crystal-field energies. All these magnetoelastic effects have their
parallel in the ferromagnetic system discussed in Section 5.4 and, in the
RPA, they may be derived by almost the same procedure as that pre-
sented there, provided that the spin-wave operators are replaced by the
standard-basis operators, introduced in eqn (3.5.11).

In the paramagnetic phase in zero external field, only those strains
which preserve the symmetry, i.e. the α-strains, may exhibit variations
with temperature due to the magnetic coupling. The lowering of the
symmetry by an applied external field may possibly introduce non-zero
strains, proportional to the field, which change the symmetry of the
lattice. In both circumstances, the equilibrium strains may be calculated
straightforwardly within the MF approximation. As an example, we
shall consider the lowest-order magnetoelastic γ-strain Hamiltonian

Hγ =
∑
i

[1
2cγ(ε

2
γ1 + ε2γ2)−Bγ2

{
O2

2(Ji)εγ1 +O−2
2 (Ji)εγ2

}]
, (7.3.1)

corresponding to eqn (5.4.1) with Bγ4 = 0. The equilibrium strain εγ1,
for instance, is determined in the presence of an external magnetic field
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and external stresses by

1

N

〈∂Hγ

∂εγ1

〉
= cγεγ1 −Bγ2〈O2

2〉 − (t11 − t22) = 0,

with t = (V/N)T , where T is the usual stress-tensor. Introducing the
equilibrium condition into the Hamiltonian, we get

Hγ(sta) = −
∑
i

Bγ2

{
O2

2(Ji)εγ1 +O−2
2 (Ji)εγ2

}
+H0

γ , (7.3.2a)

where

H0
γ = N

[1
2cγ(ε

2
γ1 + ε2γ2)− (t11 − t22)εγ1 − 2t12εγ2

]
. (7.3.2b)

The thermal averages have to be calculated self-consistently, which im-
plies that the static magnetoelastic Hamiltonian, (7.3.2), must itself
be included in the total magnetic MF Hamiltonian, which determines
the thermal averages such as 〈O2

2〉 in the equilibrium equation. The
magnetoelastic coupling changes the magnetic-excitation energies if the
crystal is strained, because the extra crystal-field term in (7.3.2a), in-
troduced by Hγ(sta), directly modifies χ

o
(ω). In the (J = 1)-model

corresponding to Pr, O±2
2 (Ji) couples the two doublet states, and thus

the degeneracy of this level is lifted in proportion to the γ-strains.
Having included the contributions of Hγ(sta) to the single-ion sus-

ceptibility, we continue by discussing the influence of the coupling be-
tween the magnetic excitations and the phonons, as determined by the
dynamic part of the magnetoelastic Hamiltonian Hγ(dyn), given by eqn
(5.4.6) with Bγ4 = 0. As an example, we consider the coupling to the
transverse phonons propagating in the a- or the b-direction, with the
polarization vector in the basal-plane, which is derived from

∆Hγ(dyn) = −Bγ2

∑
i

{
O−2

2 (Ji)− 〈O−2
2 〉}εi

= −Bγ2

∑
i

∑
νµ

Nνµaνµ(i)εi, (7.3.3)

where εi is a shorthand notation for εγ2(i)− εγ2, and Nνµ is the matrix
element of the Stevens operator between <ν | and |µ>, cf. eqns (3.5.11–
13). This Hamiltonian introduces an additional term on the l.h.s. of the
equation of motion (3.5.15) for the Green function 〈〈aνµ(i) ; ars(i′)〉〉:

Bγ2

∑
ξ

〈〈{Nµξaνξ(i)−Nξνaξµ(i)
}
εi ; ars(i

′)〉〉 �

Bγ2(nν − nµ)Nµν〈〈εi ; ars(i′)〉〉, (7.3.4)
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where the approximate result follows from the usual RPA decoupling
introduced by eqn (3.5.16). According to eqn (5.4.25),

εi =
∑
k

(ikFk/2)(βk + β+
−k)exp(ik ·Ri),

where we assume, for simplicity, only one phonon mode. From the equa-
tions of motion determining the two Green functions 〈〈βq ; ars(i

′)〉〉 and
〈〈β+

−q ; ars(i
′)〉〉, we obtain

〈〈βq + β+
−q ; ars(i

′)〉〉 =
Bγ2

∑
i

∑
νµ

(iqFq/2)D(q, ω)e−iq·RiNνµ〈〈aνµ(i) ; ars(i′)〉〉, (7.3.5)

where D(q, ω) is the phonon Green function for the mode considered:

Dν(q, ω) =
2ωνq

h̄
(
ω2 − ω2

νq

) . (7.3.6)

If this is introduced into (7.3.4), and the resulting expression is added
to the l.h.s. of (3.5.18), the procedure leading to eqn (3.5.21) yields the
equivalent result

χ(q, ω)− χ
o
(ω)J (q, ω)χ(q, ω) = χ

o
(ω). (7.3.7)

However, these quantities are now four-dimensional matrices in the vec-
tor space defined by the operators Jix, Jiy , Jiz, and O−2

2 (Ji), or more
accurately by these operators minus their expectation values. The only

extra element in J (q, ω), in addition to the normal Cartesian compo-
nents Jαβ(q), is

J44(q, ω) = N
( i
2
qFqBγ2

)2
D(q, ω). (7.3.8)

The excitation energies are determined by the condition∣∣1− χ
o
(ω)J (q, ω)

∣∣ = 0.

When q is along an a- or b-direction, and the external fields are applied

in the basal plane, parallel or perpendicular to q, then J (q) and the
3 × 3 Cartesian components of χ

o
(ω), at low frequencies, are diagonal

with respect to the (ξηζ)-axes. In this case, the most phonon-like pole
is found at a frequency determined by∣∣1−χ

o
(ω)J (q, ω)

∣∣/∏
α

[
1−χ o

αα(ω)Jαα(q)
]
= 1−Ξ(q, ω)J44(q, ω) = 0,

(7.3.9a)
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where α = ξ, η, and ζ, and

Ξ(q, ω) = χ o
44(ω) +

∑
α

χ o
α4(ω)χ

o
4α(ω)Jαα(q)

1− χ o
αα(ω)Jαα(q)

. (7.3.9b)

At long wavelengths, this pole determines the velocity of the magneto-
acoustic sound waves, as measured in an ultrasonic experiment, and
expressing this velocity in terms of the corresponding elastic constant,
we find

c∗66
c66

= 1− Ξ(q, 0)B2
γ2/cγ , (7.3.10)

by combining the above relation with eqns (5.4.24b) and (5.4.34). This
result is valid when q is along the ξ- or η-axes, provided that the exter-
nal field is applied along one of the principal axes. In the general case,
it is necessary to include the coupling to the other phonon branches in
eqn (7.3.7), and also to take into account possible off-diagonal terms in
the Cartesian part of the matrices, but these complications may be in-
cluded in the above calculations in a straightforward fashion. One ques-
tion raised by (7.3.10) is whether the magneto-acoustic sound velocities,
measured at non-zero frequencies, depend on possible purely-elastic con-
tributions to the RPA susceptibilities. That these should be included
in (7.3.7), at ω = 0, can be seen by the argument used in deriving
(3.5.22). In the preceding section, we found that the coupling between
the angular momenta broadens the elastic RPA response into a diffusive
peak of width 2Γ, as in (7.2.11b), proportional to T 1/2 at low temper-
atures. Unless this coupling is very weak, Γ is likely to be much larger
than the applied h̄ω in an ultrasonic experiment, in which case the total
elastic contribution to Ξ(q, 0) in (7.3.10) should be included. A more
detailed investigation of this question is given by, for instance, Elliott
et al. (1972), in a paper discussing systems with Jahn–Teller-induced
phase transitions.

In the paramagnetic phase without any external magnetic field, the
susceptibility components χ o

α4(ω) all vanish in the zero frequency limit,
due to the time-reversal symmetry of the system. Replacing t by −t
generates the transformation χ o

α4(ω) → χ o
αT 4T (−ω), where the time-

reversed operators are JT
iα = −Jiα, and O−2

2 (Ji)
T = O−2

2 (Ji). These re-
sults follows from the symmetry properties of the axial tensor operators,
discussed after eqn (5.5.14), recalling that the operators are Hermitian,
of rank l = 1 and l = 2 respectively. Hence, because of the time-reversal
symmetry, χ o

α4(ω) = −χ o
α4(−ω) = −(

χ o
α4(ω

∗)
)∗
, where the last result

follows from (3.2.15), and we assume implicitly that all poles lie on the
real axis. This quantity must therefore vanish at zero frequency, and
the reactive and absorptive components are either zero or purely imag-
inary at non-zero frequencies. If there is no ordered moment and no
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external magnetic field, the coupling between the dipolar crystal-field
excitations and the long-wavelength phonons must therefore vanish by
symmetry, within the present approximation, and Ξ(q, 0) = χ o

44(0) in
eqn (7.3.10). In the presence of an external magnetic field, the mixed
dipolar–quadrupolar susceptibility-components may become non-zero,
and hence produce a direct coupling of the elastic waves and the dipo-
lar excitations. In this case, the magnetic dipole coupling, which gives
rise to a directional dependence of Jαα(q), as discussed in Section 5.5,
leads to different values of c∗66 (as determined from the transverse sound
velocity in the b(η)-direction), depending on whether the field is parallel
to the ξ- or the η-axis or, if the field is fixed along one of these two axes,
whether q is along the ξ- or the η-direction. As mentioned earlier, this
anisotropy is similar to that introduced by rotational invariance, and
has a comparable magnitude in paramagnetic systems (Jensen 1988b).

