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5.2 Spin waves in the anisotropic ferromagnet

In the heavy rare earth metals, the two-ion interactions are large and
of long range. They induce magnetically-ordered states at relatively
high temperatures, and the ionic moments approach closely their sat-
uration values at low temperatures. These circumstances allow us to
adopt a somewhat different method, linear spin-wave theory, from those
discussed previously in connection with the derivation of the correlation
functions. We shall consider the specific case of a hexagonal close-packed
crystal ordered ferromagnetically, with the moments lying in the basal
plane, corresponding to the low-temperature phases of both Tb and Dy.
For simplicity, we shall initially treat only the anisotropic effects intro-
duced by the single-ion crystal-field Hamiltonian so that, in the case of
hexagonal symmetry, we have

H =
∑

i

[ ∑
l=2,4,6

B0
l Q0

l (Ji) + B6
6Q6

6(Ji)− gµBJi ·H
]
− 1

2

∑
i�=j

J (ij)Ji ·Jj .

(5.2.1)
The system is assumed to order ferromagnetically at low temperatures,
a sufficient condition for which is that the maximum of J (q) occurs at
q = 0. Qm

l (Ji) denotes the Stevens operator of the ith ion, but defined
in terms of (Jξ, Jη, Jζ) instead of (Jx, Jy, Jz), where the (ξ, η, ζ)-axes
are fixed to be along the symmetry a-, b- and c-directions, respectively,
of the hexagonal lattice. The (x, y, z)-coordinate system is chosen such
that the z-axis is along the magnetization axis, specified by the polar
angles (θ, φ) in the (ξ, η, ζ)-coordinate system. Choosing the y-axis to
lie in the basal plane, we obtain the following relations:

Jξ = Jz sin θ cosφ − Jx cos θ cosφ + Jy sin φ

Jη = Jz sin θ sin φ − Jx cos θ sin φ − Jy cosφ

Jζ = Jz cos θ + Jx sin θ,

(5.2.2)

from which

Q0
2 = 3{J2

z cos2 θ+J2
x sin2 θ+(JzJx+JxJz) cos θ sin θ}−J(J+1). (5.2.3)
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Initially we assume that 〈Jz〉 = J at T = 0, which implies that the
ground state is the product of |Jz = J >-states of the single ions. In
this case, we find, consistently with eqn (2.2.14),

〈Q0
2〉 = <J |Q0

2 |J > = J (2)(3 cos2 θ − 1),

where, as before, J (n) = J(J − 1
2 ) · · · (J − n−1

2 ), and we have used the
expectation values 〈J 2

z 〉 = J2, 〈J 2
x 〉 = 1

2J and 〈JzJx〉 = 0. Analogously,
though with considerably more labour, we can show that, for instance,

〈Q6
6〉 = <J | 12 (Jξ + iJη)6 + 1

2 (Jξ− iJη)6|J > = J (6) sin6 θ cos 6φ. (5.2.4)

For simplicity, we neglect for the moment B0
4 and B0

6 , and specifying
the direction of the magnetic field by the polar angles (θH , φH), we find
that the ground-state energy is, within this approximation,

U(T = 0) � N
[
B0

2J (2)(3 cos2 θ − 1) + B6
6J (6) sin6 θ cos 6φ

− gµBJH{cos θ cos θH + sin θ sin θH cos (φ − φH)} − 1
2J (0)J2

]
,

(5.2.5)
where θ and φ are determined so that they minimize this expression. In
zero magnetic field, H = 0, (5.2.5) only gives two possibilities for θ, viz.
θ = 0 for B0

2J (2) < − 1
3 |B6

6 |J (6) or θ = π
2 for B0

2J (2) > − 1
3 |B6

6 |J (6). We
shall here be concerned with the second case of θ = π

2 , i.e. the basal-
plane ferromagnet. In this case, the angle φ is determined by the sign
of B6

6 . The magnetic moments will be along an a- or a b-axis (φ = 0
or φ = π

2 ) if B6
6 is respectively negative or positive. Having specified

the (approximate) ground state, we turn to the excitations, i.e. the spin
waves.

