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5.7 Conduction-electron interactions

As we have already discussed in Section 1.4, the conduction electrons
in the rare earth metals act as the medium through which the coupling
is established between the 4f electrons localized on the ions. In this
section, we shall investigate this RKKY coupling in more detail, and
consider its influence on both the spin waves in the ferromagnetic phase,
and also on the conduction electrons themselves. The indirect-exchange
interaction is first derived, and its effects in limiting the lifetimes of
the spin waves and in polarizing the conduction electrons are deduced.
The enhancement of the effective mass of the conduction electrons by
the dynamical magnetic fluctuations is then calculated. Finally, the
modification of the electrical resistivity by the exchange interaction is
discussed, including the scattering of the conduction electrons by the
spin-wave excitations, and the influence of the magnetic ordering on the
conduction-electron band structure. For completeness, we include the
effect of magnetic superzones in periodic structures in this section.

5.7.1 The indirect-exchange interaction
The starting point for our consideration of the indirect exchange, or
RKKY coupling, of the localized moments is the Heisenberg–Dirac ex-
change between the 4f electrons and the conduction electrons. The 4f -
core electrons of the ion at site i are assumed to be described to a good
approximation by non-overlapping atomic wavefunctions φ4f (r − Ri).
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We shall neglect the spin–orbit coupling of the conduction electrons,
and assume their wavefunctions to be the Bloch functions

ψnk(r) = unk(r) eik·r = ψnk(r− Ri) eik·Ri , (5.7.1)

independent of the spin state σ. unk(r) = unk(r − Ri) has the period-
icity of the lattice, and n is the band index. The Hamiltonian of the
conduction electrons in second quantization is

Hs =
∑
nkσ

εnkc
+
nkσcnkσ, (5.7.2)

where the index s is conventionally used for the conduction electrons
even though, as we saw in Section 1.3, they have predominantly d char-
acter. c+nk↑ creates and cnk↑ annihilates a spin-up electron in the band-
state (nk), and they are Fermi-operators which satisfy the anticommu-
tation relations

{cnkσ , c
+
n′k′σ′} ≡ cnkσc

+
n′k′σ′ + c+n′k′σ′cnkσ = δnn′δkk′δσσ′

{c+nkσ , c
+
n′k′σ′} = {cnkσ , cn′k′σ′} = 0.

(5.7.3)

An exposition of second quantization may be found, for example, in
White (1983). The exchange interaction between a pair of electrons is
−2Is1 · s2, where I is the exchange integral. If s1 is the spin of a 4f
electron at site i, then the sum over all the 4f electrons at this site gives∑

4f el.

−2Is1 · s2 = −2ISi · s2 = −2I(g − 1)Ji · s2,

where I is an average value of the exchange integral for the 4f elec-
trons, and states other than those in the ground-state J-multiplet are
neglected. The spin-density of the conduction electrons at r may be
expressed in second-quantized form so that, for instance,

s2z(r) =
∑
nn′

∑
kk′

ψ∗
n′k′(r)ψnk(r)1

2

(
c+n′k′↑cnk↑ − c+n′k′↓cnk↓

)
. (5.7.4)

The sf-exchange interaction is determined by the following exchange
integral:∫

dr1dr2ψ
∗
n′k′(r1)φ∗4f (r2 − Ri)

e2

|r1 − r2|ψnk(r2)φ4f (r1 − Ri)

=
1
N
I(n′k′, nk)e−i(k′−k)·Ri ,
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with

I(n′k′, nk) = N

∫
dr1dr2ψ

∗
n′k′(r1)φ∗4f (r2)

e2

|r1 − r2|ψnk(r2)φ4f (r1),

(5.7.5)
whereN is the number of rare earth ions. If there are several 4f electrons
per ion, I(n′k′, nk) should again be averaged over their wavefunctions.
The Hamiltonian Hsf , describing the exchange interaction between the
conduction electrons and the 4f electrons, is then found to be

Hsf = − 1

N

∑
i

∑
nn′

∑
kk′

(g − 1)I(n′k′, nk)e−i(k′−k)·Ri

×[
(c+n′k′↑cnk↑ − c+n′k′↓cnk↓)Jiz + c+n′k′↑cnk↓J

−
i + c+n′k′↓cnk↑J

+
i

]
,

(5.7.6)
in second quantization.

In the ordered ferromagnetic phase, we may use the MF approxi-
mation, in which case

Hsf (MF) = −
∑
nn′

∑
k

(g − 1)I(n′k, nk)(c+n′k↑cnk↑ − c+n′k↓cnk↓)〈Jz〉.
(5.7.7)

This Hamiltonian gives rise to both diagonal and off-diagonal contribu-
tions to the energies of the conduction electrons. The diagonal energies
are

εnk↑ = εnk − 〈Jz〉(g − 1)I(nk, nk)

εnk↓ = εnk + 〈Jz〉(g − 1)I(nk, nk).
(5.7.8)

Second-order perturbation theory then gives the energies of the band
electrons as

ε̃nkσ = εnkσ + 〈Jz〉2(g − 1)2
∑
n′ �=n

|I(n′k, nk)|2
εnk − εn′k

. (5.7.9)

This dependence of the energies of the perturbed band-electrons on their
state of polarization implies that the electron gas itself develops a non-
zero magnetization. In order to calculate this moment, we first note that
(5.7.9) corresponds to a replacement of Hs + Hsf (MF) by an effective
Hamiltonian for the band electron,

H̃s =
∑
nkσ

ε̃nkσ c̃
+
nkσ c̃nkσ, (5.7.10)

where the new Fermi operators are determined in terms of the old by

cnk↑ = c̃nk↑ +
∑
n′
Uk(n, n′)c̃n′k↑

cnk↓ = c̃nk↓ −
∑
n′
Uk(n, n′)c̃n′k↓,

(5.7.11a)
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to leading order. Uk(n, n) = 0 and, for n′ �= n,

Uk(n, n′) = (g − 1)〈Jz〉 I(nk, n
′k)

εnk − εn′k
. (5.7.11b)

The (approximately) diagonal form of (5.7.9) implies that the thermal
expectation values are

〈c̃+
nkσ c̃n′k′σ′〉 = δnn′δkk′δσσ′ fnkσ , (5.7.12a)

where
fnkσ =

1

eβ(ε̃
nkσ

−µ
F

) + 1
(5.7.12b)

is the Fermi–Dirac distribution function and µF is the chemical poten-
tial, equal to the Fermi energy ε̃F in the temperature regime in which
we shall be interested. The moment density is determined by (5.7.4),
and introducing the new Fermi operators and using (5.7.12), we obtain

〈µz(r)〉c.el. = µB

∑
nn′

∑
kk,

ψ∗
n′k′(r)ψnk(r)

(〈c+
n′k′↑cnk↑〉 − 〈c+

n′k′↓cnk↓〉
)

= µB

∑
nn′

∑
k

ψ∗
n′k(r)ψnk(r)

[{δnn′ + U∗
k(n′, n)}(fnk↑ − fnk↓)

+ Uk(n, n′)(fn′k↑ − fn′k↓)
]
. (5.7.13)

The uniform, averaged part of this moment density can be obtained
by an integration of eqn (5.7.13) over space, and remembering that the
wavefunctions are orthogonal and normalized, we find the magnetic mo-
ment of the conduction electrons per ion to be

〈µz〉c.el. = µB
1

N

∑
nk

(
fnk↑ − fnk↓

)
. (5.7.14)

We note that, in addition to this uniform polarization of the conduction
electrons, there is a spatially non-uniform component of the polarization
density with the periodicity of the lattice. This non-uniform component
reflects the variation in the electronic density, including the perturba-
tive changes due to the interband contributions proportional to Uk(n, n′).
Furthermore, when the spin–orbit coupling of the conduction electrons
is of importance, the interband coupling may induce a positional depen-
dence in the direction of the spin polarization.