The dynamic coupling between the magnetic and elastic excitations
in Pr has been studied in the long-wavelength limit by Palmer and Jensen
(1978), who measured the elastic constant c66 by ultrasonic means, as a
function of temperature and magnetic field. At 4K, it was found to be
very sensitive to a field applied in the basal plane, but insensitive to a
field along the c-axis, reflecting the anisotropy of the susceptibility. At
non-zero fields in the basal plane, there is furthermore a considerable
anisotropy, due to B6

6 . Using the crystal-field level scheme illustrated in
Fig. 1.16, and a value of Bγ2 consistent with that deduced from the field
dependence of the magnetic excitations (Houmann et al. 1979), they
were able to obtain a very good fit to the observed dependence of c66 on
field, shown in Fig. 7.5, and on temperature.

The above theory is also valid at non-zero frequencies. However, if
q is no longer small, we must take account of the discreteness of the lat-
tice and replace q in (7.3.8) by a sinusoidal function of q and the lattice
parameters, as in (5.4.43) in Section 5.4. Except for the change in the
q-dependence of J44(q, ω), eqn (7.3.7) still applies, and it predicts hy-
bridization effects between the phonons and the crystal-field excitations,
equivalent to those derived from the linear magnon–phonon coupling in
Section 5.4. The time-reversal symmetry of the paramagnetic system in
zero magnetic field does not exclude the possibility that the phonons at
non-zero frequencies are coupled to the crystal-field dipolar excitations
and, in the case of Pr, the doublet excitations are allowed to interact
with the transverse phonons, when q is in the c-direction. Neverthe-
less, the application of a magnetic field will generally introduce new
interactions via χ o

4α(ω), leading to hybridization effects proportional to
the field, as observed in Pr by Houmann et al. (1979) and interpreted
by Jensen (1976a). Interactions between crystal-field excitations and
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Fig. 7.5. The field dependence of the elastic constant c66 in Pr at
4K, relative to the value at zero field. The elastic constant was deter-
mined from the velocity of the transverse sound waves propagating in an
a-direction, and the open and closed symbols indicate the experimental
results when the field was applied respectively in the a- or the perpen-
dicular b-direction. The solid lines show the calculated field dependence.

the phonons are further discussed by Thalmeier and Fulde (1975), Fulde
(1979), and Aksenov et al. (1981).

The coupling (5.4.50), quadratic in the magnon operators, also has
its counterpart in crystal-field systems. Such interactions arise when, in-
stead of applying the RPA decoupling in the first step, as in eqn (7.3.4),
we proceed to the next step in the hierarchy of Green functions. The
most important effect of these terms is to replace the crystal-field param-
eters by effective values, which might be somewhat temperature depen-
dent, corresponding to an averaging of the effective crystalline field expe-
rienced by the 4f electrons over the finite volume spanned by the thermal
vibration of the ions. As in the spin-wave case, these extra higher-order
contributions do not lead to the kind of hybridization effects produced
by the linear couplings. However, if the density of states of the phonons,
weighted with the amplitude of the coupling to the crystal-field exci-
tations, is particularly large at certain energies, resonance-like bound-
states due to the higher-order terms may be observed in the magnetic
spectrum. The dynamic Jahn–Teller effect observed in CeAl2 (Loewen-
haupt et al. 1979) seems to be due to these higher-order effects, according
to the calculation of Thalmeier and Fulde (1982).

The expression (7.3.7) for the interaction of the crystal-field system
with the phonons has essentially the same form as that derived from any
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general two-ion coupling. Referring to (5.5.14), in which is introduced a

general two-ion Hamiltonian in terms of the tensor operators Õlm(Ji),
we may write

HJJ = −1

2

∑
ij

Jp
i ·J p(ij) ·Jp

j , (7.3.11)

where Jp ≡ (Jx, Jy, Jz, O
−2
2 , Õlm, · · ·) is a generalized p-dimensional mo-

ment operator, and the {lm}-set of operators comprises the tensor cou-
plings from the original Hamiltonian, except those between the first
four components. It is then immediately clear that the final RPA sus-
ceptibility is given by an expression equivalent to (7.3.7), in terms of
the p × p susceptibility-matrix with Jαβ(q, ω) = J p

αβ(q), except that

(at long wavelengths) J44(q, ω) = N(iqFqBγ2/2)
2D(q, ω) + J p

44(q). If
the frequency is not near a pole in D(q, ω), the effect of the coupling
to the phonons on the magnetic excitations is therefore similar to that
stemming from the corresponding quadrupole–quadrupole interaction.
If J p

44(0) is non-zero, the ultrasonic velocities are influenced by this cou-
pling, as we now have

c∗66
c66

=
1− Ξ(q, 0)J44(0, 0)

1− Ξ(q, 0)J p
44(0)

= 1− Ξ(q, 0)

1− Ξ(q, 0)J p
44(0)

B2
γ2/cγ , (7.3.12)

where the sum over α in (7.3.9b) comprises all the (p − 1) components

for which α �= 4, under the same condition that χ
o
(ω) and J (q, ω)

are both diagonal for α �= 4. In general, χ o
4α(0) may be non-zero, in

the paramagnetic phase in zero magnetic field, if the α-component is
an even-rank tensor, and these interactions may contribute to Ξ(q, 0),
whereas the odd-rank couplings are prevented from affecting the phonons
in the zero-frequency limit by time-reversal symmetry.

In our discussion of crystal-field excitations, we have only been con-
cerned with the excitation spectrum derived from the time variation of
the dipole moments. There are two reasons for this. Most importantly,
the coupling between the dipolar moments expressed in eqn (7.1.1) is
normally dominant in rare earth systems, so that the collective phenom-
ena are dominated by the dipolar excitations. The other reason is that
the magnetic response, including the magnetic susceptibility and the
(magnetic) neutron scattering cross-section, is determined exclusively by
the upper-left 3×3 part of χ(q, ω), in the generalized p-dimensional vec-
tor space introduced through eqn (7.3.11). However, strong quadrupolar
interactions may lead to collective effects and to an ordered phase of the
quadrupole moments. The quadrupolar excitations are not directly vis-
ible in neutron-scattering experiments, but may be detected indirectly
via their hybridization with the dipole excitations, in the same way as
the phonons, or via their hybridization with the phonons, as measured
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by the nuclear scattering of the neutrons. In a paramagnetic system in
zero field, the p × p susceptibility-matrix partitions into two indepen-
dent blocks, at zero frequency, the one depending only on the even-rank
couplings and the other only on the odd-rank couplings. If one of the
two parts of χ(q, 0) diverges at some temperature T ∗, it signals the oc-
currence of a second-order phase transition at this temperature. If it
is the block determined by the even-rank couplings which diverges, the
order parameter below T ∗ is associated with the quadrupole moments,
assuming the lowest-rank terms to be dominant. If there is any coupling
between this order parameter and one of the phonon modes, the transi-
tion is accompanied by a softening of these phonons, provided that the
pure quadrupolar excitations have higher energies than the phonons at
the ordering wave-vector. If this vector Q is zero, the corresponding
elastic constant vanishes at the transition. In the case where Q �= 0, the
situation corresponds to that considered in the magnetic case, and the
phonon mode shows soft-mode behaviour according as there are pure
elastic contributions to the (RPA) susceptibility or not. A quadrupolar
phase-transition involving the phonons is usually referred to as being
induced by the Jahn–Teller effect, and a more detailed discussion and
relevant examples may be found in, for instance, Elliott et al. (1972).
The presence of a non-zero quadrupole moment does not destroy the
time-reversal symmetry, and an ordering of the dipole moments may
follow only after an additional phase transition. In TmZn (Morin et al.
1980) an ordering of the quadrupole moments occurs below a first-order
transition at TQ = 8.6K, and this phase is disrupted by the onset of
ferromagnetic ordering at TC = 8.1K. In the opposite case of order-
ing of the dipole moments, the breaking of the time-reversal symmetry
allows a direct coupling between the dipole and quadrupole moments,
so that the latter are forced to order together with the dipoles, giving
rise to, for example, crystal-field-induced magnetostriction effects, and
the dipolar ordering will normally quench any tendency toward a purely
quadrupolar-ordered phase.

In this chapter, we have formulated the various RPA results in terms
of the generalized-susceptibility matrices. The results apply in param-
agnetic as well as in ordered systems, so long as the order parameter
is uniform throughout the crystal. They agree with the more explicit
results derived previously in the case of a weakly-anisotropic ferromag-
netic system. In a paramagnet or a strongly-anisotropic ferromagnet,
the results above may also be given a more transparent and explicit
form, but only if the number (2J + 1) of different angular-momentum
states can be taken as small; else the matrix-equations themselves are
well-suited for solution by numerical methods. The reduction of the
matrix-equations in, for instance, the (J = 1)-case is straightforward
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and the results, corresponding to Pr in the limit T = 0, are given by
Jensen (1976a).

In the present approximation, the sound velocities are not affected
by the interaction between the dipoles, in the paramagnetic phase at
zero magnetic field. However, in the vicinity of a second-order transi-
tion to a ferromagnetic phase, strong softening of the long-wavelength
phonons may be observed, depending on the symmetry properties, and
this behaviour cannot be explained within the RPA. We have seen that,
according to eqns (5.4.15) and (5.4.38), c∗66 vanishes in the basal-plane
ferromagnet when a field equal to the critical field Hc is applied along
the hard basal-plane direction. When TC is approached from below, Hc

vanishes rapidly, resulting in a strong softening of c∗66 even in zero field,
and it seems likely that similar behaviour should be observed when TC

is approached from above, considering that just above TC there will be
large domains of nearly constant magnetization, allowing an ‘RPA’ cou-
pling between the dipole moments and the sound waves similar to that
occurring in the ferromagnetic phase. Clear indications of this kind of
behaviour have been seen in for example Tb (Jensen 1971b), indicating
that the RPA is not even qualitatively trustworthy when the fluctuations
are a dominating feature of the system.

