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6.1 Incommensurable periodic structures

In this section, we shall first discuss the spin waves in the regular helix or
cone, including the hexagonal anisotropy only as a minor perturbation.
On account of the infinitely larger number of irrational than rational
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numbers, these structures are most naturally classified as incommen-
surable, particularly as the distinction is immaterial in this case. If
the hexagonal anisotropy and possible external fields are neglected, the
translational symmetry is broken only formally, as a rigid rotation of
the moments, or of the total system, around the spiral axis costs no
energy. We then consider the longitudinally polarized phase, in which
genuine effects due to incommensurability would be expected. On the
other hand, the stronger coupling between the two periodicities increases
the tendency of the magnetic-ordering wave-vector to lock into a value
which is commensurable with the lattice. It may perhaps be questioned
whether theoretical results derived for ideal incommensurable models
are relevant to real, three-dimensional systems. However, it appears
that the essential features of systems which are classified experimentally
as incommensurable may be described theoretically as such, provided
that the analysis includes an averaging or coarse graining of the results,
of a magnitude somewhat smaller than the experimental resolution.

6.1.1 The helix and the cone
A helical ordering of the moments in an hcp lattice, with a wave-vector
Q along the c- or ζ-axis, is described by the following equations:

〈Jiξ〉 = 〈J⊥〉 cos (Q ·Ri + ϕ)
〈Jiη〉 = 〈J⊥〉 sin (Q ·Ri + ϕ)
〈Jiζ〉 = 0.

(6.1.1)

As usual, we shall be most interested in excitations propagating in the
c-direction, and hence may use the double-zone representation, corre-
sponding to the case of a Bravais lattice. The moments of constant
length 〈J⊥〉 lie in the ξ–η plane perpendicular to Q, and rotate uni-
formly in a right-handed screw along the Q-vector. The elastic cross-
section corresponding to this structure is, according to (4.2.6),

dσ

dΩ
= N

(
h̄γe2

mc2

)2

e−2W (κ)|12gF (κ)|2〈J⊥〉2(1 + κ̂2
ζ)

× (2π)3

υ

∑
τ

1

4
{δ(τ + Q− κ) + δ(τ − Q− κ)} . (6.1.2)

In this system the molecular field in (3.5.3) changes from site to site,
as does the MF susceptibility χ

o
i (ω) in (3.5.7). This complication may

be alleviated by transforming into a rotating (xyz)-coordinate system
with the z-axis parallel to the moments, i.e.

Jiξ = Jiz cosφi + Jiy sin φi

Jiη = Jiz sin φi − Jiy cosφi

Jiζ = Jix,

(6.1.3)



288 6. SPIN WAVES IN PERIODIC STRUCTURES

where φi = Q ·Ri + ϕ. Carrying out this transformation, we find that
Ji ·Jj becomes

(JizJjz + JiyJjy) cos (φi − φj) + (JiyJjz − JizJjy) sin (φi − φj) + JixJjx,

so that the Hamiltonian (3.5.1) may be written, in the (xyz)-coordinate
system,

H =
∑

i

HJ(J
2
ix) − 1

2

∑
i�=j

∑
αβ

JiαJαβ(ij)Jjβ , (6.1.4)

where α and β signify the Cartesian coordinates x, y, and z. Here we
have assumed that the dependence of the single-ion anisotropy on Jiξ

and Jiη can be neglected, and that only even powers of Jiζ = Jix occur,
since otherwise the helical structure becomes distorted and (6.1.1) is no
longer the equilibrium configuration. The ordering wave-vector Q is de-
termined by the minimum-energy condition that J (q) has its maximum
value at q = Q. After this transformation, the MF Hamiltonian is the
same for all sites:

HMF(i) = HJ(J
2
ix) − (Jiz − 1

2 〈J⊥〉)
∑

j

〈J⊥〉J (ij) cos (φi − φj)

= HJ(J
2
ix) − (Jiz − 1

2 〈J⊥〉)〈J⊥〉J (Q) ; 〈J⊥〉 = 〈Jz〉,
(6.1.5)

as is the corresponding MF susceptibility χ
o(ω). The price we have paid

is that the two-ion coupling J (ij) is now anisotropic, and its non-zero
Fourier components are

Jxx(q) = J (q) ; Jyy(q) = Jzz(q) = 1

2
{J (q + Q) + J (q − Q)}

Jyz(q) = −Jzy(q) = i

2
{J (q + Q) − J (q − Q)}. (6.1.6)

However, it is straightforward to take account of this complication in
the RPA, and the result is the same as (3.5.8) or (3.5.21), with J (q)
replaced by J (q),

χt(q, ω) =
{
1 − χ

o(ω)J (q)
}−1

χ
o(ω), (6.1.7)

where the index t indicates that this is the (xyz)-susceptibility, and not
the (ξηζ)-susceptibility χ(q, ω) which determines the scattering cross-
section. From the transformation (6.1.3), it is straightforward, but
somewhat cumbersome, to find the relation between the two suscep-
tibility tensors.
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In the general case, the MF susceptibility χ
o(ω) is determined

by three distinct diagonal components, plus the two off-diagonal terms
χ o

xy(ω) = −χ o
yx(ω), with the same analytical properties, (3.5.24b) and

(5.2.42), as in the Heisenberg ferromagnet. It may be seen that χ o
xy

′(ω),
for instance, is imaginary by recalling that the MF Hamiltonian is in-
dependent of Jy, in which case the eigenvectors in the Jz-representation
can all be chosen to be real, so that the products of the matrix ele-
ments of Jx and of Jy are imaginary. The vanishing of the other four
off-diagonal terms follows from the two-fold symmetry about the z-axis
of the MF Hamiltonian. In spite of this reduction, the analytical ex-
pression for χ(q, ω) is still quite formidable. However, in most cases of
interest, the single-ion anisotropy is relatively weak, and the inelastic
modifications due to χ o

zz(ω) can be neglected, so that, for ω �= 0,

χxx(q, ω) =
{
χ o

xx(ω) − |χ o(ω)| Jyy(q)
}

/D(q, ω)

