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5.6 Binary rare earth alloys

The great similarity in the chemical properties of the different rare earth
metals allows almost complete mutual solubility. It is therefore possible
to fabricate rare earth alloys with nearly uniform electronic properties,
but containing ions with disparate magnetic properties, distributed ran-
domly on a single lattice. By a judicious choice of the constituents,
the macroscopic magnetic properties, such as the ordering temperatures
and the anisotropy parameters, may be continuously adjusted as desired.
From a macroscopic viewpoint, such an alloy resembles a uniform and
homogeneous crystal, with magnetic properties reflecting the character-
istics and concentrations of the constituents. The spectrum of magnetic
excitations also displays such average behaviour (Larsen et al. 1986),
but in addition, there are effects which depend explicitly on the dispar-
ity between the different sites.

We restrict ourselves to binary alloys, which are described by the
Hamiltonian,

H =
∑

i

{ciH1(J1i) + (1 − ci)H2(J2i)}

− 1

2

∑
i�=j

J (ij) {ciJ1i + γ(ij)(1 − ci)J2i} · {(cjJ1j + γ(ij)(1 − cj)J2j} ,

(5.6.1)
where ci is a variable which is 1 if the ion on site i is of type 1, and
0 if the ith ion is of type 2. The configurational average of ci is the
atomic concentration of the type-1 ions, 〈ci〉cf = c. In addition to the
simplifications made earlier in the Hamiltonian, we shall assume that
γ(ij) is a constant γ, independent of i and j. This approximation is
consistent with a model in which the indirect exchange is assumed to
dominate the two-ion coupling, in which case

γ(ij) = γ = (g2 − 1)/(g1 − 1), (5.6.2)

where the indices 1 and 2 refer to the two types of ions with angular
momenta J1 and J2.

In order to derive the excitation spectrum of the alloy system,
we first make the assumption that the surroundings of each ion are
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so close to the average that individual variations can be neglected.
Thus we replace the actual MF Hamiltonian of the ith ion with the
configurationally-averaged MF Hamiltonian and, considering a type 1
ion (ci = 1), obtain

HMF(i) � 〈HMF(i)〉cf =

H1(J1i) − (J1i − 1
2 〈J1i〉) ·

∑
j

J (ij){c〈J1j〉 + (1 − c) γ〈J2j〉}. (5.6.3)

From this equation, and the similar one for ci = 0, we may determine
the MF values of the two moments 〈J1〉 and 〈J2〉, and the corresponding
susceptibilities χ

o
1 (ω) and χ

o
2 (ω). For a paramagnetic or ferromagnetic

system these quantities are all site-independent, in the present approx-
imation. We note that (5.6.3) is correct in the case of a paramagnet,
as possible environmental variations on the individual ions are already
neglected in the starting Hamiltonian. The next step is the introduction
of a 2× 2 matrix of susceptibility tensors χrs(ij, ω), where the elements
with r = 1 or 2 are defined in terms of ciJ1i or (1 − ci)J2i respectively,
and s = 1 or 2 similarly specifies the other component. We may then
write the RPA equation (3.5.7):

χrs(ij, ω) = χr(i, ω)
(
δrsδij +

∑
j′

∑
s′

γrs′J (ij′)χs′s(j
′j, ω)

)
, (5.6.4a)

where

χ1(i, ω) = ciχ
o
1 (ω) ; χ2(i, ω) = (1 − ci)χ

o
2 (ω), (5.6.4b)

recalling that c2
i = ci (= 0 or 1), and defining Jrs(ij) = γrsJ (ij), with

γ11 = 1 ; γ12 = γ21 = γ ; γ22 = γ2. (5.6.4c)

In spite of the great simplification introduced through the random-phase
approximation, the RPA equation for the alloy is still very complicated,
because χr(i, ω) depends on the randomness, and it cannot be solved
without making quite drastic approximations. The simplest result is
obtained by neglecting completely the site-dependence of χr(i, ω), and
consequently replacing ci in (5.6.4b) by its average value c. This pro-
cedure corresponds to the replacement of each individual angular mo-
mentum Jri by the average cJ1i + (1 − c)J2i, and it is known as the
virtual crystal approximation (VCA). In this approximation, (5.6.4) may
be solved straightforwardly after a Fourier transformation, and defining
the T-matrices according to