7.3.2 Conduction-electron interactions

The sf-exchange Hamiltonian (5.7.6) was derived without making any
special assumptions about the rare earth metal involved, and it there-
fore applies equally well to a metallic crystal-field system. For the
weakly-anisotropic ferromagnet considered in Section 5.7, this Hamil-
tonian leads to a Heisenberg two-ion coupling, J̃ (q, ω), which to a
first approximation is instantaneous, and is thus effectively J (q) =

J̃ (q, 0) − (1/N)
∑

q′ J̃ (q′, 0), as given by eqn (5.7.28). This remains
true in crystal-field systems, as may be demonstrated by expanding the
angular-momentum operators in (5.7.6) in terms of the standard-basis
operators, and then calculating the corresponding Green functions which
determine χ(q, ω), utilizing an RPA decoupling of the coupled Green
functions.

In the ordered phase, Jzz(q, ω) may actually differ from the two
other components of the exchange coupling, due to the polarization of
the conduction electrons. However, in the paramagnetic phase in zero
field, the coupling is isotropic, within the approximation made in Sec-
tion 5.7. This may be seen by analysing the full expression (5.7.27) for

J̃ (q, ω), or the simpler result (5.7.26), in which the susceptibility of the
conduction electrons becomes a scalar:

χαβ
c.el.(q, ω) =

1
2χ

+−
c.el.(q, ω) δαβ . (7.3.13)



7.3 PERTURBATIONS OF THE CRYSTAL-FIELD SYSTEM 343

Here the reactive and absorptive parts of χ+−
c.el.(q, ω), still given by

(5.7.26b), are both real and even in q, while the reactive part is even
with respect to ω, whereas the absorptive part is odd. When considering
the frequency dependence of the susceptibility, we must distinguish two
separate regimes, defined by the parameter

ϑ = −ηq/2kF = (h̄ω/2εF )(kF /q) = (2/3ν)N (εF )h̄ω(kF /q),

where η is the parameter introduced in (5.7.31c) (with ∆(c.el.) = 0). If
|ϑ| is small compared to one,

χ+−
c.el.(q, ω) = N (εF )

{
F( q

2kF

)
+ i

π

2
ϑ
}

; |ϑ|  1, (7.3.14)

where the correction to the real part, of the order ϑ2, may be neglected.
This is the same result as obtained in the ordered phase, eqns (5.7.32)
and (5.7.36), when the small frequency-dependent term in the former is
neglected. When |ϑ| becomes larger than 1 (or q > 2kF ), the imaginary
part vanishes, as shown in the calculations leading to (5.7.36), and the
real part becomes strongly dependent on ω, vanishing for large values of
ϑ as ϑ−2 ∝ ω−2. If h̄ω = 1–10meV, then ϑ = (10−4 – 10−3)kF /q in the
rare earth metals, so that the corrections to (7.3.14) are only important
in the immediate neighbourhood of q = 0. The physical origin of this
particular effect is that the susceptibility of the free-electron gas is purely
elastic in the limit q = 0, and it does not therefore respond to a uniform
magnetic field varying with a non-zero frequency. In the polarized case,
the contributions to the transverse susceptibility are all inelastic at long
wavelengths, so this retardation effect does not occur when the polar-
ization gap ∆(c.el.) is large compared to |h̄ω|. The exchange coupling,
in the limit q = 0, includes both the elastic and inelastic contribu-
tions, as in (5.7.26c), and the abnormal behaviour of the elastic term
may be observable in paramagnetic microwave-resonance experiments,
where the anomalies should be quenched by a magnetic field. On the
other hand, it may not be possible to study such an isolated feature in
q-space by inelastic neutron-scattering experiments. Leaving aside the
small-q regime, we have therefore that the effective exchange-coupling is

J (q, ω) = J (q) + iζ(q)h̄ω, (7.3.15)

where ζ(q) is given by (5.7.37b), and J (q) is the reduced zero-frequency
coupling given above, or by (5.7.28).

In the case of the weakly-anisotropic ferromagnet, the frequency
dependence of the exchange coupling affects the spin-wave excitations
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in the same way as results when J (q) is replaced by J (q, ω) in the usual
RPA expression for the susceptibility, i.e.

χ(q, ω) =
{
1− χ

o
(ω)J (q, ω)

}−1
χ

o
(ω). (7.3.16)

In order to establish that this procedure is valid in general, to leading
order in 1/Z, we must appeal to the 1/Z-expansion discussed in Section
7.2. It is clear that the usual RPA decoupling (3.5.16), aνξ(i)aν′µ′(j) �
〈aνξ(i)〉aν′µ′(j) + aνξ(i)〈aν′µ′(j)〉, is not a good approximation if i = j,
and in (3.5.15) it is only applied in cases where i �= j, as J (ii) = 0 by
definition. Here, however, J (q, ω) does contain a coupling of one ion
with itself, since J (ii, ω) = iζ0h̄ω, where

ζ0 =
1

N

∑
q

ζ(q) = 2π〈|j(q)|2〉N 2(εF ), (7.3.17)

as is obtained by replacing |j(q)| in (5.7.37b) by a constant averaged
value in the integral determining ζ0. This indicates that it is also nec-
essary to rely on the RPA decoupling when i = j, in order to obtain
the result (7.3.16) when ζ0 is not zero. On the other hand, the RPA
decoupling may work just as well if only the time arguments of the two
operators are different, which is the case as J (ii, t = 0) = 0 indepen-
dently of ζ0. Only when t = 0, is aνξ(i, t)aν′µ′(i, 0) equal to aνµ′(i, 0)δξν′ ,
in direct conflict with the RPA decoupling. This indicates that it may
not be necessary to consider separately the effects of ζ(q) − ζ0 and of
ζ0. This point is treated more precisely by the 1/Z-expansion proce-
dure developed in Section 7.2. Since J (q, ω) replaces J (q), it makes no
difference whether J (q, ω) is frequency-dependent or not, nor whether
J (ii, ω) �= 0, and this procedure leads immediately to the result (7.3.16),
in the zeroth order of 1/Z. If J (q, ω) contains a constant term, result-
ing from J (ii, t) ∝ δ(t), it is removed automatically in the next order
in 1/Z, according to the discussion following eqn (7.2.9). The argument
for subtracting explicitly any constant contribution to J (q, ω), in eqn
(7.3.16), is then that this procedure minimizes the importance of the
1/Z and higher-order contributions. The modifications of the 1/Z con-
tributions are readily obtained by substituting J (q, ω) for J (q) in the
expression (7.2.7c), which determines K(ω), i.e.

K̃(ω) = K(ω) +
1

N

∑
q

iζ(q)h̄ωG(q, ω)
/
G(ω) = K(ω) + i〈ζ(ω)〉h̄ω,

(7.3.18a)
and the self-energy is then obtained as

Σ(q, ω) = iζ(q)h̄ω + Σ̃(ω), (7.3.18b)
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where Σ̃(ω) is the previous function with K(ω) replaced by K̃(ω). The
most interesting effects of the scattering of the magnetic excitations
against the electron-hole pair excitations of the conduction electrons de-
rive from the first term in the self-energy, which already appears in the
‘RPA’ in (7.3.16). The lifetime of the excitations becomes q-dependent
and remains finite in the zero-temperature limit, whereas the imagi-
nary part of Σ(ω), and therefore also of Σ̃(ω), vanishes exponentially at
low temperatures, in the order 1/Z. The importance of the higher-order
contributions associated with this scattering mechanism, as compared to
those of the intrinsic processes, i.e. the relative magnitudes of 〈ζ(ω)〉h̄ω
and K(ω), may depend on the system considered, but in Pr, for exam-
ple, Im

[
K(ω)

]
is much the dominant term at frequencies lying within

the excitonic band. Hence, 〈ζ(ω)〉 may be neglected in K̃(ω) at temper-
atures where the linewidths are still somewhat smaller than the overall
bandwidth.

In Pr, the effect of the conduction electrons on the linewidths at
low temperatures only becomes visible due to the strong increase in the
value of ζ(q) in the limit of small q, where it is approximately propor-
tional to 1/q. Houmann et al. (1979) were thus able to observe the
remarkable broadening of the acoustic modes illustrated in Fig. 7.6, as q
was reduced at 6K. The width at q = 0.2 Å is only slightly greater than
the experimental resolution, but the peak has become very broad by
0.05 Å, and it has almost vanished into the background at q = 0, even
though the integrated intensity is expected to increase as the energy
decreases. This behaviour is in sharp contrast to that observed in Tb
where, as shown in Fig. 5.13 on page 269, the width at small q is greatly
reduced by the spin-splitting of the Fermi surface, in accordance with
eqn (5.7.37). Since the spin-splitting of the Pr Fermi surface becomes
very substantial in a large field, as illustrated in Fig. 1.10, the scattering
of the long-wavelength magnetic excitations by the conduction electrons
should be quenched by the application of a field. A careful study of
this phenomenon would allow a detailed investigation of the interaction
between the conduction electrons and the 4f moments.

The modification of K̃(ω) also contributes to the broadening of the
diffusive peak and, instead of (7.2.11), the result for J = 1 is now

G(ω) = G(0)
iΓ1h̄ω − Γ2

(h̄ω + iΓ)2
, (7.3.19a)

with

Γ1 = 2〈ζ(0)〉/β and Γ = Γ1 +
√
2K(0)/β. (7.3.19b)

The term linear in 〈ζ(0)〉, introduced in (7.2.10), predicts Lorentzian
broadening, if K(0) is neglected. The intrinsic contribution may also
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Fig. 7.6. Neutron-scattering spectra from the acoustic branch of the
magnetic excitations propagating along the c-axis on the hexagonal sites
of Pr at 6K. The observed values of Γ, the full width at half maximum,
increase rapidly as q decreases, due to scattering by the conduction elec-
trons, and at q = 0 it is difficult to distinguish the peak from the back-

ground. The experimental energy resolution is about 0.35meV.

here dominate at most temperatures, but it is clear that this cannot hold
true in the high-temperature limit, where Γ1 increases proportionally
to T , whereas K(0)/β approaches a constant value. So, in the high-
temperature limit, (7.3.19) leads to the Korringa law (Korringa 1950)
for the linewidth:

G(q, ω) � G(ω) � G(0)
iΓ1

h̄ω + iΓ1
, with

Γ1 = 2〈ζ(0)〉kBT = 4π〈|j(q)|2〉N 2(εF )kBT, (7.3.20)

since 〈ζ(0)〉 = ζ0 in this limit. We argued above that 〈ζ(ω)〉 could
be neglected, in comparison with the intrinsic effects, at relatively low
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temperatures but, in the high-temperature limit, 〈ζ(ω)〉 is the dominant
term. Becker et al. (1977) have deduced the influence of the electron-
hole-pair scattering on the crystal-field excitations, with an accuracy
which corresponds to the results obtained here to first order in 1/Z, using
an operator-projection technique. They performed their calculations for
an arbitrary value of J , but without including the intrinsic damping
effects which, as pointed out above, may be more important, except in
the high-temperature limit.