In order to obtain order-of-magnitude estimates of the exchange
effects, we introduce a reasonable but somewhat crude approximation
for the exchange integral, which is due to Overhauser (1963) and has
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been discussed in detail by Freeman (1972). First we assume that the
Coulomb interaction in eqn (5.7.5) is strongly shielded, so that it can
be replaced by a δ-function. Next, using plane waves for the Bloch
functions, we obtain

(g − 1)I(nk′, nk) ≈ j(q = k′ − k) ∝
∫
dr|φ4f (r)|2e−iq·r, (5.7.15)

which is the form factor of the 4f -electron density, approximately the
same as the local moment density (4.1.15). In this simplified model,
where the conduction electrons are assumed to be free-electron-like, the
interband exchange integrals, in which n′ �= n, are obtained by adding
reciprocal-lattice vectors τ to q in eqn (5.7.15). In this model, we obtain
a rigid band-splitting, independent of k, between the spin-down and
spin-up bands, of magnitude

∆ = ε̃nk↓ − ε̃nk↑ = 2〈Jz〉j(0). (5.7.16)

Since j(0) has the same sign as (g − 1), it is positive in the heavy rare
earth metals. If N (ε) is the density of electronic states per ion and per
spin state in the paramagnetic phase, the shifts of the spin-up and spin-
down bands lead to an excess number of spin-up electrons proportional
to

N (ε̃F ) =
1
∆

∫ ε̃F +∆
2

ε̃
F
−∆

2

N (ε)dε, (5.7.17)

when the small modification of the density of states due to the interband
coupling is neglected, so that ε̃F is close to the Fermi energy εF of
the non-magnetic system. In combination with eqn (5.7.14), this result
predicts a (positive) augmentation of the ferromagnetic moment of the
4f electrons, due to the conduction electrons, of magnitude

〈µz〉c.el. = µBN (ε̃F )∆, (5.7.18)

when kBT � ε̃F . The total moment per ion may then be expressed in
terms of an effective g-factor:

〈µz〉 = gµB〈Jz〉 + 〈µz〉c.el. = (g + ∆g)µB〈Jz〉, (5.7.19a)

where
∆g = 2j(0)N (ε̃F ). (5.7.19b)

In the metals, the effective exchange integral j(0) is ∼ (g − 1) × 0.1 eV,
leading to an exchange splitting ∆ which, in Gd for example, is nearly 1
eV. This relatively large splitting has the consequence that N (ε̃F ) may
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differ somewhat from the value N (εF ) in the paramagnetic phase. In
the hcp metals, the band structure calculations discussed in Section
1.3 reveal that εF is near a peak in the density of states due to the d
electrons, and that N (εF ) 	 1 eV−1 per spin state per ion, corresponding
to an electronic moment of the order of one-tenth of the local moment.
In the example of Gd, for which g = 2, ∆g = 0.18. The same value of
∆g/(g− 1) accounts fairly well for the conduction-electron contribution
to the moments of the other heavy rare earths in Table 1.6, bearing
in mind the uncertainties in the experimental results, and the possible
effects of the crystal fields in quenching the local moments.

The spin waves in the ferromagnetic phase are decisively influenced
by the sf -exchange interaction. In order to consider such effects, we
introduce the Bose operators acting on the angular-momentum states,
as in eqns (5.2.6–8), and find, to first order in 1/J ,

Hsf 	 Hsf (MF) − 1
N

∑
kqτ

∑
i

j(q + τ ) e−iq·Ri

[
−δq0(〈c+k+τ ↑ck↑〉

− 〈c+k+τ ↓ck↓〉)a+
i ai +

√
2Jc+k+q+τ ↑ck↓ a

+
i +

√
2Jc+k+q+τ ↓ck↑ ai

]
,

using the simplified exchange of eqn (5.7.15), and neglecting effects of
third or higher order in j(q) due to (c+k′σckσ − 〈c+k′σckσ〉)a+

i ai. q is
assumed to lie in the primitive Brillouin zone, but no such restriction
is placed on k. We note that c+k and c+k+τ , where τ is a reciprocal
lattice vector, create electrons in different bands in the free-electron
model. Introducing the crystal-field Hamiltonian to first order in 1/J
(eqn (5.2.14) with J (ij) = 0), and the Fourier transforms of the Bose
operators (5.2.16), we find that the total magnetic Hamiltonian becomes

H = H̃s +
∑
q

[{A+ JJ̃ (0, 0)}a+
q aq +B 1

2 (aqa−q + a+
q a

+
−q)

]
− √

2J/N
∑
kqτ

j(q + τ )
(
c+k+q+τ ↑ck↓ a

+
−q + c+k+q+τ ↓ck↑ aq

)
,

(5.7.20)
where

J̃ (0, 0) = 2j2(0)N (ε̃F ) +
2
N

∑
k,τ �=0

|j(τ )|2 fk↓ − fk+τ ↑
εk+τ − εk

, (5.7.21)

including the ‘interband’ contributions as in (5.7.9). The spin-wave en-
ergies may be obtained from the poles in the Green function 〈〈aq ; a+

q 〉〉.
The equation of motion (3.3.14) for this Green function is determined
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from H to be{
h̄ω −A−JJ̃ (0, 0)

}〈〈aq ; a+
q 〉〉 −B〈〈a+

−q ; a+
q 〉〉

+
√

2J/N
∑
kτ

j(−q − τ )〈〈c+k−q−τ ↑ck↓ ; a+
q 〉〉 = 1. (5.7.22)

The equation of motion of the new Green function 〈〈c+k−q−τ ↑ck↓ ; a+
q 〉〉

involves the following commutator:

[ c+k−q−τ ↑ck↓ ,H ] =
(
εk↓ − εk−q−τ ↑

)
c+k−q−τ ↑ck↓

+
√

2J/N
∑
q′
j(q′)

(
c+k−q−τ+q′↓ck↓ − c+k−q−τ ↑ck−q′↑

)
aq′

	 (
εk↓ − εk−q−τ ↑

)
c+k−q−τ ↑ck↓ +

√
2J/N j(q + τ )

(
fk↓ − fk−q−τ ↑

)
aq

(5.7.23)
obtained by applying the anticommutator relations (5.7.3) and, in the
second equation, an RPA decoupling of the operator products. It is
not necessary here to differentiate between the new and the old Fermi
operators, as the differences introduce corrections only in the third order
of |j(q)|. Introducing this RPA result in the equation of motion for the
Green function 〈〈c+k−q−τ ↑ck↓ ; a+

q 〉〉, we obtain(
h̄ω − εk↓ + εk−q−τ ↑

)〈〈c+k−q−τ ↑ck↓ ; a+
q 〉〉

− √
2J/N j(q + τ )

(
fk↓ − fk−q−τ ↑

)〈〈aq ; a+
q 〉〉 = 0,

(5.7.24)
which, in combination with (5.7.22), leads to{
h̄ω−A−JJ̃ (0, 0)+JJ̃ (q, ω)

}〈〈aq ; a+
q 〉〉−B〈〈a+

−q ; a+
q 〉〉 = 1, (5.7.25)

where

J̃ (q, ω) = lim
ε→0+

2
N

∑
τ

|j(q + τ )|2
∑
k

fk↓ − fk−q−τ ↑
h̄ω + ih̄ε− εk↓ + εk−q−τ ↑

.

(5.7.26a)
This result may be expressed in terms of the susceptibility of the con-
duction electrons. Introducing the spin susceptibility per ion, which is
the usual magnetic susceptibility times (2µB)−2V/N , so that

χ+−
c.el.(q, ω) = − 1

N

∫
dr1dr2〈〈s+(r1) ; s−(r2)〉〉 e−iq·(r1−r2)

= − 1
N

∑
k′k′′

〈〈c+k′−q↑ck′↓ ; c+k′′+q↓ck′′↑〉〉

= lim
ε→0+

1
N

∑
k

fk↓ − fk−q↑
h̄ω + ih̄ε− εk↓ + εk−q↑

,

(5.7.26b)
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and neglecting the higher-order corrections to the spin-susceptibility,
due to the coupling to the local moments, we can write the above result

J̃ (q, ω) = 2
∑
τ

|j(q + τ )|2χ+−
c.el.(q + τ , ω), (5.7.26c)

where by the relation (3.2.15), χ+−
c.el.(q, ω) = [χ−+

c.el.(−q,−ω)]∗. In gen-
eral, when the Coulomb interaction cannot be approximated by a δ-
function, this factorization is not valid, and the indirect exchange is
instead given by

J̃ (q, ω) =

lim
ε→0+

2
N

∑
nn′

∑
k

(g − 1)2|I(n′k− q, nk)|2 fnk↓ − fn′k−q↑
h̄ω + ih̄ε− εnk↓ + εn′k−q↑

,

(5.7.27)
where k is now confined to the primitive Brillouin zone.

