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SPIN WAVES IN THE FERROMAGNETIC
HEAVY RARE EARTHS

As discussed in Section 1.5, the exchange interaction dominates the mag-
netic behaviour of the heavy rare earth metals, and the ordered moments
at low temperatures are consequently close to the saturation values. The
excitations of such a system are spin waves, which may be viewed semi-
classically as coupled precessions of the moments about their equilib-
rium directions, with well-defined frequencies which are determined by
the phase relations between the precessing moments on different sites.
From the viewpoint of quantum mechanics, these modes are magnons,
which are linear combinations of single-ion excitations from the ground
state to the first excited molecular-field state, which is to a good approx-
imation |Jz = J − 1>, with phase factors between the coefficients for
different ions which determine the dispersion relation Eq for the magnon
energy. A useful review of the excitations of magnetic systems has been
given by Stirling and McEwen (1987).

These spin waves have been very extensively studied in the heavy
rare earths, both experimentally and theoretically. In this chapter, we
consider the simplest case of the ferromagnet, in which all the sites
are equivalent. Since the magnetic heavy rare earths are all hcp, we
begin by extending the earlier treatment of the linear response of the
isotropic Heisenberg ferromagnet to this structure. These results are
immediately applicable to Gd, where the anisotropy is indeed negligible,
with the consequence that the excitation spectrum is the simplest to
be found among the magnetic rare earths. Crystal-field and magneto-
elastic anisotropies modify the excitation spectrum significantly, induc-
ing an elliptical polarization of the precessing moments, and a spin-wave
energy gap at long wavelengths. To treat such systems, we employ linear
spin-wave theory, determining the magnon energies via the Holstein–
Primakoff transformation. We consider in particular the basal-plane
ferromagnet, comparing the calculated excitation spectrum throughout
with experimental measurements on Tb, which has been very compre-
hensively studied. The magnon energies and their temperature depen-
dence are discussed, and the energy gap associated with the uniform
spin-wave mode is treated in some detail and related to the macro-
scopic magnetic anisotropy. The contribution to this energy gap of the
magnetoelastic coupling, via the static deformation of the crystal, is then
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calculated and its dynamic manifestation in the magnon–phonon inter-
action is discussed. Anisotropic two-ion coupling between the moments
alters the form of the dispersion relations, both quantitatively and, on
occasions, qualitatively. The classical dipole–dipole interaction, though
weak, is highly anisotropic and long-ranged, and may therefore have
an important influence at long wavelengths. Since its form is known
exactly, we can calculate its effects in detail, but we can say much less
about the two-ion anisotropy in general. Its possible origins and symme-
try are however discussed, and examples of observable effects to which it
gives rise are presented. The mutual solubility of the rare earths allows
the formation of an enormous variety of binary alloys, with magnetic
properties which may be adjusted with the concentration. We show how
the excitation spectrum of such systems can be calculated by the virtual
crystal approximation and the coherent potential approximation, and il-
lustrate the phenomena which may be observed by experiments on Tb
alloys. Finally, we consider the interaction between the conduction elec-
trons and the localized 4f moments, and its influence on both the spin
waves and the conduction electrons themselves. The indirect-exchange
interaction is derived more rigorously than in Section 1.4, and the life-
time of the magnons due to electron scattering is deduced. The mass
enhancement of the conduction electrons is determined, and the effects
of magnetic ordering on the band structure, and of magnetic scattering
on the conductivity, are discussed.

5.1 The ferromagnetic hcp-crystal

In Chapter 3, we considered the linear response of a system of magnetic
moments placed on a Bravais lattice and coupled by the Heisenberg
interaction. We shall now generalize this treatment to the hexagonal
close-packed crystal structure of the heavy rare earth metals, in which
there is a basis of two ions per unit cell, constituting two identical sub-
lattices which, for convenience, we number 1 and 2. The surroundings of
the atoms belonging to each of the two sublattices are identical, except
for an inversion. Introducing the following Fourier transforms:

Jss′ (q) =
∑

j∈s′−subl.

J (ij) e−iq·(Ri−Rj) ; i ∈ s-sublattice,

(5.1.1a)
we have, for an hcp crystal,

J1(q) ≡ J11(q) = J22(q)
J2(q) ≡ J12(q) = J21(−q) = J ∗

21(q),
(5.1.1b)

where J1(q) is real. Defining the four Fourier transforms χss′(q, ω) of
the susceptibility tensor equivalently to (5.1.1a), we obtain from the
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RPA equation (3.5.7):

χ11(q, ω) = χ
o(ω)

{
1 + J11(q)χ11(q, ω) + J12(q)χ21(q, ω)

}
χ21(q, ω) = χ

o(ω)
{
J21(q)χ11(q, ω) + J22(q)χ21(q, ω)

}
,

(5.1.2)

assuming that the MF susceptibility χ o(ω) is the same for all the sites,
as in a paramagnet or a ferromagnet. These matrix equations may be
solved straightforwardly, and using (5.1.1b) we find

χ11(q, ω) = D(q, ω)−1{1 − χ
o(ω)J1(q)}χ o(ω)

χ21(q, ω) = D(q, ω)−1
{
χ

o(ω)
}2 J2(−q),

(5.1.3a)

where

D(q, ω) =
{
1 − χ

o(ω)J1(q)
}2 −

{
χ

o(ω) |J2(q)|
}2

=
(
1 − χ

o(ω) {J1(q) + |J2(q)|}
) (

1 − χ
o(ω) {J1(q) − |J2(q)|}

)
,

(5.1.3b)
and, by symmetry,

χ22(q, ω) = χ11(q, ω) and χ12(q, ω) = χ21(−q, ω). (5.1.3c)

If χ o(ω) contains only one pole, as in the case of the Heisenberg ferro-
magnet, then D(q, ω)−1 in (5.1.3a) generates two poles, corresponding
to the existence of both an acoustic and an optical mode at each q-vector.
J2(0) must be real and, since it is also positive in a ferromagnet, the
acoustic mode arises from the zero of the first factor in (5.1.3b), its
energy therefore being determined by the effective coupling parameter
J1(q) + |J2(q)|. On the other hand, if J2(0) is negative, as it is in
paramagnetic Pr, it is the second factor which gives the acoustic mode.
The nomenclature results from the circumstance that the deviations of
the moments from their equilibrium values are in phase in the acoustic
mode in the limit of q → 0, and it therefore dominates the neutron
cross-section. The inelastic neutron scattering is determined by (4.2.2)
and (4.2.3), i.e. by

χ(κ, ω) = 1

N

∑
ij

χ(ij, ω) e−iκ·(Ri−Rj) = 1

2

∑
ss′

χss′ (κ, ω)

= D(κ, ω)−1
{
1 − χ

o(ω)
(
J1(κ) − 1

2 [J2(κ) + J2(−κ)]
)}
χ

o(ω),
(5.1.4)

where N = 2N0 is the number of atoms. Introducing κ = q + τ , with
q lying in the primitive zone, we may write this result as a sum of the
acoustic and optical response functions:

χAc(q, ω) =
{
1 − χ

o(ω)(J1(q) + ν|J2(q)|)
}−1

χ
o(ω)

χOp(q, ω) =
{
1 − χ

o(ω)(J1(q) − ν|J2(q)|)
}−1

χ
o(ω),

(5.1.5)
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where ν = ±1 denotes the sign of J2(0). J1(κ) = J1(q) is real, whereas

J2(κ) = J2(q) eiτ ·ρ = ν|J2(q)|eiϕ, (5.1.6a)

defining the phase ϕ = ϕ(κ), and ρ = d2 − d1 is the vector joining the
two sublattices. In terms of these quantities, the susceptibility (5.1.4)
may be written

χ(q + τ , ω) = 1
2 (1 + cosϕ)χAc(q, ω) + 1

2 (1− cosϕ)χOp(q, ω). (5.1.6b)

The phase ϕ vanishes in the limit q → 0 if τ = 0, and the scattering
cross-section then only depends on the isolated pole in the acoustic re-
sponse function, in accordance with our definition above. Introducing
the following lattice vectors of the hexagonal lattice:

a1 = (a, 0, 0) a2 =
(
−a

2
,

√
3a

2
, 0
)

a3 = (0, 0, c), (5.1.7a)

we find the corresponding reciprocal lattice vectors:

b1 =
(2π

a
,

2π√
3a

,0
)

b2 =
(
0,

4π√
3a

, 0
)

b3 =
(
0, 0, 2π

c

)
. (5.1.7b)

Since ρ =
(a
2

,
a

2
√

3
,
c

2

)
,

τ ·ρ = 4π

3
h+ 2π

3
k+πl with τ = (hkl) = hb1 +kb2 + lb3. (5.1.8)

If q is parallel to the c-axis, J2(q) is real. The phase ϕ in (5.1.6) is then
τ ·ρ and, if the Miller indices h and k are both zero, ϕ = τ ·ρ = lπ. In this
case, with κ in the c-direction, the inelastic scattering detects only the
acoustic or the optical excitations, depending on whether l is respectively
even or odd, and no energy gap appears at the zone boundary, even
though l changes, because J2(b3/2) = 0 by symmetry. We may therefore
use a double-zone representation, in which the dispersion relation for the
excitations is considered as comprising a single branch extending twice
the distance to the Brillouin zone boundary, corresponding to an effective
unit cell of height c/2. We shall generally use this representation when
discussing excitations propagating in the c-direction.
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Fig. 5.1. Spin-wave dispersion relations for Gd, after Koehler et
al. (1970). The two atoms of the hcp structure give rise to acoustic
and optical branches. Since the single-ion anisotropy is negligible, the

acoustic mode rises quadratically from the origin.