The effects of the sf-exchange Hamiltonian on the effective mass and
the heat capacity of the conduction electrons in a crystal-field system
may be derived in an equivalent way to that used for the spin-wave
system. The mass-enhancement, m∗/m = 1 + λCF, is deduced to be
given by (White and Fulde 1981; Fulde and Jensen 1983):

λCF = N (εF )
1

2k2F

∫ 2kF

0

dq

∫
dΩq

4π
q|j(q)|2

∑
α

χαα(q, ω → 0)

=
1

N

∑
q

ζ(q)

2πN (εF )

∑
α

χαα(q, ω → 0),

(7.3.21a)
and is a generalization of eqn (5.7.50), valid in the paramagnetic phase.
The term χαα(q, ω → 0) is the zero-frequency susceptibility, omitting
possible elastic contributions, assuming the broadening effects to be
small. At non-zero temperatures, it is found that excitations with ener-
gies small compared to kBT do not contribute to the mass-enhancement,
and therefore, even in the low-temperature limit considered here, the
purely elastic terms in χαα(q, ω) do not influence the effective mass.
This is also one of the arguments which justifies the neglect to leading
order of the effect on m∗ of the longitudinal fluctuations in a ferro-
magnet, which appear in χzz(q, ω). In contrast, the elastic part of the
susceptibility should be included in eqn (5.7.57), when the magnetic ef-
fects on the resistivity are derived in the general case, as in Section 5.7.
In systems like Pr, with long-range interactions, the dispersive effects
due to the q-dependence of χ(q, ω) are essentially averaged out, when
summed over q. In this case, we may, to a good approximation, re-
place χ(q, ω) in sums over q by its MF value χ

o
(ω). The correction to

the MF value of the low-temperature heat capacity in Pr, for example,
is minute (Jensen 1982b). In the eqns (7.3.18–20) above, this means
that, to a good approximation, 〈ζ(ω)〉 � 1

N

∑
q ζ(q) = ζ0 even at low

temperatures, and that the mass-enhancement parameter is

λCF � ζ0
2πN (εF )

∑
α

χ o
αα(ω → 0). (7.3.21b)
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Fig. 7.7. The field dependence
of the coefficient γ of the linear elec-
tronic heat capacity of Pr at low
temperatures. The experimental re-
sults of Forgan (1981) are compared
with a theory including the renor-
malization of the mass, due to the in-
teraction of the conduction electrons
with the magnetic excitations, and
also taking into account the phonon
enhancement and the dependence of
the Fermi level on magnetic field.
The dashed line shows the results of
the theory when the change of the
Fermi energy with field is neglected.

The mass-enhancement due to the crystal-field excitations is re-

flected directly in the effective mass measured in the de Haas–van Alphen

effect, and in the linear term in the low-temperature electronic specific

heat, analogously to the spin-wave system. The former effect has been

studied by Wulff et al. (1988), who find that the theory of Fulde and

Jensen (1983) accounts very well for the field dependence of the masses

of several orbits, using the same values of the sf -exchange integral I,

about 0.1 eV, as reproduce the variation of the orbit areas discussed

in Section 1.3. The substantial field dependence of the electronic heat

capacity, measured by Forgan (1981), is shown in Fig. 7.7, and com-

pared with values calculated from eqn (7.3.21b), taking into account the

field dependence of the electronic state density at the Fermi level, calcu-

lated by Skriver (private communication), and the phonon enhancement

(Skriver and Mertig 1990). At higher temperatures, the imaginary part

of J (q, ω) in (7.3.16) gives rise to the same contribution to the magnetic

heat capacity as the extra term in (5.7.52) in the spin-wave case, with

ζ(q)
∑

α χαα(q, ω → 0) replacing 2Γq/E
2
q. This contribution should be

added to the non-linear corrections to the total low-temperature heat

capacity calculated by Fulde and Jensen (1983).
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7.3.3 Coupling to the nuclear spins

The hyperfine coupling to the nuclear spins normally has a negligible
influence on the properties of the electronic magnetic moments. How-
ever, in the special case of a crystal-field system with a singlet ground-
state, where the two-ion coupling is smaller than the threshold value for
magnetic ordering, this minute coupling may become of decisive impor-
tance. Under these circumstances, the hyperfine interaction may induce
a cooperative ordering of the combined system of the electronic and
nuclear magnetic moments at very low temperatures. The Hamiltonian
describing the hyperfine interaction in a rare earth ion has been compre-
hensively discussed by Bleaney (1972) and McCausland and Mackenzie
(1979), and the leading-order term is

Hhf = A I ·J, (7.3.22)

where I is the nuclear spin. For the isotope of Pr with mass number 141,
which has a natural abundance of 100%, I = 5/2 and A = 52.5mK = 4.5
µeV. This coupling modifies the MF susceptibility χ

o
(ω) of the single

ion, and since A is small, we may derive this modification by second-
order perturbation theory. In order to simplify the calculations, we as-
sume that the MF ground-state of the electronic system is a singlet, and
that kBT is much smaller than the energy of the lowest excited J-state,
so that any occupation of the higher-lying J-states can be neglected.
Considering first a singlet–singlet system, with a splitting between the
two states |0 > and |1 > of ∆ � |A|, where only Mz =< 0| Jz |1 > is
non-zero, and denoting the combined electronic and nuclear states by
|0,mI > and |1,mI >, where Iz |p,mI >= mI |p,mI >, we find that the
only non-zero matrix elements of Hhf are

< 0,mI | Hhf |1,mI > = < 1,mI | Hhf |0,mI > = mIMzA,

yielding the following modifications of the state vectors:{
|0′,mI > = |0,mI > −(mIMzA/∆)|1,mI >

|1′,mI > = |1,mI > +(mIMzA/∆)|0,mI >,

to leading order. If we neglect the shifts in energy of the different levels,
due to the hyperfine coupling, and the change of the inelastic matrix
element,

< 0′,mI | Jz |1′,mI > = Mz{1− (mIMzA/∆)2} � Mz,

the susceptibility is only modified by the non-zero matrix-element,

< 0′,mI | Jz |0′,mI > = −2mIM
2
zA/∆,
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within the (2I + 1)-ground state manifold, i.e.

δχ o
zz(ω) = β

1

2I + 1

∑
m

I

(
2mIM

2
zA/∆

)2
δω0 = β 1

3I(I+1)A2(2M2
z /∆)2δω0.

(7.3.23)
This result may be straightforwardly generalized to an arbitrary level
scheme, including non-zero matrix elements of the other J-components,
as the different contributions are additive. The susceptibility may then
be written

χ o
αβ(ω) = χJ

αβ(ω) +A2
∑
γγ′

χJ
αγ(ω)χ

I
γγ′(ω)χJ

γ′β(ω), (7.3.24)

to leading order in A, which is valid as long as the general assumptions
made above are satisfied. χJ

αβ(ω) is the MF susceptibility for the elec-
tronic system alone, when the extra term δHJ(MF) = A〈I〉·J is included
in its MF Hamiltonian. In order to derive the effective MF Hamiltonian
HI(MF), determining the susceptibility of the nuclear spins χI

αβ(ω), we
must consider the possibility, neglected above, that Hhf may lift the
(2I + 1)-fold degeneracy of the ground-state manifold. Calculating the
energies of the ground-state levels, in the presence of an external field,
by second-order perturbation theory, we find straightforwardly that the
equivalent Hamiltonian, describing the splitting of these levels, is

HI(MF) = −gNµNH · I+A
{〈J〉 +A〈I〉 · χJ(0)

} · I− 1
2A

2I · χJ(0) · I.
(7.3.25a)

This result can be interpreted as expressing the ability of J to follow
instantaneously any changes of I. The molecular field due to 〈J〉 is
subtracted from the response to I, which then instead gives rise to the
last quadrupolar term. This quadrupolar contribution is the only effect
which is missing in a simple RPA decoupling of the interactions intro-
duced through Hhf . If χJ (0) is not a scalar, the last term gives rise
to a quadrupole-splitting of the ground-state manifold, and the zero-
frequency susceptibility is then, to leading order in this term,

χI
αα(0) =

1

3
I(I +1)β

[
1+ 1

15A
2β(I + 3

2 )(I − 1
2 )
{
3χJ

αα(0)−
∑
γ

χJ
γγ(0)

}]
(7.3.25b)

if χJ (0) is diagonal. The results above were first obtained and anal-
ysed by Murao (1971, 1975, 1979), except that he replaced χJ

αα(0) in
(7.3.25) by (1/N)

∑
q χ

J
αα(q, 0) which, according to the above inter-

pretation, is to be expected in order 1/Z. For the hexagonal ions in
Pr-metal, AχJ

αα(0) = 0.026 for the two basal-plane components, but is
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zero for the cc-component, which implies that the induced quadrupolar-
interaction is a factor of about seven larger than the intrinsic value of
the electric-quadrupole hyperfine-interaction for the ion (< 0 | HQ |0>=

