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5.5 Two-ion anisotropy

In this section, we discuss the components of the two-ion coupling which
cannot be included in the isotropic Heisenberg Hamiltonian considered
hitherto, i.e. the two-ion term in eqn (5.2.1). We first consider the clas-
sical magnetic dipole–dipole interaction in some detail, and show how
it may affect the spin-wave energies and ultrasonic velocities. There-
after we discuss some of the complexities resulting from the presence of
general two-ion couplings, which are consistent with the symmetry prop-
erties of the magnetic phase. The experimental manifestations of such
interactions, which either have been observed in the excitation spectrum
of Tb, or could in principle be observed, are finally summarized.



232 5. SPIN WAVES IN THE FERROMAGNETIC RARE EARTHS

5.5.1 The dipole–dipole interaction
A general two-ion Hamiltonian involving only the dipolar moments of
the 4f electrons is

Hdd = −1

2

∑
ij

∑
αβ

Jαβ(ij)JiαJjβ . (5.5.1)

The Heisenberg interaction, when expressed in this way, is diagonal, with
the form J (ij)δαβ . The most familiar example of an anisotropic two-ion
coupling is the classical magnetic dipole–dipole interaction, which gives
a contribution

∆Jαβ(ij) = N

V
(gµB)2Dαβ(ij), (5.5.2a)

where Dαβ(ij) is the dimensionless coupling parameter

Dαβ(ij) =
V

N

3(Riα − Rjα)(Riβ − Rjβ) − δαβ |Ri − Rj|2
|Ri − Rj |5 , (5.5.2b)

recalling that the magnetic moment of the ith ion is gµBJi. This cou-
pling is weak, being typically one or two orders of magnitude smaller
than the indirect exchange between near neighbours, but it is extremely
long-range and anisotropic and may therefore have important conse-
quences for the magnetic properties, as we shall discuss in the following.

We wish to calculate the spatial Fourier transform

Dαβ(q) = 1

N

∑
i

∑
j

Dαβ(ij) e−iq·(Ri−Rj). (5.5.3)

If q is along the c-axis, which is a three-fold axis of the hcp lattice,
the symmetry dictates that the only non-zero elements of Jαβ(q) are
Jξξ(q) = Jηη(q) and Jζζ(q). In addition, the condition

∑
α Dαα(q) = 0

implies that

Dζζ(q) = −2Dξξ(q) = −2Dηη(q) ; q ‖ c − axis, (5.5.4)

with the extra stipulation that q �= 0, in which case the surface of the
sample does not contribute. In the limit of long wavelengths, the shape
of the sample becomes important, and for convenience we assume it to
be an ellipsoid, with the principal axes along the symmetry ξ-, η-, and
ζ-axes. We consider first the limit q = 0 where, because the sample is an
ellipsoid, the summation over j in (5.5.3) leads to a result independent
of i, since an ellipsoid placed in a constant magnetic field has a uniform
magnetization throughout its interior. Furthermore, when r = Ri − Rj

becomes large, it may be replaced by a continuous variable, and the sum
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over j may be split into a sum over the lattice points lying within a large
sphere plus an integral over the rest of the sample:

∑
j

· · · =
∑

j∈sphere

· · · + N

V

∫ sample

sphere

· · · dr.

The value of the integral for the zz-component is∫
1
r3

(3z2

r2
− 1
)
dr = −

∫
∇ ·
( z

r3

)
dr =

∫
sphere

z · dS
r3

−
∫

sample

z · dS
r3

=
4π

3
− Nz,

where dS is a vectorial surface element of the sphere/sample, and Nξ is
the demagnetization factor

Nξ =
∫

sample

(
ξ̂ · r
r3

)
ξ̂ · dS, (5.5.5)

where ξ̂ is a unit vector along the ξ-axis. It is easily seen that Nξ +Nη +
Nζ = 4π. Hence we obtain

Dξξ(0) =
4π

3
+
[
Dξξ(0)

]
L
− Nξ, (5.5.6)

plus equivalent results for the other diagonal components. The first
term is the Lorentz factor, and

[
Dξξ(0)

]
L

is the value of the lattice sum
over the sphere, satisfying the relations

[
Dζζ(0)

]
L

= −2
[
Dξξ(0)

]
L

=
−2
[
Dηη(0)

