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5.4 Magnetoelastic effects

The magnetoelastic coupling between the magnetic moments and the
lattice modifies the spin waves in two different ways. The static de-
formations of the crystal, induced by the ordered moments, introduce
new anisotropy terms in the spin-wave Hamiltonian. The dynamic time-
dependent modulations of the magnetic moments furthermore interfere
with the lattice vibrations. We shall start with a discussion of the
static effects, and then consider the magnon–phonon interaction. The
magnetoelastic crystal-field Hamiltonian was introduced in Section 1.4,
where the different contributions were classified according to the symme-
try of the strain parameters. The two-ion coupling may also change with
the strain, as exemplified by eqn (2.2.32). We shall continue consider-
ing the basal-plane ferromagnet and, in order to simplify the discussion,
we shall only treat the low-rank magnetoelastic couplings of single-ion
origin. In the ferromagnetic case, the magnetoelastic two-ion couplings
do not introduce any effects which differ qualitatively from those due
to the crystal-field interactions. Consequently, those interactions which
are not included in the following discussion only influence the detailed
dependence of the effective coupling parameters on the magnetization
and, in the case of the dynamics, on the wave-vector.

5.4.1 Magnetoelastic effects on the energy gap

The static effects of the α-strains on the spin-wave energies may be
included in a straightforward manner, by replacing the crystal-field pa-
rameters in (5.2.1) with effective strain-dependent values, i.e. B0

2 →
B0

2 + B
(2)
α1 εα1 + B

(2)
α2 εα2, with α-strains proportional to 〈Q0

2〉. Equiva-
lent contributions appear in the magnetic anisotropy, discussed in Sec-
tion 2.2.2. This simplification is not possible with the γ- or the ε-strain
contributions, because these, in contrast to the α-strains, change the
symmetry of the lattice. When θ = π/2, the ε-strains vanish, and the
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γ-strain part of the magnetoelastic Hamiltonian is given by eqn (2.2.23):

Hγ =
∑

i

[1
2cγ(ε2γ1 + ε2γ2) − Bγ2{Q2

2(Ji)εγ1 + Q−2
2 (Ji)εγ2}

− Bγ4{Q4
4(Ji)εγ1 − Q−4

4 (Ji)εγ2}
]
.

(5.4.1)

The equilibrium condition, ∂F/∂εγ = 0, leads to eqn (2.2.25) for the
static strains εγ . The static-strain variables are distinguished by a bar
from the dynamical contributions εγ − εγ . The expectation values of
the Stevens operators may be calculated by the use of the RPA theory
developed in the preceding section, and with θ = π/2 we obtain, for
instance,

〈Q2
2〉 = 〈1

2 (O0
2 + O2

2) cos 2φ + 2O−1
2 sin 2φ〉 = J (2)Î5/2[σ]η−1

− cos 2φ

〈Q−2
2 〉 = 〈1

2 (O0
2 + O2

2) sin 2φ − 2O−1
2 cos 2φ〉 = J (2)Î5/2[σ]η−1

− sin 2φ.

(5.4.2)
We note that 〈O−1

2 〉 vanishes only as long as H′ in (5.2.12) can be ne-
glected. Introducing the magnetostriction parameters C and A via eqn
(2.2.26a), when θ = π/2,

εγ1 = C cos 2φ − 1
2A cos 4φ

εγ2 = C sin 2φ + 1
2A sin 4φ,

(5.4.3)

and calculating 〈Q±4
4 〉, we obtain

C = 1

cγ
Bγ2J

(2)Î5/2[σ]η−1
−

A = − 2

cγ
Bγ4J

(4)Î9/2[σ]η−6
− ,

(5.4.4)

instead of eqn (2.2.26b), including the effects of the elliptical preces-
sion of the moments. The equilibrium conditions allow us to split the
magnetoelastic Hamiltonian into two parts:

Hγ(sta) =
∑

i

[1
2cγ(ε2γ1 + ε2γ2) − Bγ2{Q2

2(Ji)εγ1 + Q−2
2 (Ji)εγ2}

− Bγ4{Q4
4(Ji)εγ1 − Q−4

4 (Ji)εγ2}
]
, (5.4.5)

depending only on the static strains, and

Hγ(dyn) =
∑

i

[
1
2cγ{(εγ1 − εγ1)

2 + (εγ2 − εγ2)
2}

− (
Bγ2{Q2

2(Ji) − 〈Q2
2〉} + Bγ4{Q4

4(Ji) − 〈Q4
4〉}

)
(εγ1 − εγ1)

− (
Bγ2{Q−2

2 (Ji) − 〈Q−2
2 〉} − Bγ4{Q−4

4 (Ji) − 〈Q−4
4 〉})(εγ2 − εγ2)

]
(5.4.6)
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depending only on the dynamical part of the strains.
To leading order, the magnetoelastic energy is determined by the

static part (5.4.5), corresponding to eqn (2.2.27). Hγ influences the
equilibrium condition determining φ and, in the spin-wave approxima-
tion (H′ is neglected), we have

1
N

∂F

∂φ
=

1
N

〈∂

∂φ
{H + Hγ}

〉 � 1
N

〈∂

∂φ
{H + Hγ(sta)}〉

= − 6B6
6J (6)Î13/2[σ]η−15

− sin 6φ + gµBHJσ sin (φ − φH)

+2cγC(εγ1 sin 2φ − εγ2 cos 2φ) − 2cγA(εγ1 sin 4φ + εγ2 cos 4φ),
(5.4.7)

or, using the equilibrium values of εγ1 and εγ2,

1
N

∂F

∂φ
= gµBJσ

{
H sin (φ − φH) − 1

6H̃c sin 6φ
}
, (5.4.8a)

with the definition

gµBH̃c = 36κ6
6/(Jσ) = 36

{
B6

6J (6)Î13/2[σ]η−15
− + 1

2cγCA
}
/(Jσ).

(5.4.8b)
If H = 0, the equilibrium condition ∂F/∂φ = 0 determines the sta-
ble direction of magnetization to be along either a b-axis or an a-axis,
depending on whether H̃c is positive or negative respectively.