In the frequency regime of the spin waves, where |h̄ω| is much
smaller than the Fermi energy or the exchange splitting ∆, the fre-
quency dependence of J̃ (q, ω) can, to a good approximation, be ne-
glected. The spins of the conduction electrons respond essentially in-
stantaneously to any changes in the state of the local angular momenta,
compared with the time-scale of these changes. For a Bravais-lattice,
J̃ (q, ω) 	 J̃ (q, 0) = J̃ (−q, 0). A comparison of eqn (5.7.25) with the
1/J spin-wave result (5.2.18) shows that J̃ (0, 0) − J̃ (q, 0) replaces the
contribution of the Heisenberg interaction considered in eqn (5.2.1). In
this equation, J (ii) ≡ 0 by definition and, since this is not the case for
J̃ (ii) = (1/N)

∑
q J̃ (q, 0), J̃ (q, 0) cannot be associated directly with

J (q). The instantaneous or frequency-independent part of the coupling
of Ji with itself leads to a contribution 1

2N J̃ (ii)〈Ji · Ji〉 to the total
energy, where 〈Ji ·Ji〉 = J(J + 1), independently of the magnetic order-
ing or the temperature. This assertion may be verified (to first order
in 1/J) by a direct calculation of 〈H〉 from (5.7.20). For this purpose
〈c+k−q−τ ↑ck↓a

+
q 〉, for instance, is determined from eqn (5.7.24), but a

self-energy correction of a factor 1/2 must be included in its contribu-
tion to 〈H〉. Taking this condition into account, we may finally write

J (q) = J̃ (q, 0) − 1

N

∑
q′

J̃ (q′, 0). (5.7.28)

The exchange interaction between the 4f electrons and the conduction
electrons thus leads to an effective Heisenberg interaction between the
local angular momenta, as given in (5.2.1). This is the RKKY interaction
discussed earlier in Section 1.4.
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The above calculation has been performed for a Bravais lattice, but
the result (5.7.26) is readily generalized to a crystal with a basis of p
ions, as the conduction electrons, in the approximation adopted, are
not affected by the presence of the basis. If the couplings between the
different sublattices are introduced in an equivalent manner to (5.1.1),
then

J̃ss′(q, ω) = 2

p

∑
τ

|j(q + τ )|2χ+−
c.el.(q + τ , ω) exp

(
iρss′ · τ)

(5.7.29)

replaces (5.7.26c), where ρss′ is the vector connecting the two sublattices
s and s′.

The interaction between the localized moments is effectuated via
virtual electron-hole pair-excitations of the conduction electrons. The
transmission of any time-dependent event may be disturbed in two ways;
either by the finite propagation-time of the pairs, or by a decay of the
pair states into unbound electron and hole excitations, the so-called
Stoner excitations. The second effect produces by far the most impor-
tant correction to the instantaneous interaction, but we shall begin with
a discussion of the frequency-dependence of the real part of J̃ (q, ω), due
to the finite transmission time. Returning to the simple model leading
to (5.7.26), we find that the exchange coupling is proportional to the
susceptibility function χ+−

c.el.(q, ω), which for unpolarized free electrons
is the same as the Lindhard function (Lindhard 1954). If corrections of
the order kBT/εF are neglected, the real part at zero wave-vector is

Re
[
χ+−

c.el.(0, ω)
]

=
1
N

∑
k

fk↓ − fk↑
h̄ω − εk↓ + εk↑

=
1
N

∑
k

fk↑ − fk↓
∆ − h̄ω

= N (ε̃F )
(
1 +

h̄ω

∆

)
.

(5.7.30)

From this result, we find immediately that the intra-band contribution
at zero frequency to J̃ (q → 0, 0) in eqn (5.7.26a) is 2j2(0)N (ε̃F ), which
is the same as in (5.7.21). On the other hand, the interband contri-
butions differ in the two expressions, as the denominator in (5.7.26a)
involves the exchange splitting ∆, whereas that in (5.7.21) does not.
However, this difference can be neglected, as it is of the order (∆/εF )2

times the intra-band contribution, which is beyond the order considered
in these calculations. In fact, since the starting Hamiltonian (5.7.6) is
invariant with respect to the choice of z-axis for the electronic spins
and the angular momenta, the spin-wave frequency must vanish when
q → 0 and A = B = 0, according to the Goldstone theorem, which will
be discussed in the next chapter. Therefore J̃ (q → 0, 0) = J̃ (0, 0),
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and we simply assume that eqn (5.7.26a), with (q, ω) = (0, 0), replaces
eqn (5.7.21). In the presence of an external field, ∆ in eqn (5.7.16) is
increased by an amount 2µBH, which leads to the extra contribution
∆gµBH to J̃ (0, 0) in (5.7.21), as the change with field of the interband
terms may be neglected. To leading order, J̃ (q → 0, 0) is not affected
by the applied field, so to this order the extra polarization of the con-
duction electrons, due to an external field, may simply be accounted
for by replacing gµBH by (g + ∆g)µBH, both in the Zeeman energy
(5.7.19a) and in the spin-wave energy parameters (in A). Writing the
susceptibility in eqn (5.7.26b) as the sum of two terms, and replacing
k − q by k in the term involving fk−q↑, we obtain

Re
[
χ+−

c.el.(q, ω)
]

=

V

(2π)3
2π
N

∫ kF↓

0

k2dk

∫ 1

−1

dµ
[
h̄ω − ∆ +

(h̄q)2

2m
− h̄2kq

m
µ
]−1

− V

(2π)3
2π
N

∫ kF↑

0

k2dk

∫ 1

−1

dµ
[
h̄ω − ∆ − (h̄q)2

2m
− h̄2kq

m
µ
]−1

,

or

Re
[
χ+−

c.el.(q, ω)
]

=
V

N

m

(2πh̄)2
{
kF↓(1 − η)F

( q

2kF↓
(1 − η)

)
+ kF↑(1 + η)F

( q

2kF↑
(1 + η)

)}
(5.7.31a)

where we have introduced the function

F(x) =
1
2

+
1 − x2

4x
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣ (5.7.31b)

and the parameter

η =
∆ − h̄ω

εF

(
kF

q

)2

. (5.7.31c)

The Fermi energy is εF = (h̄kF )2/2m, and the wave-vectors of the spin-
up and the spin-down electrons at the Fermi surface are

kF↑ = kF

(
1 +

∆
2εF

) 1
2 ; kF↓ = kF

(
1 − ∆

2εF

) 1
2 . (5.7.31d)

η → ∞ in the limit q → 0 and, using F(x) = 1/3x2 when |x| → ∞, we
may re-derive the result (5.7.30). At non-zero q, a numerical analysis
shows that, to a good approximation,

Re
[
χ+−

c.el.(q, ω)
]

= N (ε̃F )
{
F( q

2kF

)
+ ξq

h̄ω

∆

}
, (5.7.32)
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even when ∆/εF is as large as 0.5. The parameter ξq is equal to 1
at q = 0, and peaks at q = q0 = kF↑ − kF↓, after which it rapidly
decreases (ξq 	 0.25 at q = 2q0). For ∆/εF = 0.1, the maximum value
is about 4 and it decreases for increasing values of ∆, falling to about
3 at ∆/εF = 0.4. Usually q0 is much smaller than the length of any
reciprocal-lattice vector, which means that the frequency dependence of
the ‘interband’ term in the real part of J̃ (q, ω) can be neglected. The
intra-band contribution is 2|j(q)|2N (ε̃F )ξqh̄ω/∆, and using

{
h̄ω +A+ JJ̃ (0, 0) − JJ̃ ∗(−q,−ω)

}〈〈a+
−q ; a+

q 〉〉 +B〈〈aq ; a+
q 〉〉 = 0,
(5.7.33)

which follows by symmetry from eqn (5.7.25), we may determine the
spin-wave energies from the real part of J̃ (q, ω) to be

h̄ω = E′
q = Eq

[
1 + ξqN (ε̃F )|j(q)|2/j(0)

]−1
, (5.7.34a)

to first order in 1/J , with Eq given by (5.2.22). The extra factor, which
originates from the frequency dependence of χ+−

c.el.(q, ω), differs from 1
by only a few per cent, and its q-dependent contribution could scarcely
be distinguished from that of J (q). However, the presence of this factor
at q = 0 means that the energy of the uniform spin-wave mode is no
longer determined exclusively by the magnetic anisotropy of the bulk,
according to (5.4.12) and (5.4.19), when the magnetoelastic effects are
included, but instead the energy gap is

E′
0 =

1
N

(
∂2F

∂θ2

∂2F

∂φ2

∣∣∣∣
ε

)1
2 1
〈Jz〉(1 + 1

2∆g)
. (5.7.34b)

Although this modification is small, it demonstrates that the frequency
dependence of χ+−

c.el.(q, ω) may cause small deviations between the static
anisotropy parameters and those derived from the energy gap, as possi-
bly detected in Tb in the form of a non-zero value of δ6(−), defined by
eqn (5.4.23a).