]
L
. In the case of a cubic lattice, the lattice sums vanish

by symmetry. This is nearly also true for an hcp lattice with an ideal
c/a-ratio, because of the close relationship between the fcc lattice and
the ideal hcp lattice. The hcp lattice of the heavy rare earths is slightly
distorted, as may be seen from Table 1.2, in which case the lattice sums
become non-zero, approximately proportionally to the deviation from
the ideal c/a-ratio;

[
Dξξ(0)

]
L

= −0.0024 + 1.50
(
c/a −√8/3

)
. Brooks

and Goodings (1968) overestimate the anisotropy in the free energy due
to the dipole interaction by a factor of two.

When considering the lattice sum determining Dαβ(q) − Dαβ(0),
we may immediately apply the continuum approximation in the long-
wavelength limit 2π/q � a, and replace the sum with the correspond-
ing integral. In the calculation above at q = 0, this approximation
is not directly applicable, because the corresponding integral contains
a divergence at the origin, which is however removed in the difference
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Dαβ(q) − Dαβ(0). In addition to the condition q � 2π/a, we shall
assume that q � 2π/L, or more specifically q ≥ 10/L (Keffer 1966),
where L is a length dimension of the crystal, in which case the effects
of the boundaries on Dαβ(q) are averaged out because of the relatively
rapid variation of the exponential factor on the surface. Using these two
conditions, we find

Dαβ(q) = Dαβ(0) +
∫ 3(α̂·r)(β̂ ·r) − δαβ r2

r5

(
eiq·r − 1

)
dr

=
[
Dαβ(0)

]
L
+∫∫ 3(α̂·r)(β̂ ·r) − δαβr2

r5

[ ∞∑
l=0

[4π(2l + 1)]1/2 il jl(qr)Yl0(θ, φ)
]
r2drdΩ.

The q-independent term in the first integral leads to the same result as in
(5.5.6), but without the lattice-sum contribution, and adding Dαβ(0),
we are left with the term

[
Dαβ(0)

]
L
. The q-dependent exponential

is expanded in terms of the spherical Bessel functions, as in (4.1.8),
with the polar axis chosen to be parallel to q. The dipole factor in the
resulting integral may be written as a linear combination of the spherical
harmonics of second rank Y2m(θ, φ), multiplied by r−3, ensuring that
only the term with l = 2 in the sum over l survives the integration over
solid angles. Further, if α̂ and β̂ are either parallel or perpendicular to
q, only the diagonal components may differ from zero. With α̂ and β̂
both parallel to q, the longitudinal component is

D‖(q) − [D‖(0)
]
L

=
∫∫

[16π/5]1/2Y20(θ, φ)r−3[4π · 5]1/2(−1)j2(qr)Y20(θ, φ)r2drdΩ

= −8π

∫ ∞

0

1
ρ
j2(ρ)dρ = −8π

[
− j1(ρ)

ρ

]∞
0

= −8π

3
,

recalling that j1(ρ)/ρ → 1
3 or 0, for respectively ρ → 0 or ∞. This result

implies that the two transverse components are

D⊥(q) − [D⊥(0)
]
L

= −1
2

{
D‖(q)−[D‖(0)

]
L

}
=

4π

3
; (5.5.7)

when 2π/L � q � 2π/a.

The dipole-coupling components change from the values given by (5.5.6)
to those above within a very narrow range of q, i.e. when q goes from
zero to about 10/L, as shown by the detailed analysis of Keffer (1966).
At larger wave-vectors, the variation of Dαβ(q) is smooth and gradual,
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and it may be described by a few interplanar coupling parameters of the
type used for other two-ion interactions. Cohen and Keffer (1955) have
calculated the q-dependence for the three cubic Bravais lattices, and
their results also determine approximately Dαβ(q), with q along the c-
axis, in the hcp lattice with the ideal c/a-ratio, since this is equivalent to
q along a (111)-direction in the fcc crystal. In the distorted case, with
c/a = 0.963

√
8/3 (corresponding to Ho), a numerical calculation gives

Dξξ(q) + 0.02214π

3
=
{
0.9190 + 0.0816 cos (qc/2) − 0.0006 cos(qc)

}4π

3

when q ‖ c-axis and q ≥ 10/L, so that the q-dependence in the c-
direction is very weak, except for the jump at small q, which is illustrated
for the example of Ho in Fig. 5.7.