Because L = 0, so that J = S, anisotropy effects are small in Gd,
and it is therefore a good approximation to a Heisenberg ferromagnet.
Using the above procedure to generalize (3.5.26) to the hcp structure,
we obtain the two branches of the excitation spectrum

EAc
q = 〈Jz〉

{
J1(0) + J2(0) − J1(q) − |J2(q)|

}
EOp

q = 〈Jz〉
{
J1(0) + J2(0) − J1(q) + |J2(q)|

}
,

(5.1.9)

since J2(0) is positive. The dispersion relations measured by inelastic
neutron scattering by Koehler et al. (1970) are shown in Fig. 5.1. This
figure illustrates the use of the double-zone representation when q is
along the c-axis, resulting in a single spin-wave branch. The renormal-
ization predicted by the simple RPA theory, that Eq(T ) is proportional
to σ, is not followed very precisely. σ changes from about 0.97 at 78K
to 0.66 at 232K. As may be seen from Fig. 5.1, and from more exten-
sive studies by Cable et al. (1985), the energies in the c-direction vary
approximately like σ0.5 at the largest wave-vectors, like σ in the mid-
dle of the branch, and faster than σ at small wave-vectors. However, it
is also evident from the figure that the form of J (q) changes with de-
creasing magnetization, so some of the discrepancy between the simple
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prediction and the observed behaviour at low temperatures may be due
to changes of J (q). At higher temperatures, the RPA renormalization
breaks down completely. The spin-wave energy at the zone boundary
has only fallen by about a factor two at 292K, very close to TC . Fur-
thermore, strongly-broadened neutron peaks are observed even at 320K,
well above the transition, close to the zone boundary in the basal plane,
with energies of about kBTC . On the other hand, the low-energy spin
waves progressively broaden out into diffusive peaks as TC is approached
from below.

5.2 Spin waves in the anisotropic ferromagnet

In the heavy rare earth metals, the two-ion interactions are large and
of long range. They induce magnetically-ordered states at relatively
high temperatures, and the ionic moments approach closely their sat-
uration values at low temperatures. These circumstances allow us to
adopt a somewhat different method, linear spin-wave theory, from those
discussed previously in connection with the derivation of the correlation
functions. We shall consider the specific case of a hexagonal close-packed
crystal ordered ferromagnetically, with the moments lying in the basal
plane, corresponding to the low-temperature phases of both Tb and Dy.
For simplicity, we shall initially treat only the anisotropic effects intro-
duced by the single-ion crystal-field Hamiltonian so that, in the case of
hexagonal symmetry, we have

H =
∑

i

[ ∑
l=2,4,6

B0
l Q

0
l (Ji) +B6

6Q
6
6(Ji)− gµBJi ·H

]
− 1

2

∑
i�=j

J (ij)Ji ·Jj .

(5.2.1)
The system is assumed to order ferromagnetically at low temperatures,
a sufficient condition for which is that the maximum of J (q) occurs at
q = 0. Qm

l (Ji) denotes the Stevens operator of the ith ion, but defined
in terms of (Jξ, Jη, Jζ) instead of (Jx, Jy, Jz), where the (ξ, η, ζ)-axes
are fixed to be along the symmetry a-, b- and c-directions, respectively,
of the hexagonal lattice. The (x, y, z)-coordinate system is chosen such
that the z-axis is along the magnetization axis, specified by the polar
angles (θ, φ) in the (ξ, η, ζ)-coordinate system. Choosing the y-axis to
lie in the basal plane, we obtain the following relations:

Jξ = Jz sin θ cosφ− Jx cos θ cosφ+ Jy sinφ
Jη = Jz sin θ sinφ− Jx cos θ sinφ− Jy cosφ
Jζ = Jz cos θ + Jx sin θ,

(5.2.2)

from which

Q0
2 = 3{J2

z cos2 θ+J2
x sin2 θ+(JzJx+JxJz) cos θ sin θ}−J(J+1). (5.2.3)
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Initially we assume that 〈Jz〉 = J at T = 0, which implies that the
ground state is the product of |Jz = J >-states of the single ions. In
this case, we find, consistently with eqn (2.2.14),

〈Q0
2〉 = <J |Q0

2 |J > = J (2)(3 cos2 θ − 1),

where, as before, J (n) = J(J − 1
2 ) · · · (J − n−1

2 ), and we have used the
expectation values 〈J 2

z 〉 = J2, 〈J 2
x 〉 = 1

2J and 〈JzJx〉 = 0. Analogously,
though with considerably more labour, we can show that, for instance,

〈Q6
6〉 = <J | 12 (Jξ + iJη)6 + 1

2 (Jξ− iJη)6|J > = J (6) sin6 θ cos 6φ. (5.2.4)

For simplicity, we neglect for the moment B0
4 and B0

6 , and specifying
the direction of the magnetic field by the polar angles (θH , φH), we find
that the ground-state energy is, within this approximation,

U(T = 0) � N
[
B0

2J
(2)(3 cos2 θ − 1) +B6

6J
(6) sin6 θ cos 6φ

− gµBJH{cos θ cos θH + sin θ sin θH cos (φ− φH)} − 1
2J (0)J2

]
,

(5.2.5)
where θ and φ are determined so that they minimize this expression. In
zero magnetic field, H = 0, (5.2.5) only gives two possibilities for θ, viz.
θ = 0 for B0

2J
(2) < − 1

3 |B6
6 |J (6) or θ = π

2 for B0
2J

(2) > − 1
3 |B6

6 |J (6). We
shall here be concerned with the second case of θ = π

2 , i.e. the basal-
plane ferromagnet. In this case, the angle φ is determined by the sign
of B6

6 . The magnetic moments will be along an a- or a b-axis (φ = 0
or φ = π

2 ) if B6
6 is respectively negative or positive. Having specified

the (approximate) ground state, we turn to the excitations, i.e. the spin
waves.

Instead of utilizing the standard-basis operators, defined by (3.5.11),
we shall introduce a Bose operator ai for the ith ion, satisfying

[ai , a
+
j ] = δij ; [ai , aj ] = [a+

i , a
+
j ] = 0, (5.2.6)

which acts on the |Jz >-state vector of this ion (the site index is sup-
pressed) in the following way:

a |J > = 0 ; a |J −m> =
√
m |J −m+ 1> (5.2.7)

Holstein and Primakoff (1940) introduced the following representation
of the angular momentum operators:

Jz = J − a+a

J+ =
(
2J − a+a

) 1
2 a

J− = a+
(
2J − a+a

) 1
2 .

(5.2.8)
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If the usual basis vectors in the Hilbert space created by the Bose oper-
ators are denoted by |n), i.e. a|n) =

√
n|n− 1) where n = 0, 1, 2, · · · ,∞,

then by the definition (5.2.7), |n) = |Jz = J−n> for n = 0, 1, 2, · · · , 2J ,
but there is no physical |Jz>-state corresponding to |n) when n > 2J .
It is straightforward to see that the Bose representation (5.2.8) produces
the right matrix-elements of the angular momentum operators, as long
as |n) is restricted to the physical part of the Hilbert space, n ≤ 2J ,
but this representation presupposes the presence of an infinite number
of states. In the ferromagnetic case, the unphysical states are at high
energies, if J is large and T is low, and their influence on the thermal
averages is negligible. In this regime of J and T , the Holstein–Primakoff
transformation is useful and the results derived from it are trustworthy.

In order to be able to treat the Bose operators under the square
roots in eqn (5.2.8), we shall utilize 1/J as an expansion parameter.
This means that, instead of the J± given by (5.2.8), we shall use

J+ = (J−)† �
√

2J
(
a− 1

4J
a+aa

)
. (5.2.9)

It is important here to realize that the expansion parameter is 1/J and
not, for instance, ‘the number of deviation operators’. If the latter
were the case, a well-ordered expansion of J+ (Lindg̊ard and Danielsen
1974) would suggest instead J+ =

√
2J{a−(1−

√
1 − 1/2J)a+aa+ · · ·},

corresponding to a replacement of 1
4J in (5.2.9) by 1

4J (1+ 1
8J + · · ·). We

emphasize that we shall be expanding the reduced operators (1/J (l))Om
l ,

leaving no ambiguities either in (5.2.9) or in the following. Using eqn
(5.2.9) and Jz = J − a+a, it is straightforward to express the Stevens
operators in terms of the Bose operators. For O0

2 , we get

O0
2 = 3J2

z − J(J + 1) = 3(J − a+a)2 − J(J + 1)

= 2J(J − 1
2 ) − 6(J − 1

2 ) a+a+ 3a+a+aa

= 2J (2)
{
1 − 3

J
a+a+ 3

2J2
a+a+aa+ O(1/J3)

}
.

(5.2.10)

Here we have used [a , a+] = 1 to arrange the operators in ‘well-ordered’
products, with all the creation operators to the left, and in the last line
1/J (2) has been replaced by 1/J2 in the term of second order in 1/J . In
the same way, we obtain

O2
2 = 1

2 (J2
+ + J2

−) = J (2)
{ 1

J
(a+a+ + aa)

+ 1

4J2
(a+a+ + aa− 2a+a+a+a− 2a+aaa) + O(1/J3)

}
.

(5.2.11)
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The expression for Q0
2 is then determined using Q0

2(θ = π
2 ) = − 1

2O
0
2 +

3
2O

2
2 . For the case of Q6

6, we refer to Lindg̊ard and Danielsen (1974),
who have established the Bose operator expansion of the tensor operators
up to the eighth rank. Introducing these expansions into (5.2.1), and
grouping the terms together according to their order in 1/J , we may
write the Hamiltonian

H = H0 + H1 + H2 + · · · + H′, (5.2.12)

where H0 = U0 is the zero-order term, and

U0 = N
[
−B0

2J
(2) +B6

6J
(6) cos 6φ− gµBJH cos (φ− φH) − 1

2J
2J (0)

]
,

(5.2.13)
corresponding to (5.2.5), when we restrict ourselves to the case θ = θH =
π/2. H1 comprises the terms of first order in 1/J , and is found to be

H1 =
∑

i

[
Aa+

i ai +B 1
2 (a+

i a
+
i + aiai)

]
−
∑
ij

JJ (ij)(a+
i aj − a+

i ai),

(5.2.14)
where the parameters A and B are

A = 1

J

{
3B0

2J
(2) − 21B6

6J
(6) cos 6φ+ gµBJH cos (φ − φH)

}
B = 1

J

{
3B0

2J
(2) + 15B6

6J
(6) cos 6φ

}
.