Instead of utilizing the standard-basis operators, defined by (3.5.11),
we shall introduce a Bose operator ai for the ith ion, satisfying

[ai , a+
j ] = δij ; [ai , aj ] = [a+

i , a+
j ] = 0, (5.2.6)

which acts on the |Jz >-state vector of this ion (the site index is sup-
pressed) in the following way:

a |J > = 0 ; a |J − m> =
√

m |J − m + 1> (5.2.7)

Holstein and Primakoff (1940) introduced the following representation
of the angular momentum operators:

Jz = J − a+a

J+ =
(
2J − a+a

) 1
2 a

J− = a+
(
2J − a+a

) 1
2 .

(5.2.8)
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If the usual basis vectors in the Hilbert space created by the Bose oper-
ators are denoted by |n), i.e. a|n) =

√
n|n− 1) where n = 0, 1, 2, · · · ,∞,

then by the definition (5.2.7), |n) = |Jz = J −n> for n = 0, 1, 2, · · · , 2J ,
but there is no physical |Jz >-state corresponding to |n) when n > 2J .
It is straightforward to see that the Bose representation (5.2.8) produces
the right matrix-elements of the angular momentum operators, as long
as |n) is restricted to the physical part of the Hilbert space, n ≤ 2J ,
but this representation presupposes the presence of an infinite number
of states. In the ferromagnetic case, the unphysical states are at high
energies, if J is large and T is low, and their influence on the thermal
averages is negligible. In this regime of J and T , the Holstein–Primakoff
transformation is useful and the results derived from it are trustworthy.

In order to be able to treat the Bose operators under the square
roots in eqn (5.2.8), we shall utilize 1/J as an expansion parameter.
This means that, instead of the J± given by (5.2.8), we shall use

J+ = (J−)† �
√

2J
(
a − 1

4J
a+aa

)
. (5.2.9)

It is important here to realize that the expansion parameter is 1/J and
not, for instance, ‘the number of deviation operators’. If the latter
were the case, a well-ordered expansion of J+ (Lindg̊ard and Danielsen
1974) would suggest instead J+ =

√
2J{a−(1−√

1 − 1/2J)a+aa+ · · ·},
corresponding to a replacement of 1

4J in (5.2.9) by 1
4J (1+ 1

8J + · · ·). We
emphasize that we shall be expanding the reduced operators (1/J (l))Om

l ,
leaving no ambiguities either in (5.2.9) or in the following. Using eqn
(5.2.9) and Jz = J − a+a, it is straightforward to express the Stevens
operators in terms of the Bose operators. For O0

2 , we get

O0
2 = 3J2

z − J(J + 1) = 3(J − a+a)2 − J(J + 1)

= 2J(J − 1
2 ) − 6(J − 1

2 ) a+a + 3a+a+aa

= 2J (2)
{
1 − 3

J
a+a + 3

2J2
a+a+aa + O(1/J3)

}
.

(5.2.10)

Here we have used [a , a+] = 1 to arrange the operators in ‘well-ordered’
products, with all the creation operators to the left, and in the last line
1/J (2) has been replaced by 1/J2 in the term of second order in 1/J . In
the same way, we obtain

O2
2 = 1

2 (J2
+ + J2

−) = J (2)
{ 1

J
(a+a+ + aa)

+ 1

4J2
(a+a+ + aa − 2a+a+a+a − 2a+aaa) + O(1/J3)

}
.