In a uniform ferromagnet, the demagnetization factor leads to a pos-
itive contribution to the internal energy. Without any external applied

Fig. 5.7. Parallel and perpendicular components of the Fourier trans-
form, for q along the c-direction, of the two-ion coupling in Ho, deduced
from the spin-wave energies. The coupling is assumed to comprise an
isotropic indirect-exchange contribution and the classical dipole–dipole
interaction, which gives rise to the discontinuity at q = 0 in the parallel

component, and stabilizes the cone structure at low temperatures.
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field, it is therefore energetically favourable for the system to split up
in domains, in which the magnetization vector points in different direc-
tions, so that the magnetization almost vanishes at the surface. The
greater the number of domains, the more effectively the demagnetiza-
tion contribution may be eliminated, but this tendency is opposed by
the cost in energy of the domain-walls. It is only the contribution due to
the demagnetization factor (as determined by the magnetization at the
surface) which is affected by the creation of domains, and in a simple
model in which the energy of the domain-walls is neglected, the internal
energy per unit volume, due to the dipole coupling and including the
Zeeman energy, is

UD + UZ 	 −1
2Deff

zz (0)M2 + 1
2Nz〈M〉2 − HA〈M〉.

The demagnetization factor is considered separately, so that Deff
zz (0) =

4π/3 +
[
Dzz(0)

]
L
, and HA is the field applied in the z-direction. M is

the magnetization,
M = N

V
gµB〈Jz〉 (5.5.8)

in each domain, whereas 〈M〉 is the magnetization averaged over the
whole crystal. If the internal field HI and the demagnetization field HD

are defined by

HI = HA − HD ; HD = Nz〈M〉, (5.5.9)

the energy is minimized by the conditions; HI = 0 when 〈M〉 < M , and
〈M〉 = M when HI > 0. As a function of HI , the magnetization jumps
from zero to its ‘saturation’ value at HI = 0.

The strong q-dependence of the dipole coupling at small q is re-
flected in the energies of the magnetic excitations. In the case of the
anisotropic ferromagnet, it is straightforward to deduce that the two-
ion coupling of eqn (5.5.1) leads to spin-wave energies determined by

E2
T (q) =

[
A0(T ) + B0(T ) + 〈Jz〉{Jξξ(0) − Jζζ(q)}]

× [A0(T ) − B0(T ) + 〈Jz〉{Jξξ(0) − Jηη(q)}]− [〈Jz〉Jηζ(q)
]2

,
(5.5.10)

assuming that the magnetization vector in the basal plane is parallel
to the ξ-axis, and that Jηζ(q) = Jζη(q). This result may be obtained
by an extension of the procedure used in Section 5.2, most easily from
the MF susceptibility (5.2.42). Introducing the above results into this
expression, we find, at q ≡ 0,

E2
T (0) =

[
A′

0(T )+B′
0(T )+ gµB〈M〉Nζ

][
A0(T )−B0(T )+ gµB〈M〉Nη

]
,

(5.5.11a)
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where the H appearing in A0(T ) in (5.2.37) or (5.3.22) is the internal
field HI , and

A′
0(T ) + B′

0(T ) = A0(T ) + B0(T ) + gµBM
([

Dξξ(0)
]
L
− [Dζζ(0)

]
L

)
.

(5.5.11b)
In comparison with the other anisotropy terms, the lattice-sum contribu-
tion to A′

0(T )+B′
0(T ) is very small (except in Gd) and may be neglected.

Equation (5.5.11) demonstrates that the energy gap at q = 0 depends
on the shape of the sample, as was first pointed out by Kittel (1948).
The same is the case with all other spin-wave modes in the magneto-
static region q ≤ 10/L, which are the observable states in ferromagnetic
resonance experiments. In a neutron-scattering experiment, the volume
in reciprocal space enclosed by the resolution function is normally sev-
eral orders of magnitude larger than the volume of the magnetostatic
region. The spin-waves in the long-wavelength limit, detected by inelas-
tic neutron-scattering, therefore emanate from the much larger region
where q ≥ 10/L, but is still much smaller than 2π/a, so that any two-ion
coupling, except for the dipole coupling, is the same as that at q = 0.
The spin-wave energies in this regime are determined by eqn (5.5.10),
when the dipole-coupling tensor in (5.5.7) is transformed to the (ξηζ)-
coordinate system, and are