(5.2.15)

If we consider only the zero- and first-order part of the Hamiltonian,
i.e. assume H � H0 + H1, it can be brought into diagonal form via
two transformations. The first step is to introduce the spatial Fourier
transforms of J (ij), eqn (3.4.2), and of ai:

aq =
1√
N

∑
i

ai e
−iq·Ri ; a+

q =
1√
N

∑
i

a+
i e

iq·Ri , (5.2.16)

for which the commutators are

[aq , a
+
q′ ] =

1
N

∑
i

e−i(q−q′)·Ri = δqq′.

In the case of an hcp lattice, with its two ions per unit cell, the situation
is slightly more complex, as discussed in the previous section. However,
this complication is inessential in the present context, and for simplicity
we consider a Bravais lattice in the rest of this section, so that the results
which we obtain are only strictly valid for excitations propagating in
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the c-direction, for which the double-zone representation may be used.
Introducing the Fourier transforms, we may write

H1 =
∑
q

[
Aq a

+
q aq +B 1

2 (a+
q a

+
−q + aqa−q)

]
, (5.2.17)

with
Aq = A+ J{J (0) − J (q)}. (5.2.18)

H1 is quadratic in the Bose operators, and it can be diagonalized by
performing a Bogoliubov transformation. A new Bose operator αq is
introduced, such that

aq = uqαq − vqα
+
−q ; |uq|2 − |vq|2 = 1, (5.2.19)

in terms of which H0 + H1 is transformed into

H0 + H1 = U0 + U1 +
∑
q

Eq α
+
q αq, (5.2.20)

when uq and vq are adjusted appropriately. Here they can both be
chosen to be real quantities, and are determined by the equation

(uq ± vq)2 = (Aq ±B)/Eq. (5.2.21)

The energy parameters are

U1 = 1

2

∑
q

(Eq −Aq) ; Eq =
√
A2

q −B2. (5.2.22)

When B is different from zero, as occurs if either B0
2 or B6

6 is non-zero,
the product of the |Jiz = J >= |0)i-states is no longer the (MF) ground
state. Q0

2 and Q6
6 give rise to couplings between the single-ion states

|J >, |J −2> etc. as reflected in the term proportional to B in (5.2.17).
The new ground state established by the Bogoliubov transformation
has the energy U0 + U1 (= U0 −

∑
qB

2/4Eq to leading order in B),
which is always smaller than U0. The admixture of (predominantly) the
|J − 2>-state into the ground state implies that the system is no longer
fully polarized at T = 0, as assumed in (5.2.5). Using (5.2.19) and the
conditions 〈αqαq〉 = 〈α+

q α
+
q 〉 = 0, whereas

〈α+
q αq〉 = nq =

1
eβEq − 1

(5.2.23)
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is the usual Bose population-factor, we find to first order in 1/J :

〈Jz〉 =
〈
J − 1

N

∑
q

a+
q aq
〉

= J(1 −m), (5.2.24)

with
m = 1

N

∑
q

1

J
〈a+

q aq〉 = 1

N

∑
q

mq

and
mq = 1

J
〈(uqα

+
q − vqα−q)(uqαq − vqα

+
−q)〉

= 1

J

{
u2
qnq + v2

q(nq + 1)
}

= 1

J

{Aq

Eq

(
nq + 1

2

)
− 1

2

}
,

(5.2.25)

which is positive and non-zero, even when nq = 0 at T = 0.
The second-order contribution to the Hamiltonian is

H2 =
∑

i

[
B

1

8J
(a+

i a
+
i + aiai) + C1a

+
i a

+
i aiai

+ C2(a+
i a

+
i a

+
i ai + a+

i aiaiai) + C3(a+
i a

+
i a

+
i a

+
i + aiaiaiai)

]
− 1

4

∑
ij

J (ij)
(
2a+

i a
+
j aiaj − a+

i a
+
j ajaj − a+

i a
+
i aiaj

)
, (5.2.26)

with
C1 = − 1

J2

(3
2B

0
2J

(2) − 105B6
6J

(6) cos 6φ
)

C2 = − 1

J2

(3
4B

0
2J

(2) + 195
4 B6

6J
(6) cos 6φ

)
C3 = 1

J2

15
4 B

6
6J

(6) cos 6φ.

(5.2.27)

Introducing the Fourier transforms of the Bose operators in H2, we find
straightforwardly that

ih̄∂aq/∂t = [aq , H] � [aq , H1 + H2] = Aqaq +B
(
1 + 1

4J

)
a+
−q +

1

N

∑
k,k′

[{
−J (q − k′)+ 1

2J (k′)+ 1
4J (k)+ 1

4J (q)+2C1

}
a+
k ak′aq+k−k′

+ C2

{
3a+

k a
+
−k′aq+k−k′ + a−kak′aq+k−k′

}
+ 4C3 a

+
k a

+
−k′a

+
−q−k+k′

]
,

(5.2.28)
for the operator [aq , H], which appears in the equation of motion of,
for instance 〈〈aq ; a+

q 〉〉. When the thermal averages of terms due to H2
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are considered, the replacement of H by H0 + H1 in the density matrix
only gives rise to errors of higher-order in 1/J . Because H0 + H1 is
quadratic in the Bose operators, this replacement results in a decoupling
of the H2-terms (according to Wick’s theorem) which is equivalent to the
RPA decoupling utilized previously. Hence, when considering thermal
averages, we have to leading order in 1/J , for instance,

a+
k ak′aq+k−k′ � a+

k 〈ak′aq+k−k′〉 + ak′〈a+
k aq+k−k′〉 + aq+k−k′〈akak′〉

= δk,−qa
+
−q〈ak′a−k′〉 + δk′,qaq〈a+

k ak〉 + δk,k′aq〈a+
k ak〉,

(5.2.29)
where the last line follows from the diagonality of H0 +H1 in reciprocal
space. We note that it is convenient here that the single-ion operators are
expressed as products of Bose operators which are well-ordered. When
this decoupling is introduced in (5.2.28), it reduces to

[aq , H] = Ãq(T ) aq + B̃q(T ) a+
−q, (5.2.30)

where the effective, renormalized parameters are

Ãq(T ) = A+4JC1m+ 6JC2b+ J{J (0) − J (k)}(1 −m)

+ 1

N

∑
k

J{J (k) − J (k − q)}mk (5.2.31a)

and

B̃q(T ) =B
(
1 + 1

4J

)
+ 2JC1b+6JC2m+12JC3b− 1

2J{J (0) −J (q)}b

+ 1

2N

∑
k

J{J (0) − J (k)}bk + 1

N

∑
k

J{J (k) − J (k − q)}bk.

(5.2.31b)
mk and bk are respectively the correlation functions (1/J)〈a+

k ak〉 and
(1/J)〈a+

k a
+
−k〉 = (1/J)〈aka−k〉, and m and b are the corresponding aver-

ages over k. Equation (5.2.30) implies that the operator [aq , H], in the
equations of motion of any Green function involving aq, can be replaced
by the expression on the right-hand side. The same result is obtained if,
instead, H2 is neglected, and Aq and B in H1 are replaced by Ãq(T ) and
B̃q(T ) in (5.2.17). Consequently, the system behaves as if the Hamilto-
nian H0 +H1 +H2 is replaced by H̃0 + H̃1, which is similar to H0 +H1

except for the introduction of the effective, temperature-dependent pa-
rameters. The RPA decoupling (5.2.29) introduces errors in the Green
functions, but only in the third order of 1/J , and as it leads to an effec-
tive Hamiltonian which is quadratic in the Bose operators, it is a valid
procedure. This internal consistency of the theory to second order in
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1/J means that the RPA contributions to the correlation functions are
reliably estimated, and that all second-order contributions are included
when H̃0 +H̃1 is used, instead of H0 +H1, in the calculation of the ther-
mal averages. We shall therefore use the following self-consistent expres-
sions for the characteristic correlation functions, mk and bk, determined
straightforwardly by utilizing the correspondence between H0 +H1 and
H̃0 + H̃1:

mk =
1
J

{ Ãk(T )
Ek(T )

(
nk + 1

2

)
− 1

2

}
, (5.2.32a)

corresponding to (5.2.25), and

bk = − 1
J

B̃k(T )
Ek(T )

(
nk + 1

2

)
. (5.2.32b)

In order to express the result in a convenient form, we rewrite one of the
second-order terms in B̃q(T ) as

1

2N

∑
k

J{J (0)−J (k)}bk = −1
2B(m+ 1

2J )− 1
2Ab+O(1/J3), (5.2.33)

since, to leading order, J{J (0) − J (k)} = Ãk(T ) − A, and B̃k(T ) in
bk can be approximated by B. We note that Aq and B are parameters
of the order 1/J , as are m and b (at low temperatures). In addition
to introducing (5.2.33) into (5.2.31b), it is adequate for calculating the
spin-wave energies to define a transformed set of parameters:

Aq(T ) = Ãq(T ) + 1
2 B̃q(T ) b

Bq(T ) = B̃q(T ) + 1
2 Ãq(T ) b

(5.2.34)

and these are then, to the order considered,

Aq(T ) = A+ 4JC1m+ 6JC2b + 1
2Bb

+J{J (0) − J (q)}(1 −m) + 1

N

∑
k

J{J (k) − J (k − q)}mk

(5.2.35a)
and

Bq(T ) = B + 2JC1b+6JC2m+ 12JC3b− 1
2Bm

+ 1

N

∑
k

J{J (k) − J (k − q)}bk.
(5.2.35b)

This transformation leaves the expression for the excitation energies un-
changed, i.e.