χxy(q, ω) =
{
χ o

xy(ω) + |χ o(ω)| Jxy(q)
}

/D(q, ω),
(6.1.8a)

and the same relations hold with x and y interchanged. Here

D(q, ω) = 1 −
∑
αβ

χ o
αβ(ω)Jβα(q) + |χ o(ω)| | J (q)|, (6.1.8b)

where α or β are x or y, and |χ o(ω)| or | J (q)| are the determinants
of the 2 × 2 matrices. In the weak-anisotropy limit, we may to a good
approximation use the result (5.2.42) derived in Section 5.2, and to first
order in 1/J , we have

χ o
xx(ω) = 〈Jz〉A − B + hex

E2
ex − (h̄ω)2

χ o
yy(ω) = 〈Jz〉A + B + hex

E2
ex − (h̄ω)2

χ o
xy(ω) = −χ o

yx(ω) = 〈Jz〉 i h̄ω

E2
ex − (h̄ω)2

(6.1.9a)

and χ o
zz(ω) � β(δJz)2 δω0. The only modification is that the exchange

field, given in eqn (6.1.5), is now

hex = 〈Jz〉J (Q) and E2
ex = (A + hex)2 − B2. (6.1.9b)

There are inelastic contributions to χ o
zz(ω), but they are of the order

A/2JEex, relative to the other inelastic terms, and can be neglected.
The parameters A and B are the same as those derived in Section

5.2, when HJ in (6.1.4) is replaced by the usual crystal-field Hamilto-
nian, except that we here neglect explicitly the hexagonal anisotropy
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B6
6 . The result above may be generalized to include most of the renor-

malization effects appearing in the second order of 1/J , by replacing
A ± B by A0(T )± B0(T ), in accordance with the discussion at the end
of Section 5.2. After the transformation to the rotating coordinates, the
system becomes equivalent to the basal-plane ferromagnet, except that
the hexagonal anisotropy is neglected and the γ-strains vanish, due to
the lattice-clamping effect discussed in Section 2.2.2. Hence we may take
A ± B to be A0(T ) ± B0(T ), given by eqn (5.3.22), with B6

6 = 0 and
H = 0.

In the present situation, where HJ in (6.1.4) only depends on J2
x ,

A = B and (6.1.9) implies, for instance, that χ o
yy(ω = 0) = 1/J (Q).

This result is quite general and may be derived directly from (6.1.5); the
addition of a small rotating field hy in the y-direction, perpendicular
to the exchange field, only has the consequence that the direction of
the angular momentum is rotated through the angle φ, where tan φ =
hy/hex, and hence δ〈Jy〉 = 〈Jz〉 tan φ = {1/J (Q)} hy. Substituting
(6.1.9) with A = B into (6.1.8), we obtain

χxx(q, ω) = 〈Jz〉 Aq − Bq

E2
q − (h̄ω)2

; χyy(q, ω) = 〈Jz〉 Aq + Bq

E2
q − (h̄ω)2

,

(6.1.10a)
with

Eq =
[
A2

q − B2
q

]1/2 (6.1.10b)

and

Aq + Bq = 2A + 〈Jz〉 {J (Q) − J (q)}
Aq − Bq = 〈Jz〉

{
J (Q) − 1

2J (q + Q) − 1
2J (q − Q)

}
,

(6.1.10c)

neglecting χ o
zz(0). The absorptive components of χt(q, ω) are

χ′′
xx(q, ω) =

π

2
〈Jz〉

(
Aq − Bq

Aq + Bq

) 1
2

{ δ(Eq − h̄ω) − δ(Eq + h̄ω)}

χ′′
yy(q, ω) =

π

2
〈Jz〉

(
Aq + Bq

Aq − Bq

) 1
2

{ δ(Eq − h̄ω) − δ(Eq + h̄ω)} ,

(6.1.11)
demonstrating that the scattered intensities due to the two components
are different, if Bq is non-zero. The neutron cross-section d2σ/dEdΩ,
(4.2.2), is proportional to∑

αβ

(δαβ − κ̂ακ̂β)χ′′
αβ(κ, ω) = (1 − κ̂2

ζ)χ
′′
ζζ(κ, ω) + (1 + κ̂2

ζ)χ
′′
ηη(κ, ω),

(6.1.12a)
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since the ξξ- and ηη-components are equal. The components in this
equation are derived from the equality χt(κ, ω) = χt(κ + τ , ω), and

χξξ(κ, ω) = χηη(κ, ω) = 1

4

{
χyy(κ − Q, ω) + χyy(κ + Q, ω)

}
χζζ(κ, ω) = χxx(κ, ω). (6.1.12b)

From this we deduce that, if the scattering vector is along the ζ-axis,
we expect to observe both the spin waves propagating parallel to Q,
emerging from the magnetic Bragg peak at τ + Q, and the spin waves
propagating antiparallel to −Q, but with their q-vector determined rel-
ative to the Bragg peak at τ − Q.

