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6.2 Commensurable periodic structures

In the preceding section, we discussed the spin-wave spectra in helical
or conical systems, which are characterized by the important feature
that the magnitude of the ordered moments, and hence of the exchange
field, are constant. This simplification allowed an analytic derivation
of the spin-wave energies, in weakly anisotropic systems. If B6

6 only
leads to a slight distortion of the structure, its effects on the spin waves
may be included as a perturbation. If B6

6 is large, however, as it is for
instance in Ho, this procedure may not be sufficiently accurate. Instead
it is necessary to diagonalize the MF Hamiltonian for the different sites,
determine the corresponding MF susceptibilities, and thereafter solve
the site-dependent RPA equation

χ(ij, ω) = χ
o
i (ω)δij +

∑

j′
χ

o
i (ω)J (ij′)χ(j′j, ω). (6.2.1)

In uniform para- or ferromagnetic systems, χ
o
i (ω) is independent of the

site considered, and the equation may be diagonalized, with respect to
the site dependence, by a Fourier transformation. In an undistorted helix
or cone, the transformation to the rotating coordinate system eliminates
the variation of χ

o
i (ω) with respect to the site index, and (6.2.1) may be

solved as in the uniform case. If B6
6 is large, the transformation to a (uni-

formly) rotating coordinate system leaves a residual variation in χ
o
i (ω),

and in the direction of the moments relative to the z-axis of the rotating
coordinates. This complex situation can usually only be analysed by
numerical methods. A strong hexagonal anisotropy will normally cause
the magnetic structure to be commensurable with the lattice, as dis-
cussed in Section 2.3. We shall assume this condition, and denote the
number of ferromagnetic hexagonal layers in one commensurable period
by m, with Q along the c-axis. The spatial Fourier transformation of
(6.2.1) then leaves m coupled equations. In order to write down these
equations explicitly, we define the Fourier transforms

χ
o(n; ω) = 1

N

∑

i

χ
o
i (ω) e−inQ·Ri (6.2.2a)

and, corresponding to (6.1.28),

χ(n;q, ω) = 1

N

∑

ij

χ(ij, ω) e−iq·(Ri−Rj) e−inQ·Ri , (6.2.2b)

where n is an integer. Equation (6.2.1) then leads to

χ(n;q, ω) = χ
o(n; ω) +

m−1∑

s=0

χ
o(n − s; ω)J (q + sQ)χ(s;q, ω), (6.2.3)
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where χ
o(n+m; ω) = χ

o(n; ω). The m matrix equations may be solved
by replacing ω by ω + iε. Instead of taking the limit ε → 0+, as required
by the definition of the response function, ε is considered as non-zero
but small, corresponding to a Lorentzian broadening of the excitations.
Equation (6.2.3) may then be solved by a simple iterative procedure,
after the diagonal term χ(n;q, ω) has been isolated on the left-hand
side of the equation. If m is not too large, and if ε is not chosen to
be too small, this procedure is found to converge rapidly, requiring only
10–20 iterations at each (q, ω). The energies of the magnetic excitations
at the wave-vector q are then derived from the position of the peaks, of
width 2h̄ε, in the calculated response function Im

[
χ(0;q, ω)

]
.

The use of numerical methods, which is unavoidable in systems with
complex moment-configurations, leads to less transparent results than
those obtained analytically. However, compared with the linear spin-
wave theory, they have the advantage that anisotropy effects may be
included, even when they are large, without difficulty. The introduc-
tion of a non-zero value for ε means that the response function is only
determined with a finite resolution, but this is not a serious drawback.
The experimental results are themselves subject to a finite resolution,
because of instrumental effects. Moreover, intrinsic linewidth phenom-
ena, neglected within the RPA, provide a justification for adopting a
non-zero ε.

The numerical method summarized above has been used for calcu-
lating the spin-wave energies in the various structures of Ho discussed
in Section 2.3. In Fig. 5.9, we presented the dispersion relations in the
c-direction of Ho containing 10% of Tb, in its ferromagnetic and helical
phases (Larsen et al. 1987). The Tb content has the desirable effects
of confining the moments to the basal plane, and inducing the simple
bunched helix or zero-spin-slip structure (1.5.3) in the range 20–30K,
and ferromagnetism below 20K. The commensurability of the 12-layer
structure implies that the energy of the helix is no longer invariant un-
der a uniform rotation, and an energy gap appears at long wavelengths,
reflecting the force necessary to change the angle φ which the bunched
moments make with the nearest easy axis. The excitations in this rel-
atively straightforward structure can be treated by spin-wave theory,
and the energies in the c-direction may be written in the form of eqn
(6.1.10b):

Eq =
[
A2

q − B2
q

]1/2
,

where now

Aq + Bq = A + B + J
{J‖(0) − J‖(q)

}
, (6.2.4a)
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and

Aq − Bq = A − B + u2J
{J⊥(Q) − 1

2J⊥(q + Q) − 1
2J⊥(q − Q)}

+v2J{J⊥(5Q) − 1
2J⊥(q + 5Q) − 1

2J⊥(q − 5Q)
}
. (6.2.4b)