Eq(T ) =
{
[Aq(T ) +Bq(T )][Aq(T ) −Bq(T )]

} 1
2 , (5.2.36)
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when higher-order corrections are neglected. Inserting the eqns (5.2.15),
(5.2.18), and (5.2.27) into (5.2.35), we finally obtain, at zero wave-vector,

A0(T ) −B0(T ) = 1

J

{
−36B6

6J
(6)(1 − 20m+ 15b) cos6φ

+ gµBJH cos (φ− φH)
}

(5.2.37a)

and

A0(T ) +B0(T ) = 1

J

{
6B0

2J
(2)(1 − 2m− b)

− 6B6
6J

(6)(1 − 20m+ 5b) cos 6φ+ gµBJH cos (φ− φH)
}
, (5.2.37b)

and, at non-zero wave-vector,

Aq(T ) = A0(T )+J{J (0)−J (q)}(1−m)+ 1

N

∑
k

J{J (k)−J (k−q)}mk

(5.2.38a)
and

Bq(T ) = B0(T ) + 1

N

∑
k

J{J (k) − J (k − q)}bk. (5.2.38b)

The spin-wave energies deduced here, to second order in the expansion
in 1/J , depend on temperature and on the crystal-field mixing of the
Jz-eigenstates, and both dependences are introduced via the two corre-
lation functions mk and bk, given self-consistently by (5.2.32) in terms
of the energy parameters. Bq(T ) vanishes if there is no anisotropy, i.e.
if B0

2 and B6
6 are zero. In the case of single-ion anisotropy, Bq(T ) is in-

dependent of q if the small second-order term in (5.2.38b) is neglected,
nor does it depend on the magnetic field, except for the slight field-
dependence which may occur via the correlation functions m and b.

When the spin-wave excitation energies have been calculated, it is a
straightforward matter to obtain the corresponding response functions.
Within the present approximation, the xx-component of the susceptibil-
ity is

χxx(q, ω) = − 1

4N

∑
ij

〈〈(J+ + J−)i e
−iq·Ri ; (J+ + J−)j e

iq·Rj〉〉

= −J

2

(
1 − 1

2m− 1
4b
)2〈〈aq + a+

−q ; a+
q + a−q〉〉.

(5.2.39)
The Bogoliubov transformation, eqns (5.2.19) and (5.2.21), with the
parameters replaced by renormalized values, then leads to

χxx(q, ω) = −J

2

(
1 −m− 1

2 b
)Ãq(T ) − B̃q(T )

Eq(T )
〈〈αq + α+

−q ; α+
q + α−q〉〉,
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which is a simple combination of Bose Green-functions determined by
(5.2.20), with Eq replaced by Eq(T ). Introducing these functions and
the parameters given by (5.2.34), we finally obtain

χxx(q, ω) = J(1 −m)
Aq(T ) −Bq(T )
E2

q(T ) − (h̄ω)2
, (5.2.40a)

neglecting third-order terms. A rotation of the coordinate system by
π/2 around the z-axis changes the sign of Bq(T ), and hence we have

χyy(q, ω) = J(1 −m)
Aq(T ) +Bq(T )
E2

q(T ) − (h̄ω)2
. (5.2.40b)

These results show that the ratio between the neutron-scattering inten-
sities due to the spin-wave at q, neglecting Szz(q, ω), in the two cases
where the scattering vector is perpendicular to the basal y–z plane and
to the x–z plane is

Rq(T ) =
Sxx(q, ω)
Syy(q, ω)

∣∣∣∣
h̄ω=±Eq(T )

=
χxx(q, 0)
χyy(q, 0)

=
Aq(T ) −Bq(T )
Aq(T ) +Bq(T )

.

(5.2.41)
The measured intensities from Tb, which differ substantially from those
calculated for the Heisenberg ferromagnet, agree well with this expres-
sion, especially if the correction for anisotropic two-ion coupling is taken
into account (Jensen et al. 1975).

In the Heisenberg ferromagnet without rotational anisotropy, corre-
sponding to Bq(T ) = 0, the elementary excitations at low temperatures
are circularly polarized spin waves, in which the local moments precess
in circles around the equilibrium direction. In the presence of anisotropy,
Rq(T ) differs from unity, and the excitations become elliptically polar-
ized spin waves. The eccentricity of the ellipse depends on the wave-
vector of the excited spin wave, and by definition Rq(T ) is the square of
the ratio of the lengths of the principal axes which, at least to the order
in 1/J which we have considered, is equal to the ratio between the cor-
responding static susceptibility components. So the static anisotropy is
reflected, in a direct way, in the normal modes of the system. The result
(5.2.41) justifies the transformation (5.2.34) by attributing observable
effects to the parameters Aq(T )±Bq(T ), whereas the parameters which
are defined via the Hamiltonian alone, here Ãq(T )± B̃q(T ), depend on
the particular Bose representation which is employed.

The longitudinal correlation function Szz(q, ω), which is neglected
above, contains a diffusive mode at zero frequency, but no well-defined
normal modes of non-zero frequency. There is inelastic scattering, but
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the inelastic response, as well as the elastic mode, are purely of second
order in 1/J and we shall not consider the longitudinal fluctuations
further here.

The method developed in this section may be utilized, essentially
unchanged, to calculate the MF susceptibility χ o(ω) of the single sites.
The result to first order in 1/J is:

χ o
xx(ω) = 〈Jz〉

A−B + hex

E2
ex − (h̄ω)2

χ o
yy(ω) = 〈Jz〉

A+B + hex

E2
ex − (h̄ω)2

χ o
xy(ω) = −χ o

yx(ω) = 〈Jz〉
ih̄ω

E2
ex − (h̄ω)2

,

(5.2.42a)

where 〈Jz〉 is the MF expectation value of Jz , hex is the exchange field,
and Eex is the energy of the first excited MF state:

hex = 〈Jz〉J (0) ; E2
ex = (A+ hex)

2 −B2. (5.2.42b)

Introducing this expression for χ o(ω) into the RPA equation (3.5.8), we
may derive χ(q, ω) by the same method as was used for the Heisenberg
ferromagnet in Section 3.5.2, in which case A = B = 0. The results for
the xx- and yy-components are then found to agree with eqn (5.2.40)
to leading order in 1/J . To the next order in 1/J , the parameters are
replaced by renormalized values, but this procedure is not here easily
generalized so as to become fully self-consistent. However, most of the
corrections may be included by substituting A0(T ) ± B0(T ) for A ± B
in the expression for χ o(ω), and the self-consistent value of 〈Jz〉 for its
MF value. The only terms which are not included in χ(q, ω) by this
procedure, as we may see by a comparison with eqn (5.2.40), are the
q-dependent contributions to Aq(T )±Bq(T ) determined by the k-sums
in (5.2.38). At low temperatures, these contributions are small and
may safely be neglected in systems with long-range interactions. This
formulation therefore represents a valid alternative, which is useful for
generalizing the linear spin-wave theory to the hcp structure, discussed
in Section 5.1, or to the helically or conically ordered systems which we
will consider in Chapter 6.

As an example of the magnon dispersion relations for the anisotropic
basal-plane ferromagnet, we show in Fig. 5.2 experimental measurements
on Tb at 4K (Mackintosh and Bjerrum Møller 1972). The principal
differences between these results and the corresponding excitations for
Gd in Fig. 5.1 are the pronounced interactions which are observed be-
tween the magnons and phonons, which we shall discuss in some detail in
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Fig. 5.2. The spin-wave dispersion relations along the symmetry lines
in the Brillouin zone for Tb. In contrast to Gd, the anisotropy gives rise to
an energy gap at the origin, and there are large effects due to interactions
with the phonons. The third branch along, for example, ΓM may also be
due to phonon interactions, or it may be a manifestation of the breaking
of the hexagonal symmetry by the ordered moment in a particular do-
main, in the multi-domain sample.The lifting of the double degeneracy
along the line KH provides evidence for anisotropic two-ion coupling.
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Section 5.4.2, and the appearance of an energy gap at long wavelengths.
This gap has its origin in the magnetic anisotropy. Even though
the exchange energy required to excite a magnon vanishes in the long-
wavelength limit, work is still required to turn the moments away from
the easy direction against the anisotropy forces. If we neglect the small
terms due to the sums over k in (5.2.38), the dispersion relation along
the c-axis in zero field becomes, from eqns (5.2.36–38),

Eq(T ) =
{
[A0(T ) +B0(T ) + 〈Jz〉{J (0) − J (q)}]

× [A0(T ) −B0(T ) + 〈Jz〉{J (0) − J (q)}]
} 1

2 .
(5.2.43)

For an arbitrary direction in the zone, this relation is generalized anal-
ogously to eqn (5.1.9), giving rise again to acoustic and optical modes.
From the dispersion relations, the magnon density of states and J (q)
may readily be determined and hence, by a Fourier transform, the nom-
inal Heisenberg exchange interaction J (ij) between moments on differ-
ent atomic sites (Houmann 1968). The energy gap at zero wave-vector
is given by

E0(T ) =
{
[A0(T ) +B0(T )][A0(T ) −B0(T )]

} 1
2 , (5.2.44)

and as we shall see in the next section, it is proportional to the geo-
metrical mean of the axial- and hexagonal-anisotropy energies. We shall
return to the dependence of this energy gap on the temperature and the
magnetoelastic effects in the following two sections.

5.3 The uniform mode and spin-wave theory

The spin-wave mode at zero wave-vector is of particular interest. In
comparison with the Heisenberg ferromagnet, the non-zero energy of
this mode is the most distinct feature in the excitation spectrum of the
anisotropic ferromagnet. In addition, the magnitude of the energy gap
at q = 0 is closely related to the bulk magnetic properties, which may
be measured by conventional techniques. We shall first explore the con-
nection between the static magnetic susceptibility and the energy of the
uniform mode, leading to an expression for the temperature dependence
of the energy gap. In the light of this discussion, we will then consider
the general question of the validity of the spin-wave theory which we
have presented in this chapter.