The additional anisotropy terms introduced by Hγ and proportional
to the static strains, as for instance the term −Bγ2Q

2
2(Ji)εγ1 in (5.4.5),

contribute to the spin-wave energies. Proceeding as in Section 5.3, we
find the additional contributions to A0(T ) ± B0(T ) in (5.3.22), propor-
tional to the static γ-strains,

∆{A0(T ) + B0(T )}
=

cγ

Jσ

{
2C2 + A2η−8

+ η−4
− − CA(2 + η−8

+ η−4
− ) cos 6φ

}
η−1
+ η−

∆{A0(T ) − B0(T )} =
cγ

Jσ

{
4C2 + 4A2 − 10CA cos 6φ

}
. (5.4.9)

The contribution to A0(T ) − B0(T ) is expressible directly in terms of
the strain-parameters, C and A, without the further correction factors
necessary for A0(T )+B0(T ). By using H̃c and the non-negative quantity

Λγ =
4cγ

Jσ
(C2 + A2 + 2CA cos 6φ), (5.4.10)

we can write the total spin-wave parameter

A0(T ) − B0(T ) = Λγ − gµBH̃c cos 6φ + gµBH cos (φ − φH). (5.4.11)
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This parameter does not obey the relation (5.3.14) with the second
derivative Fφφ of the free energy. A differentiation ∂F/∂φ, as given
by (5.4.8), with respect to φ shows that (5.3.14) accounts for the last
two terms in (5.4.11), but not for Λγ . A calculation from (5.4.7) of the
second derivative of F , when the strains are kept constant, instead of
under the constant (zero) stress-condition assumed above, yields

A0(T ) − B0(T ) =
1

NJσ

∂2F

∂φ2

∣∣∣∣
ε=ε

= Λγ +
1

NJσ
Fφφ, (5.4.12)

which replaces (5.3.14). The relation (5.3.14), determining A0(T ) −
B0(T ), was based on a calculation of the frequency dependence of the
bulk susceptibility and, as we shall see later, it is the influence of the
lattice which invalidates this argument. The Λγ term was originally sug-
gested by Turov and Shavrov (1965), who called it the ‘frozen lattice’
contribution because the dynamic strain-contributions were not consid-
ered. However, as we shall show in the next section, the magnon–phonon
coupling does not change this result.

The modifications caused by the magnetoelastic γ-strain couplings
are strongly accentuated at a second-order phase transition, at which
Fφφ vanishes. Let us consider the case where H̃c is positive, H̃c =
|H̃c| ≡ Hc, i.e. the b-axis is the easy axis. If a field is applied along an
a-axis, φH = 0, then the magnetization is pulled towards this direction,
as described by eqn (5.4.8):

H = Hc
sin 6φ

6 sinφ
= Hc

(
1 − 16

3 sin2 φ + 16
3 sin4 φ

)
cosφ, (5.4.13)

as long as the field is smaller than Hc. At the critical field H = Hc,
the moments are pulled into the hard direction, so that φ = 0 and the
second derivative of the free energy,

Fφφ = NgµB{H cosφ − Hc cos 6φ}Jσ, (5.4.14)

vanishes. So a second-order phase transition occurs at H = Hc, and the
order parameter can be considered to be the component of the moments
perpendicular to the a-axis, which is zero for H ≥ Hc. An equally good
choice for the order parameter is the strain εγ2, and these two possibili-
ties reflect the nature of the linearly coupled magnetic–structural phase
transition. The free energy does not contain terms which are cubic in
the order parameters, but the transition might be changed into one of
first-order by terms proportional to cos 12φ, e.g. if σ or η±, and thereby
H̃c, depend sufficiently strongly on φ (Jensen 1975). At the transition,
eqn (5.4.11) leads to

A0(T ) − B0(T ) = Λγ at H = Hc, (5.4.15)
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which shows the importance of the constant-strain contribution Λγ . It
ensures that the spin-wave energy gap E0(T ), instead of going to zero
as |H − Hc|1/2, remains non-zero, as illustrated in Fig. 5.4, when the
transition at H = Hc is approached. Such a field just cancels the macro-
scopic hexagonal anisotropy, but energy is still required in the spin wave
to precess the moments against the strain field of the lattice.

By symmetry, the γ-strains do not contain terms linear in (θ − π
2 ),

and the choice between constant-stress and constant-strain conditions
therefore has no influence on their contribution to the second derivative
of F with respect to θ, at θ = π/2. Consequently, the γ-strains do
not change the relation between A0(T ) + B0(T ) and Fθθ, given by eqn
(5.3.14). The ε-strains vanish at θ = π/2, but they enter linearly with
(θ − π

2 ). Therefore they have no effect on A0(T ) + B0(T ), but they
contribute to Fθθ. To see this, we consider the ε-strain part of the
Hamiltonian, eqn (2.2.29):

Hε =
∑

i

[1
2cε(ε

2
ε1 + ε2ε2) − Bε1{Q1

2(Ji)εε1 + Q−1
2 (Ji)εε2}

]
. (5.4.16)

The equilibrium condition is

εε1 = 1

cε
Bε1〈Q1

2〉 = 1
4Hε sin 2θ cosφ,

in terms of the magnetostriction parameter Hε. In the basal-plane fer-
romagnet, εε1 and εε2 both vanish. The transformation (5.2.2) leads
to

Q1
2 = 1

4 (O0
2 − O2

2) sin 2θ cosφ − O1
2 cos 2θ cosφ + O−1

2 cos θ sin φ

+ 1
2O−2

2 sin θ sin φ, (5.4.17)

and Q−1
2 is given by the same expression, if φ is replaced by φ− π

2 . This
implies that

Hε = 4

cε
Bε1〈1

4 (O0
2 − O2

2)〉 = 2

cε
Bε1J

(2)Î5/2[σ]η−1
+ . (5.4.18)

The static ε-strains are zero and do not contribute to the spin-wave
parameters A0(T ) ± B0(T ), but they affect the second derivative of F ,
with respect to θ, under zero-stress conditions and, corresponding to
(5.4.12), we have

A0(T ) + B0(T ) =
1

NJσ

∂2F

∂θ2

∣∣∣∣
ε=ε

= Λε +
1

NJσ
Fθθ, (5.4.19)
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with
Λε =

cε

4Jσ
H2

ε , (5.4.20)

where Λε in (5.4.19) just cancels the ε-contribution to Fθθ/(NJσ) de-
termined from eqn (2.2.34).