χrs(q, ω) = χr(ω)δrs + χr(ω)T rs(q, ω)χs(ω), (5.6.5a)
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where

χ1(ω) = cχ
o
1 (ω) and χ2(ω) = (1 − c)χ o

2 (ω), (5.6.5b)

we find that these T-matrices are given by

T rs(q, ω) = γrsJ (q)D(q, ω)−1, (5.6.6a)

with

D(q, ω) = 1 −
{
cχ

o
1 (ω) + (1 − c) γ2 χ

o
2 (ω)

}
J (q). (5.6.6b)

This result is simplified by the assumption, (5.6.2) or (5.6.4c), that
J12(q) is the geometric mean of J11(q) and J22(q). In this and in
more complex cases, the introduction of the T-matrices in (5.6.5) makes
it somewhat easier to handle the RPA equations. The configurationally-
averaged susceptibility is χ(q, ω) =

∑
rs χrs(q, ω), but this does not di-

rectly determine the inelastic neutron-scattering cross-section. We must
take into account the difference in the form factor { 1

2gF (κ)} for the two
kinds of ions, in the differential cross-section (4.2.1). At small scattering
vectors, F (κ) is generally close to one and the most important variation
is due to the g-factor. In this case, the inelastic scattering is proportional
to the susceptibility:

g2χ(q, ω) ≡
∑
rs

grgsχrs(q, ω)

= g2
1c χ

o
1 (ω) + g2

2(1 − c)χ
o
2 (ω) + χ3(ω)J (q)D(q, ω)−1χ3(ω),

(5.6.7a)
with

χ3(ω) = g1c χ
o
1 (ω) + g2(1 − c) γ χ

o
2 (ω). (5.6.7b)

If χr(i, ω) only depends on ci, as assumed in (5.6.4b), the RPA
equation (5.6.4a) is equivalent to that describing the phonons in a crys-
tal with diagonal disorder, in the harmonic approximation. The possible
variation of the molecular field (or other external fields) from site to site,
which is neglected in (5.6.3), introduces off-diagonal disorder. If such
off-diagonal disorder is neglected, the main effects of the randomness, in
3-dimensional systems, are very well described in the coherent potential
approximation (CPA) (Taylor 1967; Soven 1967; Elliott et al. 1974; Lage
and Stinchcombe 1977; Whitelaw 1981). In the CPA, the different types
of ion are treated separately, but they are assumed to interact with a
common surrounding medium. This configurationally-averaged medium,
i.e. the effective medium, is established in a self-consistent fashion. The
method may be described in a relatively simple manner, following the
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approach of Jensen (1984). We first consider the case where χ
o
2 (ω)

vanishes identically, corresponding to the presence of non-magnetic im-
purities with a concentration 1 − c. The RPA equation (5.6.4a) may
then be solved formally by iteration:

χ(ij, ω) = ciχ
o(ω)δij + ciχ

o(ω)J (ij)cjχ
o(ω)

+
∑
j′

ciχ
o(ω)J (ij′)cj′χ

o(ω)J (j′j)cjχ
o(ω) + · · · .

(5.6.8)
The VCA result is obtained by assuming 〈cn

j′ 〉cf = cn, which is incorrect
since 〈cn

j′ 〉cf = 〈cj′〉cf = c. Consequently, the VCA leads to errors already
in the fourth term in this expansion, or in the third term if i = j, even
though J (ii) is zero. In order to ameliorate these deficiencies, we first
consider the series for χ(ii, ω), where i = j. The different terms in this
series may be collected in groups according to how many times the ith
site appears, which allows us to write

χ(ii, ω) = ci

[
χ

o(ω) + χ
o(ω)K(i, ω)χ o(ω)

+ χ
o(ω)K(i, ω)χ o(ω)K(i, ω)χ o(ω) + · · ·

]