In this case, the axial- and hexagonal-anisotropy terms are

A + B = 1

J

{
6B0

2J (2) − 60B0
4J

(4) + 210B0
6J

(6) + 6B6
6J (6) cos 6φ

}

+ J
{
u2J⊥(Q) + v2J⊥(5Q) − J‖(0)

}
, (6.2.5a)

and
A − B = 36B6

6J (6) cos 6φ, (6.2.5b)

while u and v are determined from the bunching angle, by (1.5.3b), as
respectively cos (π/12 − φ) and sin (π/12 − φ). As may be seen from the
above expressions, the energy gap E0 in the periodic structure should be
smaller than that in the ferromagnet by a factor of approximately cos 6φ,
or about 0.8. The observed difference in Fig. 5.9 is considerably greater
than this, and corresponds to an effective reduction of B0

2 by about
50% in the helical phase. Such an effect can be accounted for by an
anisotropic two-ion coupling of the type observed in Tb and considered
in Section 5.5.2. Specifically, the term C(q) in eqn (5.5.19a) gives a
contribution C(0) to A+B in the ferromagnetic phase, and C(3Q) cos 6φ
in the bunched helical structure.

As in the ferromagnetic phase, treated in Section 5.5.1, the dis-
continuity in the dispersion relations at q = 0 is due to the classical
magnetic dipole–dipole interaction. As illustrated in Fig. 5.7, the basal-
plane coupling J⊥(q) has its maximum at q � Q, but the jump in the
long-wavelength limit in the dipolar contribution to J‖(q)−J‖(0), which
has a magnitude 4πgµBM or 0.28meV, is sufficiently large that the ab-
solute maximum in J‖(q) is shifted from q = Q to q = 0. Consequently,
the soft mode, whose energy goes to zero with the vanishing of the axial
anisotropy at a temperature of 20K in pure Ho, is the long-wavelength
spin wave propagating perpendicular to the c-axis, rather than the mode
of wave-vector Q along the c-axis. As discussed in Section 2.3.1, the cone
structure, rather than the tilted helix, is thereby stabilized. Near the
second-order phase transition, the divergence of χζζ(0, 0) is accompanied
by a vanishing of the energy gap as (T − TC)1/2.

The calculated small energy gap at the centre of the zone in the
commensurable helix, shown in Fig. 5.9, is due to the bunching of the
moments; ϕ = π/2 + pπ/3 ± φ, where the sign before φ alternates from
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Fig. 6.4. Magnetic excitations propagating in the c-direction in
the one-spin-slip structure of Ho at 20K, after Patterson et al. (1990;
and to be published). The full curve is the calculated dispersion rela-
tion and the points are the experimental results. The energy gap at
q = 5

11
(2π/c), due to the eleven-layer period, is resolved in these mea-

surements. The linewidth of the scattering peaks behaves anomalously
around q = 6

11
(2π/c) suggesting a gap of the order of 0.3 meV at this

wave-vector. The calculated energy of the long-wavelength modes in the
basal plane is indicated by the line on the left. The discontinuity at q = 0
is due to the dipolar coupling, and the transition to the cone structure is

accompanied by a softening of this lowest-energy mode.

one layer to the next. This alternation doubles the periodicity in the
rotating coordinate system, and thereby halves the Brillouin zone in the
c-direction. The predicted gap is somewhat smaller than the experi-
mental energy-resolution, and is therefore not observed in these mea-
surements. The equivalent gap has however been measured in the one-
spin-slip structure of Fig. 2.5 by Patterson et al. (1990), whose results
are shown in Fig. 6.4. In this case, the 11-layer structure causes an
eleven-fold reduction in the Brillouin zone, but only the first-order gap
at 5/11 times 2π/c is calculated to be readily observable. This gap, on
the other hand, is amplified by about a factor two, as compared to that
in the structure without spin slips. As the number of spin slips increases,
the calculated excitation spectra (Jensen 1988a) become more complex,



6.2 COMMENSURABLE PERIODIC STRUCTURES 309

Fig. 6.5. The energies of the magnetic excitations propagating in
the c-direction in the 19-layer and 9-layer spin-slip structures of Fig. 2.5.
The solid lines indicate the positions of the main peaks in the calculated
spectrum, whereas the dashed extensions designate peaks of relatively
lower intensities. The energy gaps due to the reduced symmetry are not

resolved in the experimental measurements of Nicklow (1971).

as illustrated in Fig. 6.5. The dispersion relations are broken into short
segments by a succession of energy gaps, which may however be difficult
to identify because of intrinsic broadening effects, neglecting in the RPA,
which become more and more pronounced at increasing temperatures.