The dependence of the magnon energy gap in Tb on magnetic field
and temperature has been studied in great detail by Houmann et al.
(1975a). They expressed the axial- and hexagonal-anisotropy energies
of eqn (5.2.44) in the form

A0(T ) ± B0(T ) = P0(±) − P6(±) cos 6φ + gµBH cos (φ − φH) (5.4.21)

and, by a least-squares fitting of their results, some of which are shown
in Fig. 5.4, they were able to deduce the values of the four parameters
P0,6(±), shown as a function of magnetization in Fig. 5.5. According to
eqns (5.3.22) and (5.4.9), these parameters are given at low temperatures
by:

P0(+) =
{
6B0

2J (2) − 60B0
4J

(4) + 210B0
6J

(6) + cγ(2C2 + A2)
}
/J (a)

P6(+) =
{
6B6

6J (6) + 3cγCA
}
/J (b)

P0(−) = 4cγ

{
C2 + A2

}
/J (c)

P6(−) =
{
36B6

6J (6) + 10cγCA
}
/J, (d)

(5.4.22)
where, for convenience, we have set the renormalization parameters σ
and η± to unity. These expressions for the parameters P0,6(±) are de-
rived from a particular model. In general, additional contributions may
appear due to other magnetoelastic interactions, and to anisotropic two-
ion couplings. Nevertheless, within the RPA, the relations between the
spin-wave energy parameters A0(T ) ± B0(T ) and the bulk anisotropy
parameters, (5.4.12) and (5.4.19) combined with (5.3.7), should still be
valid. The values of the anisotropy parameters, and their temperature
dependences, determine the static magnetic and magnetoelastic proper-
ties, and can thus be obtained from bulk measurements on single crys-
tals. A comparison between such static parameters and the dynamic val-
ues P0,6(±), derived from the field dependence of the spin-wave energy
gap, can therefore elucidate the extent to which the spin-wave theory of
the anisotropic ferromagnet is complete and correct.

Such a comparison has been made by Houmann et al. (1975a). The
axial-anisotropy parameter P0(+)+P6(+), when the moments are along
the easy axis, agrees with the values deduced from torque and mag-
netization experiments, to within the rather large uncertainties of the
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Fig. 5.4. The dependence of the square of the magnon energy gap
in Tb on the internal magnetic field. Open symbols represent results
for the field in the hard direction, and closed symbols are for the easy
direction. The non-zero value of the gap at the critical field, which just
turns the moments into the hard direction, is due to the constant-strain
contribution Λγ . The full lines are least-squares fits of the theoretical ex-
pressions for the energy gap, given in the text, to the experimental results.

latter. The basal-plane anisotropies, as determined from the critical
field Hc and the magnetoelastic γ-strain parameters, are well established
by bulk measurements. Here P0(−) agrees, within the small combined
uncertainties, with that derived from (5.4.22c) and (5.4.11), both in
magnitude and temperature dependence. On the other hand, the small
parameter P6(−) differs from the static value, so that

δ6(−) ≡ P6(−) − gµBH̃c + 8cγCA/(Jσ) (5.4.23a)

is found to be non-zero. A part of this discrepancy may be explained by
a twelve-fold anisotropy term, but this would also affect P0(−), and is
expected to decrease more rapidly with increasing temperature than the
experiments indicate. Within the accuracy of the experimental results,
the non-zero value of δ6(−) is the only indication of an additional renor-
malization of the spin-wave energy gap, compared with that derived
from the second derivatives of the free energy.



218 5. SPIN WAVES IN THE FERROMAGNETIC RARE EARTHS

Fig. 5.5. Anisotropy parameters in Tb as a function of the relative
magnetization, deduced from results of the type illustrated in Fig. 5.4.

The σ3-dependence of P0(+) on temperature is consistent with the
σ2-renormalization of the dominant two-fold term in (5.4.22a) predicted
by the Callen–Callen theory, but a comparison with the studies of dilute
Tb-alloys by Høg and Touborg (1975) suggests that a large part of the
axial anisotropy may have its origin in the two-ion coupling. The effect
of the two-ion anisotropy is directly apparent in that part of the axial
anisotropy P6(+) which depends on the orientation of the moments in
the basal plane. If only single-ion anisotropy of the type which we have
considered is important, P6(+) in (5.4.22b) is directly related to the crit-
ical field necessary to turn the moments into the hard direction. How-
ever, the experimental value of P6(+) bears little relation to gµBH̃c/6,
even having the opposite sign. We can express this discrepancy by the
parameter ∆M , defined by

∆M = P6(+) − gµBH̃c/6. (5.4.23b)

The influence of ∆M can be directly seen in the results of Fig. 5.4, since
it is responsible for the difference between the slopes when the field is
applied in the easy and hard directions. Although it could in principle be
due to higher-rank γ-strain magnetoelastic terms, the large magnitude
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of ∆M , compared to the contributions of C and A to the energy gap,
effectively precludes this possibly. We must therefore ascribe it to two-
ion anisotropy.

In the analysis of the field dependence of the magnon energy gap,
the possible dependences of the renormalization parameters σ and η±
on magnetic field and the orientation of the moments were neglected
at zero temperature, but included at non-zero temperatures, assuming
the different parameters effectively to be functions of σ only. In the
case of Dy, the zero-temperature change of the renormalization as a
function of φ is of some importance (Egami 1972; Jensen 1975; Egami
and Flanders 1976), whereas in Tb we have estimated by various means
that both approximations are justified. There are some indications that
there might be a systematic error involved in the determination of the
φ-dependent energy-gap parameters P6(±), possibly arising from the
influence of the classical dipole forces on the inelastic neutron-scattering
at long wavelength, discussed in Section 5.5.1. An extrapolation of the
results found at non-zero wave-vectors to q = 0 suggests that both
P6(+) and P6(−) may be about a factor of two smaller than shown
in Fig. 5.5. If this were the case, ∆M would still be too large to be
explained by the γ-strain couplings, but δ6(−) would be reduced almost
to the level of the experimental uncertainties. Otherwise a non-zero
value of δ6(−) can only be explained by theories beyond the RPA, e.g.
by effects, proportional to the frequency, due to the interaction between
the spin-waves and the electron-hole pair-excitations of the conduction
electrons.