(5.2.11)
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The expression for Q0
2 is then determined using Q0

2(θ = π
2 ) = − 1

2O0
2 +

3
2O2

2 . For the case of Q6
6, we refer to Lindg̊ard and Danielsen (1974),

who have established the Bose operator expansion of the tensor operators
up to the eighth rank. Introducing these expansions into (5.2.1), and
grouping the terms together according to their order in 1/J , we may
write the Hamiltonian

H = H0 + H1 + H2 + · · · + H′, (5.2.12)

where H0 = U0 is the zero-order term, and

U0 = N
[−B0

2J
(2) + B6

6J (6) cos 6φ − gµBJH cos (φ − φH) − 1
2J2J (0)

]
,

(5.2.13)
corresponding to (5.2.5), when we restrict ourselves to the case θ = θH =
π/2. H1 comprises the terms of first order in 1/J , and is found to be

H1 =
∑

i

[
Aa+

i ai + B 1
2 (a+

i a+
i + aiai)

] − ∑
ij

JJ (ij)(a+
i aj − a+

i ai),

(5.2.14)
where the parameters A and B are

A = 1

J

{
3B0

2J
(2) − 21B6

6J (6) cos 6φ + gµBJH cos (φ − φH)
}

B = 1

J

{
3B0

2J (2) + 15B6
6J

(6) cos 6φ
}
.

(5.2.15)

If we consider only the zero- and first-order part of the Hamiltonian,
i.e. assume H � H0 + H1, it can be brought into diagonal form via
two transformations. The first step is to introduce the spatial Fourier
transforms of J (ij), eqn (3.4.2), and of ai:

aq =
1√
N

∑
i

ai e−iq·Ri ; a+
q =

1√
N

∑
i

a+
i eiq·Ri , (5.2.16)

for which the commutators are

[aq , a+
q′ ] =

1
N

∑
i

e−i(q−q′)·Ri = δqq′.

In the case of an hcp lattice, with its two ions per unit cell, the situation
is slightly more complex, as discussed in the previous section. However,
this complication is inessential in the present context, and for simplicity
we consider a Bravais lattice in the rest of this section, so that the results
which we obtain are only strictly valid for excitations propagating in
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the c-direction, for which the double-zone representation may be used.
Introducing the Fourier transforms, we may write

H1 =
∑
q

[
Aq a+

q aq + B 1
2 (a+

q a+
−q + aqa−q)

]
, (5.2.17)

with
Aq = A + J{J (0) − J (q)}. (5.2.18)

H1 is quadratic in the Bose operators, and it can be diagonalized by
performing a Bogoliubov transformation. A new Bose operator αq is
introduced, such that

aq = uqαq − vqα+
−q ; |uq|2 − |vq|2 = 1, (5.2.19)

in terms of which H0 + H1 is transformed into

H0 + H1 = U0 + U1 +
∑
q

Eq α+
q αq, (5.2.20)

when uq and vq are adjusted appropriately. Here they can both be
chosen to be real quantities, and are determined by the equation

(uq ± vq)2 = (Aq ± B)/Eq. (5.2.21)

The energy parameters are

U1 = 1

2

∑
q

(Eq − Aq) ; Eq =
√

A2
q − B2. (5.2.22)

When B is different from zero, as occurs if either B0
2 or B6

6 is non-zero,
the product of the |Jiz = J > = |0)i-states is no longer the (MF) ground
state. Q0

2 and Q6
6 give rise to couplings between the single-ion states

|J >, |J −2> etc. as reflected in the term proportional to B in (5.2.17).
The new ground state established by the Bogoliubov transformation
has the energy U0 + U1 (= U0 − ∑

q B2/4Eq to leading order in B),
which is always smaller than U0. The admixture of (predominantly) the
|J − 2>-state into the ground state implies that the system is no longer
fully polarized at T = 0, as assumed in (5.2.5). Using (5.2.19) and the
conditions 〈αqαq〉 = 〈α+

q α+
q 〉 = 0, whereas

〈α+
q αq〉 = nq =

1
eβEq − 1

(5.2.23)
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is the usual Bose population-factor, we find to first order in 1/J :

〈Jz〉 =
〈
J − 1

N

∑
q

a+
q aq

〉
= J(1 − m), (5.2.24)

with
m = 1

N

∑
q

1

J
〈a+

q aq〉 = 1

N

∑
q

mq

and
mq = 1

J
〈(uqα+

q − vqα−q)(uqαq − vqα+
−q)〉

= 1

J

{
u2
qnq + v2

q(nq + 1)
}

= 1

J

{Aq

Eq

(
nq + 1

2

) − 1
2

}
,

(5.2.25)

which is positive and non-zero, even when nq = 0 at T = 0.
The second-order contribution to the Hamiltonian is