= ci

{
1 − χ

o(ω)K(i, ω)
}−1

χ
o(ω), (5.6.9)

where K(i, ω) is the infinite sum of all the ‘interaction chains’ involv-
ing the ith site only at the ends, but nowhere in between. A similar
rearrangement of the terms in the general RPA series leads to

χ(ij, ω) = χ(ii, ω)δij + χ(ii, ω)T (ij, ω)χ(jj, ω), (5.6.10)

where T (ij, ω) is only non-zero if i �= j and, by exclusion, is the sum
of all the interaction chains in which the ith site appears only at the
beginning, and the jth site only at the end of the chains. Introducing
this expression in the RPA equation (5.6.4), we may write it

χ(ij, ω) =

ciχ
o(ω)

[
δij + J (ij)χ(jj, ω) +

∑
j′

J (ij′)χ(j′j′, ω)T (j′j, ω)χ(jj, ω)
]
.

From (5.6.9), we have χ
o(ω)−1 χ(ii, ω) = ci{1 + K(i, ω)χ(ii, ω)}, and a

comparison of this equation for χ(ij, ω) with (5.6.10), leads to the result:

δij+J (ij)χ(jj, ω) +
∑
j′

J (ij′)χ(j′j′, ω)T (j′j, ω)χ(jj, ω)

= {1 + K(i, ω)χ(ii, ω)}{δij + T (ij, ω)χ(jj, ω)}, (5.6.11)
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leaving out the common factor ci. Although this means that K(i, ω)
and T (ij, ω) may be non-zero even when ci is zero, this has no conse-
quences in eqn (5.6.10). In order to derive the configurational average of
this equation, we make the assumption that each site is surrounded by
the same effective medium. Hence K(i, ω) � K(ω) is considered to be
independent of the site considered, and therefore we have, from (5.6.9),

χ(ii, ω) = ciχ(ω) ; χ(ω) =
{
1 − χ

o(ω)K(ω)
}−1

χ
o(ω). (5.6.12)

With this replacement, the configurational average of eqn (5.6.11) may
be derived straightforwardly, as we can take advantage of the condition
that, for instance, cj′ only occurs once in the sum over j′. It is important
here that the common factor ci was cancelled, because T (j′j, ω) involves
the site i, making the averaging of ciT (j′j, ω) more complicated. Intro-
ducing the notation TE(ij, ω) =

〈
T (ij, ω)

〉
cf

, we get from (5.6.11) the
CPA equation

δij + cJ (ij)χ(ω) +
∑
j′

c2 J (ij′)χ(ω)TE(j′j, ω)χ(ω)

= {1 + c K(ω)χ(ω)}{δij + c TE(ij, ω)χ(ω)} (5.6.13)

for the effective medium, which may be diagonalized by a Fourier trans-
formation. Introducing the effective coupling parameter

J E(q) = J (q) − K(ω), (5.6.14)

where the scalar appearing in a matrix equation is, as usual, multiplied
by the unit matrix, we get

TE(q, ω) = J E(q)DE(q, ω)−1 ; DE(q, ω) = 1 − c χ(ω)J E(q)
(5.6.15)

and, from (5.6.10),

χ(q, ω) = c χ(ω) + c2 χ(ω)TE(q, ω)χ(ω) = DE(q, ω)−1c χ(ω). (5.6.16)

Hence the result is similar to that obtained in the VCA, except that the
parameters are replaced by the effective quantities introduced by eqns
(5.6.12) and (5.6.14). These effective values are determined from the
‘bare’ parameters in terms of K(ω). It is easily seen that we retain the
VCA result, i.e. K(ω) cancels out of (5.6.15), if (5.6.12) is replaced by
the corresponding VCA equation χ(ω) �

{
1 − c χ

o(ω)K(ω)
}−1

χ
o(ω).
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In the case c = 1, both the VCA and the CPA results coincide with the
usual RPA result. K(ω) is itself determined by the effective parameters,
and (5.6.13), with i = j, leads to the following self-consistent equation

K(ω) = 1

N

∑
q

cJ (q)χ(ω)TE(q, ω). (5.6.17a)