The dominant term in the real part of χ+−
c.el.(q, ω) is the frequency-

independent contribution proportional to F(q/2kF ). Including only this
contribution, and making the rather drastic simplifying assumption that
|j(q + τ )| in eqn (5.7.26c) is a constant |j0| at all wave-vectors, we may
derive the exchange coupling in real space, which then depends only on
the distance R between the different ions:

J (R) = 2|j0|2 V

N(2π)3

∫
N (ε̃F )F( q

2kF

)
eiq·Rdq.
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The sum over τ in (5.7.26c) corresponds to letting q vary between 0 and
∞, and the result is

J (R) = 12πν|j0|2N (ε̃F )
sin(2kFR) − 2kFR cos(2kFR)

(2kFR)4
, (5.7.35)

where ν is the number of conduction electrons per ion; ν = V k3
F /3π

2N .
Although this result is not directly applicable to realistic systems, it
demonstrates explicitly that the indirect coupling mediated by the con-
duction electrons is long range, J (R) ∝ R−3 for large R, and that it
oscillates. The period of the oscillation is here 2π/2kF whereas, in a real
system, such oscillations may occur as a result of large parallel areas of
Fermi surface, the separation of which determines an effective value of
2kF . It is interesting that J (R), derived from the excitation spectrum
in Pr and shown in Fig. 1.18 on page 49, is reasonably well described
by the above function, especially when R is in the basal plane, provided
that an effective value of 2kF of about 1.1 Å−1 is used.

The magnetic scattering of the electron-hole pairs leads to a damp-
ing of the spin waves, which is determined by the imaginary part of the
susceptibility (5.7.26b). The complementary result to eqn (5.7.31a) is
then

Im
[
χ+−

c.el.(q, ω)
]

=

− V

(2π)3
2π
N

∫ ∞

0

k2dk

∫ 1

−1

dµπδ
(
h̄ω − ∆ +

(h̄q)2

2m
− h̄2kq

m
µ
)
fk↓

+
V

(2π)3
2π
N

∫ ∞

0

k2dk

∫ 1

−1

dµπδ
(
h̄ω − ∆ − (h̄q)2

2m
− h̄2kq

m
µ
)
fk↑.

Because −1 < µ < 1, the δ-function argument in the first term can only
be zero if εq ≡ (h̄q)2/(2m) lies between the two roots ε± = 2εk + ∆ −
h̄ω ± 2

[
εk(εk + ∆ − h̄ω)

]1/2. For the second term, the same condition
applies, except that the signs of ∆ and h̄ω are reversed, leading to the
extra requirement that εk > εK = ∆ − h̄ω. If these conditions are
satisfied,

Im
[
χ+−

c.el.(q, ω)
]

=

− V

N(2π)2

∫ ∞

0

πm

h̄2q
kf(εk + ∆

2 )dk +
V

N(2π)2

∫ ∞

K

πm

h̄2q
kf(εk − ∆

2 )dk,

where f(ε) = 1/
[
exp(ε−εF )+1

]
. By a suitable change of variables, the

two integrals acquire the same limits and the same condition on εq, and
they may therefore be combined in a single integral:

Im
[
χ+−

c.el.(q, ω)
]

=
V

N(2π)2
πm2

h̄4q

∫ ∞

∆−h̄ω
2

{−f(ε+ h̄ω
2 ) + f(ε− h̄ω

2 )
}
dε.
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The integrand is only non-zero in a narrow interval of width |h̄ω| �
∆ < εF around the Fermi surface, in which case the condition on εq can
be written kF↑ − kF↓ < q < kF↑ + kF↓ (if ∆ = 0 the lower boundary is
replaced by (h̄ω)2/(4εF ) < εq). With this condition fulfilled,

Im
[
χ+−

c.el.(q, ω)
]

=
V

N(2π)2
πm2

h̄4q
h̄ω,

independent of T (as long as kBT � εF ). Using

Nσ(εF ) = (V/N)(2πh̄)−22mkFσ ; (V/N)(2π)−2 2
3 (k3

F↑ + k3
F↓) = ν,

where ν is the number of conduction electrons per ion (ν = 3), we may
write the result:

Im
[
χ+−

c.el.(q, ω)
]

=
π

3ν
N↑(εF )N↓(εF )

kF

q
h̄ω; (5.7.36)

kF↑ − kF↓ < q < kF↑ + kF↓,

neglecting corrections of second order in ∆/εF . In the zero-frequency
limit considered here, q has to exceed the threshold value q0 = kF↑−kF↓
before the imaginary part of χ+−

c.el.(q, ω) becomes non-zero. This thresh-
old value corresponds to the smallest distance in q-space between an oc-
cupied spin-down state and an unoccupied spin-up state, or vice versa,
of nearly the same energy (	 εF ). At q = q0, the function makes a dis-
continuous step from zero to a finite value. The above result, combined
with eqn (5.7.26), leads to

Im
[J̃ (q, ω)

]
= ζ(q)h̄ω, (5.7.37a)

with

ζ(q) =
2π
3ν

N↑(εF )N↓(εF )
∑
τ

|j(q + τ )|2 kF

|q + τ | , (5.7.37b)

where the sum is restricted to kF↑ − kF↓ < |q + τ | < kF↑ + kF↓. The
imaginary part of J̃ (q, ω) gives rise to a non-zero width in the spin-wave
excitations. If the above result is inserted in eqns (5.7.25) and (5.7.33),
the denominator of the Green functions may approximately be written
(h̄ω)2−(E′

q)2 +2iΓqh̄ω, where Γq is half the linewidth of the spin waves
at the wave-vector q, and is found to take the form

Γq = J
[
A+ J{J (0) − J (q)}] ζ(q) = JAq ζ(q). (5.7.38)
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Fig. 5.13. The linewidths of magnons propagating in the c-direction of
Tb at 4K, compared with a theory based upon the nearly-free-electron
model. The abrupt changes in the calculated lifetimes are due to the

spin-splitting of the Fermi surface.

The lifetimes of the magnons propagating in the c-direction in Tb
at 4K, at which temperature the conduction electrons provide the dom-
inant scattering process, were measured by Bjerrum Møller and Mack-
intosh (1979). As illustrated in Fig. 5.13, the linewidths are small, but
non-zero, at small wave-vectors, rise abruptly at about a quarter of the
way to the zone boundary, and fall again at large q. In order to inter-
pret these results rigorously, it would be necessary to use eqn (5.7.27),
with the correct band structure for Tb and realistic values for the ex-
change matrix elements I(n′k′, nk). However, it is possible to obtain a
semi-quantitative description by using the simple free-electron expres-
sion (5.7.37). As we shall see in the remainder of this section, this model,
with an sf -interaction determined, for example, from the polarization of
the conduction electrons (5.7.16–19), gives a surprisingly good account
of the real scattering processes involving the interaction between the 4f
and conduction electrons. Although the dominant d bands are far from
parabolic in the rare earths, the nearly-free-electron Fermi surface for a
trivalent hcp metal has a sheet with the form of a lens normal to the
c-axis (Mackintosh et al. 1963), which mimics the Fermi-surface webbing
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described in Section 1.3, and reproduces a number of observed features.
In the calculations of Jensen (1982a), compared with the experimen-
tal results in Fig. 5.13, the spin-splitting of this surface gives rise to the
critical value q0 at which the linewidths abruptly increase. The finite life-
times below this cut-off are due to interband transitions between states
on sections of the Fermi surface with opposite spin, which intersect in
the primitive Brillouin zone after translation through a reciprocal-lattice
vector. These effects will also occur in calculations based on a realistic
band structure, whereas the behaviour at higher q is much more depen-
dent on the details of the energy bands.

5.7.2 The mass-enhancement of the conduction electrons
The processes in which the spin waves are scattered by the electron-
hole pair excitations of the conduction electrons, and which therefore
limit their lifetime, also have consequences for the conduction electrons.
The energies of the conduction electrons are changed, and hence also
their effective mass at the Fermi surface m∗, as measured directly by
cyclotron resonance or the de Haas–van Alphen effect, or as determined
from the low-temperature heat capacity. In the zero-temperature limit,
the electronic part of the specific heat is

C = γT =
m∗

m
γ0T ; γ0 = 1

3π
2k2

B

{N↑(ε̃F ) + N↓(ε̃F )
}
N, (5.7.39)

where m∗ = (m∗
↑ + m∗

↓)/2 in the spin-polarized case. The use of ε̃F

instead of εF is meant to indicate that all the effects of the MF Hamil-
tonian, including the interband couplings in (5.7.7), are assumed to be
incorporated in γ0 or m.