5.3.1 The magnetic susceptibility and the energy gap
The static-susceptibility components of the bulk crystal may be deter-
mined as the second derivatives of the free energy

F = U − TS = − 1

β
lnZ. (5.3.1)
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The specific heat C may be derived in a simple way, within our current
spin-wave approximation, by noting that the excitation spectrum is the
same as that for a non-interacting Bose system, so that the entropy
is fully determined by the statistics of independent bosons of energies
Eq(T ):

S = kB

∑
q

[
(1 + nq) ln (1 + nq) − nq lnnq

]
, (5.3.2)

and hence

C = T∂S/∂T = kBT
∑
q

(dnq/dT ) ln {(1 + nq)/nq},

or, with nq =
[
eβEq(T ) − 1

]−1,

C =
∑
q

Eq(T ) dnq/dT

= β
∑
q

nq(1 + nq)Eq(T )
{
Eq(T )/T − ∂Eq(T )/∂T

}
,

(5.3.3)

as in (3.4.17).
The first derivative of F with respect to the angles θ and φ can be

obtained in two ways. The first is to introduce S, as given by (5.3.2)
into (5.3.1), so that

∂F

∂θ
=
∂U

∂θ
−
∑
q

Eq(T )
∂nq

∂θ

=
∂U

∂θ

∣∣∣∣
mq,bq

+
∑
q

(
∂U

∂mq

∂mq

∂θ
+
∂U

∂bq

∂bq
∂θ

− Eq(T )
∂nq

∂θ

)

=
∂U

∂θ

∣∣∣∣
mq,bq

, (5.3.4)

as it can be shown that ∂U/∂mq = JÃq(T ) and ∂U/∂bq = JB̃q(T ),
when U = 〈H0 +H1 +H2〉, and hence that each term in the sum over q
in the second line of (5.3.4) vanishes, when (5.2.32) is used. This result
is only valid to second order in 1/J . However, a result of general validity
is

∂F/∂θ =
〈
∂H/∂θ

〉
, (5.3.5)

as discussed in Section 2.1, in connection with eqn (2.1.5). The two dif-
ferent expressions for ∂F/∂θ, and corresponding expressions for ∂F/∂φ,
agree if H in (5.3.5) is approximated by H0 + H1 + H2, i.e. to second
order in 1/J . However, the results obtained up to now are based on the
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additional assumption, which we have not stated explicitly, that H′ in
the starting Hamiltonian (5.2.12) is negligible. H′ is the sum of the terms
proportional to Stevens operators Om

l with m odd, and it includes for in-
stance the term 3B0

2(JzJx+JxJz) cos θ sin θ associated with B0
2Q

0
2 in eqn

(5.2.3). H′ vanishes by symmetry if the magnetization is along a high-
symmetry direction, i.e. θ = 0 or π/2 and φ is a multiple of π/6. In these
cases, the results obtained previously are valid. If the magnetization is
not along a high-symmetry direction, H′ must be taken into account.
The first-order contributions arise from terms proportional to (1/J)1/2

in H′, which can be expressed effectively as a linear combination of Jx

and Jy. In this order, 〈∂H′/∂θ〉 = 0 therefore, because 〈Jx〉 = 〈Jy〉 = 0
by definition. For a harmonic oscillator, corresponding in this system
to the first order in 1/J , the condition for the elimination of terms in
the Hamiltonian linear in a and a+ coincides with the equilibrium con-
dition ∂F/∂θ = ∂F/∂φ = 0. Although the linear terms due to H′ can
be removed from the Hamiltonian by a suitable transformation, terms
cubic in the Bose operators remain. Second-order perturbation theory
shows that, if H′ is non-zero, 〈∂H′/∂θ〉 and the excitation energies in-
clude contributions of the order 1/J2. Although it is straightforward to
see that H′ makes contributions of the order 1/J2, it is not trivial to
calculate them. The effects of H′ have not been discussed in this con-
text in the literature, but we refer to the recent papers of Rastelli et al.
(1985, 1986), in which they analyse the equivalent problem in the case
of a helically ordered system.

In order to prevent H′ from influencing the 1/J2-contributions de-
rived above, we may restrict our discussion to cases where the mag-
netization is along high-symmetry directions. This does not, however,
guarantee that H′ is unimportant in, for instance, the second deriva-
tives of F . In fact ∂〈∂H′/∂θ〉/∂θ ∝ O(1/J2) may also be non-zero when
θ = 0 or π/2, and using (5.3.4) we may write

Fθθ =
∂2F

∂θ2
=
∂2U

∂θ2

∣∣∣∣
mq,bq

+ O(1/J2)

=
〈∂2

∂θ2
(H0 + H1 + H2)

〉
+ O(1/J2) ; θ = 0,

π

2
,

(5.3.6a)

and similarly

Fφφ =
〈∂2

∂φ2
(H0 + H1 + H2)

〉
+ O(1/J2) ; φ = p

π

6
, (5.3.6b)

where the corrections of order 1/J2 are exclusively due to H′. Here we
have utilized the condition that the first derivatives of mq and bq vanish
when the magnetization is along a symmetry direction.
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The derivatives Fθθ and Fφφ are directly related to the static sus-
ceptibilities, as shown in Section 2.2.2. When θ0 = π

2 , we obtain from
eqn (2.2.18)

χxx(0, 0) = N〈Jz〉2/Fθθ ; χyy(0, 0) = N〈Jz〉2/Fφφ. (5.3.7)

These results are of general validity, but we shall proceed one step further
and use F (θ, φ) for estimating the frequency dependence of the bulk
susceptibilities. When considering the uniform behaviour of the system,
we may to a good approximation assume that the equations of motion
for all the different moments are the same:

h̄∂〈J〉/∂t = 〈J〉 × h(eff). (5.3.8)

By equating it to the average field, we may determine the effective field
from

F = F (0) −N〈J〉 · h(eff), (5.3.9a)

corresponding to N isolated moments placed in the field h(eff). The free
energy is

F = F (θ0, φ0) + 1
2Fθθ(δθ)

2 + 1
2Fφφ(δφ)2 −N〈J〉 · h, (5.3.9b)

and, to leading order, δθ = −〈Jx〉/〈Jz〉 and δφ = −〈Jy〉/〈Jz〉. Hence

hx(eff) = − 1
N

∂F

∂〈Jx〉
= hx − 1

N
Fθθ

〈Jx〉
〈Jz〉2

, (5.3.10a)

and similarly

hy(eff) = hy − 1
N
Fφφ

〈Jy〉
〈Jz〉2

. (5.3.10b)

Introducing a harmonic field applied perpendicular to the z-axis into
eqn (5.3.8), we have

ih̄ω〈Jx〉 =
1

N〈Jz〉
Fφφ〈Jy〉 − hy〈Jz〉

ih̄ω〈Jy〉 = − 1
N〈Jz〉

Fθθ〈Jx〉 − hx〈Jz〉,
(5.3.11)

and ∂〈Jz〉/∂t = 0, to leading order in h. Solving the two equations for
hx = 0, we find

χyy(0, ω) = 〈Jy〉/hy =
1
N

Fθθ

E2
0(T ) − (h̄ω)2

, (5.3.12a)
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and, when hy = 0,

χxx(0, ω) =
1
N

Fφφ

E2
0(T ) − (h̄ω)2

, (5.3.12b)

where the uniform-mode energy is

E0(T ) =
1

N〈Jz〉
{
FθθFφφ

}1/2
. (5.3.13)

This result for the uniform mode in an anisotropic ferromagnet was
derived by Smit and Beljers (1955). It may be generalized to an arbitrary
magnetization direction by defining (θ, φ) to be in a coordinate system
in which the polar axis is perpendicular to the z-axis (as is the case here),
and by replacing FθθFφφ by FθθFφφ − F 2

θφ if Fθφ �= 0.
The introduction of the averaged effective-field in (5.3.8) corre-

sponds to the procedure adopted in the RPA, and a comparison of the
results (5.3.12–13) with the RPA result (5.2.40), at q = 0 and ω = 0,
shows that the relations

A0(T ) −B0(T ) =
1

N〈Jz〉
Fφφ

A0(T ) +B0(T ) =
1

N〈Jz〉
Fθθ

(5.3.14)

must be valid to second order in 1/J . In this approximation, A0(T ) ±
B0(T ) are directly determined by that part of the time-averaged two-
dimensional potential, experienced by the single moments, which is
quadratic in the components of the moments perpendicular to the mag-
netization axis. The excitation energy of the uniform mode is thus pro-
portional to the geometric mean of the two force constants characterizing
the parabolic part of this potential. Since A0(T )±B0(T ) are parameters
of order 1/J , the second-order contributions of H′ in (5.3.6), which are
not known, appear only in order 1/J3 in (5.3.14), when the magnetiz-
ation is along a high-symmetry direction.

B0
2 does not appear in A0(T ) − B0(T ), and this is in accordance

with eqn (5.3.14), as Q0
2 is independent of φ. Considering instead the

θ-dependence, we find that the contribution to Fθθ is determined by〈∂2Q0
2

∂θ2
〉

=
〈
− 6(J2

z − J2
x) cos 2θ − 6(JzJx + JxJz) sin 2θ

〉
θ=π/2

= 3〈O0
2 −O2

2〉. (5.3.15)

From (5.2.10) and (5.2.11), the thermal average is found to be

〈O0
2 −O2

2〉 = 2J (2)
〈
1 − 3

J
a+a+ 3

2J2
a+a+aa

− 1

2J
(1 + 1

4J )(aa+ a+a+) + 1

4J2
(a+aaa+ a+a+a+a)

〉
,
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or

〈O0
2 −O2

2〉 = 2J (2){1− 3m+ 3m2 + 3
2b

2 − (1 + 1
4J )b+ 3

2mb+O(1/J3)}.
(5.3.16)

Hence, according to (5.3.6a) and (5.3.14), the B0
2 -term contributes to

the spin-wave parameter A0(T ) +B0(T ) by

3B0
2〈O0

2 −O2
2〉/〈Jz〉 � 6B0

2J
(2)(1 − 3m− b)/J(1 −m)