If 〈Jz〉 is zero, the system described by the Hamiltonian (6.1.4) is
invariant with respect to a uniform rotation of all the angular momenta
around the x- or ζ-axis, corresponding to the condition [

∑
i Jix , H ] = 0.

In the helical phase, this commutation relation is unchanged, but nev-
ertheless the system is no longer invariant with respect to such a rota-
tion, since it will alter the phase constant ϕ in (6.1.1). This system is
thus an example of a situation where a continuous symmetry is spon-
taneously broken. In this case, a theorem of Goldstone (1961) predicts
the existence of collective modes with energies approaching zero as their
lifetimes go to infinity. A detailed discussion of this phenomenon is
given by Forster (1975). The Goldstone mode, or the broken-symmetry
mode, in the helix is the spin-wave excitation occurring in χt(q, ω) in
the limit of q → 0. Since this mode is related to a uniform change of
the phase ϕ, it is also called the phason. In the long-wavelength limit,
Aq − Bq � 1

2 〈Jz〉(q · ∇)2J (0) goes to zero, and the spin wave energies
Eq � { 1

2 (A0 + B0)〈Jz〉(q · ∇)2J (0)}1/2 vanish linearly with q. The
result (6.1.8) is valid in general at long wavelengths, independently of
χ o

zz(ω), because the Jz-response is only mixed with the spin-wave re-
sponse proportionally to |Jyz(q)|2 ∝ q6 in the limit of small q. In the
static limit, χ o

xy(ω → 0) vanishes by symmetry, and (6.1.8) then predicts
that, in general,

χyy(q, 0) = 1/
{J (Q) − 1

2J (q + Q) − 1
2J (q − Q)

} ∝ q−2

when q → 0, which is also in accordance with (6.1.10). The divergence
of χyy(q → 0, 0) is easily understood, as this susceptibility component
determines the response 〈Jy〉 to the application of a constant rotating
field hy at every site, which causes the same rotation of all the moments,
corresponding to a change of the phase constant ϕ in (6.1.1). A rigid ro-
tation of the helix costs no energy, and the lack of restoring forces implies
that the susceptibility diverges. A divergence in the static susceptibility
is not sufficient to guarantee the presence of a soft mode in the system, as
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there might be a diffusive mode in the excitation spectrum of the diverg-
ing susceptibility component, with an intensity (∝ χ′′(ω)/ω) which goes
to infinity as the critical q is approached. Outside the critical region, the
inelastic excitation-energies must approach zero, in the absence of a dif-
fusive mode, as a consequence of the Kramers–Kronig relation, but the
excitations may be overdamped, i.e. still become diffusive, sufficiently
close to the critical q. In this case, the generator 1 − iδϕ

∑
i Jxi of an

infinitesimal rotation δϕ of the helix commutes with the Hamiltonian,
and the Goldstone theorem applies, predicting that the spin waves are
perfectly well-defined excitations in the limit of q → 0.

If HJ can be neglected, the system contains one more Goldstone
mode, since

∑
i Jiξ or

∑
i Jiη now also commute with H. The transfor-

mation exp(−iθ
∑

i Jiξ) generates a tilting of the plane spanned by the
moments, relative to the ξ–η plane perpendicular to Q, giving rise to the
tilted helix structure. In this configuration, the Jiζ = Jix-component is
non-zero and oscillates with the phase Q·Ri. The magnitude of the mod-
ulation is determined by the susceptibility component χxx(q = Q, 0),
which diverges in the limit where HJ or 2A vanishes. The situation is
very similar to the rotation of the helix considered above. The Gold-
stone mode is the spin-wave excitation at q = Q, and the spin-wave
energy vanishes linearly with |q−Q|. The Heisenberg ferromagnet may
be considered to be a helix with Q = 0, and in this case the two Gold-
stone modes collapse into one at q = 0, where the spin-wave dispersion
now becomes quadratic in q.

The first study of the spin waves in a periodic magnetic structure
was performed by Bjerrum Møller et al. (1967) on a Tb crystal, to which
10% Ho had been added to stabilize the helix over a wider temperature
range. The results of these measurements are shown in Fig. 6.1. The
hexagonal anisotropy in Tb is small, and 〈O6

6〉 has renormalized to neg-
ligible values in the helical phase, so the theory for the incommensurable
structure would be expected to apply. The dispersion relations do in-
deed have the form of eqn (6.1.10), rising linearly from zero at small q,
and with a non-zero value of EQ, due to the axial anisotropy B0

2 . An
analysis of the experimental results in terms of this expression gives the
exchange functions illustrated in Fig. 6.1. The decrease in the size of
the peak in J (q) with decreasing temperature contributes towards the
destabilization of the helix, as discussed in Section 2.3. The effects of the
change in this function with temperature can be seen fairly directly in
the dispersion relations since, from (6.1.10), the initial slope is propor-
tional to the square root of the curvature J ′′(Q), and EQ is proportional
to {J (Q)− 1

