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5.3 The uniform mode and spin-wave theory

The spin-wave mode at zero wave-vector is of particular interest. In
comparison with the Heisenberg ferromagnet, the non-zero energy of
this mode is the most distinct feature in the excitation spectrum of the
anisotropic ferromagnet. In addition, the magnitude of the energy gap
at q = 0 is closely related to the bulk magnetic properties, which may
be measured by conventional techniques. We shall first explore the con-
nection between the static magnetic susceptibility and the energy of the
uniform mode, leading to an expression for the temperature dependence
of the energy gap. In the light of this discussion, we will then consider
the general question of the validity of the spin-wave theory which we
have presented in this chapter.

5.3.1 The magnetic susceptibility and the energy gap
The static-susceptibility components of the bulk crystal may be deter-
mined as the second derivatives of the free energy

F = U − TS = − 1

β
ln Z. (5.3.1)
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The specific heat C may be derived in a simple way, within our current
spin-wave approximation, by noting that the excitation spectrum is the
same as that for a non-interacting Bose system, so that the entropy
is fully determined by the statistics of independent bosons of energies
Eq(T ):

S = kB

∑
q

[
(1 + nq) ln (1 + nq) − nq ln nq

]
, (5.3.2)

and hence

C = T∂S/∂T = kBT
∑
q

(dnq/dT ) ln {(1 + nq)/nq},

or, with nq =
[
eβEq(T ) − 1

]−1,

C =
∑
q

Eq(T ) dnq/dT

= β
∑
q

nq(1 + nq)Eq(T )
{
Eq(T )/T − ∂Eq(T )/∂T

}
,

(5.3.3)

as in (3.4.17).
The first derivative of F with respect to the angles θ and φ can be

obtained in two ways. The first is to introduce S, as given by (5.3.2)
into (5.3.1), so that

∂F

∂θ
=

∂U

∂θ
−

∑
q

Eq(T )
∂nq

∂θ

=
∂U

∂θ

∣∣∣∣
mq,bq

+
∑
q

(
∂U

∂mq

∂mq

∂θ
+

∂U

∂bq

∂bq
∂θ

− Eq(T )
∂nq

∂θ

)

=
∂U

∂θ

∣∣∣∣
mq,bq

, (5.3.4)

as it can be shown that ∂U/∂mq = JÃq(T ) and ∂U/∂bq = JB̃q(T ),
when U = 〈H0 +H1 +H2〉, and hence that each term in the sum over q
in the second line of (5.3.4) vanishes, when (5.2.32) is used. This result
is only valid to second order in 1/J . However, a result of general validity
is

∂F/∂θ =
〈
∂H/∂θ

〉
, (5.3.5)

as discussed in Section 2.1, in connection with eqn (2.1.5). The two dif-
ferent expressions for ∂F/∂θ, and corresponding expressions for ∂F/∂φ,
agree if H in (5.3.5) is approximated by H0 + H1 + H2, i.e. to second
order in 1/J . However, the results obtained up to now are based on the
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additional assumption, which we have not stated explicitly, that H′ in
the starting Hamiltonian (5.2.12) is negligible. H′ is the sum of the terms
proportional to Stevens operators Om

l with m odd, and it includes for in-
stance the term 3B0

2(JzJx+JxJz) cos θ sin θ associated with B0
2Q0

2 in eqn
(5.2.3). H′ vanishes by symmetry if the magnetization is along a high-
symmetry direction, i.e. θ = 0 or π/2 and φ is a multiple of π/6. In these
cases, the results obtained previously are valid. If the magnetization is
not along a high-symmetry direction, H′ must be taken into account.
The first-order contributions arise from terms proportional to (1/J)1/2

in H′, which can be expressed effectively as a linear combination of Jx

and Jy. In this order, 〈∂H′/∂θ〉 = 0 therefore, because 〈Jx〉 = 〈Jy〉 = 0
by definition. For a harmonic oscillator, corresponding in this system
to the first order in 1/J , the condition for the elimination of terms in
the Hamiltonian linear in a and a+ coincides with the equilibrium con-
dition ∂F/∂θ = ∂F/∂φ = 0. Although the linear terms due to H′ can
be removed from the Hamiltonian by a suitable transformation, terms
cubic in the Bose operators remain. Second-order perturbation theory
shows that, if H′ is non-zero, 〈∂H′/∂θ〉 and the excitation energies in-
clude contributions of the order 1/J2. Although it is straightforward to
see that H′ makes contributions of the order 1/J2, it is not trivial to
calculate them. The effects of H′ have not been discussed in this con-
text in the literature, but we refer to the recent papers of Rastelli et al.
(1985, 1986), in which they analyse the equivalent problem in the case
of a helically ordered system.