In order to calculate m∗, we shall utilize the Green functions of
the conduction electrons. Because these particles are fermions, it is
convenient to introduce an alternative type of Green function, in which
an anticommutator bracket replaces the commutator bracket occurring
in the definition (3.3.12), so that, for instance,

G↑(k, t− t′) ≡ 〈〈ck↑(t) ; c+k↑(t
′)〉〉+ = − i

h̄
θ(t− t′)〈{ck↑(t) , c

+
k↑(t

′)}〉.
(5.7.40)

The Fourier transform obeys an equation of motion equivalent to eqn
(3.3.14a), except that the commutator on the right-hand side of this
equation is replaced by the anticommutator, or

h̄ωG↑(k, ω) − 〈〈[ ck↑ , H ] ; c+k↑〉〉+ = 〈{ck↑ , c
+
k↑}〉 = 1. (5.7.41)

If H is approximated by H̃s, given by eqn (5.7.10), we obtain the non-
interacting value of the Green function

G↑(k, ω) 	 Go
↑(k, ω) =

1
h̄ω − εk↑

(5.7.42)
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(neglecting the minor difference between ε and ε̃), showing that the poles
of the Green function determine the energies of the conduction elec-
trons. Considering the total Hamiltonian, in the approximation given
by (5.7.20), we have instead

(h̄ω − εk↑)G↑(k, ω) +
√

2J/N
∑
qτ

j(q + τ )〈〈ck−q−τ ↓a
+
−q ; c+k↑〉〉+ = 1.

(5.7.43)
The equation of motion of the new Green function is determined from

[ ck−q−τ ↓a
+
−q , H ]

=
{
εk−q−τ ↓ −A− JJ̃ (0, 0)

}
ck−q−τ ↓a

+
−q −B ck−q−τ ↓aq

− √
2J/N

∑
k′τ ′

j(−q− τ ′)
[
c+k′−q−τ ′↓ck−q−τ ↓ck′↑

+ δk−τ ,k′−τ ′ 〈a+
−qa−q〉ck+τ ′−τ ↑

]
,

using an RPA decoupling procedure to obtain the last term. To pro-
ceed further, we have to calculate 〈〈c+k′−q−τ ′↓ck−q−τ ↓ck′↑ ; c+k↑〉〉+ and,
within the RPA,

〈〈c+k′−q−τ ′↓ck−q−τ ↓ck′↑ ; c+k↑〉〉+
= δk′−τ ′,k−τ fk−q−τ ↓〈〈ck+τ ′−τ ↑ ; ck↑〉〉+

− √
2J/N

j(q + τ ′){fk′↑ − fk′−q−τ ′↓}
h̄ω − εk′↑ − εk−q−τ ↓ + εk′−q−τ ′↓

〈〈ck−q−τ ↓a
+
−q ; c+k↑〉〉+.

Writing h̄ω1 = h̄ω − εk−q−τ ↓, we obtain from these equations

{
h̄ω1 +A+ JJ̃ (0, 0) − JJ̃ ∗(q,−ω1)

}〈〈ck−q−τ ↓a
+
−q ; c+k↑〉〉+

+ B〈〈ck−q−τ ↓aq ; c+k↑〉〉+
= −√

2J/N
∑
τ ′

j(−q− τ ′)
(
fk−q−τ ↓ + 〈a+

−qa−q〉
)〈〈ck+τ ′−τ ↑ ; c+k↑〉〉+.

(5.7.44)
In the sum, the terms with τ ′ �= τ only lead to higher-order corrections,
of the same type as those arising from the difference between ck↑ and
c̃k↑, and they can be neglected. Calculating 〈〈ck−q−τ ↓aq ; c+k↑〉〉+ in an
equivalent way, and introducing the notation:

Gm1(q, ω) = 〈〈aq ; a+
q 〉〉 ; Gm2(q, ω) = 〈〈a+

q ; aq〉〉 = G∗
m1(q,−ω)

Gm3(q, ω) = 〈〈a+
−q ; a+

q 〉〉 (5.7.45)
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for the magnon Green functions determined by (5.7.25) and (5.7.33), we
obtain

〈〈ck−q−τ ↓a
+
−q ; c+k↑〉〉+ =

√
2J/N j(−q− τ )G↑(k, ω)

× [{fk−q−τ ↓ + 〈a+
q aq〉}Gm2(q, ω1) − 〈aqa−q〉Gm3(q, ω1)

]
.

(5.7.46)

Defining the self-energy of the spin-up electrons by the relation

G↑(k, ω) =
1

h̄ω − εk↑ − Σ↑(k, ω)
, (5.7.47)

and using (3.1.10) to establish that

Gm(q, ω) =
1
iπ

∫
Gm(q, ω′)
h̄ω′ − h̄ω

d(h̄ω′),

we obtain finally

Σ↑(k, ω) = −2J
N

∑
qτ

|j(q + τ )|2 1
iπ

∫ ∞

−∞

d(h̄ω′)
h̄ω′ − h̄ω + εk−q−τ ↓

× [{fk−q−τ ↓ + 〈a+
q aq〉}Gm2(q, ω

′) − 〈aqa−q〉Gm3(q, ω
′)

]
. (5.7.48)

This result corresponds to that deduced by Nakajima (1967), as gener-
alized by Fulde and Jensen (1983).

The average effective mass of the spin-up electrons at the Fermi
surface is determined by

1
m∗

↑
=

1
h̄2k

∂Ek↑
∂k

∣∣∣∣
k=k

F↑

,

averaged over the direction of k. Here Ek↑ = εk↑+Re
[
Σ↑(k, Ek↑)

]
is the

corrected energy of the spin-up electrons. We can neglect the explicit
k-dependence of Σ↑(k, ω) in comparison to its frequency dependence,
disregarding terms of the order Eq/εF in the derivative of Ek↑, so that

∂Ek↑
∂k

=
∂εk↑
∂k

+
1
h̄

∂

∂ω
Re

[
Σ↑(k, ω)

]∣∣∣∣
h̄ω=E

k↑

∂Ek↑
∂k

,

or
m∗

↑
m

= 1 − 1
h̄

∂

∂ω
Re

[
Σ↑(kF↑, ω)

]∣∣∣∣
h̄ω=E

F

, (5.7.49)

averaged over the Fermi surface. Within the same approximation, the
terms in eqn (5.7.48) proportional to the magnon correlation-functions
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can be neglected and, to leading order, h̄ω = EF in the ω-derivative may
be replaced by εk↑, with k = kF↑. In the limit of zero temperature, the
free-electron model then gives

m∗
↑
m

= 1 +
2J
N

∑
qτ

|j(q + τ )|2 1
π

∫ ∞

−∞
d(h̄ω′)

× 1
2

∫ 1

−1

dµ
Im

[
Gm2(q, ω′)

]
(
h̄ω′ + ∆ + (h̄|q+τ |)2

2m − h̄2k|q+τ |
m µ

)2 ,

subject to the conditions that k = kF↑ and |k − q − τ | < kF↓. These
conditions imply that kF↑−kF↓ < |q+τ | < kF↑+kF↓, and that the lower
bound −1 of the µ-integral is replaced by (h̄2q2+2m∆)/(2h̄2kF↑|q+τ |).
Because Im

[
Gm2(q, ω

′)
]

is odd in ω′, the contribution due to the upper
bound in the µ-integral can be neglected (it is of the order h̄ω′/εF ).
Since

1
π

∫ ∞

−∞

Im
[
Gm2(q, ω

′)
]

h̄ω′ d(h̄ω′) = Re
[
Gm2(q, 0)

]
= −Aq

E2
q

,

the average mass-enhancement of the spin-up electrons at the Fermi
surface is

m∗
↑
m

= 1 +
N↓(εF )
2kF↑kF↓

∫ kF↑+kF↓

k
F↑−k

F↓

dq

∫
dΩq

4π
q|j(q)|2 2JAq

E2
q

, (5.7.50)

and, by symmetry, m∗
↓/m is given by the same expression, except that

N↓(εF ) is replaced by N↑(εF ). We note that the mass-enhancement only
depends on the static part of the susceptibility, i.e. Gm2(q, 0), and that
the magnitude of the mass-renormalization is intimately related to the
linewidth of the spin waves derived above in eqn (5.7.38). Utilizing this
connection, we can write the specific heat, in the zero-temperature limit,