2J (0)− 1
2J (2Q)}1/2. Similar results have been obtained for

Dy by Nicklow et al. (1971b) and analysed in the same way, even though
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Fig. 6.1. Spin-wave dispersion relations and exchange in the c-
direction, in the helical and ferromagnetic phases of Tb90Ho10. In the
helical phase, the energy of the phason excitations goes linearly to zero
at long wavelengths, owing to the broken rotational symmetry around
the c-axis, but that of the mode at Q remains non-zero, because of the
axial anisotropy. The peak in the exchange function, which stabilizes the
periodic structure, is reduced and shifted as the magnetic order increases.
In the ferromagnetic phase at 185 K, the energy rises quadratically from

a non-zero value, and the peak in the exchange is absent.

the relatively large hexagonal anisotropy makes the use of this theory
somewhat marginal in this case. As we shall see in the next section, the
very large value of B6

6 has a decisive influence on the excitations in Ho.
The dispersion relation for the cone may be derived by the same

procedure. In the conical structure the moments along the c-axis are
non-zero, so that

〈Jiζ〉 = 〈J‖〉 = 〈Jz〉 cos θ0 ; 〈Jz〉2 = 〈J‖〉2 + 〈J⊥〉2. (6.1.13)

Introducing the transformation (2.2.8), which corresponds to (6.1.3) in
the case where cos θ0 �= 0, we may derive the effective coupling param-
eters within the rotating coordinate system. For the (xy)-part of the
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interaction matrix, the result is

Jxx(q) = 1

2
{J (q + Q) + J (q − Q)} cos2 θ0 + J (q) sin2 θ0

Jyy(q) = 1

2
{J (q + Q) + J (q − Q)}

Jxy(q) = −Jyx(q) = i

2
{J (q + Q) − J (q − Q)} cos θ0,

(6.1.14)

where Jxy(q) is now non-zero. Neglecting the longitudinal response, as
we may in a weakly anisotropic system, we may calculate the response
functions by introducing these coupling parameters in (6.1.8). In order
to estimate the (xy)-components of the MF susceptibility, or A±B+hex

in eqn (6.1.9), we may utilize their relation to the derivatives of the
free energy, as expressed in eqn (2.2.18). The free energy for the ith
ion, including the Zeeman contribution from the exchange field of the
surrounding ions, is

F (i) = f0 + f(u = cos θ) − h‖〈Jz〉 cos θ − h⊥〈Jz〉 sin θ cos (φ − φ0),
(6.1.15a)

with φ0 = Q ·Ri + ϕ, and

h‖ = 〈Jz〉J (0) cos θ0 ; h⊥ = 〈Jz〉J (Q) sin θ0. (6.1.15b)

HJ is again, as in (6.1.4), the usual crystal-field Hamiltonian, except that
B6

6 is neglected. The function f(u) is given by (2.2.17) in terms of κm
l (T ),

with κ6
6 = 0. From (6.1.15), the equilibrium angles are determined by

−f ′(u0) sin θ0 + h‖〈Jz〉 sin θ0 − h⊥〈Jz〉 cos θ0 = 0,

and φ = φ0. f ′(u) is the derivative of f(u) with respect to u, and
u0 = cos θ0. With sin θ0 �= 0, this equation leads to

f ′(u0) cos θ0 = 〈Jz〉2{J (0) − J (Q)} cos2 θ0. (6.1.16)

The spin-wave parameters may then be derived as

〈Jz〉(A + B + hex) = Fθθ(i)

= f ′′(u0) sin2 θ0 − f ′(u0) cos θ0 + h‖〈Jz〉 cos θ0 + h⊥〈Jz〉 sin θ0

〈Jz〉(A − B + hex) = Fφφ(i)/ sin2 θ0 = h⊥〈Jz〉/ sin θ0.

Introducing the values of the exchange fields and applying the equilib-
rium condition (6.1.16), we then find that

A + B + hex = {f ′′(u0)/〈Jz〉} sin2 θ0 + 〈Jz〉J (Q)

A − B + hex = 〈Jz〉J (Q).
(6.1.17)
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These parameters determine the (xy)-components of χ
o(ω) in (6.1.9),

and are valid, at least, to first order in 1/J . From (6.1.8), we finally
obtain

χxx(q, ω) = 〈Jz〉 Aq − Bq

A2
q − B2

q − (h̄ω − Cq)2

χyy(q, ω) = 〈Jz〉 Aq + Bq

A2
q − B2

q − (h̄ω − Cq)2

χxy(q, ω) = 〈Jz〉 i(h̄ω − Cq)
A2

q − B2
q − (h̄ω − Cq)2

,

(6.1.18)

where the parameters are now

Aq − Bq = 〈Jz〉{J (Q) − 1
2J (q + Q) − 1

2J (q − Q)}
Aq + Bq = (Aq − Bq) cos2 θ0 +

[
L + 〈Jz〉{J (0) − J (q)}] sin2 θ0

Cq = 1
2 〈Jz〉{J (q − Q) − J (q + Q)} cos θ0,

(6.1.19)
and the axial anisotropy constant is

L = 〈Jz〉{J (Q) − J (0)} + f ′′(u0)/〈Jz〉, with

f ′′(u0) = 3κ0
2(T ) + 15

2 κ0
4(T )(7 cos2 θ0 − 1)

+ 105
8 κ0

6(T )(33 cos4 θ0 − 18 cos2 θ0 + 1).