In order to prevent H′ from influencing the 1/J2-contributions de-
rived above, we may restrict our discussion to cases where the mag-
netization is along high-symmetry directions. This does not, however,
guarantee that H′ is unimportant in, for instance, the second deriva-
tives of F . In fact ∂〈∂H′/∂θ〉/∂θ ∝ O(1/J2) may also be non-zero when
θ = 0 or π/2, and using (5.3.4) we may write

Fθθ =
∂2F

∂θ2
=

∂2U

∂θ2

∣∣∣∣
mq,bq

+ O(1/J2)

=
〈∂2

∂θ2
(H0 + H1 + H2)

〉
+ O(1/J2) ; θ = 0,

π

2
,

(5.3.6a)

and similarly

Fφφ =
〈∂2

∂φ2
(H0 + H1 + H2)

〉
+ O(1/J2) ; φ = p

π

6
, (5.3.6b)

where the corrections of order 1/J2 are exclusively due to H′. Here we
have utilized the condition that the first derivatives of mq and bq vanish
when the magnetization is along a symmetry direction.
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The derivatives Fθθ and Fφφ are directly related to the static sus-
ceptibilities, as shown in Section 2.2.2. When θ0 = π

2 , we obtain from
eqn (2.2.18)

χxx(0, 0) = N〈Jz〉2/Fθθ ; χyy(0, 0) = N〈Jz〉2/Fφφ. (5.3.7)

These results are of general validity, but we shall proceed one step further
and use F (θ, φ) for estimating the frequency dependence of the bulk
susceptibilities. When considering the uniform behaviour of the system,
we may to a good approximation assume that the equations of motion
for all the different moments are the same:

h̄∂〈J〉/∂t = 〈J〉 × h(eff). (5.3.8)

By equating it to the average field, we may determine the effective field
from

F = F (0) − N〈J〉 · h(eff), (5.3.9a)

corresponding to N isolated moments placed in the field h(eff). The free
energy is

F = F (θ0, φ0) + 1
2Fθθ(δθ)

2 + 1
2Fφφ(δφ)2 − N〈J〉 · h, (5.3.9b)

and, to leading order, δθ = −〈Jx〉/〈Jz〉 and δφ = −〈Jy〉/〈Jz〉. Hence

hx(eff) = − 1
N

∂F

∂〈Jx〉 = hx − 1
N

Fθθ

〈Jx〉
〈Jz〉2 , (5.3.10a)

and similarly

hy(eff) = hy − 1
N

Fφφ

〈Jy〉
〈Jz〉2 . (5.3.10b)

Introducing a harmonic field applied perpendicular to the z-axis into
eqn (5.3.8), we have

ih̄ω〈Jx〉 =
1

N〈Jz〉Fφφ〈Jy〉 − hy〈Jz〉

ih̄ω〈Jy〉 = − 1
N〈Jz〉Fθθ〈Jx〉 − hx〈Jz〉,

(5.3.11)

and ∂〈Jz〉/∂t = 0, to leading order in h. Solving the two equations for
hx = 0, we find

χyy(0, ω) = 〈Jy〉/hy =
1
N

Fθθ

E2
0(T ) − (h̄ω)2

, (5.3.12a)
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and, when hy = 0,

χxx(0, ω) =
1
N

Fφφ

E2
0(T ) − (h̄ω)2

, (5.3.12b)

where the uniform-mode energy is

E0(T ) =
1

N〈Jz〉
{
FθθFφφ

}1/2
. (5.3.13)

This result for the uniform mode in an anisotropic ferromagnet was
derived by Smit and Beljers (1955). It may be generalized to an arbitrary
magnetization direction by defining (θ, φ) to be in a coordinate system
in which the polar axis is perpendicular to the z-axis (as is the case here),
and by replacing FθθFφφ by FθθFφφ − F 2

θφ if Fθφ �= 0.
The introduction of the averaged effective-field in (5.3.8) corre-

sponds to the procedure adopted in the RPA, and a comparison of the
results (5.3.12–13) with the RPA result (5.2.40), at q = 0 and ω = 0,
shows that the relations