� 6B0
2J

(2)(1 − 2m− b)/J,

in agreement with (5.2.37b). When b is zero, this result is consistent with
the classical Zener power-law (Zener 1954), 〈Om

l 〉 ∝ δm0 σ
l(l+1)/2, where

σ = 1 −m is the relative magnetization, since, to the order considered,
〈O0

2 − O2
2〉b=0 = 〈O0

2〉b=0 = 2J (2)(1 − m)3. If we include the diagonal
contribution of third order in m or 1/J to 〈O0

2〉 in (5.3.16), the result
differs from the Zener power-law, but agrees, at low temperatures, with
the more accurate theory of Callen and Callen (1960, 1965) discussed in
Section 2.2. The results of the linear spin-wave theory obtained above
can be utilized for generalizing the theory of Callen and Callen to the
case of an anisotropic ferromagnet. The elliptical polarization of the spin
waves introduces corrections to the thermal expectation values, which
we express in the form

〈O0
2 −O2

2〉 = 2J (2)Î5/2[σ] η−1
+ , (5.3.17)

where the factor Îl+1/2[σ] represents the result (2.2.5) of Callen and
Callen, and where η± differs from 1 if b is non-zero. The two correlation
functions m and b are determined through eqn (5.2.32), in terms of the
intermediate parameters Ãk(T ) ± B̃k(T ), but it is more appropriate to
consider instead

mo =
1
NJ

∑
k

{Ak(T )
Ek(T )

(
nk + 1

2

)
− 1

2

}
bo = − 1

NJ

∑
k

Bk(T )
Ek(T )

(
nk + 1

2

)
,

(5.3.18)

defined in terms of the more fundamental parameters. The transforma-
tion (5.2.34) then leads to the following relations:

mo + 1
2J = m+ 1

2J − 1
2b

2 and bo = b− 1
2b(m+ 1

2J ).

Separating the two contributions in (5.3.16), we find

b̃ ≡ 〈O2
2〉/〈O0

2〉 � (1 + 1
4J )b(1 −m)−3/2, (5.3.19a)
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which, to the order calculated, may be written

b̃ =
(
1 − 1

2J

)−1 bo
σ2
, (5.3.19b)

where
σ = 〈Jz〉/J = 1 −m = 1 −mo − 1

2 bob̃. (5.3.20)

The function η± is then determined in terms of b̃ as

η± = (1 ± b̃)(1 − 1
2 b̃

2). (5.3.21)

The spin-wave theory determines the correlation functions σ and η±
to second order in 1/J , but for later convenience we have included
some higher-order terms in (5.3.20) and (5.3.21). It may be straightfor-
wardly verified that the thermal expectation values of 〈O0

2 − O2
2〉 given

by (5.3.16) and (5.3.17) agree with each other to order 1/J2. In the ab-
sence of anisotropy, the latter has a wider temperature range of validity
than the former, extending beyond the regime where the excitations can
be considered to be bosons. This should still be true in the presence of
anisotropy, as long as b̃ is small.

The combination of the spin-wave theory and the theory of Callen
and Callen has thus led to an improved determination of the thermal
averages of single-ion Stevens operators, as shown in Figs. 2.2 and 2.3.
The quantity O0

2 − O2
2 was chosen as an example, but the procedure is

the same for any other single-ion average. It is tempting also to utilize
this improvement in the calculation of the excitation energies, and the
relation (5.3.14) between the free energy and the spin-wave parameters
A0(T ) ± B0(T ) is useful for this purpose. Neglecting the modifications
due to H′ in (5.3.6), i.e. using Fθθ � 〈∂2H/∂θ2〉 and similarly for Fφφ,
we find from (5.3.14) the following results:

A0(T )−B0(T ) = − 1

Jσ
36B6

6J
(6)Î13/2[σ]η−15

− cos 6φ+gµBH cos (φ − φH)
(5.3.22a)

and

A0(T )+B0(T ) = 1

Jσ

[
6B0

2J
(2)Î5/2[σ]η−1

+ − 60B0
4J

(4)Î9/2[σ]η7
−η

−1
+

+ 210B0
6J

(6)Î13/2[σ]η18
− η−1

+ − 6B6
6J

(6)Î13/2[σ]η−30
− η−25

+ cos 6φ
]

+ gµBH cos (φ− φH), (5.3.22b)

which for completeness include all contributions from the starting Hamil-
tonian (5.2.1). The spin-wave spectrum at non-zero wave-vectors is
adjusted accordingly by inserting A0(T ) ± B0(T ) given above, instead
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of (5.2.37), in eqns (5.2.36), (5.2.38), and (5.2.40). If the out-of-plane
anisotropy is stronger than the in-plane anisotropy, as in Tb and Dy, B
is positive and b̃ is negative. This means that η+ and η− are respectively
smaller and greater than 1 (for small b̃ ), with the result that the axial
contributions to A0(T ) +B0(T ) are increased, whereas the planar con-
tribution to A0(T ) − B0(T ) is diminished, due to b̃. This is consistent
with the fact that the out-of-plane fluctuations are suppressed in com-
parison with the in-plane fluctuations by the anisotropy. Hence we find,
as a general result, that the elliptical polarization of the spin waves en-
hances, in a self-consistent fashion, the effects of the anisotropy. We note
that Q6

6, which depends on both θ and φ, contributes to both anisotropy
parameters, but that the anisotropy of the fluctuations affects the two
contributions differently.

If b̃ and the k-sums in (5.2.38) are neglected, the above result for
the spin-wave energies Eq(T ) reduces to that derived by Cooper (1968b).
The modifications due to the non-spherical precession of the moments,
b̃ �= 0, were considered first by Brooks et al. (1968) and Brooks (1970),
followed by the more systematic and comprehensive analysis of Brooks
and Egami (1973). They utilized directly the equations of motion of
the angular-momentum operators, without introducing a Bose repre-
sentation. Their results are consistent with those above, except that
they did not include all the second-order modifications considered here.
We also refer to Tsuru (1986), who has more recently obtained a re-
sult corresponding to eqn (5.2.31), when B6

6 is neglected, using a varia-
tional approach. The procedure outlined above essentially follows that
of Lindg̊ard and Danielsen (1974, 1975), which was further developed
by Jensen (1975). This account only differs from that given by Jensen
in the use of η± instead of b̃ as the basis for the ‘power-law’ general-
ization (and by the alternative choice of sign for B and b̃) and, more
importantly, by the explicit use of 1/J as the expansion parameter.

As illustrated in Fig. 5.1 for Gd, and in Fig. 5.3 for Tb, the observed
temperature dependence of the spin-wave spectrum is indeed substan-
tial, both in the isotropic and the anisotropic ferromagnet. In the case
of Tb, the variation of the exchange contribution is augmented by the
temperature dependence of the anisotropy terms, which is reflected pre-
dominantly in the rapid variation of the energy gap at q = 0. A com-
parison of Figs. 5.1 and 5.3 shows that the change in the form of J (q)
appears to be more pronounced in Tb than in Gd. In Tb, the variation
of J (q) with q at a particular temperature is also modified if the mag-
netization vector is rotated from the b-axis to a hard a-axis (Jensen et
al. 1975). Most of these changes with magnetization can be explained
as the result of two-ion anisotropy, which we will consider in Section 5.5.
Anisotropic two-ion terms may also affect the energy gap. In addition,
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Fig. 5.3. The temperature dependence of the dispersion relations for
the unperturbed spin waves in the c-direction in Tb. Both the energy gap
and the q-dependence renormalize with temperature. The results have
been corrected for the magnon–phonon interaction, and the lines show the

calculated energies.

the magnetoelastic coupling introduces qualitatively new effects, not de-
scribable by eqn (5.3.22), to which we will return after a short digression
to summarize our understanding of the spin-wave theory.

5.3.2 The validity of the spin-wave theory

In presenting the spin-wave theory, we have neglected phenomena which
first appear in the third order of 1/J , most importantly the finite life-
times of the excitations. In the presence of anisotropy, when B is dif-
ferent from zero, the total moment is not a conserved quantity, since
[
∑

i Jiz , H ] �= 0, unlike in the Heisenberg model. On the microscopic
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plane, this means that the number of spin-wave excitations, i.e. magnons,
is not necessarily conserved in a scattering process. In contrast to the be-
haviour of the isotropic ferromagnet, the linewidths do not therefore van-
ish at zero temperature, although energy conservation, combined with
the presence of an energy gap in the magnon spectrum, strongly limit
the importance of the allowed decay processes at low temperatures.

The two-ion interactions are assumed to involve only tensor op-
erators of the lowest rank, so that these terms in the 1/J-expansion
only have small numerical factors multiplying the Bose operator prod-
ucts. Therefore, if J is large, as in heavy rare earth-ions, the third-order
terms due to the exchange coupling, which are neglected in the spin-
wave theory, are expected to be small, as long as the number of excited
magnons is not very large. The weak influence, at low temperatures,
of the higher-order contributions of the exchange coupling is also indi-
cated by a comparison with the low-temperature expansion of Dyson
(1956) of the free energy in a Heisenberg ferromagnet with only nearest-
neighbour interactions, also discussed by Rastelli and Lindg̊ard (1979).
If A = B = 0, the results derived earlier, to second order in 1/J , are
consistent with those of Dyson, except that we have only included the
leading-order contribution, in the Born approximation or in powers of
1/J , to the T 4-term in the magnetization and in the specific heat. The
higher-order corrections to the T 4-term are significant if J = 1

2 , but if
J = 6 as in Tb, for example, they only amount to a few per cent of this
term and can be neglected.