(5/7)P‖(I2ξ + I2η ), with P‖ = −0.128mK, using the notation of Bleaney
(1972)). In any case, the quadrupole contribution to (7.3.25b) only
makes a 1.5% correction at the transition temperature TN ≈ 50mK in
Pr. The induced quadrupole interaction, due to the highly anisotropic
fluctuations of the electronic moments, may be important in nuclear-
magnetic-resonance (NMR) experiments. The most important effect
in NMR is, however, the strong enhancement of the Zeeman splitting
between the nuclear levels by the hyperfine coupling. Introducing
HI(MF) = −gNµNHeff

I · I in (7.3.25a), we find an enhancement

|Heff
I /H | � |1− (gµB/gNµN )Aχzz(0, 0)|, (7.3.26)

which, for the hexagonal ions in Pr, gives a factor of about 40 in the low-
temperature limit, when the field is applied in the basal-plane, but unity
if H is along the c-axis. In addition to the hyperfine interactions consid-
ered above, the nuclear spins may also interact directly with the conduc-
tion electrons, leading to an extra Knight shift and Korringa broadening
of the NMR-levels. The most important NMR-linewidth effect is, how-
ever, due to the fluctuations of the localized electronic moment. If J = 1,
corresponding to Pr, these fluctuations lead to a Lorentzian broadening,
so that χI

ξξ(0) → χI
ξξ(0)

[
iΓN/(h̄ω + iΓN)

]
, with

ΓN = 10(n0n1/n01)M
2
ξ Im

[
K̃(ω = ∆/h̄)

]
,

to first order in 1/Z. In the case of Pr, this gives ΓN � exp(−β∆)× 1.0
meV (Jensen et al. 1987).

The magnetization and the neutron-scattering cross-section are de-
termined in the RPA by the usual susceptibility expression (7.1.2), with
χ

o
(ω) now given by (7.3.24), provided that we neglect the contribu-

tions of the small nuclear moments. This means that, even though the
electronic system has a singlet ground-state, the hyperfine interaction
induces an elastic contribution, and assuming the electronic system to
be undercritical, so that R(0) < 1 in (7.1.6), we obtain in the low tem-
perature limit, where kBT  ∆,

χξξ(q, 0) =
∆2

{
1 +A2χJ(0)χI(0)

}
E2

q − (∆2 − E2
q)A

2χJ(0)χI(0)
χJ (0), (7.3.27)

where χJ(0) = 2M2
ξ /∆, and Eq is given by (7.1.4b), with n01 = 1. If

we introduce the nuclear spin susceptibility, neglecting the quadrupo-
lar contribution, into this expression, it predicts a second-order phase



352 7. CRYSTAL-FIELD EXCITATIONS IN THE LIGHT RARE EARTHS

transition, at a temperature determined by

kBTN = 1
3I(I + 1)A2χJ(0)

∆2 − E2
Q

E2
Q

= 1
3I(I + 1)A2χJ(0)

R0

1−R0
,

(7.3.28)
to a modulated phase described by the wave-vector Q at which J (q)
has its maximum value, where R0 is the critical parameter defined by
eqn (7.1.6). With ∆ = 3.52meV and EQ = 1.0meV for the hexagonal
excitations in Pr, the electronic system is just undercritical, with a crit-
ical ratio R0 � 0.92. This means that the importance of the hyperfine
interaction is much enhanced, and eqn (7.3.28) predicts TN = 45mK for
the cooperative ordering of the nuclear and electronic moments in Pr.
The transition is no longer accompanied by a soft mode, but there is
rather an elastic peak, with a scattering intensity given by

Sξξ
d (q, ω ≈ 0) = 1

3I(I + 1)A2
(2M2

ξ /Eq)
2

1− χJ(0){1 +A2χJ(0)χI(0)}J (q)
δ(h̄ω),

(7.3.29)
in the paramagnetic phase, which diverges at q = Q when T approaches
TN , analogously to the behaviour of the singlet–triplet case described
by (7.1.13).

7.4 Magnetic properties of Praseodymium
The magnetic behaviour of Pr has already been extensively discussed in
this chapter, in order to illustrate a number of the phenomena which
occur in crystal-field systems. In this section, we will collect together
these threads into a coherent description of the magnetic ordering which
may be induced by various perturbations, and of the excitations in the
paramagnetic and ordered phases.

7.4.1 Induced magnetic ordering

As discussed at the end of the preceding section, the coupling of the
nuclear spins to the electronic moments in Pr gives rise to a magnetic
system whose ground state is degenerate. According to the third law
of thermodynamics, this degeneracy must be lifted at sufficiently low
temperatures and, within the MF approximation, this is accomplished
by magnetic ordering at a temperature determined by eqn (7.3.28). The
enhancement factor R0/(1−R0) is about 12 for the hexagonal sites, so
that the calculated collective-ordering temperature for the nuclear spins
and the electronic moments is raised into the more readily accessible
range of about 45mK. The strong neutron-diffraction peak illustrated
in Fig. 7.8 was observed at 40mK by Bjerrum Møller et al. (1982), at a
value of Q close to the minimum in the dispersion relations of the mag-
netic excitons. This mode of excitation comprises magnetic fluctuations
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whose zero-frequency limit is a longitudinal-wave structure along the b-
axis, and the electronic moment induced by the hyperfine coupling, in
the zero-temperature limit, is

〈Jη(Q)〉0 � IA
χJ(0)

1− χJ(0)J (Q)
= IA

2M2
η

∆(1 −R0)
, (7.4.1)

multiplied by gµB, corresponding to about 0.6µB. Determining the elec-
tronic moment from the neutron-diffraction intensities is complicated by
the coherent nuclear scattering of neutrons at the same Q, due to the
induced polarization of the nuclei. The two contributions can however
be separated with the help of polarized neutrons, and Kawarazaki et al.
(1988) thereby deduced that the electronic moment on the hexagonal
sites is about 0.4µB at 30mK, while there is also an induced moment
an order of magnitude smaller on the cubic sites. The nuclear polariza-
tion on both types of site is substantial at this temperature, which is
consistent with the observation by Lindelof et al. (1975) and Eriksen et
al. (1983) of a dramatic increase in the nuclear heat capacity, indicating
a second-order transition of the nuclear spins to an ordered structure at
about 50mK.

As may be seen in Fig. 7.8, the magnetic ordering is preceded by
a strong precursor scattering, which has been observed in single crys-
tals by a number of investigators at temperatures as high as 10K, and
was first investigated in the millikelvin range by McEwen and Stirling
(1981). The figure shows that the peak actually comprises two contribu-
tions, one centred at the critical wave-vector, and a broader component
at a slightly smaller wave-vector. The narrower peak, which is usually
known as the satellite, appears around 5K and increases rapidly in in-
tensity as TN is approached, at which temperature it transforms into
the magnetic Bragg peak. Since the width in κ of this peak is greater
than the instrumental resolution, at temperatures above TN , it does not
reflect the presence of true long-range magnetic order, but rather very
intense fluctuations, with a range of several hundred Å, which presum-
ably also vary slowly in time. The RPA theory predicts such a peak
only because of the elastic scattering from the nuclear spins, as given
by eqn (7.3.29). However, the peak produced by this mechanism is es-
timated to be visible only very close to TN , below 200mK, and cannot
therefore explain the observations. The satellite above TN may be in-
terpreted as a critical phenomenon, due to the strong increase in the
fluctuations, neglected in the RPA, which develop as the second-order
transition is approached. When the electronic susceptibility has satu-
rated below about 7K, the critical fluctuations in Pr would be expected
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Fig. 7.8. Neutron-diffraction scans in Pr. The solid lines show the
sum of two Gaussian functions fitted to the data. Only below 50mK is
the width of the narrower of these equal to the experimental resolution,

indicating true long-range magnetic order.

to correspond to those of a normal degenerate system within 10% of
its critical temperature. However, the satellite in Fig. 7.8 is much more
intense than such fluctuations could normally give rise to. An alternative
possibility, which has been analysed theoretically by Murao (1984), is
that much of the intensity of the satellite above TN is due to an ordering
of the moments close to the surface of the crystal, which gives rise to
a Bragg peak of non-zero width. The crystalline electric field acting on
the surface ions is different from that determining the bulk properties,
and the magnetic response of these ions will therefore also be different.
For instance, the lowering of the symmetry near the surface splits the
degeneracy of the |±1>-states, thereby enhancing one of the basal-plane
components of the susceptibility tensor.

The occurrence of the other peak in the scans shown in Fig. 7.8,
known as the central or quasielastic peak, has been a long-standing mys-
tery. It is much broader than the satellite and constitutes a ring of
scattering around Γ in the basal-ΓMK-plane, with a radius which is
slightly smaller than that of the contour of energy mimima found in the
excitation spectrum, illustrated in Fig. 7.1. The integrated quasielastic-
scattering intensity from this ring is therefore rather large, and around 1
K it is found to correspond to a moment of the order of 0.1µB per hexag-
onal ion. In a polycrystalline sample, this ring of scattering cannot be
distinguished from scattering from a single point in κ-space, which pre-
sumably explains why diffraction studies of polycrystalline Pr indicate
that it is antiferromagnetic at 4K (Cable et al. 1964).
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The quasielastic peak cannot be classified as an additional critical
phenomenon, because it is not centred at the critical ordering wave-
vector. Furthermore, even though its intensity increases in the para-
magnetic phase, as the system approaches criticality, it is still present,
with a non-zero width in κ-space, below the transition and its intensity
continues to increase as the temperature is further reduced (Burke et al.
1981; Bjerrum Møller et al. 1982; McEwen 1986). The dynamic effects
associated with this quasielastic peak are very modest, as observed by
Jensen et al. (1987); its width in energy is estimated to be less than 0.1
meV. Nevertheless, its integrated intensity is too large to be explained
as a static phenomenon due to scattering from local short-range ordering
of the crystal near the surface or around bulk defects, such as magnetic
impurities or lattice defects. The only remaining possibility appears to
be that the quasielastic peak is associated with the magnetic response of
the itinerant electrons. This is consistent with one of the results of the
neutron-scattering studies by Leuenberger et al. (1984) of the hexagonal
insulator Cs3Cr2Br9, in which the Cr dimers form a singlet–triplet sys-
tem which has a number of analogies to Pr. Even though this system is
very close to magnetic ordering, and the lowest excitation energies are
only about 0.2meV, there is no sign of either a satellite or a quasielastic
peak. The spin fluctuations of band electrons are not normally expected
to give rise to a quasielastic peak of the intensity observed in Pr, and its
occurrence may therefore indicate the formation of resonant states near
the Fermi surface in Pr, due to hybridization of the conduction electrons
with the 4f electrons. As discussed in Section 1.3, the 4f electrons in Pr
are very close to delocalization, and the incipient magnetic instability
of the localized electrons would therefore be expected to be reflected in
fluctuations in the conduction electron-gas. An indication of the sensi-
tivity of the conduction electrons to the ordering process is provided by
the resistivity measurements of Hauschultz et al. (1978), who found an
increase of almost fifty per cent, over the temperature range in which
the quasielastic peak develops, in the c-direction, where superzone effects
in the ordered phase are expected to be of minor importance. Further
studies of the quasielastic peak, and associated changes in the conduc-
tion electrons, particularly under high pressures with the corresponding
progressive increase in 4f hybridization, would clearly be of interest.