A0(T ) − B0(T ) =
1

N〈Jz〉Fφφ

A0(T ) + B0(T ) =
1

N〈Jz〉Fθθ

(5.3.14)

must be valid to second order in 1/J . In this approximation, A0(T ) ±
B0(T ) are directly determined by that part of the time-averaged two-
dimensional potential, experienced by the single moments, which is
quadratic in the components of the moments perpendicular to the mag-
netization axis. The excitation energy of the uniform mode is thus pro-
portional to the geometric mean of the two force constants characterizing
the parabolic part of this potential. Since A0(T )±B0(T ) are parameters
of order 1/J , the second-order contributions of H′ in (5.3.6), which are
not known, appear only in order 1/J3 in (5.3.14), when the magnetiz-
ation is along a high-symmetry direction.

B0
2 does not appear in A0(T ) − B0(T ), and this is in accordance

with eqn (5.3.14), as Q0
2 is independent of φ. Considering instead the

θ-dependence, we find that the contribution to Fθθ is determined by

〈∂2Q0
2

∂θ2

〉
=

〈 − 6(J2
z − J2

x) cos 2θ − 6(JzJx + JxJz) sin 2θ
〉

θ=π/2

= 3〈O0
2 − O2

2〉. (5.3.15)

From (5.2.10) and (5.2.11), the thermal average is found to be

〈O0
2 − O2

2〉 = 2J (2)
〈
1 − 3

J
a+a + 3

2J2
a+a+aa

− 1

2J
(1 + 1

4J )(aa + a+a+) + 1

4J2
(a+aaa + a+a+a+a)

〉
,
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or

〈O0
2 −O2

2〉 = 2J (2){1− 3m + 3m2 + 3
2b2 − (1 + 1

4J )b + 3
2mb +O(1/J3)}.

(5.3.16)
Hence, according to (5.3.6a) and (5.3.14), the B0

2 -term contributes to
the spin-wave parameter A0(T ) + B0(T ) by

3B0
2〈O0

2 − O2
2〉/〈Jz〉 � 6B0

2J (2)(1 − 3m − b)/J(1 − m)

� 6B0
2J (2)(1 − 2m − b)/J,

in agreement with (5.2.37b). When b is zero, this result is consistent with
the classical Zener power-law (Zener 1954), 〈Om

l 〉 ∝ δm0 σl(l+1)/2, where
σ = 1 − m is the relative magnetization, since, to the order considered,
〈O0

2 − O2
2〉b=0 = 〈O0

2〉b=0 = 2J (2)(1 − m)3. If we include the diagonal
contribution of third order in m or 1/J to 〈O0

2〉 in (5.3.16), the result
differs from the Zener power-law, but agrees, at low temperatures, with
the more accurate theory of Callen and Callen (1960, 1965) discussed in
Section 2.2. The results of the linear spin-wave theory obtained above
can be utilized for generalizing the theory of Callen and Callen to the
case of an anisotropic ferromagnet. The elliptical polarization of the spin
waves introduces corrections to the thermal expectation values, which
we express in the form

〈O0
2 − O2

2〉 = 2J (2)Î5/2[σ] η−1
+ , (5.3.17)

where the factor Îl+1/2[σ] represents the result (2.2.5) of Callen and
Callen, and where η± differs from 1 if b is non-zero. The two correlation
functions m and b are determined through eqn (5.2.32), in terms of the
intermediate parameters Ãk(T ) ± B̃k(T ), but it is more appropriate to
consider instead

mo =
1

NJ

∑
k

{Ak(T )
Ek(T )

(
nk + 1

2

) − 1
2

}

bo = − 1
NJ

∑
k

Bk(T )
Ek(T )

(
nk + 1

2

)
,

(5.3.18)

defined in terms of the more fundamental parameters. The transforma-
tion (5.2.34) then leads to the following relations:

mo + 1
2J = m + 1

2J − 1
2b2 and bo = b − 1

2b(m + 1
2J ).

