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5.1 The ferromagnetic hcp-crystal
In Chapter 3, we considered the linear response of a system of magnetic
moments placed on a Bravais lattice and coupled by the Heisenberg
interaction. We shall now generalize this treatment to the hexagonal
close-packed crystal structure of the heavy rare earth metals, in which
there is a basis of two ions per unit cell, constituting two identical sub-
lattices which, for convenience, we number 1 and 2. The surroundings of
the atoms belonging to each of the two sublattices are identical, except
for an inversion. Introducing the following Fourier transforms:

Jss′ (q) =
∑

j∈s′−subl.

J (ij) e−iq·(Ri−Rj) ; i ∈ s-sublattice,

(5.1.1a)
we have, for an hcp crystal,

J1(q) ≡ J11(q) = J22(q)
J2(q) ≡ J12(q) = J21(−q) = J ∗

21(q),
(5.1.1b)

where J1(q) is real. Defining the four Fourier transforms χss′(q, ω) of
the susceptibility tensor equivalently to (5.1.1a), we obtain from the
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RPA equation (3.5.7):

χ11(q, ω) = χ
o(ω)

{
1 + J11(q)χ11(q, ω) + J12(q)χ21(q, ω)

}

χ21(q, ω) = χ
o(ω)

{J21(q)χ11(q, ω) + J22(q)χ21(q, ω)
}

,
(5.1.2)

assuming that the MF susceptibility χ
o(ω) is the same for all the sites,

as in a paramagnet or a ferromagnet. These matrix equations may be
solved straightforwardly, and using (5.1.1b) we find

χ11(q, ω) = D(q, ω)−1{1 − χ
o(ω)J1(q)}χ

o(ω)

χ21(q, ω) = D(q, ω)−1
{
χ

o(ω)
}2 J2(−q),

(5.1.3a)

where

D(q, ω) =
{
1 − χ

o(ω)J1(q)
}2 − {

χ
o(ω) |J2(q)|}2

=
(
1 − χ

o(ω) {J1(q) + |J2(q)|}) (
1 − χ

o(ω) {J1(q) − |J2(q)|}) ,
(5.1.3b)

and, by symmetry,

χ22(q, ω) = χ11(q, ω) and χ12(q, ω) = χ21(−q, ω). (5.1.3c)

If χ
o(ω) contains only one pole, as in the case of the Heisenberg ferro-

magnet, then D(q, ω)−1 in (5.1.3a) generates two poles, corresponding
to the existence of both an acoustic and an optical mode at each q-vector.
J2(0) must be real and, since it is also positive in a ferromagnet, the
acoustic mode arises from the zero of the first factor in (5.1.3b), its
energy therefore being determined by the effective coupling parameter
J1(q) + |J2(q)|. On the other hand, if J2(0) is negative, as it is in
paramagnetic Pr, it is the second factor which gives the acoustic mode.
The nomenclature results from the circumstance that the deviations of
the moments from their equilibrium values are in phase in the acoustic
mode in the limit of q → 0, and it therefore dominates the neutron
cross-section. The inelastic neutron scattering is determined by (4.2.2)
and (4.2.3), i.e. by

χ(κ, ω) = 1

N

∑
ij

χ(ij, ω) e−iκ·(Ri−Rj) = 1

2

∑
ss′

χss′ (κ, ω)

= D(κ, ω)−1
{
1 − χ

o(ω)
(J1(κ) − 1

2 [J2(κ) + J2(−κ)]
)}

χ
o(ω),
(5.1.4)

where N = 2N0 is the number of atoms. Introducing κ = q + τ , with
q lying in the primitive zone, we may write this result as a sum of the
acoustic and optical response functions:

χAc(q, ω) =
{
1 − χ

o(ω)(J1(q) + ν|J2(q)|)}−1
χ

o(ω)

χOp(q, ω) =
{
1 − χ

o(ω)(J1(q) − ν|J2(q)|)}−1
χ

o(ω),
(5.1.5)
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where ν = ±1 denotes the sign of J2(0). J1(κ) = J1(q) is real, whereas