Antiferromagnetism can also be induced in Pr by an internal cou-
pling to magnetic impurities. Assuming that the susceptibility of the
single impurities of concentration c is proportional to 1/T , we find that
eqns (5.6.5–6) of the virtual crystal approximation lead to an ordering
temperature determined by

TN = TN (c) =
c

1− (1− c)R(TN )
TN(c = 1), (7.4.2)
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Fig. 7.9. The effective moments, deduced from the intensities of the
narrower peaks in scans of the type illustrated in Fig. 7.8, in Pr and
Pr97.5Nd2.5. Only below about 50mK and 3.5K respectively do these

moments correspond to a long-range magnetically ordered state.

where R(T ) is the critical parameter of eqn. (7.1.6). This expression
gives TN � 12.5cTN(c = 1), for c  1. A rapid increase of TN at
small concentrations of Nd ions in Pr was indeed observed by Lebech
et al. (1975). As illustrated in Fig. 7.9, the study of a single crystal of
Pr97.5Nd2.5 by Bjerrum Møller et al. (1982) revealed a number of infor-
mative details. The temperature dependence of the scattered intensity
follows qualitatively the behaviour observed in pure Pr. The quasielastic
peak appears around 10K, a strong satellite which is broader than the
experimental resolution emerges from it around 6K, and a diffraction
peak, signifying true long-range order, develops below about 3.5K. As
in Pr, the quasielastic peak continues to grow below TN . The rise in
the magnetization below about 0.2K is ascribed to the polarization of
the nuclei and their hyperfine interaction with the 4f moments. Inelas-
tic neutron-scattering experiments by Wulff et al. (1983) gave results
consistent with a crystal-field model in which the Nd ions have a pre-
dominantly |± 3

2 > ground state, and excited |± 1
2 > and predominantly

| ± 5
2 > states at about 0.3meV and 1.2meV respectively.

The application of an external uniaxial pressure along the a-axis
in the basal plane lifts the degeneracy of the | ± 1 > first excited-state
and may therefore induce magnetic ordering, as predicted by Jensen
(1976a) and observed by McEwen et al. (1978). The magnetoelastic
phenomena described in Section 7.3.1, particularly the magnitude of the
field-induced interaction between the magnetic excitations and the trans-
verse phonons, may be used for estimating the coupling parameter Bγ2
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Fig. 7.10. MF calculation of the ordering temperature TN in Pr, as
a function of the uniaxial pressure in the a-direction, compared with the

neutron-diffraction measurements of McEwen et al. (1983).

for the hexagonal ions. Neglecting the magnetoelastic coupling to the
cubic ions, we obtain from eqn (7.3.2) the following γ-strain contribution
to the magnetic Hamiltonian:

Hγ(sta) = −
∑

i∈hex.ions

Bγ2O
2
2(Ji)

[1
2Bγ2〈O2

2(Ji)〉+ t11
]
/cγ +H0

γ , (7.4.3)

in the presence of a uniaxial stress along the ξ-axis. N in (7.3.2) is
the total number of ions, or twice the number of hexagonal sites. At
zero temperature and zero magnetic field, the only effect of Hγ(sta),
within the effective (J = 1)-model, is that the crystal-field splitting
which determines the excitation spectrum becomes different for the two
polarizations, and for instance ∆η, giving the Jη-mode energies, is found
to be

∆η = ∆η(t11) = ∆−Bγ2M22t11/cγ ,
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Fig. 7.11. Experimental measurements of the first harmonic of the
magnetization on the hexagonal sites in Pr, deduced from the intensities
of neutron-diffraction peaks at 1.5K, compared with a MF calculation

for the J = 4 ion.

where the matrix element

M22 ≡ < 1a |O2
2 |1a> = − < 1a |J2

η |1a > = −10,

in Pr. ∆ξ differs from ∆ by the same amount, but with the opposite sign.
At the incipient ordering wave-vectorQ along the η-axis, the excitations
are purely transverse or longitudinal, Jξ or Jη modes. The critical ratio
R0, defined by eqn (7.1.6), for the optical longitudinal mode at Q is then
determined by

R0(t11) = R0(0)∆/∆η(t11).

Hence the application of the stress alters the critical ratio, and it attains
the threshold value 1 when

T c
11 =

{1−R0(0)}∆
M22Bγ2

cγN/V, (7.4.4)

where cγN/V = 4c66. With the following values of the parameters;
R0(0) = 0.92, ∆ = 3.52meV, Bγ2 � 12meV, and c66 = 1.6 · 1010N/m2,
the effective (J = 1)-model predicts that the critical stress necessary
for inducing magnetic ordering in Pr at zero temperature is T c

11 = −1.5
kbar. However, the |3s >-state lies just above the magnetic excitons
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Fig. 7.12. The crystal-field levels of an isolated hexagonal ion in Pr,
as a function of an applied magnetic field in the a- and c-directions. The

zero-field wavefunctions are specified more precisely in Fig. 1.16.

and, as < 1a |O2
2 |3s > is non-zero, it has a significant effect on ∆η(t11).

A calculation which includes all the crystal-field levels of Pr predicts

the critical uniaxial pressure −T c
11 along the ξ-axis to be 0.7 kbar. As

may be seen in Fig. 7.10, such a calculation is in good agreement with

the experimental observations of McEwen et al. (1983), at temperatures

sufficiently high that the hyperfine coupling is of no importance, and also

accounts very well for the critical pressure at higher temperatures, where

the thermal population of the magnetic excitons becomes significant.

The dependence of the ordered moment at 1.5K on the uniaxial pressure

is also very well reproduced by this theory, as illustrated in Fig. 7.11.

The stable configurations of the moments at zero pressure are expected

to be analogous to those found in Nd and discussed in Sections 2.1.6

and 2.3.1, i.e. a single-Q structure at small values of the magnetization

and a double-Q configuration when the first harmonic of the moments is

larger than about 0.2–0.3µB. This behaviour has not been established

experimentally, but a suggestive rotation of the ordering wave-vector

away from the symmetry axis, as expected in the double-Q structure,

has been detected (McEwen et al. 1983). Uniaxial pressure stabilizes a

longitudinal wave with Q along the b-axis perpendicular to the strain,

and a modest pressure of about 0.1 kbar is estimated to be sufficient

to quench the double-Q structure. Accordingly, the theoretical curve in
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Fig. 7.13. MF calculation of the magnetization of Pr at 4.2K as a
function of a magnetic field applied in the a- and c-directions. The circles
are the experimental measurements of McEwen et al. (1973), while the
squares are deduced from the neutron-diffraction results of Lebech and

Rainford (1971).

Fig. 7.11 is calculated with the assumption of a single-Q ordering of the
moments.

The final perturbation which may induce a magnetic state in Pr is
an external magnetic field. The modification of the crystal-field levels
of an isolated hexagonal ion by a magnetic field is illustrated in Fig.
7.12. If the field is in the basal plane, the excited states are increased
in energy, relative to the ground state, but they mix strongly into it,
giving rise to the large moment shown in Fig. 7.13. If the magnetic
field is along the c-axis, on the other hand, the matrix elements between
the ground and excited states on the hexagonal sites are zero, but the
|+ 1 > and |3s >→ |+ 3 > states both decrease in energy, linearly
and quadratically respectively. At about 320kOe, the latter crosses
the ground state and the moment increases abruptly, as observed by
McEwen et al. (1973). As illustrated in Fig. 7.13, the model of Houmann
et al. (1979), supplemented with a magnetoelastic coupling Bα2 = 7.0
meV for the hexagonal ions, accounts well for these results. The jump in
the magnetization rapidly becomes smeared out when the temperature
is raised, due to the thermal population of the excited states, as observed
experimentally at 14K (McEwen 1978).
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7.4.2 The magnetic excitations

The magnetic-excitation spectrum in Pr has been investigated experi-
mentally in great detail as a function of various external constraints,
such as the temperature, a magnetic field applied in the basal plane, and
uniaxial pressure. Most of the knowledge about the (low-temperature)
coupling parameters in the model Hamiltonian for Pr, which we have al-
ready utilized several times in the preceding sections, has been derived
from these experiments. The first inelastic neutron-scattering exper-
iments on Pr (Rainford and Houmann 1971; Houmann et al. 1975b)
showed that the excitations behave as expected in a singlet ground-
state system, and that the two-ion coupling is just below the threshold
value for inducing magnetic ordering. A MF analysis of the tempera-
ture dependence of the excitations, shown by the dashed lines in Fig.
7.3, indicated that the crystal-field splitting ∆ between the |0> ground-
state and the first excited | ± 1>-doublet state of the hexagonal ions is
about 3.2meV. An important discovery (Houmann et al. 1975b) was the
observation, illustrated in Fig. 7.1, of a strong splitting of the doublet
excitations, whenever such a splitting is allowed by symmetry, i.e. when
q is not along the c-axis. This effect demonstrates that the anisotropic
contribution to the two-ion Hamiltonian of Pr,