Separating the two contributions in (5.3.16), we find

b̃ ≡ 〈O2
2〉/〈O0

2〉 � (1 + 1
4J )b(1 − m)−3/2, (5.3.19a)
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which, to the order calculated, may be written

b̃ =
(
1 − 1

2J

)−1 bo

σ2
, (5.3.19b)

where
σ = 〈Jz〉/J = 1 − m = 1 − mo − 1

2 bob̃. (5.3.20)

The function η± is then determined in terms of b̃ as

η± = (1 ± b̃)(1 − 1
2 b̃2). (5.3.21)

The spin-wave theory determines the correlation functions σ and η±
to second order in 1/J , but for later convenience we have included
some higher-order terms in (5.3.20) and (5.3.21). It may be straightfor-
wardly verified that the thermal expectation values of 〈O0

2 − O2
2〉 given

by (5.3.16) and (5.3.17) agree with each other to order 1/J2. In the ab-
sence of anisotropy, the latter has a wider temperature range of validity
than the former, extending beyond the regime where the excitations can
be considered to be bosons. This should still be true in the presence of
anisotropy, as long as b̃ is small.

The combination of the spin-wave theory and the theory of Callen
and Callen has thus led to an improved determination of the thermal
averages of single-ion Stevens operators, as shown in Figs. 2.2 and 2.3.
The quantity O0

2 − O2
2 was chosen as an example, but the procedure is

the same for any other single-ion average. It is tempting also to utilize
this improvement in the calculation of the excitation energies, and the
relation (5.3.14) between the free energy and the spin-wave parameters
A0(T ) ± B0(T ) is useful for this purpose. Neglecting the modifications
due to H′ in (5.3.6), i.e. using Fθθ � 〈∂2H/∂θ2〉 and similarly for Fφφ,
we find from (5.3.14) the following results:

A0(T )−B0(T ) = − 1

Jσ
36B6

6J
(6)Î13/2[σ]η−15

− cos 6φ+gµBH cos (φ − φH)
(5.3.22a)

and

A0(T )+B0(T ) = 1

Jσ

[
6B0

2J (2)Î5/2[σ]η−1
+ − 60B0

4J (4)Î9/2[σ]η7
−η−1

+

+ 210B0
6J

(6)Î13/2[σ]η18
− η−1

+ − 6B6
6J (6)Î13/2[σ]η−30

− η−25
+ cos 6φ

]
+ gµBH cos (φ − φH), (5.3.22b)

which for completeness include all contributions from the starting Hamil-
tonian (5.2.1). The spin-wave spectrum at non-zero wave-vectors is
adjusted accordingly by inserting A0(T ) ± B0(T ) given above, instead
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of (5.2.37), in eqns (5.2.36), (5.2.38), and (5.2.40). If the out-of-plane
anisotropy is stronger than the in-plane anisotropy, as in Tb and Dy, B
is positive and b̃ is negative. This means that η+ and η− are respectively
smaller and greater than 1 (for small b̃ ), with the result that the axial
contributions to A0(T ) + B0(T ) are increased, whereas the planar con-
tribution to A0(T ) − B0(T ) is diminished, due to b̃. This is consistent
with the fact that the out-of-plane fluctuations are suppressed in com-
parison with the in-plane fluctuations by the anisotropy. Hence we find,
as a general result, that the elliptical polarization of the spin waves en-
hances, in a self-consistent fashion, the effects of the anisotropy. We note
that Q6

6, which depends on both θ and φ, contributes to both anisotropy
parameters, but that the anisotropy of the fluctuations affects the two
contributions differently.

If b̃ and the k-sums in (5.2.38) are neglected, the above result for
the spin-wave energies Eq(T ) reduces to that derived by Cooper (1968b).
The modifications due to the non-spherical precession of the moments,
b̃ �= 0, were considered first by Brooks et al. (1968) and Brooks (1970),
followed by the more systematic and comprehensive analysis of Brooks
and Egami (1973). They utilized directly the equations of motion of
the angular-momentum operators, without introducing a Bose repre-
sentation. Their results are consistent with those above, except that
they did not include all the second-order modifications considered here.
We also refer to Tsuru (1986), who has more recently obtained a re-
sult corresponding to eqn (5.2.31), when B6

6 is neglected, using a varia-
tional approach. The procedure outlined above essentially follows that
of Lindg̊ard and Danielsen (1974, 1975), which was further developed
by Jensen (1975). This account only differs from that given by Jensen
in the use of η± instead of b̃ as the basis for the ‘power-law’ general-
ization (and by the alternative choice of sign for B and b̃) and, more
importantly, by the explicit use of 1/J as the expansion parameter.