5.4.2 The magnon–phonon interaction
The displacement of the ith ion from its equilibrium position, δRi =
u(Ri), can be expanded in normal phonon coordinates in the usual way:

u(Ri) =
∑
νk

Fν
k(βνk + β+

ν−k)eik·Ri , (5.4.24a)

with

F ν
k,α =

[
h̄

2NMωνk

] 1
2

fν
k,α. (5.4.24b)

M is the mass of the ions and fν
k,α is the α-component of the phonon-

polarization vector. βνk is the phonon-annihilation operator and ωνk

the corresponding phonon frequency, where ν denotes one of the three
(acoustic) branches. The polarization vectors are normalized and are
mutually orthogonal: ∑

α

(fν
k,α)∗fν′

k,α = δνν′ . (5.4.24c)
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For simplicity, we assume that there is only one ion per unit cell, but
the results we shall derive are also applicable to the hcp lattice, at least
for the acoustic modes at long wavelengths. In this limit Hγ(dyn), eqn
(5.4.6), augmented by the kinetic energy of the ions, is adequate for
discussing dynamical effects due to the γ-strains, if εαβ are replaced by
their local values

εαβ(i) = εαβ + i

2

∑
νk

(kαF ν
k,β + kβF ν

k,α)(βνk + β+
ν−k)eik·Ri . (5.4.25)

We shall initially concentrate on the most important dynamical effects,
and consider only the inhomogeneous-strain terms involving Stevens op-
erators with odd m. Assuming for the moment that φ = pπ

2 , we obtain
the contribution −Bγ2{−2O−1

2 (Ji) cos 2φ}(εγ2(i)−εγ2) from eqn (5.4.6),
and a corresponding term in Bγ4. Introducing the spin-deviation oper-
ators through (5.2.8) and (5.2.9), we obtain, to leading order in m and
b,

Bγ2O
−1
2 (Ji) = J (2)Bγ2

i√
2J

{
a+

i − ai − 5

4J
(a+

i a+
i ai − a+

i aiai)
}

= J (2)Bγ2
i√
2J

(
1 − 5

2m + 5
4 b

)
(a+

i − ai)

= cγC
i√
2J

(
1 + 1

2m + 1
4 b

)
(a+

i − ai)

= icγC
∑
q

[
Aq(T ) + Bq(T )

2NJσEq(T )

] 1
2

(α+
q − α−q) e−iq·Ri ,

(5.4.26)
utilizing the RPA decoupling (5.2.29) and introducing the (renormal-
ized) magnon operators α+

q and α−q, analogously with (5.2.39) and
(5.2.40). The Bγ4-term is treated in the same way, and introducing
the phonon-operator expansion of the strains (5.4.25) into (5.4.6), we
find that H + Hγ leads to the following Hamiltonian for the system of
magnons and phonons:

Hmp =
∑
k

Ek(T )α+
k αk+

∑
νk

{
h̄ωνkβ+

νkβνk+W ν
k (α+

k −α−k)(βνk+β+
ν−k)

}
(5.4.27)

with a magnon–phonon interaction given by

W ν
k = −cγ

√
N(k1F

ν
k,2+k2F

ν
k,1)

[
Ak(T ) + Bk(T )

2JσEk(T )

] 1
2

(C cos 2φ+A cos 4φ).

(5.4.28)
This Hamiltonian includes the part of Hγ which is linear in the magnon
operators when φ = pπ

2 . The effects of the static deformations are
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included in Ek(T ) through (5.4.11). In general, W ν
k couples all three

phonon modes with the magnons. A simplification occurs when k is
along the 1- or 2-axis, i.e. when k is either parallel or perpendicular to
the magnetization vector. In this case, W ν

k is only different from zero
when ν specifies the mode as a transverse phonon with its polarization
vector parallel to the basal plane. In order to analyse this situation, we
introduce the four Green functions:

G1(k, ω) = 〈〈αk ; α+
k − α−k〉〉 G2(k, ω) = 〈〈α+

−k ; α+
k − α−k〉〉

G3(k, ω) = 〈〈βk ; α+
k − α−k〉〉 G4(k, ω) = 〈〈β+

−k ; α+
k − α−k〉〉,

(5.4.29)
where the phonon mode is as specified above (the index ν is suppressed).
Hmp then leads to the following coupled equations of motion for these
Green functions:

{h̄ω − Ek(T )}G1(k, ω) − Wk{G3(k, ω) + G4(k, ω)} = 1

{h̄ω + Ek(T )}G2(k, ω) − Wk{G3(k, ω) + G4(k, ω)} = 1

{h̄ω − h̄ωk}G3(k, ω) + W−k{G1(k, ω) − G2(k, ω)} = 0

{h̄ω + h̄ωk}G4(k, ω) − W−k{G1(k, ω) − G2(k, ω)} = 0.

(5.4.30)

These four equations may be solved straightforwardly and, using W−k =
−Wk, we obtain, for instance,

〈〈αk − α+
−k ; α+

k − α−k〉〉 = G1(k, ω) − G2(k, ω)

= 2Ek(T ){(h̄ω)2 − (h̄ωk)2}/D(k, ω),
(5.4.31)

where the denominator is

D(k, ω) = {(h̄ω)2−E2
k(T )}{(h̄ω)2−(h̄ωk)2}−4W 2

k h̄ωkEk(T ). (5.4.32)

In a similar way, introducing the appropriate Green functions, we find

〈〈αk+α+
−k ; α+

k +α−k〉〉 =
[
2Ek(T ){(h̄ω)2−(h̄ωk)2}+8W 2

k h̄ωk

]
/D(k, ω).