H2 =
∑

i

[
B

1

8J
(a+

i a+
i + aiai) + C1a

+
i a+

i aiai

+ C2(a+
i a+

i a+
i ai + a+

i aiaiai) + C3(a+
i a+

i a+
i a+

i + aiaiaiai)
]

− 1
4

∑
ij

J (ij)
(
2a+

i a+
j aiaj − a+

i a+
j ajaj − a+

i a+
i aiaj

)
, (5.2.26)

with
C1 = − 1

J2

(3
2B0

2J (2) − 105B6
6J

(6) cos 6φ
)

C2 = − 1

J2

(3
4B0

2J (2) + 195
4 B6

6J (6) cos 6φ
)

C3 = 1

J2

15
4 B6

6J (6) cos 6φ.

(5.2.27)

Introducing the Fourier transforms of the Bose operators in H2, we find
straightforwardly that

ih̄∂aq/∂t = [aq , H] � [aq , H1 + H2] = Aqaq + B
(
1 + 1

4J

)
a+
−q +

1

N

∑
k,k′

[{−J (q − k′)+ 1
2J (k′)+ 1

4J (k)+ 1
4J (q)+2C1

}
a+
k ak′aq+k−k′

+ C2

{
3a+

k a+
−k′aq+k−k′ + a−kak′aq+k−k′

}
+ 4C3 a+

k a+
−k′a

+
−q−k+k′

]
,

(5.2.28)
for the operator [aq , H], which appears in the equation of motion of,
for instance 〈〈aq ; a+

q 〉〉. When the thermal averages of terms due to H2
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are considered, the replacement of H by H0 + H1 in the density matrix
only gives rise to errors of higher-order in 1/J . Because H0 + H1 is
quadratic in the Bose operators, this replacement results in a decoupling
of the H2-terms (according to Wick’s theorem) which is equivalent to the
RPA decoupling utilized previously. Hence, when considering thermal
averages, we have to leading order in 1/J , for instance,

a+
k ak′aq+k−k′ � a+

k 〈ak′aq+k−k′〉 + ak′〈a+
k aq+k−k′〉 + aq+k−k′〈akak′〉

= δk,−qa+
−q〈ak′a−k′〉 + δk′,qaq〈a+

k ak〉 + δk,k′aq〈a+
k ak〉,

(5.2.29)
where the last line follows from the diagonality of H0 +H1 in reciprocal
space. We note that it is convenient here that the single-ion operators are
expressed as products of Bose operators which are well-ordered. When
this decoupling is introduced in (5.2.28), it reduces to

[aq , H] = Ãq(T ) aq + B̃q(T ) a+
−q, (5.2.30)

where the effective, renormalized parameters are

Ãq(T ) = A+4JC1m + 6JC2b + J{J (0) − J (k)}(1 − m)

+ 1

N

∑
k

J{J (k) − J (k − q)}mk (5.2.31a)

and

B̃q(T ) = B
(
1 + 1

4J

)
+ 2JC1b+6JC2m+12JC3b− 1

2J{J (0) −J (q)}b
+ 1

2N

∑
k

J{J (0) − J (k)}bk + 1

N

∑
k

J{J (k) − J (k − q)}bk.