As illustrated in Fig. 5.1 for Gd, and in Fig. 5.3 for Tb, the observed
temperature dependence of the spin-wave spectrum is indeed substan-
tial, both in the isotropic and the anisotropic ferromagnet. In the case
of Tb, the variation of the exchange contribution is augmented by the
temperature dependence of the anisotropy terms, which is reflected pre-
dominantly in the rapid variation of the energy gap at q = 0. A com-
parison of Figs. 5.1 and 5.3 shows that the change in the form of J (q)
appears to be more pronounced in Tb than in Gd. In Tb, the variation
of J (q) with q at a particular temperature is also modified if the mag-
netization vector is rotated from the b-axis to a hard a-axis (Jensen et
al. 1975). Most of these changes with magnetization can be explained
as the result of two-ion anisotropy, which we will consider in Section 5.5.
Anisotropic two-ion terms may also affect the energy gap. In addition,
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Fig. 5.3. The temperature dependence of the dispersion relations for
the unperturbed spin waves in the c-direction in Tb. Both the energy gap
and the q-dependence renormalize with temperature. The results have
been corrected for the magnon–phonon interaction, and the lines show the

calculated energies.

the magnetoelastic coupling introduces qualitatively new effects, not de-
scribable by eqn (5.3.22), to which we will return after a short digression
to summarize our understanding of the spin-wave theory.

5.3.2 The validity of the spin-wave theory

In presenting the spin-wave theory, we have neglected phenomena which
first appear in the third order of 1/J , most importantly the finite life-
times of the excitations. In the presence of anisotropy, when B is dif-
ferent from zero, the total moment is not a conserved quantity, since
[
∑

i Jiz , H ] �= 0, unlike in the Heisenberg model. On the microscopic
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plane, this means that the number of spin-wave excitations, i.e. magnons,
is not necessarily conserved in a scattering process. In contrast to the be-
haviour of the isotropic ferromagnet, the linewidths do not therefore van-
ish at zero temperature, although energy conservation, combined with
the presence of an energy gap in the magnon spectrum, strongly limit
the importance of the allowed decay processes at low temperatures.

The two-ion interactions are assumed to involve only tensor op-
erators of the lowest rank, so that these terms in the 1/J-expansion
only have small numerical factors multiplying the Bose operator prod-
ucts. Therefore, if J is large, as in heavy rare earth-ions, the third-order
terms due to the exchange coupling, which are neglected in the spin-
wave theory, are expected to be small, as long as the number of excited
magnons is not very large. The weak influence, at low temperatures,
of the higher-order contributions of the exchange coupling is also indi-
cated by a comparison with the low-temperature expansion of Dyson
(1956) of the free energy in a Heisenberg ferromagnet with only nearest-
neighbour interactions, also discussed by Rastelli and Lindg̊ard (1979).
If A = B = 0, the results derived earlier, to second order in 1/J , are
consistent with those of Dyson, except that we have only included the
leading-order contribution, in the Born approximation or in powers of
1/J , to the T 4-term in the magnetization and in the specific heat. The
higher-order corrections to the T 4-term are significant if J = 1

2 , but if
J = 6 as in Tb, for example, they only amount to a few per cent of this
term and can be neglected.

If only the two-ion terms are considered, the RPA decoupling of
the Bose operator products (5.2.29) is a good approximation at large
J and at low temperatures. However, this decoupling also involves an
approximation to the single-ion terms, and these introduce qualitatively
new features into the spin-wave theory in the third order of 1/J . For
example, the C3-term in (5.2.26) directly couples the |Jz = J > state
and |J − 4 >, leading to an extra modification of the ground state not
describable in terms of B or η±. Furthermore, the Bogoliubov trans-
formation causes the (Jx, Jy)-matrix elements between the ground state
and the third excited state to become non-zero. This coupling then
leads to the appearance of a new pole in the transverse susceptibilities,
in addition to the spin-wave pole, at an energy which, to leading order,
is roughly independent of q and close to that of the third excited MF
level, i.e. 3Eqo(T ), with qo defined as a wave-vector at which J (qo) = 0.
A qualitative analysis indicates that the third-order contribution to e.g.
χxx(0, 0), due to this pole, must cancel the second-order contribution of
H′ to Fθθ in the relation (5.3.12b) between the two quantities. Hence
the approximation Fθθ � 〈∂2H/∂θ2〉, used in (5.3.22), corresponds to
the neglect of this additional pole.
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The higher-order exchange contributions can thus be neglected at
low temperatures, if J is large. This condition is not, however, sufficient
to guarantee that the additional MF pole is unimportant, and the spin-
wave result (5.3.22), combined with (5.2.36), (5.2.38), and (5.2.40), can
only be trusted as long as the modification of the ground state, due to
the single-ion anisotropy, is weak. This condition is equivalent to the
requirement that |̃b| be much less than 1. The regime within which the
spin-wave theory is valid can be examined more closely by a comparison
with the MF-RPA theory. In the latter, only the two-ion interactions
are treated approximately, whereas the MF Hamiltonian is diagonalized
exactly. The MF-RPA decoupling utilized in Section 3.5 leads here to
a cancellation of the k-sums in (5.3.38), and to a replacement of the
correlation functions mo and bo by their MF values