This result may be written

K(ω) = 1

N

∑
q

J (q)DE(q, ω)−1 =
∑
q

J (q)χ(q, ω)
/ ∑

q

χ(q, ω),

(5.6.17b)
corresponding to the condition that the effective T-matrix vanishes when
summed over q,

∑
q TE(q, ω) = 0, in accordance with our starting as-

sumption, (5.6.10).
In order to derive the effective medium result (5.6.13), χ(j′j′, ω)

in (5.6.11) was replaced by cj′χ(ω), which is an approximation, as this
response depends on the actual surroundings, including the sites i and
j. The CPA incorporates the same type of mistake as in the VCA, but
it is clear that the frequency of such errors is substantially reduced. The
dependence of χ(j′j′, ω) on ci and cj , corresponding to a site dependence
of K(j′, ω), becomes relatively unimportant if the configuration number
Z is large, since i or j may only be one of the Z neighbours of the site
j′.

The effective medium procedure is straightforwardly generalized to
the case where χ2(i, ω) is non-zero (Jensen 1984). Again the CPA result
may be expressed in the same way as the VCA result, (5.6.5–6), except
that all the quantities are replaced by their effective CPA counterparts;
J (q) becomes J E(q), given by (5.6.14), and χ

o
r (ω) in (5.6.6) is replaced

by

χr(ω) =
{
1 − γrrχ

o
r (ω)K(ω)

}−1

χ
o
r (ω), (5.6.18)

where the effective-medium parameter K(ω) is determined by the same
self-consistent equation (5.6.17) as above. To a first approximation,
DE(q, ω)−1 in this equation may be replaced by the simpler virtual-
crystal result. Because of the poles in D(q, ω)−1, both the real and
imaginary parts of K(ω) are usually non-zero, and the imaginary con-
tribution then predicts a finite lifetime for the excitations, due to the
static disorder. This leading-order result may serve as the starting point
in an iterative calculation of K(ω), and thus of a more accurate CPA
result.

It is much more complicated to include the effects of off-diagonal
disorder. They have been considered in the papers referred to above, but
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only in relatively simple models like the dilute Heisenberg ferromagnet
with nearest-neighbour interactions. This model may be considered as
the extreme example of off-diagonal disorder, and the CPA concept of
an effective medium loses its meaning completely below the percolation
concentration, where all clusters of interacting spins are of finite size,
precluding any long-range order. If the molecular field is independent
of the site considered, i.e. HMF(i) = 〈HMF(i)〉cf in (5.6.3), as happens
in the paramagnetic case or if 〈J1〉 = γ〈J2〉, then the CPA result above
should apply. However, except in a pure boson or fermion system, the
‘dynamical’ disorder due to thermal fluctuations introduces corrections
to the RPA equation (5.6.4), with consequences of the same order of
magnitude as K(ω) in (5.6.16), at least at elevated temperatures. In
most magnetic systems, the two kinds of disorder may lead to damping
effects of the same magnitude, and furthermore the use of the CPA result
(5.6.16), without taking into account the dynamic renormalization of the
RPA, occasionally leads to misleading results, as discussed for instance
by Jensen (1984).

The excitations of binary heavy-rare-earth alloys have been studied
much less extensively than their magnetic structures. However, the effect
of 10% of Y, Dy, Ho, and Tm on the spin-wave spectrum of Tb has
been examined, and the characteristic influence of the different solutes
observed. The results of Larsen et al. (1986) for the Y and Dy alloys
could be interpreted in terms of a simple average-crystal model, in which
all sites are considered as equivalent, and the effect of the solute atoms
is to modify the average exchange and the effective single-ion anisotropy.
Thus Dy reduces the effective hexagonal anisotropy, and the spin-wave
energy gap therefore decreases. On the other hand, Y dilutes the two-
ion coupling, and therefore decreases TN and the spin-wave energies,
although the relative magnitude of the peak in J (q) increases, extending
the temperature range over which the helical structure is stable. The first
excited state of the Ho ion in the Tb host lies in the spin-wave energy
band, and the dispersion relation is consequently strongly perturbed
(Mackintosh and Bjerrum Møller 1972).