(5.4.33)
In this situation, the polarization factor is (k1fk,2 + k2fk,1) = ±k, with
k = |k|. At long wavelengths, the velocity v = ωk/k of the transverse
sound waves is related to the elastic constant c66 = ρv2, and hence

cγ = 4c66V/N = 4Mω2
k/k2, (5.4.34)

and the coupling term in D(k, ω) can be written

4W 2
k h̄ωkEk(T ) = {Ak(T ) + Bk(T )}(h̄ωk)2Λγ , (5.4.35)
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where the parameter Λγ is given by (5.4.10). The magnetic susceptibil-
ities can be expressed in terms of the Green functions calculated above,
using (5.2.39) and (5.2.40), and we finally arrive at

χxx(q, ω) = Jσ
[{Aq(T )−Bq(T )}{(h̄ωq)2−(h̄ω)2}−Λγ(h̄ωq)2

]
/D(q, ω)
(5.4.36a)

and

χyy(q, ω) = Jσ{Aq(T ) + Bq(T )}{(h̄ωq)2 − (h̄ω)2}/D(q, ω). (5.4.36b)

Because ωq ∝ q and E0(T ) > 0, it is possible to satisfy the inequality
Eq(T ) 	 h̄ωq by choosing a sufficiently small q. As mentioned ear-
lier, E0(T ) is always greater than zero, if the magnetoelastic coupling is
non-zero, on account of the constant-strain term Λγ . Under these cir-
cumstances the elementary-excitation energies, determined by the poles
of the susceptibilities or by D(q, ω) = 0, are found to be

(h̄ω)2 =
{

E2
q(T ) + 4W 2

q h̄ωq/Eq(T )

(h̄ωq)2 − 4W 2
q h̄ωq/Eq(T ),

(5.4.37)

to leading order in h̄ωq/Eq(T ). The different excitations have become
mixed magnetoelastic modes, which mutually repel due to the magneto-
elastic coupling, and their squared energies are shifted up or down by
an equal amount. When Eq(T ) 	 h̄ωq, the change in energy of the
upper, predominantly magnon-like branch can be neglected, whereas
the frequency of the lower phonon-like mode, as obtained from (5.4.37),
using the relation (5.4.35),

ω2 = ω2
q

(
1 − Λγ

A0(T ) − B0(T )

)
+ O({h̄ωq/Eq(T )}4

)
, (5.4.38a)

may be modified appreciably relative to the unperturbed phonon fre-
quency. This relation implies that the elastic constant, relative to the
unperturbed value, as determined by the velocity of these magneto-
acoustic sound waves, is

c∗66
c66

= 1 − Λγ

A0(T ) − B0(T )
; q ‖ or ⊥ 〈J〉. (5.4.38b)

At q = 0, the dynamic coupling vanishes identically and the spin-wave
energy gap is still found at h̄ω = E0(T ) = {A2

0(T )−B2
0(T )}1/2, with the

static-strain contributions included in A0(T ) ± B0(T ). Due to the van-
ishing of the eigenfrequencies of the elastic waves at zero wave-vector, the
lattice cannot respond to a uniform precession of the magnetic moments
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at a non-zero frequency. Therefore the spin-wave mode at q = 0 per-
ceives the lattice as being completely static or ‘frozen’. This is clearly
consistent with the result (5.4.12), that the spin-wave energy gap is
proportional to the second derivative of the free energy under constant-
strain, rather than constant-stress, conditions.

If the lattice is able to adapt itself to the applied constant-stress
condition, in the static limit ω � ωq, then, according to (5.4.36b),

χyy(q → 0, 0) = χyy(q ≡ 0, 0) =
Jσ

A0(T ) − B0(T ) − Λγ
= N

(Jσ)2

Fφφ

,

(5.4.39)
in agreement with (5.3.7). However, the first equality is not generally
valid. The susceptibility depends on the direction from which q ap-
proaches 0. If the direction of q is specified by the spherical coordinates
(θq, φq), then eqn (5.4.39) is valid only in the configuration considered,
i.e. for θq = π

2 and φq = 0 or π
2 . If we assume elastically isotropic

conditions (c11 = c33, c44 = c66, and c12 = c13), which is a reasonable
approximation in Tb and Dy, we find that (5.4.39) is replaced by the
more general result

χyy(q → 0, 0) =
Jσ

A0(T ) − B0(T ) − Λγ sin2 θq{1 − (1 − ξ) sin2 θq sin2 2φq}
,

(5.4.40)

when φ = 0 or π
2 , and ξ = c66/c11 (� 0.3 in Tb or Dy). The rea-

son for this modification is that discussed in Section 2.2.2; the abil-
ity of the lattice to adapt to various static-strain configurations is lim-
ited if these strains are spatially modulated. If q is along the c-axis
(θq = 0), the γ-strains are ‘clamped’, remaining constant throughout
the crystal, so that the susceptibilities at both zero and finite frequen-
cies are determined by the uniform γ-strain contributions alone. We
note that, according to (5.4.28), W ν

k vanishes if k is parallel to the c-
axis (k1 = k2 = 0). The opposite extreme occurs when θq = π

2 and
φq = 0 or π

2 . The relevant strain-mode is determined by the equilib-
rium conditions (5.4.3) at zero constant stress, but generalized to the
non-uniform case where the y-component of the moments has a small
modulation, with the wave-vector q along the x-direction. This strain
mode (εγ2(i)+ω21(i) ∝ cos (q ·Ri + ϕ)) coincides with a phonon eigen-
state, the transverse phonon at q with its polarization vector in the basal
plane. This coincidence makes the equilibrium strain-mode viable, which
then explains the constant-stress result (5.4.39) obtained for χyy in this
situation.