E2
T (q ≈ 0) = E2

T (0̃) + 4πgµBM
[{A0(T ) − B0(T )} cos2 θq

+ {A′
0(T ) + B′

0(T )} sin2 θq sin2 φq

]
, (5.5.12a)

where (θq, φq) are the polar angles of q with respect to the c-axis or
ζ-axis, and

E2
T (0̃) =

[
A′

0(T ) + B′
0(T )

][
A0(T ) − B0(T )

]
. (5.5.12b)

As long as the magnetization is in the basal-plane, this result is gener-
ally valid if φq is redefined to be the angle between the magnetization
vector and the projection of q on the basal-plane. ET (0̃) is the min-
imum excitation energy, and the corresponding spin waves propagate
parallel to the magnetization vector. If A′

0(T ) + B′
0(T ) is significantly

larger than A0(T ) − B0(T ) (in Tb it is an order of magnitude greater
at T = 0), the maximum value of ET (q ≈ 0) occurs when q lies in the
basal plane perpendicular to the magnetic moments, whereas the spin
waves propagating in the c-direction only have an energy slightly greater
than ET (0̃). An inelastic neutron-scattering experiment, with the mean
value of the scattering vector equal to a reciprocal lattice vector, will
sample a whole spectrum of spin waves with energies between the two
extremes. The shape of the scattering peak will be dependent on the
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form of the resolution function. With a spherical resolution, the scatter-
ing will be quite sharply peaked at the intermediate energy of the spin
waves propagating in the c-direction, as illustrated in the case of Tb
in Fig. 5.8. The calculated sharp peak at about 1.8meV and the high-
energy shoulder are clearly apparent in the experimental measurements
of Houmann et al. (1975a). In the measurements of Bjerrum Møller
and Mackintosh (1979), on the other hand, the resolution function was
such that the modes propagating in the basal plane perpendicular to
the magnetization were most heavily weighted, so that the predominant
peak occurs at about 2.0meV. In Ho, the effect of the dipole interaction
on the long-wavelength spin waves is even more pronounced. This is an
example of the opposite extreme, where A′

0(T )+B′
0(T ) is much smaller

than A0(T ) − B0(T ), so that the maximum value of ET (q ≈ 0) occurs
when q lies along the c-direction. As illustrated in Fig. 5.9, the dipolar
splitting in this case is sufficiently great that the neutron scattering at
q ≈ 0 can be resolved into two peaks.

Another consequence of the strong directional dependence of the
dipolar contributions to the spin-wave energies is found in the behaviour
of the coupled magneto-acoustic sound waves, discussed in the previ-
ous section. The region in q-space sampled in ultrasonic measurements
(with frequencies in the MHz regime) is just that in which eqn (5.5.12)

Fig. 5.8. The state density of the long-wavelength spin-wave mode
ET (q ≈ 0) in Tb at 4K, calculated from eqn (5.5.12), taking into account
the splitting of the dispersion relations by the dipole–dipole interaction.

The sharp peak is due to the branch in the c-direction.
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applies. If q is parallel to the magnetization, the spin-wave energies
are unchanged from the values deduced in Sections 5.2–4, provided that
the lattice-sum contribution is included in the axial anisotropy term
(5.5.11b), and eqn (5.4.38) is still valid. On the other hand, when q is
in the basal-plane and perpendicular to the magnetization, the ultrasonic

Fig. 5.9. Dispersion relations, in the double-zone representation, for
magnetic excitations propagating in the c-direction of Ho90Tb10 in the
ferromagnetic phase (upper branch), and the bunched helical structure
(lower branch). The full and dashed lines for the ferromagnetic phase
show the theoretical dispersion relations at 4K and 16K respectively, and
the open and filled symbols are the corresponding experimental results.
The calculated long-wavelength energies in the basal plane are shown to
the left of the ordinate axis and the discontinuity, which is due to the
dipole–dipole interaction, is clearly manifested in the neutron-scattering
spectra in the inset. This discontinuity also appears in the helical phase,
and the bunching causes an energy gap on the ALH face of the Brillouin

zone, which is not resolved in these measurements.
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velocities are determined by

c∗cc

c66

= 1 − Λγ

A0(T ) − B0(T ) + 4πgµBM
; q ⊥ 〈J〉. (5.5.13)