(6.1.20)

This constant, to order 1/J , is that determined by the c-axis bulk sus-
ceptibility: χζζ(0, 0) = 〈Jz〉/L. The dispersion relation, derived from
the pole at positive energies, is

Eq = Cq +
[
A2

q − B2
q

]1/2
, (6.1.21)

which is no longer even with respect to q, because the parameter Cq

changes sign, whereas Aq and Bq are unaffected, if q is replaced by −q.
The other pole, with a minus before the square root, lies at negative
energies. If the two energies for q were both positive, the two poles at
−q would both lie at negative energies, indicating an instability of the
magnetic system. Hence in a stable cone C2

q < A2
q − B2

q (Cooper et al.
1962).

The scattering cross-section of the spin waves is still determined by
(6.1.12a), but (6.1.12b) is replaced by

χζζ(κ, ω) = χxx(κ, ω) sin2 θ0

χξξ(κ, ω) = χηη(κ, ω) = 1

4

{
χxx(κ − Q, ω) + χxx(κ + Q, ω)

}
cos2 θ0

+ 1

4

{
χyy(κ − Q, ω) + χyy(κ + Q, ω)

}
− i

2

{
χxy(κ − Q, ω) − χxy(κ + Q, ω)

}
cos θ0.

(6.1.22)
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When κ is along the c-axis, the scattering is determined by the basal-
plane component alone, and introducing (6.1.18) in this expression, we
find for positive energies

χ′′
ξξ(κ, ω) =

∑
q

π〈Jz〉
8rq

{
(rq cos θ0 + 1)2δq,κ−Q−τ

+ (rq cos θ0 − 1)2δq,κ+Q−τ
}
δ(Eq − h̄ω), (6.1.23)

where the ratio rq = [(Aq−Bq)/(Aq +Bq)]1/2. This equation is consis-
tent with the original result of Bar’yakhtar and Maleev (1963), who also
considered the spin-polarized neutron cross-section. As in the helical
case, there are two branches, emerging from either of the Bragg peaks
at τ ± Q, but the intensities of the two branches are no longer equal.
Furthermore, the crystal will normally split up into four distinct types
of domain, as the energy of the cone structure depends on the sign of
neither cos θ0 nor Q = Q · ζ̂. The spin-wave parameter Cq changes sign
with either of these two quantities, and this leads to two different values
E+

q and E−
q of the spin-wave energies in the four domains, corresponding

to regions where the signs of cos θ0 and Q are respectively the same or
different. All the vectors in (6.1.23) are along the ζ-axis, and we may
therefore write the total response function at positive energies in terms
of their magnitudes, in the presence of the four domains, as

χ′′
ξξ(κ, ω) =

∑
q

π〈Jz〉
8rq

[{
(rq| cos θ0| + 1)2δq,κ−|Q|−τ

+ (rq| cos θ0| − 1)2δq,κ+|Q|−τ

}
δ(E+

q − h̄ω)+{
(rq| cos θ0| − 1)2δq,κ−|Q|−τ + (rq| cos θ0| + 1)2δq,κ+|Q|−τ

}
δ(E−

q − h̄ω)
]

(6.1.24)

showing that there will normally be four spin-wave resonances in a
constant-κ scan, at positive energies. We shall denote the spin-waves
with energies determined by E+

q , when q is positive or negative respec-
tively, as the +q branch or −q branch. The energy difference E+

q −E−
q =

E+
q −E+

−q = 2C+
q is normally positive, when q = q·ζ̂ > 0, so that the +q

branch lies above the −q branch. Equation (6.1.24) then predicts that
neutron scans at a series of values of κ, starting from the Bragg peak at
τ + |Q|, will show both the +q and the −q branches, that the +q branch
will have the largest intensity when κ > τ + |Q|, and that the response
function is symmetrical around the lattice Bragg point κ = τ . Although
two of the four types of domain may be removed by the application of an
external field along the c-axis, this does not remove the degeneracy with
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respect to the helicity of the cone, and eqn (6.1.24) remains unchanged.
Different sign conventions, stemming from whether θ0 is determined by
the ζ-component of the magnetic moments or of the angular momenta,
may lead to a different labelling of the branches by ±q, but this does not
of course reflect any arbitrariness in, for instance, the relation between
the spin-wave energies and their scattering intensities.

In Fig. 6.2 is shown the dispersion relations E±
q obtained in the

c-direction in the conical phase of Er at 4.5K by Nicklow et al. (1971a).
The length of the ordering wave-vector is about 5

21 (2π/c) and the cone
angle θ0 � 28◦. The relatively small cone angle leads to a large splitting
between the +q and −q branches. According to the dispersion relation
(6.1.21), this splitting is given by 2Cq, from which J (q) may readily be
derived. This leaves only the axial anisotropy L as a fitting parameter
in the calculation of the mean values of the spin-wave energies. This
parameter may be estimated from the magnetization measurements,
L = 〈Jz〉/χζζ(0, 0), which indicate (Jensen 1976b) that it lies between
15–25meV. Nicklow et al. (1971a) were not able to derive a satisfac-
tory account of their experimental results from the dispersion relation
given by (6.1.21) in terms of J (q) and L. In order to do so, they intro-
duced a large anisotropic coupling between the dipoles Jζζ(q) − J (q),
corresponding to a q-dependent contribution to L = L(q) in (6.1.19).
Although this model can account for the spin-wave energies, the value of
L(0) is much too large in comparison with that estimated above. This
large value of L(q) also has the consequence that rq becomes small, so
that the scattering intensities of the +q and −q branches are predicted
to be nearly equal, since (rq cos θ0 − 1)2 � (rq cos θ0 + 1)2, in disagree-
ment with the experimental observations. A more satisfactory model
was later suggested by Jensen (1974), in which an alternative anisotropic
two-ion coupling was considered; Kmm′