(5.2.31b)
mk and bk are respectively the correlation functions (1/J)〈a+

k ak〉 and
(1/J)〈a+

k a+
−k〉 = (1/J)〈aka−k〉, and m and b are the corresponding aver-

ages over k. Equation (5.2.30) implies that the operator [aq , H], in the
equations of motion of any Green function involving aq, can be replaced
by the expression on the right-hand side. The same result is obtained if,
instead, H2 is neglected, and Aq and B in H1 are replaced by Ãq(T ) and
B̃q(T ) in (5.2.17). Consequently, the system behaves as if the Hamilto-
nian H0 +H1 +H2 is replaced by H̃0 + H̃1, which is similar to H0 +H1

except for the introduction of the effective, temperature-dependent pa-
rameters. The RPA decoupling (5.2.29) introduces errors in the Green
functions, but only in the third order of 1/J , and as it leads to an effec-
tive Hamiltonian which is quadratic in the Bose operators, it is a valid
procedure. This internal consistency of the theory to second order in
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1/J means that the RPA contributions to the correlation functions are
reliably estimated, and that all second-order contributions are included
when H̃0 +H̃1 is used, instead of H0 +H1, in the calculation of the ther-
mal averages. We shall therefore use the following self-consistent expres-
sions for the characteristic correlation functions, mk and bk, determined
straightforwardly by utilizing the correspondence between H0 +H1 and
H̃0 + H̃1:

mk =
1
J

{ Ãk(T )
Ek(T )

(
nk + 1

2

) − 1
2

}
, (5.2.32a)

corresponding to (5.2.25), and

bk = − 1
J

B̃k(T )
Ek(T )

(
nk + 1

2

)
. (5.2.32b)

In order to express the result in a convenient form, we rewrite one of the
second-order terms in B̃q(T ) as

1

2N

∑
k

J{J (0)−J (k)}bk = −1
2B(m+ 1

2J )− 1
2Ab+O(1/J3), (5.2.33)

since, to leading order, J{J (0) − J (k)} = Ãk(T ) − A, and B̃k(T ) in
bk can be approximated by B. We note that Aq and B are parameters
of the order 1/J , as are m and b (at low temperatures). In addition
to introducing (5.2.33) into (5.2.31b), it is adequate for calculating the
spin-wave energies to define a transformed set of parameters:

Aq(T ) = Ãq(T ) + 1
2 B̃q(T ) b

Bq(T ) = B̃q(T ) + 1
2 Ãq(T ) b

(5.2.34)

and these are then, to the order considered,

Aq(T ) = A + 4JC1m + 6JC2b + 1
2Bb

+J{J (0) − J (q)}(1 − m) + 1

N

∑
k

J{J (k) − J (k − q)}mk

(5.2.35a)
and

Bq(T ) = B + 2JC1b+6JC2m + 12JC3b − 1
2Bm

+ 1

N

∑
k

J{J (k) − J (k − q)}bk.
(5.2.35b)

This transformation leaves the expression for the excitation energies un-
changed, i.e.

Eq(T ) =
{
[Aq(T ) + Bq(T )][Aq(T ) − Bq(T )]

} 1
2 , (5.2.36)
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when higher-order corrections are neglected. Inserting the eqns (5.2.15),
(5.2.18), and (5.2.27) into (5.2.35), we finally obtain, at zero wave-vector,

A0(T ) − B0(T ) = 1

J

{−36B6
6J (6)(1 − 20m + 15b) cos6φ

+ gµBJH cos (φ − φH)
}

(5.2.37a)

and

A0(T ) + B0(T ) = 1

J

{
6B0

2J (2)(1 − 2m − b)

− 6B6
6J (6)(1 − 20m + 5b) cos 6φ + gµBJH cos (φ − φH)

}
, (5.2.37b)

and, at non-zero wave-vector,

Aq(T ) = A0(T )+J{J (0)−J (q)}(1−m)+ 1

N

∑
k

J{J (k)−J (k−q)}mk

(5.2.38a)
and

Bq(T ) = B0(T ) + 1

N

∑
k

J{J (k) − J (k − q)}bk. (5.2.38b)

The spin-wave energies deduced here, to second order in the expansion
in 1/J , depend on temperature and on the crystal-field mixing of the
Jz-eigenstates, and both dependences are introduced via the two corre-
lation functions mk and bk, given self-consistently by (5.2.32) in terms
of the energy parameters. Bq(T ) vanishes if there is no anisotropy, i.e.
if B0

2 and B6
6 are zero. In the case of single-ion anisotropy, Bq(T ) is in-

dependent of q if the small second-order term in (5.2.38b) is neglected,
nor does it depend on the magnetic field, except for the slight field-
dependence which may occur via the correlation functions m and b.