This modification means that only the velocity of those magneto-acoustic
modes which propagate parallel to the magnetization vanishes at the
critical field HI = Hc where, according to (5.4.15), A0(T )−B0(T ) = Λγ ,
whereas the velocity of the modes propagating in the basal-plane per-
pendicular to the field remains non-zero. This difference in the velocities
of the ultrasonic modes was very clearly manifested in the ultrasonic ex-
periment on Tb discussed in Section 5.4 (Jensen and Palmer 1979). This
example shows that the dipolar coupling is able to lift the degeneracy
in the velocities of two transverse sound-waves which are related to each
other by an interchange of the directions of the wave-vector and the
polarization vector. The same effect may be produced by the torque
exerted on the moments when the local magnetic anisotropy axes are
rotated by the transverse phonons relative to the direction of an exter-
nal magnetic field. As discussed by Melcher (1972) and Dohm and Fulde
(1975) the influence of this mechanism on the sound velocities may be
derived from the principle that the total system has to be rotationally
invariant. Their theory has been extended by Jensen (1988b), who finds
that the dipolar-coupling contribution strongly dominates in a ferromag-
net, but that the importance of the two mechanisms may be comparable
in paramagnets.

5.5.2 General two-ion interactions
The two-ion couplings described by eqn (5.5.1) only involve the dipolar
moments of the 4f electrons. A more general two-ion Hamiltonian is

HJJ = −1

2

∑
ij

∑
l+l′:even

∑
mm′

[
Kmm′

ll′ (ij)Õlm(Ji)Õl′m′(Jj)

+ (−1)m+m′{Kmm′
ll′ (ij)}∗Õl −m(Ji)Õl′ −m′(Jj)

]
,

(5.5.14)
expressed in terms of the Racah operators or tensor operators Õlm(Ji)
introduced in Section 1.4, rather than the Stevens operators. Tables
of these operators and a discussion of their properties may be found in
Buckmaster et al. (1972) and in Lindg̊ard and Danielsen (1974). Here
we neglect the possible effects of the polar tensors, which vanish for the
isolated ions. In principle, these polar tensors may be non-zero in the
hcp metals, because the surroundings lack inversion symmetry, but they
occur only because of odd-parity configuration-mixing of the 4f wave-
functions, which should be insignificant for the ground-state multiplet.
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This leaves only the axial tensors, i.e. magnetic multipoles of odd rank
and electric multipoles of even rank. Time reversal of these tensors ef-
fects the transformation cÕlm → c∗(−1)l+mÕl −m, whereas Hermitian

conjugation gives
(
cÕlm

)† = c∗(−1)mÕl −m. The requirement that HJJ

should be invariant under both transformations allows only those terms
in eqn (5.5.14) for which l + l′ is even. The violation of time-reversal
symmetry which occurs when the system is magnetically ordered im-
plies that HJJ should be supplemented by interactions proportional to
〈Õλµ〉Õlm(Ji)Õl′m′(Jj), satisfying the condition that λ + l + l′ is even.
An obvious example is magnetoelastic contributions to the Hamiltonian
such as eqn (5.4.5). The tensor operators in (5.5.14) emanate from lo-
calized 4f wavefunctions with the orbital quantum number lf = 3, which
puts the further restriction on the phenomenological expansion of HJJ

that l and l′ cannot be larger than 2lf+1 = 7, as the operator-equivalents
of higher rank than this vanish identically.

In the rare earth metals, several different mechanisms may give rise
to such anisotropic two-ion couplings, and these have been listed by,
for instance, Wolf (1971) and Jensen et al. (1975). We have already
considered the magnetostatic coupling of lowest rank in the magnetic
multipole expansion, namely the classical magnetic dipole–dipole inter-
action. This is of importance only because of its long range. The higher
order magnetostatic couplings are of shorter range (∝ (1/r)l+l′+1) and
have negligible effects. The electrostatic Coulomb interaction gives rise
to terms in (5.5.14) in which both l and l′ are even. The single-ion
contributions (l′ = 0) are of decisive importance, when L �= 0, but
even the lowest-order electrostatic two-ion term, which contributes to
the quadrupole–quadrupole interactions, is so small that it may be ne-
glected.