mo � mMF
o =

1
J

{Aqo(T )
Eqo(T )

(
nqo + 1

2

) − 1
2

}
, (5.3.23)

with a similar expression for bMF
o . The wave-vector qo is defined as

above, such that J (qo) = 0. If the single-ion anisotropy is of second rank
only, including possibly a Q2

2-term as well as the Q0
2-term of our specific

model, all the predictions obtained with the MF-RPA version of the spin-
wave theory agree extremely well with the numerical results obtained
by diagonalizing the MF Hamiltonian exactly, even for relatively large
values of |bMF

o | (≈ 0.1). Even though 1/J is the expansion parameter,
the replacement of (1 + 1

2J ) by (1− 1
2J )−1 in (5.3.19b) extends the good

agreement to the limit J = 1, in which case the MF Hamiltonian can be
diagonalized analytically.

The applicability of the 1/J-expansion for the anisotropy is much
more restricted if terms of high rank, such as Q6

6, dominate. This is a
simple consequence of the relatively greater importance of the contribu-
tions of higher-order in 1/J , like for instance the C3-term in (5.2.26),
for higher-rank anisotropy terms. We have analysed numerically mod-
els corresponding to the low-temperature phases of Tb and Er, which
include various combinations of anisotropy terms with ranks between 2
and 6. In the case of the basal-plane ferromagnet Tb, we find that the
1/J-expansion leads to an accurate description of the crystal-field effects
on both the ground-state properties and the excitation energies. The
MF-RPA excitation-energies calculated with the procedure of Section
3.5 differ relatively only by ∼ 10−3 at T = 0 from those of the spin-wave
theory (Jensen 1976c). We furthermore find that this good agreement
extends to non-zero temperatures, and that the 1/J-expansion is still ac-
ceptably accurate when σ � 0.8. Consequently, the effective power-laws
predicted by the spin-wave theory at low temperatures (Jensen 1975)
are valid.
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The renormalization of the anisotropy parameters appearing in the
spin-wave energies, in the second order of 1/J , is expected to be some-
what more important in the conical phase of Er than in Tb. In Er,
the moments are not along a symmetry direction (they make an angle
of about 28◦ with the c-axis) and the second-order modifications due
to H′ in (5.2.12) might be expected to be important. The 1/J-results
do not allow a precise estimate of the second-order contributions, but
by introducing two scaling parameters, one multiplying the exchange
terms by σ, and the other scaling the constant crystal-field contribution
in the 1/J-expression for the spin-wave energies in the cone phase, it
is possible (Jensen 1976c) to give an accurate account of the excitation
energies derived by diagonalizing the MF Hamiltonian exactly, the rela-
tive differences being only of the order 10−2. The two scaling parameters
are found to have the expected magnitudes, although σ turns out to be
slightly smaller (� 0.94 in the model considered) than the relative mag-
netization predicted by the MF Hamiltonian (σMF � 0.98). An analysis
of the MF Hamiltonian shows that the excitations can be described in
terms of an elliptical precession of the single moments, as expected, but
surprisingly the ellipsoid lies in a plane with its normal making an angle
(� 33◦) with the c-axis which differs from the equilibrium cone-angle
(� 28◦), so the polarization of the spin waves is not purely transverse.
In terms of the 1/J-expansion, this modification of the excited states
can only be produced by H′. This observation indicates that H′ has sig-
nificant effects in Er, since it explains the difference between σ and σMF,
as σ becomes equal to σMF if the angle appearing in the renormalized
spin-wave energies is considered to be that defining the excited states,
i.e. 33◦, rather than the equilibrium value.