At temperatures above about 50K, when 〈O6
6〉 in Ho is small and

the distortion of the helix correspondingly weak, the large B6
6 still plays

an important role in mixing |Jz > molecular-field (MF) states. Indeed,
as the temperature is increased and the exchange field decreases, this
effect becomes relatively more important, so that, for example, the en-
ergy difference between the two lowest MF levels varies by an order of
magnitude as the moment on the site moves from an easy to a hard
direction at elevated temperatures, while this variation is much smaller
in the low-temperature limit. The large changes in the MF states from
site to site tend to disrupt the coherent propagation of the collective
modes, providing a mechanism for the creation of energy gaps in the
excitation spectrum. The spectrum thus becomes similar to that of the
incommensurable longitudinal phase, illustrated in Fig. 6.3.

Whenever the moments are not along a direction of high symmetry,
B6

6 mixes the transverse and longitudinal components of the single-site
susceptibility, so that the normal modes are no longer either pure trans-
verse spin waves or longitudinal excitations. At low temperatures, where
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〈Jz〉 is close to its maximum value, this mixing is unimportant, but it
has significant effects on the excitations at higher temperatures. In the
RPA, the pure longitudinal response contains an elastic component, and
the (mixed) excitation spectrum in the long-wavelength limit therefore
comprises an elastic and an inelastic branch. The inelastic mode is cal-
culated to lie around 1meV in the temperature interval 50–80K. In the
RPA, this feature is independent of whether the magnetic periodicity
is commensurable with the lattice. In the incommensurable structure,
the free energy is invariant to a rotation of the helix around the c-axis,
implying that χt(q, ω) diverges in the limit (q, ω) → (0, 0). However,
the corresponding generator of rotations no longer commutes with the
Hamiltonian, as in the regular helix, because B6

6 is now non-zero. The
divergence of χt(q, ω) is therefore not reflected in a conventional Gold-
stone mode, but is rather manifested in the elastic, zero-energy pha-
son mode, which coexists with the inelastic mode. Beyond the RPA,
the elastic response is smeared out into a diffusive mode of non-zero
width. This broadening may essentially eliminate the inelastic phason
mode, leaving only a diffusive peak centred at zero energy in the long-
wavelength limit. The intensity of this peak diverges, and its nominal
width goes to zero, when the magnetic Bragg reflection is approached.
However, a diffusive-like inelastic response is still present at q = 0, and
a true inelastic mode only appears some distance away. In the calcula-
tions, the elastic single-site response was assumed to be broadened by
about 6meV, corresponding to the spin-wave bandwidth. This assump-
tion gives a reasonable account of the excitations in the long-wavelength
limit, suggesting that they become overdamped if the wave-vector is
less than about 0.1 times 2π/c. Although the inelastic phason mode is
largely eliminated, the calculations suggest that a residue may be ob-
servable. The most favourable conditions for detecting it would occur
in a neutron-scattering scan with a large component of the scattering
vector in the basal plane at about 50K.

Another example to which the above theory has been applied is
Tm (McEwen et al. 1991), where the c-axis moments order below 57.5
K in a longitudinally polarized structure, which becomes commensu-
rable around 32K. Below this temperature, as described in Section 2.3.1,
the structure is ferrimagnetic, comprising four layers with the moments
parallel to the c-axis, followed by three layers with the moments in
the opposite direction. Although Tm belongs to the heavy end of the
rare earth series, the scaling factor for the RKKY-exchange interaction,
(g − 1)2 = 1/36, is small, and the Néel temperature is low compared to
the crystal-field energy-splittings. The crystal-field effects are therefore
more important in this element than in the other heavy rare earths. The
energy difference between the MF ground state and the dipolar excited
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state is calculated to vary between 8.0 and 10.2meV, while the exchange
field lies between 0 and 1.8meV. Hence the exchange field acts as a minor
perturbation, and incommensurable effects above 32K in the excitation
spectrum should be unimportant. In the low-temperature limit, the
magnetic excitations are spin waves; the MF ground state and the first
dipolar excited state are almost pure | ± 6> and | ± 5> levels (+ or −
depending on the site considered). The excitations propagating in the
c-direction are found to lie between 8.5 and 10meV (Fernandez-Baca
et al. 1990; McEwen et al. 1991). The magnetic period is seven times
that of the lattice, and the exchange coupling splits the spin waves into
seven closely lying bands, which cannot be separated experimentally.
With a finite resolution, the exchange coupling leads to a single or, at
some wave-vectors, a double peak, whose shape and width change with
q. At low temperatures, a relatively strong coupling between the spin
waves and the transverse phonons is observed, and when this coupling
is included in the determination of the RPA response functions, by the
method presented in Section 7.3.1 in the next chapter, good agreement
is obtained between the calculated neutron spectra and those observed
experimentally. At elevated temperatures, both below and just above
TN , other excitations between the excited crystal-field (MF) levels are
observed to be important, both in the transverse and the longitudinal
components of the response function, and good agreement is again found
between theory and experiment. With respect to its magnetic proper-
ties, Tm is thus an exceptional member of the heavy rare earths, as it
is the only one in which well-defined crystal-field excitations have been
detected. Hence it provides an appropriate termination of our discussion
of spin-waves, as well as a natural transition to the crystal-field systems
which are the topic of the next chapter.