ll′ (ij)Õlm(Ji)Õl′m′(Jj) + h.c., as
in (5.5.14), with m = −m′ = 2. This coupling modifies the close rela-
tionship between Cq and Aq−Bq found above in the isotropic case, and
it was thereby possible to account for the spin-wave energies, as shown
in Fig. 6.2, and for the intensity ratio between the two branches at most
wave-vectors, since rq is much closer to 1, when π/c < q < 2π/c, than
in the model of Nicklow et al. (1971a). Finally, the value of L used in
the fit (L = 20meV) agrees with that estimated from the magnetization
curves. The anisotropic component of the two-ion coupling derived in
this way was found to be of the same order of magnitude as the isotropic
component, but the contributions of this anisotropic interaction (with
l = l′ = 2) to the spin-wave energies and to the free energy are effectively
multiplied by respectively the factor sin2 θ0 and sin4 θ0, where sin2 θ0 �
0.2 in the cone phase. It is in fact almost possible to reproduce the
dispersion relations, within the experimental uncertainty, by including
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Fig. 6.2. Spin-wave dispersion relations in the c-direction, in the cone
phase of Er at 4.5 K, after Nicklow et al. (1971a). The closed and open
symbols represent the +q and −q branches respectively. The solid lines
are the results of the spin-wave calculation described in the text, and
the dashed lines are the dispersion relations for the transverse phonons

originating from 2π/c ± 2Q.

only the isotropic part of the coupling, but this requires a value of L � 35
meV, and the intensity ratio, in the interval π/c < q < 2π/c, is found
to be wrong by a factor of three or more.

It has been suggested (Lindg̊ard 1978) that the necessity of intro-
ducing anisotropic two-ion coupling in the description of the spin-waves
in Er may be an artifact due to a breakdown of the linear spin-wave
theory. As discussed in Section 5.3.2, the linear theory is not valid in
strongly anisotropic systems, i.e. when the numerical value of the b-
parameter is large and the length of the moments is significantly smaller
than their saturation value, in the low-temperature limit. However,
the model for Er presented in Section 2.3, which describes the mag-
netic structure as a function of temperature and magnetic field reason-
ably well, predicts that σ(T = 0) is only reduced by 1–2%, and that
|b| � 0.08. The excitation spectrum in the cone phase may be derived,
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in the presence of arbitrarily large anisotropy, by a numerical calcula-
tion of the MF susceptibility χ

o(ω), as determined by the crystal-field
Hamiltonian and the exchange field, given by (6.1.15b). In the general
case, it is necessary to include the total interaction-matrix J (q), and
not only the (xy)-part as in (6.1.14), when deriving the final suscepti-
bility matrix (6.1.7). A numerical calculation of the excitation energies,
for a model which also accounts fairly accurately for the anisotropy of
Er, leads to energies which are very well described by the linear spin-
wave theory (Jensen 1976c), the discrepancies being only of the order
of a few per cent. The spin waves are not purely transverse, as the
individual moments are calculated to precess in a plane whose normal
makes an angle of about 33◦ with the c-axis. The relation between the
difference and the sum of E+

q and E−
q is still found to be obeyed, when

the two-ion anisotropy is neglected. The experimental results therefore
attest to the importance of such anisotropy effects. Except for the tilt-
ing of the plane in which the moments precess, which is not easy to
detect experimentally, the linear spin-wave theory is found to give an
accurate account of the excitations at low temperatures in Er. In spite
of this, it is not a good approximation to consider only the ground state
and the first excited state of the MF Hamiltonian, when calculating the
excitation spectrum, because 10–15% of the dispersive effects are due
to the coupling between the spin waves and the higher-lying MF levels.
These effects are included implicitly, to a first approximation, in the
linear spin-wave theory, which gives an indication of the efficacy of the
Holstein–Primakoff transformation (when J is large).

We have so far neglected the hexagonal anisotropy. In Section 2.1.3,
we found that B6

6 causes a bunching of the moments about the easy
axes in the plane, leading to (equal) 5th and 7th harmonics in the
static modulation of the moments. The cone is distorted in an anal-
ogous way, but the hexagonal anisotropy is effectively multiplied by the
factor sin6 θ0 ≈ 0.01 in Er. The effects of B6

6 on the spin waves are
therefore small, and may be treated by second-order perturbation the-
ory, which predicts energy gaps in the spectrum whenever Eq = Eq±6Q

(for a further discussion, see Arai and Felcher, 1975). In the experi-
mental spin-wave spectrum of Er, shown in Fig. 6.2, energy gaps are
visible, but not at the positions expected from the coupling due to the
hexagonal anisotropy. It seems very likely that the two gaps observed
close to q = 0.4 (2π/c) are due to an interaction with the transverse
phonons. Although the normal magnetoelastic ε-coupling, which leads
to energy gaps when Eq = h̄ωq±Q, might be significant for the lower
branch, the positions of both gaps agree very well with those expected
from an acoustic–optical coupling, occurring when Eq = h̄ωq±2Q+b3

(in
the double-zone representation), as indicated in Fig. 6.2. Although the
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two gaps are close to each other on the figure, they appear in practice
on different sides of q = 0, and do not interfere. This interaction is
equivalent to the strong optical-magnon – acoustic-phonon coupling ob-
served in Tb, shown in Fig. 5.6. However, in Er, it is not possible to say
whether or not a non-collinear component of the spin-density wave of
the polarized conduction electrons is involved, as this coupling is allowed
independently of whether such a component is present or not.