However, the most pronounced effects were observed by Larsen et
al. (1988) in Tb90Tm10, where the Tm ions, with a spin S = 1, are
relatively weakly coupled to the surrounding Tb moments, with S = 3.
Furthermore, the axial anisotropy of the Tm ions is large and of opposite
sign to that of Tb. As a result, well-defined quasi-localized states may
be excited on the Tm sites, as shown in Fig. 5.11. These rather complex
results were interpreted by means of a VCA calculation, in which the
crystal-field parameters for the Tm ions were deduced from the dilute-
alloy experiments of Touborg (1977), while the single-ion anisotropy and
the two-ion coupling between the Tb ions were taken from the analysis
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Fig. 5.11. Excitations in the c-direction of Tb90Tm10 at 4K. The
Tb magnon modes, the crystal-field excitations on the Tm ions, and
the transverse phonons polarized parallel to the magnetization mutu-
ally interfere to produce the calculated dispersion relations shown by the
thick lines. The dashed lines indicate the unperturbed Tb magnons, and
the short and long dashes the phonons. A and O signify acoustic and

optical respectively.

of Jensen et al. (1975) of the magnon dispersion relations. The magnon–
phonon interaction, which plays an important role in determining the
dispersion relations, was incorporated in the calculations by the method
which will be presented in Section 7.3.1, which leads to results consis-
tent with those derived in Section 5.4.2. The effective exchange between
the moments on the different ions was scaled as in eqn (5.6.1–2), but
γ was given the value 0.24, instead of the 0.33 which (5.6.2) yields, in
order to fix correctly the energy of the first excited state on the Tm
ions. Such a departure from the simple de Gennes scaling is not partic-
ularly surprising for ions with very different orbital angular momenta.
In the system Pr95Er5, for example, Rainford et al. (1988b) found that
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Fig. 5.12. Experimental and calculated neutron-scattering spectra
in Tb90Tm10 for the indicated scattering vectors, which correspond to a
reduced wave-vector of 0.33 in Fig. 5.11. In the lower curve, the scattering
vector is in the c-direction, while it is close to the hexagonal plane in the
upper, where an unperturbed transverse phonon is observed. The ratio
of the impurity intensity to the magnon peak is roughly doubled when
the scattering vector moves from the c-direction to the plane, showing
that the magnetic fluctuations in the impurity mode are predominantly

along the c-axis.

the Er ions modify the two-ion coupling of the host substantially.
The theoretical results give a good account both of the excitation

energies and of the observed neutron-scattering spectra, as illustrated
in Fig. 5.12. They reveal that the difference between the interactions
of the Tb and Tm ions in this alloy has a profound influence on the
magnetic behaviour at the two types of site. The exchange forces the
Tm moment to lie in the plane at low concentrations but, according to
the calculations, the crystal fields reduce it from the saturation value of
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7µB to about 5.9µB, whereas the Tb moment is very close to saturation.
Furthermore, the first excited-state on the Tm ions is at a relatively low
energy, and the associated magnetic fluctuations are predominantly in
the c-direction, reflecting an incipient realignment of the moments, which
actually occurs at higher concentrations (Hansen and Lebech 1976). The
Tb fluctuations, on the other hand, are largely confined to the plane,
with the result that the neutron-scattering intensity stemming from the
c-axis fluctuations is comparable for the two types of site, even though
only 10% of the ions are Tm.

The CPA theory has not yet been applied to heavy rare earth-alloys.
The extra linewidth-effects due to the randomness are not expected to
be very pronounced in the 10% alloys. At low temperatures, they are of
the order of the contribution of the scattering against the electron-hole
pair excitations of the conduction electrons, and they become decreas-
ingly important compared with intrinsic effects at higher temperatures.
The CPA theory has been applied to the light rare earth-alloy Pr95Nd5

(Jensen 1979a) in the paramagnetic phase, where the linewidth effects
predicted by the CPA at 9K are found to be of the same order as the
intrinsic effects due to thermal disorder.