C =
π2

3
k2

BT

[
N↑(εF ) + N↓(εF ) +

1
N

∑
q

2Γq

πE2
q

]
N, (5.7.51)

where again the q-sum only extends over the primitive Brillouin zone.
With typical values of EqN (εF ) ≈ 0.01 and 2Γq/Eq ≈ 0.05, this expres-
sion predicts a doubling of the linear term in the heat capacity due to the
interaction between the conduction electrons and the spin waves, which
therefore has an appreciable effect on the effective mass of the electrons
near the Fermi surface. More detailed analyses (Nakajima 1967; Fulde
and Jensen 1983) show that the deformation of the electronic bands is
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pinned to the Fermi surface, and occurs within a narrow interval with a
width corresponding to the spin-wave energies. This implies that, even
if the electronic energies εkσ appearing in the magnon Green-functions
were replaced with Ekσ, due to higher-order processes, this modification
would not be of much importance. The total electronic heat capacity
is Ce =

∑
kσ Ekσdfkσ/dT , when the imaginary part of the self-energy is

neglected. The extra contribution due to the coupling to the spin waves
is linear only at the lowest temperatures (kBT < 0.05Eq), after which it
increases more rapidly than linearly to its maximum at kBT 	 0.15Eq.
Above kBT 	 0.3Eq, this contribution becomes negative and finally dies
out when kBT ≈ Eq. This variation with temperature was described
by Fulde and Jensen (1983), and has been discussed in the context of
the phonon interaction by Grimvall (1981). The bosons (magnons and
phonons) do not contribute directly to the linear term in the heat capac-
ity, which is thus a characteristic phenomenon of the Fermi gas. How-
ever, the departure from the linear variation when kBT > 0.05Eq may
be influenced by the spin-wave contribution

Cm =
∑
q

1
π

∫ ∞

−∞
d(h̄ω) 2Γq(h̄ω)3{

(h̄ω)2 − E2
q(T )

}2
+

{
2Γqh̄ω

}2

d

dT

( 1
1 − e−βh̄ω

)

	
∑
q

Eq(T )
d

dT

(
nq + 1

2

)
+
π2

3
k2

BT
∑
q

2Γq

πE2
q

[
2

5y2
+

4

7y4
+ · · ·

]
y=βEq/2π

,

(5.7.52)
to first order in Γq/Eq. The first term is the RPA spin-wave contribu-
tion (5.3.3) derived before, which dominates strongly at elevated tem-
peratures. However, in the low-temperature limit, the second term is
of the same order of magnitude as the non-linear corrections to eqn
(5.7.51). For comparison, the last term in this equation is multiplied
by the factor

[
1 + 3/(5y2) + 5/(7y4) + · · ·] when the higher-order tem-

perature effects are included. The additional contribution due to the
non-zero linewidth of the bosons is normally not considered in the lit-
erature. It may be added to the pure electronic contribution derived by
Fulde and Jensen (1983), by replacing yL′(y) with 2yL′(y)+L(y) in their
eqn (17a). The mass-enhancement effect increases proportionally to the
inverse of Eq (Γq ∝ Aq). On the other hand, the interval in which the
linear variation occurs is diminished correspondingly, requiring a more
careful consideration of the higher-order modifications.

In the metals, the itinerant electrons also interact with the phonons,
and this leads to an entirely equivalent enhancement of their mass. This
effect has been calculated for the whole rare earth series by Skriver and
Mertig (1990), who find an increase of the band mass due to coupling to
the phonons of typically about 35% for the heavy elements. Assuming
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the different contributions to be additive, we may write the total mass-
enhancement

m∗

m
= 1 + λtot = 1 + λsw + λph + λc (5.7.53)

as a sum of contributions from the interactions with the spin waves and
the phonons, and from the possible exchange and Coulomb interactions
within the electron gas itself (λc). Although the different correlation
effects may increase the effective mass derived from band structure cal-
culations by a factor of two or more, it is difficult to isolate this en-
hancement in heat capacity measurements, because of the quite narrow
temperature interval where a truly linear behaviour can be anticipated.
This interval is bounded below because of the nuclear spins, which may
give large contributions to the heat capacity in the mK-range. The upper
bound is due partly to the higher-order temperature effects, but most
importantly to the disturbance by the normal boson contributions, ap-
proximately proportional to Tαexp(−E0/kBT ) and T 3 for the magnons
and the phonons respectively, which completely dominate the heat ca-
pacity at elevated temperatures. Because of this limitation, the most
reliable method of determining the mass-enhancement is by measuring
the temperature dependence of the dHvA effect, which also allows a
separation of the contributions from the different sheets of the Fermi
surface. Using this method, and comparing with the results of band
structure calculations, Sondhelm and Young (1985) found values of λtot

varying between 0.2 and 1.1 for Gd. The theoretical results of Fulde
and Jensen (1983) lie within this range, but these measurements point
to the necessity of discriminating between states of different symmetry
in considering the mass-enhancement of the conduction electron gas.

5.7.3 Magnetic contributions to the electrical resistivity
The electrical resistivity of a metal can be calculated by solving the
Boltzmann equation. We shall not discuss the theory of transport prop-
erties in detail here, but instead refer to the comprehensive treatments
of Ziman (1960), and Smith and Højgaard Jensen (1989). The non-
equilibrium distribution function gkσ, generated by the application of
an external electric field E, is written in terms of the equilibrium distri-
bution function, and is determined by the Boltzmann equation:

gkσ = fkσ +fkσ(1−fkσ)ψkσ, where
∂gkσ

∂k
· dk
dt

=
dgkσ

dt

∣∣∣∣
coll

. (5.7.54)

The electrical current-density is then determined as

j = σ · E = − e

V

∑
kσ

vkσfkσ(1 − fkσ)ψkσ,
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with h̄vkσ = ∂εkσ/∂k. In the linear regime, the left-hand side of the
Boltzmann equation is

∂gkσ

∂k
· dk
dt

	 −∂fkσ

∂εkσ
evkσ · E = eβfkσ(1 − fkσ)vkσ · E.

The collision term on the right-hand side is

dgkσ

dt

∣∣∣∣
coll

=
∑
k′σ′

[
gk′σ′(1− gkσ)W (k′σ′,kσ)− gkσ(1− gk′σ′)W (kσ,k′σ′)

]
,

where W (kσ,k′σ′) is the probability per unit time for an electronic
transition from an occupied state |kσ> to an unoccupied state |k′σ′>.
Linearizing the collision term, and using the principle of detailed balance,
so that this term must vanish if gkσ = fkσ, we may reduce the Boltzmann
equation to

eβfkσ(1 − fkσ)vkσ · E = −
∑
k′σ′

(1 − fkσ)fk′σ′W (k′σ′,kσ)
(
ψkσ − ψk′σ′

)
.

It is possible to find an upper bound on the resistivity from this equation,
with the use of a variational principle. Defining û to be a unit vector
along one of the principal axes of the resistivity tensor,

ρuu ≤ V

2βe2

∑
kσ

∑
k′σ′(1 − fk′σ′)fkσW (kσ,k′σ′)

(
φkσ − φk′σ′

)2[∑
kσ vkσ · û (1 − fkσ)fkσ φkσ

]2 ,

(5.7.55)
where φkσ is an arbitrary trial function, and where the equality applies
if φkσ = ψkσ. In the case of the free-electron model, the Boltzmann
equation possesses an exact solution, ψkσ ∝ k · û, if the scattering is
purely elastic. As discussed, for instance, by Hessel Andersen et al.
(1980), this trial function is still useful for treating possible inelastic
scattering mechanisms, at least as long as the resistivity is dominated
by elastic impurity scattering, so we shall use φkσ = k · û.