We shall now return to the discussion of the second-order transition
occurring at H = Hc, when the field is applied along a hard direction
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in the basal plane. From (5.4.36a), we see that χxx(q → 0, 0) does
not show an anomaly at the transition. The critical behaviour is con-
fined to the yy-component of the static susceptibility. At the transition,
A0(T ) − B0(T ) = Λγ , according to eqn (5.4.15), and (5.4.40) then pre-
dicts a very rapid variation of χyy(q → 0, 0) with the direction of q, with
a divergent susceptibility in the long wavelength limit in the two cases
where q is along the z- or the y-axis, both lying in the basal plane, paral-
lel or perpendicular to the magnetic moments. These divergences reflect
a softening of two modes in the system, the transverse phonons propa-
gating parallel to either of the two axes (θq = π

2 and φq = pπ
2 ), with

their polarization vectors in the basal plane. Equation (5.4.38) predicts
that the velocity of these modes is zero, or c∗66 = 0, at H = Hc, at which
field the dispersion is quadratic in q instead of being linear. The soften-
ing of these modes was clearly observed in the ultrasonic measurements
of Jensen and Palmer (1979). Although the ultrasonic velocity could not
be measured as a function of magnetic field all the way to Hc, because
of the concomitant increase in the attenuation of the sound waves, the
mode with q parallel to the magnetization could be observed softening
according to (5.4.38b), until the elastic constant was roughly halved. On
the other hand, as discussed in the next section, the dipolar interaction
prevents the velocity of the mode in which the ionic motion is along the
magnetization from falling to zero, and (5.4.38b) is replaced by (5.5.13).
When they took this effect into account, Jensen and Palmer (1979) could
fit their results over a wide range of fields and temperatures with the
RPA theory, without adjustable parameters or corrections for critical
phenomena, using the bulk values of the three basal-plane anisotropy
parameters C, A, and H̃c,

The absence of such corrections may be explained by the behaviour
of the critical fluctuations, which is the same as that found in a pure
structural phase-transition in an orthorhombic crystal, where c66 is again
the soft elastic constant (Cowley 1976; Folk et al. 1979). The strong
bounds set by the geometry on the soft modes in reciprocal space con-
strain the transition to exhibit mean-field behaviour. The marginal dim-
ensionality d∗, as estimated for example by Als-Nielsen and Birgeneau
(1977), using a real space version of the Ginzburg criterion, is d∗ = 2
in this kind of system. Whenever the dimensionality d of the system is
larger than d∗, as in this case, Wilson’s renormalization group theory
predicts no corrections to Landau’s mean-field theory. The transition
at H = Hc is thus profoundly influenced by the magnetoelastic effects.
Without them, i.e. with C = A = 0, the spin-wave energy gap would van-
ish at the transition, and the critical fluctuations, the long-wavelength
magnons, would not be limited to certain directions in q-space. Under
such circumstances, the system would behave analogously to a three-



5.4 MAGNETOELASTIC EFFECTS 225

dimensional Ising model, d∗ = 4, with pronounced modifications in-
duced by the critical fluctuations. The original treatment by Turov and
Shavrov (1965) of the γ-strain contributions, which prevent the uniform
magnon mode from going soft at the critical field, included only the
static-strain components. The more complete analyses, including the
phonon dynamics, were later given by Jensen (1971a,b), Liu (1972b),
and Chow and Keffer (1973).

When the wave-vector is in the c-direction, the γ-strain couplings
vanish, but instead the ε-strains become important. The O1

2-term in Q1
2,

given by eqn (5.4.17), leads to a linear coupling between the magnons
and the phonons, and proceeding as in eqns (5.4.26–27), we find the
additional contribution to Hmp

∆Hmp =
∑
k

iW ν
k (ε)(α+

k + α−k)(βνk + β+
ν−k), (5.4.41a)

with

W ν
k (ε) = −1

4cε

√
N

{
(k1F

ν
k,3 + k3F

ν
k,1) cosφ + (k2F

ν
k,3 + k3F

ν
k,2) sin φ

}
×

[
Ak(T ) − Bk(T )

2JσEk(T )

] 1
2

Hε, (5.4.41b)

in the long-wavelength limit. When k is parallel to the c-axis, (5.4.28)
and (5.4.41) predicts that only the transverse phonons with their polar-
ization vectors parallel to the magnetization are coupled to the magnons.
The calculation of the velocity of this coupled mode leads, by analogy
to (5.4.38), to an elastic constant

c∗44
c44

= 1 − Λε

A0(T ) + B0(T )
when fν

k ‖ 〈J〉. (5.4.42)

The same result is obtained for the transverse-phonon mode propagating
in the direction of the ordered moments, with the polarization vector
parallel to the c-axis. These are the two modes which go soft in the case
of a second-order transition to a phase with a non-zero c-axis moment.

We have so far only considered the dynamics in the long-wavelength
limit. At shorter wavelengths, where the phonon and spin-wave energies
may be comparable, the magnon–phonon interaction leads to a strong
hybridization of the normal modes, with energy gaps at points in the
Brillouin zone where the unperturbed magnon and phonon dispersion
relations cross each other, as illustrated in Fig. 5.6. The interaction
amplitudes (5.4.28) and (5.4.41b) are correct only for small wave-vectors.
At shorter wavelengths, we must consider explicitly the relative positions
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of neighbouring ions, instead of the local strains. Evenson and Liu (1969)
have devised a simple procedure for replacing the local-strain variables in
the magnetoelastic Hamiltonian with the relative displacements of the
neighbouring ions. Using their procedure, and assuming the nearest-
neighbour interactions to be dominant, we find that eqn (5.4.41b) is
replaced by

W ν
k (ε) = −1

4cε

√
N

(
2

c
sin (kc/2)

)
F ν

k,‖

[
Ak(T ) − Bk(T )

2JσEk(T )

] 1
2

Hε, (5.4.43)

when k is along the c-axis. c is the lattice constant and F ν
k,‖ is the com-

ponent of Fν
k parallel to the magnetization vector, which is only non-zero

for one of the transverse-phonon modes. This interaction does not dis-
tinguish between the two sublattices in the hcp crystal. This means
that W ν

k (ε) only couples the magnons with the phonons at a certain k if
the modes are either both acoustic or both optical, consistent with the
double-zone representation in the c-direction. Except for the replace-
ment of (5.4.41b) by (5.4.43), the interaction Hamiltonian (5.4.41a) is
unchanged. From the equations of motion of the Green functions, we
may derive the susceptibilities, when k is along the c-direction, in the
same way as before, eqns (5.4.29–36), and the results are found to be:

χxx(k, ω) = Jσ{Ak(T ) − Bk(T )}{(h̄ωtk)2 − (h̄ω)2}/Dε(k, ω)

χyy(k, ω) = Jσ{Ak(T ) + Bk(T )}
× {

(h̄ωtk)2 − (h̄ω)2 − 4W 2
k(ε)h̄ωtk/Ek(T )