If only the two-ion terms are considered, the RPA decoupling of
the Bose operator products (5.2.29) is a good approximation at large
J and at low temperatures. However, this decoupling also involves an
approximation to the single-ion terms, and these introduce qualitatively
new features into the spin-wave theory in the third order of 1/J . For
example, the C3-term in (5.2.26) directly couples the |Jz = J > state
and |J − 4>, leading to an extra modification of the ground state not
describable in terms of B or η±. Furthermore, the Bogoliubov trans-
formation causes the (Jx, Jy)-matrix elements between the ground state
and the third excited state to become non-zero. This coupling then
leads to the appearance of a new pole in the transverse susceptibilities,
in addition to the spin-wave pole, at an energy which, to leading order,
is roughly independent of q and close to that of the third excited MF
level, i.e. 3Eqo(T ), with qo defined as a wave-vector at which J (qo) = 0.
A qualitative analysis indicates that the third-order contribution to e.g.
χxx(0, 0), due to this pole, must cancel the second-order contribution of
H′ to Fθθ in the relation (5.3.12b) between the two quantities. Hence
the approximation Fθθ � 〈∂2H/∂θ2〉, used in (5.3.22), corresponds to
the neglect of this additional pole.
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The higher-order exchange contributions can thus be neglected at
low temperatures, if J is large. This condition is not, however, sufficient
to guarantee that the additional MF pole is unimportant, and the spin-
wave result (5.3.22), combined with (5.2.36), (5.2.38), and (5.2.40), can
only be trusted as long as the modification of the ground state, due to
the single-ion anisotropy, is weak. This condition is equivalent to the
requirement that |̃b| be much less than 1. The regime within which the
spin-wave theory is valid can be examined more closely by a comparison
with the MF-RPA theory. In the latter, only the two-ion interactions
are treated approximately, whereas the MF Hamiltonian is diagonalized
exactly. The MF-RPA decoupling utilized in Section 3.5 leads here to
a cancellation of the k-sums in (5.3.38), and to a replacement of the
correlation functions mo and bo by their MF values

mo � mMF
o =

1
J

{Aqo(T )
Eqo(T )

(
nqo + 1

2

)
− 1

2

}
, (5.3.23)

with a similar expression for bMF
o . The wave-vector qo is defined as

above, such that J (qo) = 0. If the single-ion anisotropy is of second rank
only, including possibly a Q2

2-term as well as the Q0
2-term of our specific

model, all the predictions obtained with the MF-RPA version of the spin-
wave theory agree extremely well with the numerical results obtained
by diagonalizing the MF Hamiltonian exactly, even for relatively large
values of |bMF

o | (≈ 0.1). Even though 1/J is the expansion parameter,
the replacement of (1 + 1

2J ) by (1− 1
2J )−1 in (5.3.19b) extends the good

agreement to the limit J = 1, in which case the MF Hamiltonian can be
diagonalized analytically.

The applicability of the 1/J-expansion for the anisotropy is much
more restricted if terms of high rank, such as Q6

6, dominate. This is a
simple consequence of the relatively greater importance of the contribu-
tions of higher-order in 1/J , like for instance the C3-term in (5.2.26),
for higher-rank anisotropy terms. We have analysed numerically mod-
els corresponding to the low-temperature phases of Tb and Er, which
include various combinations of anisotropy terms with ranks between 2
and 6. In the case of the basal-plane ferromagnet Tb, we find that the
1/J-expansion leads to an accurate description of the crystal-field effects
on both the ground-state properties and the excitation energies. The
MF-RPA excitation-energies calculated with the procedure of Section
3.5 differ relatively only by ∼ 10−3 at T = 0 from those of the spin-wave
theory (Jensen 1976c). We furthermore find that this good agreement
extends to non-zero temperatures, and that the 1/J-expansion is still ac-
ceptably accurate when σ � 0.8. Consequently, the effective power-laws
predicted by the spin-wave theory at low temperatures (Jensen 1975)
are valid.
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The renormalization of the anisotropy parameters appearing in the
spin-wave energies, in the second order of 1/J , is expected to be some-
what more important in the conical phase of Er than in Tb. In Er,
the moments are not along a symmetry direction (they make an angle
of about 28◦ with the c-axis) and the second-order modifications due
to H′ in (5.2.12) might be expected to be important. The 1/J-results
do not allow a precise estimate of the second-order contributions, but
by introducing two scaling parameters, one multiplying the exchange
terms by σ, and the other scaling the constant crystal-field contribution
in the 1/J-expression for the spin-wave energies in the cone phase, it
is possible (Jensen 1976c) to give an accurate account of the excitation
energies derived by diagonalizing the MF Hamiltonian exactly, the rela-
tive differences being only of the order 10−2. The two scaling parameters
are found to have the expected magnitudes, although σ turns out to be
slightly smaller (� 0.94 in the model considered) than the relative mag-
netization predicted by the MF Hamiltonian (σMF � 0.98). An analysis
of the MF Hamiltonian shows that the excitations can be described in
terms of an elliptical precession of the single moments, as expected, but
surprisingly the ellipsoid lies in a plane with its normal making an angle
(� 33◦) with the c-axis which differs from the equilibrium cone-angle
(� 28◦), so the polarization of the spin waves is not purely transverse.
In terms of the 1/J-expansion, this modification of the excited states
can only be produced by H′. This observation indicates that H′ has sig-
nificant effects in Er, since it explains the difference between σ and σMF,
as σ becomes equal to σMF if the angle appearing in the renormalized
spin-wave energies is considered to be that defining the excited states,
i.e. 33◦, rather than the equilibrium value.

We may conclude that the 1/J-expansion is a valid procedure for
describing the low-temperature magnetic properties of the heavy rare
earth metals. This is an important conclusion for several reasons. To
first order in 1/J , the theory is simple and transparent. It is therefore
feasible to include various kinds of complication in the model calcula-
tions and to isolate their consequences. This simplicity is retained in
the second order of 1/J , as long as H′ can be neglected, in which case
the first-order parameters are just renormalized. Accurate calculations
of the amount of renormalization of the different terms may be quite
involved, but because of the long range of the two-ion interactions in
the rare earth metals, the MF values of mo and bo utilized above nor-
mally provide good estimates. The spin-wave theory in the harmonic
approximation, to first order in 1/J , has been employed quite exten-
sively in the literature, both for analysing experimental results and in
various theoretical developments. It is therefore fortunate that these
analyses are not invalidated, but only modified, or renormalized, by the
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presence of moderate anisotropy. However, it is necessary to be aware
that the renormalization itself may cause special effects not expected
in the harmonic approximation, as the amount of renormalization may
change when the system is perturbed by an external magnetic field or
pressure, or when the temperature is altered.

There have been attempts (Lindg̊ard 1978, and references therein)
to construct an analytical spin-wave theory starting with a diagonaliza-
tion of the MF Hamiltonian. In principle, this should be an appropriate
starting-point, since the ground state is closer to the MF ground-state
than to the fully polarized state, as soon as the planar anisotropy be-
comes significant. As in the model calculations discussed above, the MF
Hamiltonian can be diagonalized numerically without difficulty, but in
this form the method is non-analytical and the results are not easily
interpretable. In order to diagonalize the MF Hamiltonian analytically,
one is forced to make a perturbative expansion, unless J is small. If
the MF Hamiltonian is expressed in the |Jz >-basis, the natural ex-
pansion parameter is ∼ |Bqo/Aqo | � 2J |bo| at T = 0. The use of this
expansion parameter and the 1/J-expansion considered above lead to
identical results in the limit 2J |bo| � 1 (Rastelli and Lindg̊ard 1979).
However, the expansion parameter is not small when the anisotropy is
moderately large (2J |bo| � 0.35 in Tb at T = 0), which severely limits
the usefulness of this procedure as applied by Lindg̊ard (1978, 1988)
to the analysis of the spin waves in the anisotropic heavy rare earths.
It gives rise to a strong renormalization of all the leading-order spin-
wave-energy parameters, which are thus quite sensitive, for example,
to an external magnetic field, and it is extremely difficult to obtain a
reasonable estimate of the degree of renormalization. In contrast, the
1/J-expansion leads, at low temperatures, to results in which only the
high-rank terms (which are quite generally of smaller magnitude than
the low-rank terms) are renormalized appreciably, and the amount of
renormalization can be determined with fair accuracy. In the numerical
example corresponding to Tb, the B6

6 -term is renormalized by −38% at
T = 0, according to the spin-wave theory, which agrees with the value
obtained by diagonalizing the MF Hamiltonian exactly, as indicated in
Fig. 2.3.

To recapitulate, we have developed a self-consistent RPA theory for
the elementary excitations in a ferromagnet, i.e. the spin waves, valid
when the magnetization is close to its saturation value. The major com-
plication is the occurrence of anisotropic single-ion interactions, which
were treated by performing a systematic expansion in 1/J . To first
order in 1/J , the theory is transparent and simple, and it is straightfor-
wardly generalized to different physical situations. Much of the simplic-
ity is retained in second order, as long as the magnetization is along a
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symmetry axis, but the first-order parameters are replaced by effective
values. These effective parameters are determined self-consistently in
terms of the spin-wave parameters Aq(T )±Bq(T ), which depend on T ,
and on an eventual applied magnetic field. One advantage of the use of
1/J as the expansion parameter is that the second-order modifications
are smallest for the low-rank couplings, which are quite generally also
the largest terms. If the magnetization is not along a symmetry axis,
the elementary excitations may no longer be purely transverse. This
additional second-order phenomenon may, however, be very difficult to
detect experimentally within the regime of validity of the second-order
spin-wave theory.

5.4 Magnetoelastic effects

The magnetoelastic coupling between the magnetic moments and the
lattice modifies the spin waves in two different ways. The static de-
formations of the crystal, induced by the ordered moments, introduce
new anisotropy terms in the spin-wave Hamiltonian. The dynamic time-
dependent modulations of the magnetic moments furthermore interfere
with the lattice vibrations. We shall start with a discussion of the
static effects, and then consider the magnon–phonon interaction. The
magnetoelastic crystal-field Hamiltonian was introduced in Section 1.4,
where the different contributions were classified according to the symme-
try of the strain parameters. The two-ion coupling may also change with
the strain, as exemplified by eqn (2.2.32). We shall continue consider-
ing the basal-plane ferromagnet and, in order to simplify the discussion,
we shall only treat the low-rank magnetoelastic couplings of single-ion
origin. In the ferromagnetic case, the magnetoelastic two-ion couplings
do not introduce any effects which differ qualitatively from those due
to the crystal-field interactions. Consequently, those interactions which
are not included in the following discussion only influence the detailed
dependence of the effective coupling parameters on the magnetization
and, in the case of the dynamics, on the wave-vector.