When the spin-wave excitation energies have been calculated, it is a
straightforward matter to obtain the corresponding response functions.
Within the present approximation, the xx-component of the susceptibil-
ity is

χxx(q, ω) = − 1

4N

∑
ij

〈〈(J+ + J−)i e−iq·Ri ; (J+ + J−)j eiq·Rj〉〉

= −J

2

(
1 − 1

2m − 1
4b

)2〈〈aq + a+
−q ; a+

q + a−q〉〉.
(5.2.39)

The Bogoliubov transformation, eqns (5.2.19) and (5.2.21), with the
parameters replaced by renormalized values, then leads to

χxx(q, ω) = −J

2

(
1 − m − 1

2 b
)Ãq(T ) − B̃q(T )

Eq(T )
〈〈αq + α+

−q ; α+
q + α−q〉〉,



5.2 SPIN WAVES IN THE ANISOTROPIC FERROMAGNET 195

which is a simple combination of Bose Green-functions determined by
(5.2.20), with Eq replaced by Eq(T ). Introducing these functions and
the parameters given by (5.2.34), we finally obtain

χxx(q, ω) = J(1 − m)
Aq(T ) − Bq(T )
E2

q(T ) − (h̄ω)2
, (5.2.40a)

neglecting third-order terms. A rotation of the coordinate system by
π/2 around the z-axis changes the sign of Bq(T ), and hence we have

χyy(q, ω) = J(1 − m)
Aq(T ) + Bq(T )
E2

q(T ) − (h̄ω)2
. (5.2.40b)

These results show that the ratio between the neutron-scattering inten-
sities due to the spin-wave at q, neglecting Szz(q, ω), in the two cases
where the scattering vector is perpendicular to the basal y–z plane and
to the x–z plane is

Rq(T ) =
Sxx(q, ω)
Syy(q, ω)

∣∣∣∣
h̄ω=±Eq(T )

=
χxx(q, 0)
χyy(q, 0)

=
Aq(T ) − Bq(T )
Aq(T ) + Bq(T )

.

(5.2.41)
The measured intensities from Tb, which differ substantially from those
calculated for the Heisenberg ferromagnet, agree well with this expres-
sion, especially if the correction for anisotropic two-ion coupling is taken
into account (Jensen et al. 1975).

In the Heisenberg ferromagnet without rotational anisotropy, corre-
sponding to Bq(T ) = 0, the elementary excitations at low temperatures
are circularly polarized spin waves, in which the local moments precess
in circles around the equilibrium direction. In the presence of anisotropy,
Rq(T ) differs from unity, and the excitations become elliptically polar-
ized spin waves. The eccentricity of the ellipse depends on the wave-
vector of the excited spin wave, and by definition Rq(T ) is the square of
the ratio of the lengths of the principal axes which, at least to the order
in 1/J which we have considered, is equal to the ratio between the cor-
responding static susceptibility components. So the static anisotropy is
reflected, in a direct way, in the normal modes of the system. The result
(5.2.41) justifies the transformation (5.2.34) by attributing observable
effects to the parameters Aq(T )±Bq(T ), whereas the parameters which
are defined via the Hamiltonian alone, here Ãq(T )± B̃q(T ), depend on
the particular Bose representation which is employed.

The longitudinal correlation function Szz(q, ω), which is neglected
above, contains a diffusive mode at zero frequency, but no well-defined
normal modes of non-zero frequency. There is inelastic scattering, but
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the inelastic response, as well as the elastic mode, are purely of second
order in 1/J and we shall not consider the longitudinal fluctuations
further here.