}
/Dε(k, ω),

(5.4.44)
with

Dε(k, ω) = {E2
k(T ) − (h̄ω)2}{(h̄ωtk)2 − (h̄ω)2} − 4W 2

k(ε)h̄ωtkEk(T ),
(5.4.45)

where ωtk is the angular frequency of the transverse phonon mode at k.
Introducing the parameter

Υk =
[
1 +

16h̄ωtkEk(T )W 2
k(ε)

{E2
k(T ) − (h̄ωtk)2}2

] 1
2

, (5.4.46)

we find the poles in the susceptibilities at

h̄ω = ±E±
k = ±[1

2

{
E2

k(T ) + (h̄ωtk)2
} ± 1

2

{
E2

k(T ) − (h̄ωtk)2
}
Υk

] 1
2 ,

(5.4.47a)
corresponding to

Dε(k, ω) = {(E+
k )2 − (h̄ω)2}{(E−

k )2 − (h̄ω)2}. (5.4.47b)
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By a straightforward manipulation of these expressions, we obtain

χ′′
yy(k, ω) = Im

[
χyy(k, ω)

]
= πJσ

Ak(T ) + Bk(T )
2Ek(T )

×
[ E+

k

Ek(T )
Υk + 1
2Υk

{
δ(E+

k − h̄ω) − δ(E+
k + h̄ω)

}
+

E−
k

Ek(T )
Υk − 1
2Υk

{
δ(E−

k − h̄ω) − δ(E−
k + h̄ω)

}]
.

(5.4.48)
Almost the same expression is obtained for χ′′

xx(k, ω); the sign before
Bk(T ) is reversed and the factors E±

k /Ek(T ) are replaced by their re-
ciprocals. If Wk(ε) = 0, then Υk = 1 and E+

k = Ek(T ), and (5.4.48)
is equivalent to eqn (5.2.40b). When Wk(ε) is non-zero, Υk > 1 and
there are two poles in the magnetic susceptibilities, one at E+

k closest
to Ek(T ), and the other at E−

k closest to the energy of the transverse-
phonon mode. Both poles lie outside the energy interval between Ek(T )
and h̄ωtk. The two normal modes at k, the magnons and the transverse
phonons polarized parallel to the magnetization, are transformed into
two magnetoelastic modes, both of which give rise to a magnetic scat-
tering of neutrons. The cross-section for neutrons scattered by a pure
phonon-mode is proportional to (κ · fν

k )2. If the scattering vector κ is
along the c-axis, the transverse phonons in this direction do not therefore
scatter neutrons, unless they are coupled to the magnons. With κ par-
allel to the c-axis, the (magnetic) scattering amplitude is proportional
to χ′′

yy(k, ω) and, in this situation, eqn (5.4.48), combined with (4.2.2)
and (4.2.3), determines the total scattered intensity due to the coupled
magnon and transverse-phonon modes. If the energy difference between
the two uncoupled modes at some k is large, Υk is only slightly greater
than 1, and the coupling induces only a small repulsion of the mode en-
ergies. The pole at energy E+

k , close to the unperturbed magnons, then
dominates the magnetic scattering cross-section. The strongest modifi-
cation occurs at the k-vector where Ek(T ) = h̄ωtk, at which Υk → ∞
and eqn (5.4.48) predicts nearly equal scattering intensities of the two
modes at energies determined by

(h̄ω)2 = E2
k(T ) ± 2Ek(T )|Wk(ε)| ; Ek(T ) = h̄ωtk, (5.4.49a)

corresponding to an energy splitting, or energy gap, between the two
modes of magnitude

∆ � 2|Wk(ε)|, (5.4.49b)

to leading order. These resonance or hybridization phenomena, the re-
distribution of the scattered intensity and the creation of an energy gap,



228 5. SPIN WAVES IN THE FERROMAGNETIC RARE EARTHS

are observed whenever two normal modes are coupled linearly with each
other, and the value of the energy gap at the k-point where the two
coupled modes are closest in energy, or where their scattering intensities
are equal, gives a direct measure of the coupling amplitude at that par-
ticular k-vector. The effect of the magnon–phonon interaction on the
excitation spectrum in Tb is illustrated in Fig. 5.6.

Fig. 5.6. The dispersion relations
for the magnons and phonons propa-
gating in the c-direction of Tb at 53
K, illustrating the magnon–phonon
interaction. The calculated unper-
turbed modes are depicted by the
full curves. The normal modes are
mixed magnon–phonon states, and
energy gaps appear at the crossing
points of the unperturbed dispersion
relations. The acoustic magnons in-
teract both with the acoustic and the
optical phonons.

The method described above, based on the magnetoelastic Hamilto-
nian, is not sufficiently general to enable a prediction of all possible cou-
plings allowed by symmetry, i.e. the selection rules. To accomplish this,
it is necessary either to use group-theoretical arguments, or to derive
a general version of the magnon–phonon Hamiltonian based exclusively
on symmetry considerations. These two methods have been applied to
this system by respectively Cracknell (1974) and Jensen and Houmann
(1975). Their analyses show that, when k is along the c-direction, a
further mixing is allowed in addition to that considered above. This re-
quires the single-zone representation in the c-direction, since it couples
an acoustic mode to an optical mode at the same k-vector. The phonon
modes in question are once more transverse, but their coupling to the
magnons depends on the polarization relative to the direction of magnet-
ization. In an a-axis magnet, the polarization vector should be parallel
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to the magnetization, as is assumed in eqn (5.4.43), whereas in a b-axis
magnet, the acoustic–optical coupling involves the transverse phonons
polarized perpendicular to the magnetization (i.e. still along an a-axis).
The symmetry arguments show that this coupling must be quadratic in
k in the long wavelength limit, instead of linear as is Wk(ε). It there-
fore has no influence on the uniform strains or the elastic constants,
and accordingly no counterpart in the magnetoelastic Hamiltonian. Liu
(1972a) has discussed the possible origin of such an acoustic–optical in-
teraction, and he concludes that it cannot be a crystalline-field effect,
but must be mediated indirectly via the conduction electrons and be
proportional to the spin–orbit coupling forces. As is illustrated in Fig.
5.6, the acoustic–optical magnon–phonon interaction is clearly observed
in Tb, where it leads to the energy gap ∆2, the strongest hybridization
effect seen in the metal. However, a closer examination (Jensen and
Houmann 1975) shows that the transverse phonon modes involved are
those polarized parallel to the magnetization, in spite of the fact that Tb
has its magnetization vector in the b-direction. Hence this interaction
violates the selection rules deduced from the general symmetry argu-
ments, leading to the conclusion that the ground-state of Tb cannot be
a simple b-axis ferromagnet as assumed. The 4f moments are undoubt-
edly along an easy b-axis, but the spins of the conduction electrons are
not necessarily polarized collinearly with the angular momenta of the
core electrons, because of their spin–orbit coupling. If the ground-state
spin-density wave of the conduction electrons in Tb has a polarization
which varies in space within a single unit cell, a coupling mediated by this
spin-density wave may violate the selection rules based on the symmetry
properties of the simple ferromagnet. The presence of the ‘symmetry-
breaking’ acoustic–optical interaction in Tb demonstrates that the con-
duction electrons play a more active role than passively transmitting the
indirect-exchange interaction. This magnon–phonon coupling is directly
dependent on spin–orbit effects in the band electrons, in accordance with
Liu’s explanation, and its appearance demonstrates that the polarization
of the conduction-electron spins must have a component perpendicular
to the angular momenta.