In the Born approximation, the transition probability per unit time
is given by the Golden Rule (4.1.1), which we may here write

W (kσ,k′σ′) =
2π
h̄

∑
if

Pi|<kσ; i |Hint |k′σ′; f > |2δ(h̄ω + Ei − Ef ),

where h̄ω = εkσ − εk′σ′ . Instead of basing the derivation of the mag-
netic resistivity on the linearized spin-wave expression (5.7.20) for Hint,
we shall be somewhat more general and use Hsf from eqn (5.7.6) as the



5.7 CONDUCTION-ELECTRON INTERACTIONS 277

interaction Hamiltonian. We assume that the system is uniform, param-
agnetic or ferromagnetically ordered, continue to utilize the simple free-
electron model, and replace (g−1)I(n′k′, nk) by j(k′−k+τ ). The MF
part (5.7.7) of the Hamiltonian may lead to a modification εkσ → ε̃kσ of
the electronic band-states, but we can neglect this difference to leading
order, and since the MF Hamiltonian does not lead to transitions be-
tween electronic states, we can replace Jiz by Ĵiz = Jiz − 〈Jz〉 in Hint,
and obtain

W (kσ,k′σ′) =
∫ ∞

−∞
d(h̄ω)δ(h̄ω − εkσ + εk′σ′)

× 2π
h̄

∑
if

Pi
1
N2

∑
jj′

|j(k′ − k)|2e−i(k′−k)·(Rj−Rj′)

×
{
<i |J−

j′ | f ><f |J+
j | i> δσ↑δσ′↓+ <i |J+

j′ | f ><f |J−
j | i> δσ↓δσ′↑

+ <i |Ĵj′z| f ><f |Ĵjz| i> (δσ↑δσ′↑ + δσ↓δσ′↓)
}
δ(h̄ω + Ei − Ef ),

(5.7.56)
accounting explicitly for the condition on h̄ω by the integral over the
first δ-function. Using the same procedure as in the calculation of the
neutron-scattering cross-section, when going from (4.1.16) to (4.2.1–3),
we may write this:

W (kσ,k′σ′) =
2
Nh̄

∫ ∞

−∞
d(h̄ω)δ(h̄ω − εkσ + εk′σ′)

1
1 − e−βh̄ω

|j(k− k′)|2

× {
χ′′
−+(k− k′, ω)δσ↑δσ′↓ + χ′′

+−(k − k′, ω)δσ↓δσ′↑

+ χ′′
zz(k− k′, ω)(δσ↑δσ′↑ + δσ↓δσ′↓)

}
.

Introducing this expression into (5.7.55), and using φkσ = k · û and
k′ = k − q − τ , we proceed as in the derivation of eqn (5.7.36) for
Im

[
χ+−

c.el.(q, ω)
]
, obtaining

1

N

∑
k

fk↓(1 − fk−q↑)δ(h̄ω − εk↓ + εk−q↑) =

V

N(2π)2

∫ ∞

0

dk k2

∫ 1

−1

dµf(εk↓)
{
1 − f(εk↓− h̄ω)

}
δ
(
h̄ω−∆+ εq −µ h̄2qk

m

)
= V

N(2π)2

∫ ∞

∆
2

dε
m2

h̄4q
f(ε)

{
1 − f(ε− h̄ω)

}
=

V

N(2π)2
m2

h̄4q

h̄ω

eβh̄ω − 1
,

where kF↑ − kF↓ < q < kF↑ + kF↓ (when kBT � εF ). The denom-
inator in (5.7.55) may be calculated in a straightforward fashion and
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is [Nν/(h̄β)]2, and we finally obtain the following expression for the
resistivity, or rather its upper limit:

ρuu(T ) 	 ρ0

3
(4kF↑kF↓)2j2u

∫ kF↑+kF↓

k
F↑−k

F↓

dq

∫
dΩq

4π

∫ ∞

−∞
d(h̄ω)

× |j(q)|2(q · û)2
q

βh̄ω

sinh2 (βh̄ω/2)
1
π

∑
α

χ′′
αα(q, ω), (5.7.57a)

where

ρ0 =
3
2
V

N

πm

h̄e2εF

j2u =
m

ne2
π

h̄

{N↑(εF ) + N↓(εF )
}
j2u, (5.7.57b)

n = νN/V is the electron density, and

j2u = 4
3

(2kF )4

∫ 2kF

0

dq

∫
dΩq

4π
|j(q)|2(q · û)2

q. (5.7.57c)

For cubic symmetry, ρuu is independent of u and
(
q ·û)2 can be replaced

by q2/3. In the high-temperature limit, we have

1
π

∫ ∞

−∞
d(h̄ω)

βh̄ω

sinh2 (βh̄ω/2)

∑
α

χ′′
αα(q, ω) 	

1
π

∫ ∞

−∞
d(h̄ω)

4
βh̄ω

∑
α

χ′′
αα(q, ω) =

4
β

∑
α

χ′
αα(q, 0) = 4J(J + 1),

recalling that χ′
αα(q, 0) = 1

3βJ(J + 1) in this limit. This result shows
that the magnetic resistivity saturates at temperatures which are so high
that the ions are uniformly distributed over the states in the ground-
state J-multiplet, since the condition kBT � εF is always satisfied:

ρuu(T ) → J(J + 1) ρ0 for T → ∞, (5.7.58)

and J(J + 1) ρ0 is called the saturation value of the spin-disorder re-
sistivity. Since ρ0 contains the factor (g − 1)2, the spin-disorder re-
sistivity is proportional to the de Gennes factor, as observed (Legvold
1972). If the crystal-field splitting of the energy levels is neglected, this
factor also determines the relative magnitudes of the contributions of
magnetic rare earth-impurities to the resistivity of a non-magnetic host
(Kasuya 1959). However, in analysing the measurements of Mackintosh
and Smidt (1962) of the resistivity changes produced by small amounts
of heavy rare earths in Lu, Hessel Andersen (1979) found that such
crystal-field effects are indeed important at 4K.
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In a metal, the total collision rate W (kσ,k′σ′) in eqn (5.7.55) is
actually the sum of contributions from several scattering mechanisms.
If the trial function for elastic impurity-scattering still leads to a re-
sult reasonably close to that determined by the exact solution of the
Boltzmann equation, then (5.7.55) implies that the different scattering
mechanisms contribute additively to the total resistivity, in accordance
with Matthiessen’s rule:

ρtotal(T ) = ρimp + ρm(T ) + ρph(T ). (5.7.59)

Here ρimp is the residual resistivity due to elastic scattering of the elec-
trons from impurities and from lattice defects. ρm(T ) is the contribution,
calculated above, due to the magnetic excitations, whereas ρph(T ) is the
equivalent term due to the phonons. The two last terms, associated with
the excitations in the metal, vanish in the limit of zero temperature, so
that ρtotal(T = 0) = ρimp. The problem of distinguishing between the
magnetic and phonon scattering can be approximately solved by esti-
mating the latter from the temperature dependence of the resistivity of
Lu, which has an electronic structure and phonon spectrum very similar
to those of the magnetic heavy rare earths, but no magnetic moment.
Using this method, Mackintosh (1963) was able to show that the mag-
netic scattering in Tb increases as exp(−E0/kBT ) at low temperatures,
where the spin-wave energy gap E0/kB was estimated to be about 20
K, a value which was subsequently verified by neutron scattering. This
analysis was refined by Hessel Andersen and Smith (1979), who used
the free-electron model to show that the magnetic resistivity associated
with the scattering by spin waves with an isotropic dispersion relation
Eq = E0 + h̄2q2/2msw is given by

ρm(T ) =
J

4
m2

sw

m2

E0kBT

ε2F
e−E0/kBT

(
1 + 2

kBT

E0

+ 1
2e

−E0/kBT + · · · ) ρ0,

(5.7.60)
approximating the lower cut-off kF↑−kF↓ by 0 in (5.7.57a). A numerical
calculation, utilizing the measured spin-wave energies and including one
scaling parameter for the magnetic scattering and one for the phonon
scattering, gave the excellent fit shown in Fig. 5.14. The disordered elec-
tric quadrupole moments of the 4f -charge distributions can also provide
a mechanism for the scattering of the conduction electrons. This is nor-
mally very difficult to distinguish from the magnetic scattering, but in
TmSb, where the exchange interaction is relatively small and the electric
quadrupoles large, the latter appear to dominate the electrical resistivity
at low temperatures (Hessel Andersen and Vogt 1979).

Even though kBT � εF , the residual resistivity ρimp is only inde-
pendent of temperature as long as the ground-state properties of the
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Fig. 5.14. A comparison of the measured and calculated resistivity of
a Tb single crystal, as a function of temperature, after Hessel Andersen
and Smith (1979). The residual resistivity has been subtracted from the
experimental results. The full line includes the calculated contributions
from both the magnon scattering and the phonons. The rapid increase
around 20K is predominantly due to the excitation of magnons across

the energy gap.

electron gas remain unchanged. If the resistivity of the unpolarized
electrons is ρ0

total(T ) and their density of states at the Fermi surface is
N (εF ), the polarization (5.7.16) of the conduction electrons in the ferro-
magnetic state leads to a scaling of the total resistivity, which according
to eqn (5.7.55) is

ρtotal(T ) =
{
1 + ζ(T )

}
ρ0
total(T ) ; ζ(T ) =

N↑(ε̃F ) + N↓(ε̃F )
2N (εF )

− 1.