The method developed in this section may be utilized, essentially
unchanged, to calculate the MF susceptibility χ

o(ω) of the single sites.
The result to first order in 1/J is:

χ o
xx(ω) = 〈Jz〉A − B + hex

E2
ex − (h̄ω)2

χ o
yy(ω) = 〈Jz〉A + B + hex

E2
ex − (h̄ω)2

χ o
xy(ω) = −χ o

yx(ω) = 〈Jz〉 ih̄ω

E2
ex − (h̄ω)2

,

(5.2.42a)

where 〈Jz〉 is the MF expectation value of Jz, hex is the exchange field,
and Eex is the energy of the first excited MF state:

hex = 〈Jz〉J (0) ; E2
ex = (A + hex)

2 − B2. (5.2.42b)

Introducing this expression for χ
o(ω) into the RPA equation (3.5.8), we

may derive χ(q, ω) by the same method as was used for the Heisenberg
ferromagnet in Section 3.5.2, in which case A = B = 0. The results for
the xx- and yy-components are then found to agree with eqn (5.2.40)
to leading order in 1/J . To the next order in 1/J , the parameters are
replaced by renormalized values, but this procedure is not here easily
generalized so as to become fully self-consistent. However, most of the
corrections may be included by substituting A0(T ) ± B0(T ) for A ± B
in the expression for χ

o(ω), and the self-consistent value of 〈Jz〉 for its
MF value. The only terms which are not included in χ(q, ω) by this
procedure, as we may see by a comparison with eqn (5.2.40), are the
q-dependent contributions to Aq(T )±Bq(T ) determined by the k-sums
in (5.2.38). At low temperatures, these contributions are small and
may safely be neglected in systems with long-range interactions. This
formulation therefore represents a valid alternative, which is useful for
generalizing the linear spin-wave theory to the hcp structure, discussed
in Section 5.1, or to the helically or conically ordered systems which we
will consider in Chapter 6.

As an example of the magnon dispersion relations for the anisotropic
basal-plane ferromagnet, we show in Fig. 5.2 experimental measurements
on Tb at 4K (Mackintosh and Bjerrum Møller 1972). The principal
differences between these results and the corresponding excitations for
Gd in Fig. 5.1 are the pronounced interactions which are observed be-
tween the magnons and phonons, which we shall discuss in some detail in
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Fig. 5.2. The spin-wave dispersion relations along the symmetry lines
in the Brillouin zone for Tb. In contrast to Gd, the anisotropy gives rise to
an energy gap at the origin, and there are large effects due to interactions
with the phonons. The third branch along, for example, ΓM may also be
due to phonon interactions, or it may be a manifestation of the breaking
of the hexagonal symmetry by the ordered moment in a particular do-
main, in the multi-domain sample.The lifting of the double degeneracy
along the line KH provides evidence for anisotropic two-ion coupling.
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Section 5.4.2, and the appearance of an energy gap at long wavelengths.
This gap has its origin in the magnetic anisotropy. Even though
the exchange energy required to excite a magnon vanishes in the long-
wavelength limit, work is still required to turn the moments away from
the easy direction against the anisotropy forces. If we neglect the small
terms due to the sums over k in (5.2.38), the dispersion relation along
the c-axis in zero field becomes, from eqns (5.2.36–38),

Eq(T ) =
{
[A0(T ) + B0(T ) + 〈Jz〉{J (0) − J (q)}]
× [A0(T ) − B0(T ) + 〈Jz〉{J (0) − J (q)}]} 1

2 .
(5.2.43)

For an arbitrary direction in the zone, this relation is generalized anal-
ogously to eqn (5.1.9), giving rise again to acoustic and optical modes.
From the dispersion relations, the magnon density of states and J (q)
may readily be determined and hence, by a Fourier transform, the nom-
inal Heisenberg exchange interaction J (ij) between moments on differ-
ent atomic sites (Houmann 1968). The energy gap at zero wave-vector
is given by

E0(T ) =
{
[A0(T ) + B0(T )][A0(T ) − B0(T )]

} 1
2 , (5.2.44)

and as we shall see in the next section, it is proportional to the geo-
metrical mean of the axial- and hexagonal-anisotropy energies. We shall
return to the dependence of this energy gap on the temperature and the
magnetoelastic effects in the following two sections.