6.1.2 The longitudinally polarized structure
In the helix or the cone, the magnitude of the moments is constant, and
a transformation to the rotating coordinate system yields a Hamiltonian
which is equivalent to that of a ferromagnet, independently of whether
or not the ordering is commensurable. In the longitudinally polarized
phase, the length of the moments is modulated and the magnitude of the
exchange field changes from site to site. This results in a modulation of
the energies of the MF levels, whereas in the helix or the cone, it is only
the matrix elements of the dipole moments which change. In the com-
mensurable case, which we shall discuss in more detail in the following
section, the RPA always predicts well-defined excitations. If the mag-
netic ordering is incommensurable, the single-site energy levels change
in a pattern which never repeats itself, introducing effectively random
energy-barriers along the paths of the excitations. Hence it is not obvi-
ous whether well-defined excitations can exist in this phase (Cooper et
al. 1962). We shall focus on the effects of incommensurable ordering by
considering the simplest possible model. The single-ion anisotropy terms
are neglected, but in order to confine the moments along the c-axis, the
two-ion dipole coupling is assumed to be anisotropic, J‖(q) �= J⊥(q).
Furthermore, we assume that the temperature is so close to TN that
the tendency towards squaring-up, i.e. the higher harmonics discussed
in Section 2.1.4, can be neglected, in which case

〈Jiζ〉 = Ai = A cos (Q ·Ri + ϕ). (6.1.25)

The exchange field acting on the ith site is then

heff
iζ =

∑
j

J‖(ij)A cos (Q ·Rj + ϕ) = AiJ‖(Q),

and the transverse component of the MF Green function is

g o
i (ω) ≡ −χ o

+−(ω) =
2Ai

h̄ω −AiJ‖(Q)
, (6.1.26)

as in Section 3.5.2. Because χ o
++(ω) and χ o−−(ω) both vanish, the site-

dependent equation determining the final RPA Green function G(ij, ω),
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corresponding to g o
i (ω), may be written

{
h̄ω −AiJ‖(Q)

}
G(ij, ω) = 2Aiδij −

∑
j′

AiJ⊥(ij′)G(j′j, ω), (6.1.27)

obtained from the RPA equation (3.5.7) by multiplying with the energy
denominator in g o

i (ω). We introduce the Fourier transforms

Gn(q, ω) = 1

N

∑
ij

G(ij, ω)e−iq·(Ri−Rj)e−inQ·Ri , (6.1.28)

where n is an integer, and the coupling parameter

γn(q) = −1
2 A{J‖(Q) − J⊥(q + nQ)

}
, (6.1.29)

which is always negative (A > 0), as the stability of the structure re-
quires J‖(Q) − J⊥(Q) > 0. From (6.1.27), we then obtain the infinite
set of equations

h̄ωGn(q, ω)+γn+1(q)Gn+1(q, ω)+γn−1(q)Gn−1(q, ω) = A(δn,1+δn,−1)
(6.1.30)

whenever Q is incommensurable. In a commensurable structure, for
which mQ = pτ , we determine Gn(q, ω) = Gn+m(q, ω) by the corre-
sponding finite set of m equations. Of the infinite number of Green
functions, we wish to calculate the one with n = 0, as the transverse
scattering function is proportional to Im

[
G0(q, ω)

]
.

It is possible to rewrite eqn (6.1.30) so that G0(q, ω) is expressed
in terms of infinite continued fractions. In order to derive such an ex-
pression, we shall introduce the semi-infinite determinant Dn, with n
positive,

Dn =

∣∣∣∣∣∣∣∣∣∣∣

h̄ω γn+1 0 0 0 0 · · ·
γn h̄ω γn+2 0 0 0 · · ·
0 γn+1 h̄ω γn+3 0 0 · · ·
0 0 γn+2 h̄ω γn+4 0 · · ·
...

...
. . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣
(6.1.31)

leaving out the variables q and ω. Expanding the determinant in terms
of the first column, we have

Dn = h̄ωDn+1 − γnγn+1Dn+2. (6.1.32)
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When n = 1, eqn (6.1.30) may be written h̄ωG1 + γ2G2 = A − γ0G0,
and the semi-infinite series of equations with n ≥ 1 may be solved in
terms of G0 and Dn:

G1 = (A− γ0G0)
D2

D1

= (A− γ0G0)
1

h̄ω − γ1γ2D3/D2

, (6.1.33)

utilizing (6.1.32) in the last step. In terms of the two infinite continued
fractions (n ≥ 1)

zn(q, ω) =
γn(q)

h̄ω − γn(q)zn+1(q, ω)

z−n(q, ω) =
γ−n(q)

h̄ω − γ−n(q)z−n−1(q, ω)
,

(6.1.34)

eqn (6.1.33) may be written γ1G1 = (A−γ0G0)z1, and in the same way,
we have γ−1G−1 = (A − γ0G0)z−1. Introducing these expressions into
(6.1.30), with n = 0, we finally obtain

G0(q, ω) = A z1(q, ω) + z−1(q, ω)
γ0{z1(q, ω) + z−1(q, ω)} − h̄ω

. (6.1.35)