(5.7.61)
In ρ0

total(T ), the residual resistivity is temperature independent and the
magnetic contribution is determined by the above result, if Nσ(εF ) in
(5.7.57b) is replaced by its paramagnetic value N (εF ). The modifica-
tion ζ(T ), due to the polarization of the conduction electrons, depends
on the temperature via the magnetization, and ζ(T ) ∝ 〈Jz〉2 at small
magnetization.

The most important effect on the resistivity produced by the spin-
polarization of the electronic states results from the change in the density
of states at the Fermi surface, taken into account by ζ(T ) in (5.7.61).
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Since the other modification, the appearance of kFσ instead of the para-
magnetic value kF in (5.7.57b), generally only causes a minor correction
to the value of the integral in this equation, the magnetic contribu-
tion to ρ0

total(T ) is approximately independent of the spin-polarization,
in this model. However, the spin-polarization in the real metals may
be sufficiently great to alter the topology of the Fermi surface, as dis-
cussed in Section 1.4, so that the resistivity may change abruptly with
temperature or magnetic field. Under these circumstances, the resistiv-
ity must be calculated from first principles, using a realistic model of
the spin-polarized energy bands. The zz-contribution should be treated
separately, as the q-integral for this case should go from 0 to 2kF , even
when the electron spins are polarized, since no spin-flip is involved in
the scattering process. This modification is, however, unimportant as
the dominating contributions, in the ordered phase, arise from the per-
pendicular spin-wave components of the susceptibility.

The above results also apply, to a good approximation, when the
moments are ordered antiferromagnetically, if the value of ζ(T ) is calcu-
lated for a spatial modulation of the moments. The spin-polarization of
the band electrons is determined by the MF Hamiltonian, and assuming
〈Jiz〉 = 〈Jz〉 cos (Q ·Ri), we may replace (5.7.7) by

Hsf (MF) = −
∑
nn′

∑
kk′

(g − 1)I(n′k′, nk)
(
c+n′k′↑cnk↑ − c+n′k′↓cnk↓

)
×1

2

(
δk′,k+Q+τ + δk′,k−Q+τ

)〈Jz〉, (5.7.62)

showing that the modulated moments induce a coupling between the
band electrons at the wave-vectors k and k ± Q + τ . In the same way
as the periodic lattice potential lifts the degeneracy of the band states
at the Brillouin-zone boundaries (passing through k = τ/2), the above
MF Hamiltonian gives rise to energy gaps at the superzone boundaries,
the planes perpendicular to, and passing through, the vectors ks =
(±Q + τ )/2. If ks is along the c-axis, the value of the energy gap δ
is (g − 1)|I(nk, n − k)|〈Jz〉 in the nth band. The importance of the
superzone gaps for the resistivity was first pointed out by Mackintosh
(1962), and detailed theories were developed by Elliott and Wedgwood
(1963) and Miwa (1963). These theories utilized the free-electron model
and the relaxation time approximation, dgkσ/dt|coll = −(gkσ−fkσ)/τkσ,
giving a conductivity

σuu =
e2β

V

∑
kσ

τkσ

(
vkσ · û)2

fkσ

(
1 − fkσ

)

or, if the relaxation time τkσ is assumed to be constant over the Fermi
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surface,

σuu 	 e2τ

(2π)3h̄2

∑
σ

∫
ε
kσ

=ε
F

(
∂εkσ

∂ku

)2 1
|∇kεkσ|

dS, (5.7.63)

where dS is a surface element of the Fermi surface. Even without de-
tailed calculations, this expression shows that the conductivity may be
reduced substantially if the superzone gaps are able to eliminate sig-
nificant areas of the Fermi surface. Furthermore, the Fermi-velocity
factor puts different weight on the various regions of the Fermi surface
in the different components of the conductivity tensor. If ks is parallel
to the c-axis, as in the heavy rare earths, and if its length is close to
that of the Fermi wave-vector in the c-direction, only the cc-component
of the conductivity is appreciably affected by the superzone boundary.
For instance, an internal field of 2 kOe in the basal plane of Ho at 4
K, which eliminates the superzone energy gaps by inducing a transi-
tion from the cone to ferromagnetic ordering, increases the conductivity
along the c-axis by about 30%, while decreasing the b-axis component
by only about 1% (Mackintosh and Spanel 1964). As illustrated in Fig.
5.15, the anomalous increase in the resistivity in the helical phase of
Tb is eliminated by a magnetic field which is large enough to suppress
this structure, leaving only a weak maximum similar to that observed
in Gd, which has been ascribed to critical scattering of the conduction
electrons by magnetic fluctuations (de Gennes and Friedel 1958). This
anomalous increase is not observed in the basal plane and the resistivity
is little affected by a magnetic field (Hegland et al. 1963).

The theoretical calculations of the superzone effects within the free-
electron model give a semi-quantitative account of the experimental ob-
servations, with a small number of adjustable parameters. For example,
a superzone boundary normal to the c-axis, which intersects the Fermi
surface, gives a positive contribution to ζcc(T ) in (5.7.61) which is pro-
portional to δ/εF , while ζbb(T ) decreases like (δ/εF )2. Bearing in mind
the analogy between the real and free-electron Fermi surfaces mentioned
above, this corresponds well with the observations in, for example, Ho.
In addition, the model calculations suggest that the superzone gaps are
important for the value of the ordering wave-vector Q, at which the
exchange energy has its maximum (Elliott and Wedgwood 1964; Miwa
1965), by predicting a gradual reduction of the length of Q with the
increase of the size of the superzone gaps, which are proportional to
〈Jz〉 below the Néel temperature. Hence the exchange coupling J (q) is
somewhat dependent on the magnetization, because the nearly elastic
intra-band contributions to the exchange interaction depend on the den-
sity of states near the Fermi surface, as is also true in the ferromagnetic
case, according to (5.7.21).



5.7 CONDUCTION-ELECTRON INTERACTIONS 283

Fig. 5.15. The c-axis resistivity of Tb in the vicinity of TN = 230K,
after Hegland et al. (1963). As the helical ordering develops, the magnetic
superzones cause a sharp increase in the resistivity, which disappears at
TC = 220K. The superzones may also be eliminated by a magnetic field

in the b-direction, which suppresses the helical structure.

The agreement obtained between simple model calculations of the
variation of Q and that observed experimentally is surprisingly good,
to some extent fortuitously so. The band electrons are far from free-
electron-like in the rare earth metals, and the approximation in which
I(n′k′, nk) is replaced by j(k′−k+τ ) is rather crude. The effective free-
electron model, with j(q) proportional to a form factor

[
1 + (Aq)2

]−1

where A ≈ 0.2 Å and 2kF ≈ 2.8 Å−1, leads to a maximum in J (q)
at q 	 0.3 Å−1 parallel to the c-axis, in the paramagnetic phase. In
this model, 1

N

∑
q J̃ (q) is found to be an order of magnitude larger

than J (0), and the same is the case with the interband contributions
(τ �= 0) to the exchange interaction, compared to the intra-band con-
tributions. However, various estimates indicate that all these terms are
of the same order of magnitude. Lindg̊ard et al. (1975) have made the
only existing ab initio calculation of J (q) in a rare earth metal, consid-
ering the simplest case of Gd, and they obtained a reasonable account
of the dependence on wave-vector, even though the magnitude differed
by as much as a factor of four from that determined experimentally.
Their calculations show that the exchange integral is dominated by the
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contributions of the d-like band electrons, as is the density of states
at the Fermi surface. Although the effective free-electron model is not
adequate for determining the exchange interaction, other quantities de-
rived above which depend on real scattering processes close to the Fermi
surface (i.e. the contributions to the spin-wave linewidths, the mass en-
hancement, and the resistivity), may be more trustworthy, particularly
if the actual density of states of the band electrons is substituted for
the free-electron value. This should especially be true for the linewidth
and mass-enhancement, but the strong polarization effect (5.7.60) on
the resistivity in the ferromagnetic phase, for which the maximum effect
occurs in Gd, with ζ(T ) approaching −0.5 in the zero temperature limit
(Fulde and Jensen 1983), may be somewhat exaggerated, because the
conductivity is strongly influenced by the sp-band electrons.