The overlap between the 4f wavefunctions of neighbouring ions is so
weak that it cannot generate any two-ion coupling of significance. The
dominant terms in the two-ion Hamiltonian HJJ therefore arise indi-
rectly via the propagation of the conduction electrons. We have already
mentioned in Section 1.4 the most important of these, due to the ex-
change interaction between the band electrons and the 4f electrons, and
it will be discussed in more detail in Section 5.7. In the simplest ap-
proximation, the indirect exchange is invariant with respect to a uniform
rotation of the angular momenta, i.e. this RKKY interaction is isotropic.
However, the neglect of the contribution of the orbital moment in the
scattering process is not generally justified. If L is non-zero, the or-
bital state of the 4f electrons may change in an exchange-scattering
process, if the conduction electron is scattered into a state with a dif-
ferent orbital momentum relative to the ion. The leading-order correc-
tions to the isotropic RKKY interaction due to such processes have been
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considered by Kaplan and Lyons (1963) and Kasuya and Lyons (1966).
In order to obtain an estimate of the importance of the corrections, they
assumed plane-wave states for the conduction electrons, expanded in a
series of spherical Bessel functions centred at the ion. These calculations
indicated anisotropic two-ion couplings with a magnitude of the order of
10% of the isotropic coupling, or greater (Specht 1967). As discussed in
Section 1.3, the free-electron model does not provide a very satisfactory
description of the conduction electrons in the rare earths. It is partic-
ularly inadequate when orbital effects are involved, since the expansion
of the plane-wave states clearly underestimates the (l = 2)-character of
the d-like band-electrons, which dominates the exchange interaction in
the (L = 0)-case of Gd (Lindg̊ard et al. 1975). When L is non-zero, the
Kaplan–Lyons terms may be of comparable importance to the RKKY
interaction in the rare earth metals. The relativistic modification of the
band states, due to the spin–orbit coupling, may enhance the orbital
effects and also lead to anisotropic interactions in Gd. In addition to
the exchange, the direct Coulomb interaction between the 4f and the
band electrons may contribute to eqn (5.5.14), with terms in which l
and l′ are both even. This coupling mechanism, via the conduction elec-
trons, is probably more important for this kind of term than the direct
electrostatic contribution mentioned above.

The RKKY interaction is derived on the assumption that the 4f
electrons are localized in the core, and that their mixing with the conduc-
tion electrons is exclusively due to the exchange. However, the Coulomb
interaction may lead to a slight hybridization of the localized 4f states
with the band states. In recent years, Cooper and his co-workers (Cooper
et al. 1985; Wills and Cooper 1987) have analysed the consequences of
a weak hybridization between an ion with one or two f electrons and
the band electrons, with special reference to the magnetic behaviour of
Ce compounds and the actinides. They find that the magnetic two-ion
coupling becomes highly anisotropic in the Ce compounds. Although
Ce is the rare earth element in which the strongest hybridization effects
would be expected to occur, these results and the analysis of Kaplan and
Lyons (1963) suggest that the presence of anisotropic two-ion couplings
should be a common feature in rare earth metals with orbital angular
momentum on the ion.

As is clear from the above discussion, an analysis from first prin-
ciples cannot at present give a reliable estimate of the relative magni-
tude of the Heisenberg exchange interaction and the various possible
anisotropic two-ion couplings in the rare earth metals. We cannot a
priori exclude any terms of the form given by eqn (5.5.14). In order to
arrive at such an estimate, it is necessary to calculate the consequences
of the anisotropic two-ion terms and compare the predictions with exper-
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imental observations. In the case of the nearly saturated ferromagnet, it
is straightforward to take into account the effects of HJJ on the ground-
state properties and the spin-waves. The Racah operators, defined with
reference to the (ξ, η, ζ)-coordinate system, may be expanded in terms
of the spin deviation operators. When the moments in the basal-plane
(θ = π/2) are close to their saturation value (〈Jz〉 	 J),

〈Õlm〉 	
(

4π

2l + 1

)1/2

J (l)Ylm(θ =
π

2
, φ) = J (l)Γlm eimφ, (5.5.15a)

where

Γlm =

⎧⎪⎨⎪⎩ (−1)(l+m)/2 [(l + m)!(l − m)!]1/2

(l + m)!!(l − m)!!
, l + m even

0 , l + m odd.