HJJ = −1

2

∑
ij

J (ij)Ji ·Jj

+
1

2

∑
ij

K(ij)
[
(JiξJjξ − JiηJjη) cos 2φij + (JiξJjη + JiηJjξ) sin 2φij

]
,

(7.4.5)
is important. Here φij is the angle between the ξ-axis and the projection
of Ri − Rj on the basal plane. Real-space coupling parameters J (ij)
and K(ij) derived from the excitation energies shown in Fig. 7.1, using
the MF-RPA expression for the energies with ∆ = 3.52meV, are shown
in Fig. 1.18. This somewhat larger value of ∆ was obtained from a
study of the field dependence of the excitations (Houmann et al. 1979),
but it is still consistent with their temperature dependence, as shown
by the results of the self-consistent RPA, the solid lines in Fig. 7.3.
Besides leading to the more accurate value of ∆, the field experiments
revealed the presence of a rather strong magnetoelastic γ-strain coupling
in Pr, which creates energy gaps proportional to the field at the crossing
points of the magnetic-exciton and transverse-phonon branches in the
basal-plane directions, as illustrated in Fig. 7.14.

The model Hamiltonian, with the two-ion and magnetoelastic terms
given respectively by (7.4.5) and (7.4.3), together with the usual single-
ion crystal-field Hamiltonian for a hexagonal system, describes very well
the excitation-energy changes observed by Houmann et al. (1979) when
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Fig. 7.14. Dispersion relations for the excitations propagating on
the hexagonal sites of Pr at 6K, in an applied field of 43.5 kOe. The
field is in the basal plane and perpendicular to the wave-vector, so that
there is a discontinuity at M, corresponding to a rotation of the field
through 90◦. Compared with Fig. 7.1, the energy of the magnetic exci-
tations has increased, and the field has induced couplings between the
magnetic excitons and the transverse-acoustic phonons polarized in the
basal plane, indicated by dashed lines. These phonons are coupled to the
acoustic and optical longitudinal magnetic modes in the ΓM-direction,
and to the (predominantly) acoustic longitudinal and optical transverse
modes (the two branches of intermediate energy) in the ΓK-direction
(Jensen 1976a). The full lines show the results of an RPA calculation of
the magnetic excitations, neglecting the coupling to the phonons. The
predicted low-intensity higher-lying modes, corresponding to transitions
to the predominantly |3s> crystal-field state, were not observed directly
in the experiments, but their influence may be seen in the lowest branch
along ΓK, since it is their mixing with this mode which holds the energies

below those along ΓM.

a field is applied in the basal plane at low temperature. The dispersion
relation was measured at three values of the field (14.5, 29.0, and 43.5
kOe), and the results obtained at the highest field are shown in Fig.
7.14.

The most important effect of the field is the admixture of |1s,a >
into the ground state. This causes ∆ξ and ∆η to increase, and the
matrix elements Mξ and Mη to decrease. The energies of the excita-
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tions are thereby increased, while the dispersion becomes smaller. If
the field is applied along the ξ-axis, the ξ-mode parameters are changed
approximately twice as much, relative to their zero-field values, as the
η-mode parameters. At H = 43.5kOe, the total molecular field, which
determines the energies in Fig. 7.12, is 100kOe, and ∆ξ = 4.29meV,
whereas ∆η = 3.86meV. This means that the field produces the largest
effects on the excitations polarized (predominantly) parallel to it, which
in Fig. 7.14 are the transverse modes, both when q is along ΓM and
along ΓKM. The γ-strain coupling opposes the splitting of the trans-
verse and longitudinal modes, but only quadratically in the field. The
hexagonal anisotropy does not affect the effective (J = 1)-excitations in
zero field, but B6

6 causes a splitting between the |3s> and |3a >-states
of nearly 5meV. As B6

6 is negative, the lower of the two states is |3s >
which, according to Fig. 1.16 or 7.12, should lie only 0.9meV above
the |1s,a >-states. The magnetic field induces a coupling between this
neighbouring level and the doublet excitations, so that it acquires a sig-
nificant scattering cross-section at the energies indicated by the dashed
lines in Fig. 7.14. Although the extra peak was not sufficiently distinct
to be detected directly in the neutron-scattering experiments, the pres-
ence of this level is clearly manifested in the behaviour of the doublet
excitations. The absolute minimum in the excitation spectrum at zero
field is found along ΓM, whereas at H = 43.5kOe the energy minimum
in the ΓK-direction has become the lowest. The |3s >-excitations are
coupled to the doublet excitations polarized along the ξ-axis, both when
the field is along the ξ- and the η-axis. This means that the energy
increase of the longitudinal (optical) mode in the ΓK-direction is dimin-
ished, due to the repulsive effect of the field-induced coupling to the
|3s >-excitations. When the field is along the ξ-direction, the longitu-
dinal modes in the ΓM-direction are coupled to the |3a >-excitations,
which lie at much higher energies and only perturb the lower modes very
weakly. The basal-plane anisotropy is also clearly reflected in the field
dependence of the elastic constant c66, shown in Fig. 7.5.

The effects of the field on the hexagonal doublet-excitations are
very strong. In comparison with the zero-field result of Fig. 7.1, the
minimum-energy modes have more than doubled their energies, while
the overall width of the excitation bands has been reduced by nearly
a factor of two. Because of these large changes, the measurement of
the field dependence of the excitation spectrum allowed a rather precise
determination of ∆ and the relative position of the |3s > crystal-field
level. With the assumption that B6

6 = −(77/8)B0
6, these results then

led to the crystal-field level-scheme for the hexagonal ions shown in
Figs. 1.16 and 7.12, leaving only the position of the highest-lying level
somewhat arbitrary. The field experiment also determined the value of
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the magnetoelastic parameter (Bγ2)
2/cγ . This agrees with the value of

Bγ2 for the hexagonal ions which accounts for the coupling between the
magnetic excitations and the phonons, and for the field dependences of
c66 (Fig. 7.5) and of the γ-strains (Hendy et al. 1979). It furthermore
allowed the accurate prediction of the strain-induced antiferromagnetic
transition in Pr, shown in Fig. 7.10.

The low-temperature magnetic properties of Pr are dominated by
the hexagonal ions. One consequence of this is that it is more difficult
to construct a reliable model for the cubic ions, based on experimentally
derivable parameters. Although the model proposed by Houmann et al.
(1979) accounts accurately for the bulk of the low-temperature experi-
mental results, it is not uniquely specified and some deficiencies appear
in comparison with experiments at elevated temperatures. The model
is based on the following crystal-field Hamiltonian for the cubic ions:

HJ =
∑

i∈cub.ions

[
B0

4(c){O0
4(Ji)− 20

√
2O−3

4 (Ji)}

+B0
6(c){O0

6(Ji) +
35

4

√
2O−3

6 (Ji)− 77

8
O6

6(Ji)}
]
,

(7.4.6)
which neglects the departure of the local symmetry of these sites from
cubic. We shall not present an extensive discussion of the model here
(more details may be found in Houmann et al. (1979) and Jensen (1979b,
1982)), but it is clear that this MF model, which is the simplest descrip-
tion of Pr consistent with its magnetic behaviour in the low-temperature
limit, must be extended in order to describe, for instance, the magne-
tostriction measurements of Hendy et al. (1979) and Ott (1975). In
addition to introducing a non-zero value of Bα2 for the hexagonal ions,
of the magnitude used to obtain agreement with experiment in Fig. 7.13,
it is probably also necessary to include Bα1. Moreover, the magnetoe-
lastic parameters for the cubic ions are presumably of the same order of
magnitude as those on the hexagonal ions. This probably also applies
to B0

2(c), neglected in eqn (7.4.6). The separation of the contributions
from the hexagonal and the cubic ions to the c-axis bulk susceptibility as
a function of temperature, accomplished through neutron-diffraction ex-
periments by Rainford et al. (1981), indicates that not only is B0

2(c) non-
zero, but the exchange between the c-axis components of the moments is
also different from the corresponding coupling between the basal-plane
components. The development of a MF model for Pr which describes
its properties more accurately at elevated temperatures would benefit
greatly from a more detailed examination of the excitations on the cu-
bic sites, i.e. a determination of the energies of the excitations polarized
in the c-direction, and the field-induced changes of these excitations, and
of those polarized in the basal-plane and shown in Fig. 7.2.
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The missing ingredients in the model presented here to describe
Pr have a negligible influence on the pressure-induced ordered struc-
ture, and most of the observations made in this phase were explained
by Jensen et al. (1987) utilizing only the information obtained from the
zero-pressure studies of Houmann et al. (1979). Because the ordered
moments in the antiferromagnetic phase are parallel to Q, the change
of the ground state affects primarily the longitudinal excitations, and
the low-energy optical branch close to the ordering wave-vector is par-
ticularly strongly modified. Fig. 7.15 shows the experimental excitation
energies of the optical modes in the ΓM-direction at 5.5K, in the pres-
ence of a uniaxial pressure of 1.28 kbar, compared with the predictions
of the RPA theory.