A similar result was derived by Liu (1980). In this formal solution, there
is no small parameter, except in the high-frequency limit, which allows
a perturbative expansion of G0(q, ω). The infinite continued fraction
determining zn never repeats itself, but it is always possible to find an
n = s such that zs is arbitrary close to, for instance, z1. This property
may be used for determining the final response function when h̄ω → 0.
In this limit, we have from (6.1.34): z1 = −1/z2 = z3 = −1/z4 = · · ·
and, using z1 � zs for s even, we get z1 = −1/z1 or z1 = ±i. At q = 0,
we have by symmetry z1 = z−1 = ±i, which also has to be valid at
any other q. The correct sign in front of the i is determined from a
replacement of ω by ω + iε, where ε is an infinitesimal positive quantity
or, more easily, from the property that Im

[
G0(q, ω)

]
should have the

opposite sign to ω, i.e.

G(q, ω → 0) =
A
γ0

− i
A

2γ2
0

h̄ω. (6.1.36a)

Since
χξξ(q, ω) = χηη(q, ω) = −1

4

{
G(q, ω) + G∗(q,−ω)

}
,

we get

χξξ(q, ω → 0) =
1

J‖(Q) − J⊥(q)
+ i

h̄ω

A{J‖(Q) − J⊥(q)}2
. (6.1.36b)
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The imaginary term linear in ω implies that the correlation function
(4.2.3), which is proportional to χ′′

αβ(q, ω)/βh̄ω for ω → 0, is non-zero
in this limit. Hence the inelastic-scattering spectrum of the incommen-
surable system contains a tail down to zero frequency, with a magnitude
at ω = 0 proportional to T . At non-zero frequencies, eqn (6.1.35) can
only be solved in special cases, such as if γn is independent of n, corre-
sponding to J⊥(q) = 0 (Liu 1980). In general, numerical methods must
be applied. We may, for example, replace ω by ω + iε and, instead of
considering the limit ε → 0+, allow ε to stay small but non-zero (e.g.
ε = 0.01|ω |). Then G0(q, ω) becomes insensitive to the value of z±n,
if n is sufficiently large (n > 50). ε acts as a coarse-graining param-
eter, of the type mentioned at the beginning of this section, and any
energy gaps in the spectrum, smaller than h̄ε, are smeared out. A more
careful treatment of this problem has been given by Lantwin (1990).
Solutions of eqn (6.1.35) have been presented by Ziman and Lindg̊ard
(1986), Lovesey (1988), and Lantwin (1990), for various values of Q
and the axial anisotropy parameter J‖(Q) − J⊥(Q). The most impor-
tant result is that the imaginary part of G0(q, ω)/ω contains a number

Fig. 6.3. The imaginary part of the response function χξξ(q, ω)/ω
for an incommensurable longitudinal structure, as a function of ω and q,
from Ziman and Lindg̊ard (1986). The sharp peaks indicate the presence

of well-defined excitations in this structure.



304 6. SPIN WAVES IN PERIODIC STRUCTURES

of sharp peaks, as a function of ω at a constant value of q; one such
example is shown in Fig. 6.3. These peaks indicate the presence of well-
defined excitations. The variation of the energy with the component of
q parallel to Q is very small, but the spectral weights of the different
peaks change. This pattern indicates that the excitations propagating
parallel to the ordering wave-vector are quasi-localized modes of com-
posite angular momenta. This behaviour may be explained by a closer
examination of the single-site response function (6.1.26). g o

i (ω) becomes
nearly zero, at non-zero frequencies, whenever Ai = 〈Jiζ〉 is small, which
generally occurs twice in every period. This explains the low-frequency
diffusive response, and implies that the excitations become essentially
trapped between the sites with small moments.

This theory may, with some modifications, be applicable to a de-
scription of Er in its high-temperature, longitudinally polarized phase
(T ′

N < T < TN ). The excitations in this temperature interval have been
studied by Nicklow and Wakabayashi (1982). They found no sharp peaks
in the transverse spectrum, but saw indications of relatively strong dis-
persive effects at small values of q ± Q. The absence of sharp peaks in
the spectrum may be explained by intrinsic linewidth effects, neglected
in the RPA theory utilized above, which may be quite substantial at the
relatively high temperatures of the experiments. However, the strong
dispersive effects detected close to the magnetic Bragg peaks are not
consistent with the results discussed above. One modification of the sim-
ple model which may be important is the squaring-up of the moments,
which has been considered by Lantwin (1990). The higher harmonics
lead to additional coupling terms in (6.1.30), and the analysis becomes
correspondingly more complex. However, a simple argument shows that
the higher harmonics result in less localized modes, and thus lead to a
stronger dispersion, as also concluded by Lantwin. It is because the in-
tervals along the c-axis in which the moments are small become narrower
when the moments square up, so that the excitations may tunnel more
easily through these regions. Another limitation of the theory, which
may be important for Er, is that the single-site crystal-field anisotropy,
neglected in the model, is probably more important than the two-ion ax-
ial anisotropy. The single-ion anisotropy splits the levels, even when the
exchange field vanishes, and excited dipolar states may occur at energies
suitable for allowing the excitations to propagate across sites with small
moments, more freely than in the simple model. In the limit where the
exchange field is small compared to the crystal-field splittings, which we
shall discuss in the next chapter, the corresponding continued fractions
in G0(q, ω) converge rapidly (Jensen et al. 1987), and the results become
largely independent of whether the ordering is commensurable or not.