(5.5.15b)

Utilizing the equivalence between the Racah operators and the spherical
harmonics, and the connection between the spin-wave energies and the
angular derivatives of the expectation values (which leads to the relation
(5.3.14)), we have to first order in 1/J (Jensen et al. 1975):

Õlm(Ji) =(
1 − m√

2J
(a+

i − ai) −
l(l + 1)

2J
a+

i ai −
l(l + 1) − 2m2

4J
(a+

i a+
i + aiai)

)
× J (l)Γlmeimφ, (5.5.16a)

if l + m is even, and if l + m is odd

Õlm(Ji) =[
(l + 1)2 − m2

]1/2
( 1√

2J
(a+

i + ai) −
m

2J
(a+

i a+
i − aiai)

)
J (l)Γl+1 meimφ.

(5.5.16b)

Introducing these expressions into the two-ion Hamiltonian, we may
derive the spin-wave energies, to leading order in 1/J . The number of
terms in eqn (5.5.14) which contribute to the excitation energies, in this
order, may be reduced by the symmetry elements of the lattice which
leave the q-vector unchanged. In the simplest case, where q is along
the c-axis, the three-fold symmetry about this axis plus the mirror-
plane perpendicular to the ξ-axis (i.e. the a-axis) ensure that only terms
with m + m′ = 3p, where p is an integer, contribute, and that their
contribution is proportional to cos (3pφ). The terms in which p is an
odd integer couple the acoustic and optical magnons, but they do not
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lift the degeneracy of the modes at A on the Brillouin-zone boundary
of Fig 1.4. When q is parallel to the c-axis, a direct calculation of the
spin-wave energies (Jensen et al. 1975) shows that the two-ion terms in
HJJ lead to the following modifications of the earlier results (5.2.38) and
(5.3.22):

(i) The two-ion anisotropy may contribute to the parameters
Aq(T ) ± Bq(T ) at zero wave-vector.

(ii) Bq(T ) becomes dependent on q to leading order in 1/J .
(iii) The q-dependent parts of Aq(T )±Bq(T ) may change when

the direction of magnetization is changed.

There are no direct ways of separating the single- and two-ion con-
tributions to the energy gap at zero wave-vector. However, a strong
q-dependence of Bq(T ) is only possible if the two-ion Hamiltonian is
anisotropic. One way to determine Bq(T ) is to utilize the dependence of
the neutron cross-section on this parameter, given by eqn (5.2.41). This
method requires accurate intensity measurements and is not straightfor-
ward. The other possibility is to measure the field dependence of the
spin-wave energies since, from (5.2.38) or (5.3.22),

αq(T ) ≡ ∂E2
q(T )/∂(gµBH) 	 2Aq(T ), (5.5.17)

when the field is parallel to the magnetization. This relation is only true
to first order in 1/J , and corrections have to be made for the influence
of any field-dependent changes of the correlation functions σ and η±.
Both Aq(T ) and Bq(T ) may be determined from the energies and initial
slopes, since

Aq(T ) ± Bq(T ) 	 1
2αq(T ) ± 1

2 [α2
q(T ) − 4E2

q(T )]
1
2 . (5.5.18)

This method was used by Jensen et al. (1975) for a comprehensive study
ot the two-ion anisotropy in Tb. The values of Aq(T ) and Bq(T ), de-
duced from eqn (5.5.18), were parametrized in various ways, and clearly
the best least-squares fit was obtained with expressions of the form

(Aq + Bq) − (A0 + B0) = I(q) + K(q) − C(q) cos 6φ

(Aq − Bq) − (A0 − B0) = I(q) −K(q) −D(q) cos 6φ,
(5.5.19)

where A0 ± B0 were taken from the simultaneous measurements of
the magnetic anisotropy at q = 0, discussed in the previous section.
The low-temperature isotropic coupling I(q), which in the absence of
anisotropy would just be J [J (0) − J (q)], and the φ-independent two-
ion anisotropy K(q) are shown in Fig. 5.10. The φ-dependent axial
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Fig. 5.10. Isotropic and anisotropic two-ion coupling parameters I(q)
(upper curve) and K(q) (lower curve) for Tb at 4K, deduced from the
field dependence of the spin-wave energies. The former is closely related
to J [J (0)−J (q)], an estimate of which is indicated by the dashed line.
The magnon–phonon interaction causes relatively large uncertainties at

intermediate wave-vectors.