We may conclude that the 1/J-expansion is a valid procedure for
describing the low-temperature magnetic properties of the heavy rare
earth metals. This is an important conclusion for several reasons. To
first order in 1/J , the theory is simple and transparent. It is therefore
feasible to include various kinds of complication in the model calcula-
tions and to isolate their consequences. This simplicity is retained in
the second order of 1/J , as long as H′ can be neglected, in which case
the first-order parameters are just renormalized. Accurate calculations
of the amount of renormalization of the different terms may be quite
involved, but because of the long range of the two-ion interactions in
the rare earth metals, the MF values of mo and bo utilized above nor-
mally provide good estimates. The spin-wave theory in the harmonic
approximation, to first order in 1/J , has been employed quite exten-
sively in the literature, both for analysing experimental results and in
various theoretical developments. It is therefore fortunate that these
analyses are not invalidated, but only modified, or renormalized, by the
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presence of moderate anisotropy. However, it is necessary to be aware
that the renormalization itself may cause special effects not expected
in the harmonic approximation, as the amount of renormalization may
change when the system is perturbed by an external magnetic field or
pressure, or when the temperature is altered.

There have been attempts (Lindg̊ard 1978, and references therein)
to construct an analytical spin-wave theory starting with a diagonaliza-
tion of the MF Hamiltonian. In principle, this should be an appropriate
starting-point, since the ground state is closer to the MF ground-state
than to the fully polarized state, as soon as the planar anisotropy be-
comes significant. As in the model calculations discussed above, the MF
Hamiltonian can be diagonalized numerically without difficulty, but in
this form the method is non-analytical and the results are not easily
interpretable. In order to diagonalize the MF Hamiltonian analytically,
one is forced to make a perturbative expansion, unless J is small. If
the MF Hamiltonian is expressed in the |Jz >-basis, the natural ex-
pansion parameter is ∼ |Bqo/Aqo | � 2J |bo| at T = 0. The use of this
expansion parameter and the 1/J-expansion considered above lead to
identical results in the limit 2J |bo| 	 1 (Rastelli and Lindg̊ard 1979).
However, the expansion parameter is not small when the anisotropy is
moderately large (2J |bo| � 0.35 in Tb at T = 0), which severely limits
the usefulness of this procedure as applied by Lindg̊ard (1978, 1988)
to the analysis of the spin waves in the anisotropic heavy rare earths.
It gives rise to a strong renormalization of all the leading-order spin-
wave-energy parameters, which are thus quite sensitive, for example,
to an external magnetic field, and it is extremely difficult to obtain a
reasonable estimate of the degree of renormalization. In contrast, the
1/J-expansion leads, at low temperatures, to results in which only the
high-rank terms (which are quite generally of smaller magnitude than
the low-rank terms) are renormalized appreciably, and the amount of
renormalization can be determined with fair accuracy. In the numerical
example corresponding to Tb, the B6

6 -term is renormalized by −38% at
T = 0, according to the spin-wave theory, which agrees with the value
obtained by diagonalizing the MF Hamiltonian exactly, as indicated in
Fig. 2.3.

To recapitulate, we have developed a self-consistent RPA theory for
the elementary excitations in a ferromagnet, i.e. the spin waves, valid
when the magnetization is close to its saturation value. The major com-
plication is the occurrence of anisotropic single-ion interactions, which
were treated by performing a systematic expansion in 1/J . To first
order in 1/J , the theory is transparent and simple, and it is straightfor-
wardly generalized to different physical situations. Much of the simplic-
ity is retained in second order, as long as the magnetization is along a
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symmetry axis, but the first-order parameters are replaced by effective
values. These effective parameters are determined self-consistently in
terms of the spin-wave parameters Aq(T )±Bq(T ), which depend on T ,
and on an eventual applied magnetic field. One advantage of the use of
1/J as the expansion parameter is that the second-order modifications
are smallest for the low-rank couplings, which are quite generally also
the largest terms. If the magnetization is not along a symmetry axis,
the elementary excitations may no longer be purely transverse. This
additional second-order phenomenon may, however, be very difficult to
detect experimentally within the regime of validity of the second-order
spin-wave theory.