To complete this section, we shall briefly discuss the additional
magnon–phonon interaction terms which are linear in the phonon oper-
ators, but quadratic in the magnon operators:

H(2)
mp =

∑
qkν

[
Uν(k,q)α+

q+kαq + 1
2Vν(k,q)α+

q+kα+
−q

+1
2V ∗

ν (−k,−q)αqα−q−k

]
(βνk + β+

ν−k). (5.4.50)

Referring back to the magnetoelastic Hamiltonian, we find that such an
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interaction may originate from, for instance, the term

−Bγ2{(O0
2 + O2

2) − 〈O0
2 + O2

2〉}1
2 cos 2φ(εγ1 − εγ1)

in (5.4.6), or the corresponding terms in (5.4.16). In contrast to the lin-
ear couplings considered above, the symmetry-preserving α-strain part
of the magnetoelastic Hamiltonian makes a contribution to the quadratic
interaction terms. Using the procedure of Evenson and Liu (1969), it
is straightforward, if somewhat tedious, to relate the interaction am-
plitudes in eqn (5.4.50) to the magnetoelastic coupling parameters. We
shall not perform this analysis here, but refer instead to the detailed cal-
culations of Jensen (1971a,b). The interactions in eqn (5.4.50) have the
consequence that the equations of motion of the magnon Green func-
tion 〈〈αq ; α+

q〉〉 involve new, higher-order mixed Green functions like
〈〈αq−kβk ; α+

q〉〉. Performing an RPA or Hartree–Fock decoupling, as in
(5.2.29), of the three-operator products which occur in the equations of
motion of the new Green functions, we obtain a closed expression for
the magnon Green function, which may be written

〈〈αq ; α+
q 〉〉 =

1
h̄ω − Eq(T ) − Σ(q, ω)

, (5.4.51)

where Σ(q, ω) is the self-energy, due to the interactions in (5.4.50), of
the magnons of wave-vector q. Neglecting Vν(q,k), we find that the
self-energy at T = 0 is

Σ(q, ω) = lim
ε→0+

∑
kν

|Uν(k,q)|2
h̄ω + ih̄ε − Eq+k(0) − h̄ωνk

. (5.4.52)

These interactions are not diagonal in reciprocal space and the magnons
are therefore affected by all the phonons. Whenever k has a value
such that Eq(0) � Eq+k(0) + h̄ωνk, the real part of the denomina-
tor in (5.4.52) vanishes close to the magnon pole at q, as determined
by (5.4.51). This implies a negative imaginary contribution to Σ(q, ω),
when h̄ω � Eq(0), and hence a reduction in the lifetime of the magnons.
The energy of the magnons at q is approximately given by Eq(0) +
Re

[
Σ(q, ω)

]
, with h̄ω � Eq(0). At non-zero temperatures, the self-

energy terms increase in proportion to the Bose population-factors of
the magnons and phonons involved. These interactions, quadratic in
the magnon operators, do not lead to the kind of hybridization effects
produced by the linear couplings, but rather give rise to a (small) renor-
malization of the normal-mode energies and to a finite lifetime of the ex-
citations. These effects are entirely similar to those due to the magnon–
magnon interactions appearing in the spin-wave theory in the third order
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of 1/J . Equation (5.4.52) shows that the ‘zero-point’ motion of the ions,
at T = 0, has a slight effect on the magnons. A similar effect occurs due
to the magnon–magnon interactions, but only in an anisotropic ferro-
magnet where B is non-zero, as we discussed in the previous section. In
most cases, the contributions due to the magnon–magnon interactions
are expected to predominate, because the magnon–phonon coupling pa-
rameters are usually quite small, in comparison with the spin-wave inter-
actions. Although the interactions in (5.4.50) may not be important for
the magnons, they may have observable effects on the phonons at finite
temperatures. For instance, they affect the velocity of the transverse
sound waves propagating in the c-direction and polarized perpendicular
to the magnetization, but not those polarized parallel to the magneti-
zation, which are modified by the linear couplings as discussed above.
Deriving the perturbed phonon Green functions in the same way as the
magnon Green function, and taking the long-wavelength limit, we find
(Jensen 1971a,b)

c∗44
c44

= 1 − Λε
1

NJ

∑
q

nq

Eq(T )
when fν

k ⊥ 〈J〉. (5.4.53)

We note that this result is of higher order in 1/J than the effect due
to the linear coupling, given in (5.4.42). However, the extra factor 1/J
may be compensated by the magnon population-factor nq in the sum
over q, at elevated temperatures.

Modifications of the results obtained above may occur, due to an-
harmonic terms of third order in the strains, or magnetoelastic terms
quadratic in the strains. These higher-order contributions may possi-
bly be of some importance for the temperature dependence of the elas-
tic constants and the spin-wave parameters. However, they should be
of minor significance under the nearly constant-strain conditions which
obtain, for instance, when the magnetic-field dependence of the elastic
constants is considered.