anisotropy C(q) is about the same magnitude as K(q), while D(q) is
very small. The φ-dependent anisotropy is detected very clearly in the
experiments, since it gives rise to a change in the dispersion Eq(T ),
when the moments are rotated from the the easy to the hard planar
direction. C(q) is the q-dependent generalization of the φ-dependent
anisotropy ∆M in A0 + B0, introduced in the previous section, and
∆M ≈ −〈C(q)〉q.

As mentioned in Section 5.4.1, the corrections to the field depen-
dence of the magnon energies in (5.5.17) were included in an effective
fashion, neglecting changes due to the rotation of the moments and as-
suming η− 	 1/η+ 	 {1−b(T = 0)}σ−k, where k may be estimated to be
about 0.3. The renormalization effects are thus taken as proportional to
σ raised to a power which depends on the term considered. We estimate
that the effects neglected in this approach only introduce corrections
of the order of the experimental uncertainties. The two-ion coupling
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parameters decrease with increasing temperature or decreasing mag-
netization. The three anisotropy component all decrease very rapidly,
roughly proportionally to σ15 (like ∆M), which means that they are only
important at low temperatures and may be neglected above about 150K.
The strong temperature dependence of the anisotropic components indi-
cates, according to the Callen–Callen theory, that higher-rank couplings
make the dominant contribution. The lowest-order term in eqn (5.5.14)
which contributes to C(q) involves K33

44 , and it should renormalize ap-
proximately as σ19. The renormalization is observed to be q-dependent
for all the parameters, being slower at larger wave-vectors, and it lies in
the range σ2-σ0.1 for I(q). In Tb, I(q) may include higher-rank con-
tributions besides the RKKY-exchange term, but the way in which it
renormalizes resembles quite closely the behaviour observed in Gd and
shown in Fig. 5.1. A q-dependent renormalization may partially be ac-
counted for, in the self-consistent RPA theory, by the k-sum terms in
(5.2.38).

When q is not along the c-axis, there are other ways in which the
presence of two-ion anisotropy may be detected in the ferromagnetic
excitation spectrum:

(iv) Spin-wave energy gaps may appear at the boundaries of
the Brillouin zone.

The isotropic two-ion coupling alone does not lead to energy gaps at
these boundaries, whereas anisotropic two-ion couplings may lift those
degeneracies which are not dictated by symmetry. In fact, the first in-
dication of the presence of two-ion anisotropy in the rare earth metals,
other than the classical magnetic-dipolar interaction, was the splitting
shown in Fig. 5.2 along the KH edge of the Brillouin zone in the ferro-
magnetic phase of Tb (Lindg̊ard and Houmann 1971). Finally, we have
the related effect:

(v) The spin-wave energies, at a particular q, in domains with
different angles between the q-vector and the magnetiza-
tion vectors, need not be equal if two-ion anisotropy is
important.

In a single domain, the two-ion anisotropy forces may lift the ‘accidental’
degeneracies between spin waves at q-vectors which are equivalent in the
paramagnetic phase, but which are no longer equivalent in the Brillouin
zone of the ferromagnet. This manifestation of the two-ion anisotropy
has not yet been subjected to experimental investigation, but it may
provide a useful supplement to studies of the q-dependence of Bq(T ).

As we have seen, the expectation values 〈Õlm〉 are approximately
proportional to σl(l+1)/2, if the extra modification due to the elliptical
polarization of the spin-waves is neglected. This means that the impor-
tance of the higher-rank couplings declines relatively rapidly with tem-
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perature. The effects of these interactions on the ground state and the
spin waves are therefore most pronounced in the low-temperature limit,
whereas the behaviour of the system at high temperatures which, in the
heavy rare earths, includes the critical region around the phase transi-
tion between the ordered and paramagnetic phases, is dominated by the
coupling between the dipolar moments, and the single-ion quadrupole
interaction, i.e. by the terms in eqn (5.5.14) with l + l′ = 2.