J2(κ) = J2(q) eiτ ·ρ = ν|J2(q)|eiϕ, (5.1.6a)

defining the phase ϕ = ϕ(κ), and ρ = d2 − d1 is the vector joining the
two sublattices. In terms of these quantities, the susceptibility (5.1.4)
may be written

χ(q + τ , ω) = 1
2 (1 + cosϕ)χAc(q, ω) + 1

2 (1− cosϕ)χOp(q, ω). (5.1.6b)

The phase ϕ vanishes in the limit q → 0 if τ = 0, and the scattering
cross-section then only depends on the isolated pole in the acoustic re-
sponse function, in accordance with our definition above. Introducing
the following lattice vectors of the hexagonal lattice:

a1 = (a, 0, 0) a2 =
(
−a

2
,

√
3a

2
, 0

)
a3 = (0, 0, c), (5.1.7a)

we find the corresponding reciprocal lattice vectors:

b1 =
(2π

a
,

2π√
3a

,0
)

b2 =
(
0,

4π√
3a

, 0
)

b3 =
(
0, 0,

2π

c

)
. (5.1.7b)

Since ρ =
(a

2
,

a

2
√

3
,
c

2

)
,

τ ·ρ = 4π

3
h+ 2π

3
k+πl with τ = (hkl) = hb1 +kb2 + lb3. (5.1.8)

If q is parallel to the c-axis, J2(q) is real. The phase ϕ in (5.1.6) is then
τ ·ρ and, if the Miller indices h and k are both zero, ϕ = τ ·ρ = lπ. In this
case, with κ in the c-direction, the inelastic scattering detects only the
acoustic or the optical excitations, depending on whether l is respectively
even or odd, and no energy gap appears at the zone boundary, even
though l changes, because J2(b3/2) = 0 by symmetry. We may therefore
use a double-zone representation, in which the dispersion relation for the
excitations is considered as comprising a single branch extending twice
the distance to the Brillouin zone boundary, corresponding to an effective
unit cell of height c/2. We shall generally use this representation when
discussing excitations propagating in the c-direction.
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Fig. 5.1. Spin-wave dispersion relations for Gd, after Koehler et
al. (1970). The two atoms of the hcp structure give rise to acoustic
and optical branches. Since the single-ion anisotropy is negligible, the

acoustic mode rises quadratically from the origin.

Because L = 0, so that J = S, anisotropy effects are small in Gd,
and it is therefore a good approximation to a Heisenberg ferromagnet.
Using the above procedure to generalize (3.5.26) to the hcp structure,
we obtain the two branches of the excitation spectrum

EAc
q = 〈Jz〉

{J1(0) + J2(0) − J1(q) − |J2(q)|}

EOp
q = 〈Jz〉

{J1(0) + J2(0) − J1(q) + |J2(q)|},
(5.1.9)

since J2(0) is positive. The dispersion relations measured by inelastic
neutron scattering by Koehler et al. (1970) are shown in Fig. 5.1. This
figure illustrates the use of the double-zone representation when q is
along the c-axis, resulting in a single spin-wave branch. The renormal-
ization predicted by the simple RPA theory, that Eq(T ) is proportional
to σ, is not followed very precisely. σ changes from about 0.97 at 78K
to 0.66 at 232K. As may be seen from Fig. 5.1, and from more exten-
sive studies by Cable et al. (1985), the energies in the c-direction vary
approximately like σ0.5 at the largest wave-vectors, like σ in the mid-
dle of the branch, and faster than σ at small wave-vectors. However, it
is also evident from the figure that the form of J (q) changes with de-
creasing magnetization, so some of the discrepancy between the simple
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prediction and the observed behaviour at low temperatures may be due
to changes of J (q). At higher temperatures, the RPA renormalization
breaks down completely. The spin-wave energy at the zone boundary
has only fallen by about a factor two at 292K, very close to TC . Fur-
thermore, strongly-broadened neutron peaks are observed even at 320K,
well above the transition, close to the zone boundary in the basal plane,
with energies of about kBTC . On the other hand, the low-energy spin
waves progressively broaden out into diffusive peaks as TC is approached
from below.