Under the conditions of the measurements, the analysis shows that
the induced moments

〈Jiη〉 = 〈Jη(Q)〉 cos(Q ·Ri + ϕ) (7.4.7a)

are so small that the effective (J = 1)-model is adequate to describe
the excitations, and the value of the third harmonic of the longitudi-
nally ordered moments is only a few per cent of 〈Jη(Q)〉. A full account
of the structure would require specifying two phase constants, one for

Fig. 7.15. The dispersion rela-
tions for the optical excitations in
the antiferromagnetic phase of Pr at
5.5K under an applied uniaxial pres-
sure of 1.28 kbar. The ΓM direction
shown is perpendicular to the pres-
sure axis. The circles depict the ex-
perimental results obtained from in-
elastic neutron scattering, with solid
and open symbols indicating the lon-
gitudinal and transverse branches re-
spectively. The solid lines are the
calculated RPA energies for the exci-
tations, whereas the dashed lines in-
dicate longitudinal modes of weaker
intensity. The thin lines are the ex-
perimental dispersion relations in
unstressed Pr, as in Fig. 7.1
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each of the two sublattices. The difference between the two phases is
approximately π, or approximately 0 if Q, within the primitive zone, is
replaced by Q+ b3. Introducing the relative magnetization σ by

〈Jη(Q)〉 = Mησ, (7.4.7b)

where the matrix element is slightly dependent on the pressure (Mη =
1.026

√
10 at 1 kbar), we find that σ � 0.44 under the conditions of Fig.

7.15. Because σ is still small, it may be utilized as an expansion pa-
rameter, both in the calculation of the ordered moments and also in the
equations of motion determining the excitation spectrum. The ordering
wave-vector is close to 1

8b2, but whether the system is commensurable or
not is not easy to decide from the experiments. In any case, this is not
important for calculating the excitation spectrum, because distinctive
effects of commensurability only appear in the order σ8 ≈ 0.001. The
modulation of the length of the moments implies that the single-ion MF
susceptibilty is site-dependent, and the ηη-component is found to be

χ o
ηη(j, ω) =

2n01(j)M
2
α∆cos 2θj

(∆/ cos 2θj)2 − (h̄ω)2
+ βp01(j)M

2
α sin2 2θj δω0, (7.4.8a)

equivalent to eqn (7.1.9) with 〈Jjη〉 = Mηn01(j) sin(2θj), and p01(j)
defined by

p01(j) = n0(j) + n1(j)− n2
01(j). (7.4.8b)

∆ = ∆η(t11) is here the crystal-field splitting between the ground state
|0> and the excited state |1> (≡ |1a > at zero stress) at the particu-
lar stress considered. In the incommensurable case, the coupling matrix
determining the longitudinal component of the susceptibility tensor is
of infinite extent. The situation is very similar to that considered in
Section 6.1.2 and, as there, the coupling matrix may be solved formally
in terms of infinite continued fractions. The only difference is that, in
the present case, the single-site susceptibility is unchanged if the mo-
ments are reversed, which means that the coupling matrix only involves
terms with n even (where n is the number of the Fourier component,
as in (6.1.28)). Since the effective modulation wave-vector seen by the
longitudinal excitations is 2Q and not Q, the acoustic and the optical
modes propagating parallel to Q may be treated separately, as the q-
dependent phase factor determining the effective coupling parameters
J11(q) ± |J12(q)|, derived from the interactions in the two sublattices
(see Section 5.1), is not affected.

To leading order, the modulation of the moments introduces a cou-
pling between the excitations at wave-vectors q and q± 2Q, and energy
gaps appear on planes perpendicular to Q passing through nQ. When
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q = Q, the coupling between the modes at Q and −Q leads to an ampli-
tude mode and a phason mode, corresponding respectively to an in-phase
and a 90◦ out-of-phase modulation of the lengths of the moments. The
energies of the two longitudinal modes at q = Q are approximately given
by

Eamplitude �
√
3
2 σ∆

Ephason � (1
8β∆p01

)1/2
σ∆,

(7.4.9)

where p01 is the average value of p01(j). The scattering intensity, pro-
portional to 1/[h̄ω{1− exp(−βh̄ω)}], of the lowest-lying phason mode is
much larger than that of the amplitude mode. The low-intensity ampli-
tude mode is indicated by the dashed line at q-vectors close to Q in Fig.
7.15, and it was not clearly resolved in the experiments. The phason
mode has a dispersion relation, indicated by the solid lines in the fig-
ure, which increases linearly from the magnetic Bragg peak at Q, except
for the presence of the small gap Ephason at q = Q. In the incommens-
urable case, the free energy is invariant to a change of the phase constant
ϕ in (7.4.7), so that the longitudinal component of the zero-frequency
susceptibility diverges at the wave-vector Q. The corresponding gener-
ator of an infinitesimal phase shift is 1 − iδϕ

∑
j

(|1 >< 1|)
j
. If this

generator commuted with the Hamiltonian, a specific choice of ϕ would
break a continuous symmetry of the system, implying the presence of a
well-defined linearly-dispersive Goldstone mode, as discussed in Section
6.1. However, as may be verified straightforwardly, it does not in fact
commute with the Hamiltonian. On the contrary, within the RPA the
longitudinal response contains an elastic contribution, due to the final
term in (7.4.8a), and hence the scattering function contains a diffusive
peak at zero frequency. It is the intensity of this peak which is found
to diverge in the limit q → Q. As q departs from Q, the diffusive re-
sponse at zero frequency rapidly weakens, and the phason mode begins
to resemble a Goldstone mode. The presence of the inelastic phason
mode at the wave-vector Q can be explained as a consequence of the
modulation of the population difference n01(j), which is proportional to
p01. This mode corresponds to an oscillation of the phase-constant ϕ
in (7.4.7), except that the adiabatic condition, which applies within the
RPA as soon as the oscillation frequency is non-zero, constrains n01(j)
to remain constant, without participating in the oscillations. This con-
dition, in turn, gives rise to the restoring force which determines the
frequency of the oscillations. However, if the oscillations are so slow (i.e.
essentially zero in the present approximation) that n01(j) can maintain
its thermal-equilibrium value, there are no restoring forces. In the zero-
temperature limit, n1 vanishes exponentially, in which case n01(j) = 1,
and the diffusive elastic response disappears together with Ephason. The
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gap also vanishes in the other limit when σ → 0, as does the amplitude-
mode energy gap, reflecting the soft-mode nature of the transition in
this approximation. In the above discussion, we have assumed that the
system is incommensurable. In a commensurable structure, the free en-
ergy is no longer invariant to an overall phase shift of the structure, and
the longitudinal susceptibility does not diverge at Q. Because of the
small value of σ8, however, it is close to divergence. The phason-mode
energy gap stays non-zero at T = 0 in the commensurable case, but it
is estimated to be only about 0.03meV at 1kbar.

Even at the lowest temperatures reached in the inelastic neutron-
scattering experiments, quite strong line-broadening of the low-lying lon-
gitudinal excitations was observed in the ordered phase. There are sev-
eral mechanisms which may lead to non-zero linewidths. One possibil-
ity, if the ordering is incommensurable, is a broadening of the excitation
peaks analogous to that illustrated in Fig. 6.3 in Section 6.1.2. How-
ever, the off-diagonal coupling terms, corresponding to γn in (6.1.30), are
here multiplied by σ2, which means that the continued-fraction solution,
although infinite, converges very rapidly without producing linewidth
effects of any importance. The 1/Z-expansion, discussed in Section
7.2, accounts very well in first order in 1/Z for the lifetime effects ob-
served in paramagnetic Pr, as shown in Fig. 7.4. In this order, the
intrinsic-linewidth effects vanish exponentially at low temperature, and
they should be negligible in the temperature range of the ordered phase,
with the important exception that the elastic RPA response acquires a
non-zero width. To first order in 1/Z, δω0 in eqn (7.4.8a) is replaced by
a Lorentzian iΓ/(h̄ω+ iΓ), with 1/Γ � n2

01(π/2)Nη(∆), where Nη(E) is
the density of states of the η-polarized part of the excitation spectrum.
Due to the large value of Γ, estimated to be about 1meV, the RPA
predictions for the behaviour of the phason modes near the ordering
wave-vector are strongly modified. Instead of an elastic diffusive and an
inelastic, adiabatic phason mode, the theory to this order predicts only
one mode at zero energy, but with non-zero width, when q is close to
Q. An inelastic low-energy peak develops only at a distance of about
0.03|b1| from Q. The exchange-enhancement factor in the scattering
function causes the width of the Lorentzian near Q to be much less than
2Γ. Formally the width tends to zero when q → Q, but it is more pre-
cisely the intensity which diverges, while strong inelastic tails remain at
q = Q, in accordance with the experimental results.

As was mentioned in Section 7.2, the 1/Z-expansion of the effective
medium theory was extended to second order in 1/Z by Jensen et al.
(1987). The second-order modifications are important here, but not in
the zero-stress case considered in Fig. 7.4, because the low-temperature
energy gap of about 1meV in the excitation spectrum is suppressed by
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the uniaxial pressure. The gapless excitation-spectrum in the ordered
phase implies that the linewidth effects are predicted to vary smoothly
with temperature, and to stay non-zero at T = 0, when the second-
order contributions are included. We note that the imaginary part of
the self-energy is now non-zero below the RPA-excitonic band in the
paramagnetic phase, and that it generates an appreciable low-energy
scattering at the ordering wave-vector, just above TN , changing the in-
elastic critical excitation into a diffusive mode of diverging intensity.
Hence a true ‘soft-mode transition’, as found in the zeroth or first order
of 1/Z, is no longer predicted, but the low-energy effect is far too weak to
account for the observed behaviour of the neutron-diffraction satellite.
The inclusion of the second-order effects in the theory clearly improves
the agreement with the experimental results. However, even though the
1/Z2-theory predicts a non-zero linewidth in the limit T → 0, the effect
is so small, at energies below 1meV, that it can be neglected in com-
parison with the contribution due to the scattering against electron-hole
pair excitations of the conduction electrons, discussed in Section 7.3.2.
The importance of this mechanism has been estimated reasonably accu-
rately, and it leads to a linewidth of the order of 0.15meV for the optical
modes close to Q. When all contributions are included, the theory in-
dicates that the amplitude mode should have been observable at q = Q
at the lowest temperatures, in contrast to the experimental results, but
otherwise its predictions are found to agree well with the main features
of the observations.