5.4.1 Magnetoelastic effects on the energy gap
The static effects of the α-strains on the spin-wave energies may be
included in a straightforward manner, by replacing the crystal-field pa-
rameters in (5.2.1) with effective strain-dependent values, i.e. B0

2 →
B0

2 + B
(2)
α1 εα1 + B

(2)
α2 εα2, with α-strains proportional to 〈Q0

2〉. Equiva-
lent contributions appear in the magnetic anisotropy, discussed in Sec-
tion 2.2.2. This simplification is not possible with the γ- or the ε-strain
contributions, because these, in contrast to the α-strains, change the
symmetry of the lattice. When θ = π/2, the ε-strains vanish, and the
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γ-strain part of the magnetoelastic Hamiltonian is given by eqn (2.2.23):

Hγ =
∑

i

[1
2cγ(ε2γ1 + ε2γ2) −Bγ2{Q2

2(Ji)εγ1 +Q−2
2 (Ji)εγ2}

−Bγ4{Q4
4(Ji)εγ1 −Q−4

4 (Ji)εγ2}
]
.

(5.4.1)

The equilibrium condition, ∂F/∂εγ = 0, leads to eqn (2.2.25) for the
static strains εγ . The static-strain variables are distinguished by a bar
from the dynamical contributions εγ − εγ . The expectation values of
the Stevens operators may be calculated by the use of the RPA theory
developed in the preceding section, and with θ = π/2 we obtain, for
instance,

〈Q2
2〉 = 〈1

2 (O0
2 +O2

2) cos 2φ+ 2O−1
2 sin 2φ〉 = J (2)Î5/2[σ]η−1

− cos 2φ

〈Q−2
2 〉 = 〈1

2 (O0
2 +O2

2) sin 2φ− 2O−1
2 cos 2φ〉 = J (2)Î5/2[σ]η−1

− sin 2φ.
(5.4.2)

We note that 〈O−1
2 〉 vanishes only as long as H′ in (5.2.12) can be ne-

glected. Introducing the magnetostriction parameters C and A via eqn
(2.2.26a), when θ = π/2,

εγ1 = C cos 2φ− 1
2A cos 4φ

εγ2 = C sin 2φ+ 1
2A sin 4φ,

(5.4.3)

and calculating 〈Q±4
4 〉, we obtain

C = 1

cγ
Bγ2J

(2)Î5/2[σ]η−1
−

A = − 2

cγ
Bγ4J

(4)Î9/2[σ]η−6
− ,

(5.4.4)

instead of eqn (2.2.26b), including the effects of the elliptical preces-
sion of the moments. The equilibrium conditions allow us to split the
magnetoelastic Hamiltonian into two parts:

Hγ(sta) =
∑

i

[1
2cγ(ε2γ1 + ε2γ2) −Bγ2{Q2

2(Ji)εγ1 +Q−2
2 (Ji)εγ2}

−Bγ4{Q4
4(Ji)εγ1 −Q−4

4 (Ji)εγ2}
]
, (5.4.5)

depending only on the static strains, and

Hγ(dyn) =
∑

i

[
1
2cγ{(εγ1 − εγ1)

2 + (εγ2 − εγ2)
2}

−
(
Bγ2{Q2

2(Ji) − 〈Q2
2〉} +Bγ4{Q4

4(Ji) − 〈Q4
4〉}
)
(εγ1 − εγ1)

−
(
Bγ2{Q−2

2 (Ji) − 〈Q−2
2 〉} −Bγ4{Q−4

4 (Ji) − 〈Q−4
4 〉}

)
(εγ2 − εγ2)

]
(5.4.6)
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depending only on the dynamical part of the strains.
To leading order, the magnetoelastic energy is determined by the

static part (5.4.5), corresponding to eqn (2.2.27). Hγ influences the
equilibrium condition determining φ and, in the spin-wave approxima-
tion (H′ is neglected), we have

1
N

∂F

∂φ
=

1
N

〈∂
∂φ

{H + Hγ}
〉
� 1
N

〈∂
∂φ

{H + Hγ(sta)}
〉

= − 6B6
6J

(6)Î13/2[σ]η−15
− sin 6φ+ gµBHJσ sin (φ − φH)

+2cγC(εγ1 sin 2φ− εγ2 cos 2φ) − 2cγA(εγ1 sin 4φ+ εγ2 cos 4φ),
(5.4.7)

or, using the equilibrium values of εγ1 and εγ2,

1
N

∂F

∂φ
= gµBJσ

{
H sin (φ− φH) − 1

6H̃c sin 6φ
}
, (5.4.8a)

with the definition

gµBH̃c = 36κ6
6/(Jσ) = 36

{
B6

6J
(6)Î13/2[σ]η−15

− + 1
2cγCA

}
/(Jσ).

(5.4.8b)
If H = 0, the equilibrium condition ∂F/∂φ = 0 determines the sta-
ble direction of magnetization to be along either a b-axis or an a-axis,
depending on whether H̃c is positive or negative respectively.

The additional anisotropy terms introduced by Hγ and proportional
to the static strains, as for instance the term −Bγ2Q

2
2(Ji)εγ1 in (5.4.5),

contribute to the spin-wave energies. Proceeding as in Section 5.3, we
find the additional contributions to A0(T ) ±B0(T ) in (5.3.22), propor-
tional to the static γ-strains,

∆{A0(T ) +B0(T )}
=

cγ
Jσ

{
2C2 +A2η−8

+ η−4
− − CA(2 + η−8

+ η−4
− ) cos 6φ

}
η−1
+ η−

∆{A0(T ) −B0(T )} =
cγ
Jσ

{
4C2 + 4A2 − 10CA cos 6φ

}
. (5.4.9)

The contribution to A0(T ) − B0(T ) is expressible directly in terms of
the strain-parameters, C and A, without the further correction factors
necessary for A0(T )+B0(T ). By using H̃c and the non-negative quantity

Λγ =
4cγ
Jσ

(C2 +A2 + 2CA cos 6φ), (5.4.10)

we can write the total spin-wave parameter

A0(T ) −B0(T ) = Λγ − gµBH̃c cos 6φ+ gµBH cos (φ − φH). (5.4.11)
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This parameter does not obey the relation (5.3.14) with the second
derivative Fφφ of the free energy. A differentiation ∂F/∂φ, as given
by (5.4.8), with respect to φ shows that (5.3.14) accounts for the last
two terms in (5.4.11), but not for Λγ . A calculation from (5.4.7) of the
second derivative of F , when the strains are kept constant, instead of
under the constant (zero) stress-condition assumed above, yields

A0(T ) −B0(T ) =
1

NJσ

∂2F

∂φ2

∣∣∣∣
ε=ε

= Λγ +
1

NJσ
Fφφ, (5.4.12)

which replaces (5.3.14). The relation (5.3.14), determining A0(T ) −
B0(T ), was based on a calculation of the frequency dependence of the
bulk susceptibility and, as we shall see later, it is the influence of the
lattice which invalidates this argument. The Λγ term was originally sug-
gested by Turov and Shavrov (1965), who called it the ‘frozen lattice’
contribution because the dynamic strain-contributions were not consid-
ered. However, as we shall show in the next section, the magnon–phonon
coupling does not change this result.

The modifications caused by the magnetoelastic γ-strain couplings
are strongly accentuated at a second-order phase transition, at which
Fφφ vanishes. Let us consider the case where H̃c is positive, H̃c =
|H̃c| ≡ Hc, i.e. the b-axis is the easy axis. If a field is applied along an
a-axis, φH = 0, then the magnetization is pulled towards this direction,
as described by eqn (5.4.8):

H = Hc
sin 6φ
6 sinφ

= Hc

(
1 − 16

3 sin2 φ+ 16
3 sin4 φ

)
cosφ, (5.4.13)

as long as the field is smaller than Hc. At the critical field H = Hc,
the moments are pulled into the hard direction, so that φ = 0 and the
second derivative of the free energy,

Fφφ = NgµB{H cosφ−Hc cos 6φ}Jσ, (5.4.14)

vanishes. So a second-order phase transition occurs at H = Hc, and the
order parameter can be considered to be the component of the moments
perpendicular to the a-axis, which is zero for H ≥ Hc. An equally good
choice for the order parameter is the strain εγ2, and these two possibili-
ties reflect the nature of the linearly coupled magnetic–structural phase
transition. The free energy does not contain terms which are cubic in
the order parameters, but the transition might be changed into one of
first-order by terms proportional to cos 12φ, e.g. if σ or η±, and thereby
H̃c, depend sufficiently strongly on φ (Jensen 1975). At the transition,
eqn (5.4.11) leads to

A0(T ) −B0(T ) = Λγ at H = Hc, (5.4.15)
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which shows the importance of the constant-strain contribution Λγ . It
ensures that the spin-wave energy gap E0(T ), instead of going to zero
as |H − Hc|1/2, remains non-zero, as illustrated in Fig. 5.4, when the
transition at H = Hc is approached. Such a field just cancels the macro-
scopic hexagonal anisotropy, but energy is still required in the spin wave
to precess the moments against the strain field of the lattice.

By symmetry, the γ-strains do not contain terms linear in (θ − π
2 ),

and the choice between constant-stress and constant-strain conditions
therefore has no influence on their contribution to the second derivative
of F with respect to θ, at θ = π/2. Consequently, the γ-strains do
not change the relation between A0(T ) + B0(T ) and Fθθ, given by eqn
(5.3.14). The ε-strains vanish at θ = π/2, but they enter linearly with
(θ − π

2 ). Therefore they have no effect on A0(T ) + B0(T ), but they
contribute to Fθθ. To see this, we consider the ε-strain part of the
Hamiltonian, eqn (2.2.29):

Hε =
∑

i

[1
2cε(ε

2
ε1 + ε2ε2) −Bε1{Q1

2(Ji)εε1 +Q−1
2 (Ji)εε2}

]
. (5.4.16)

The equilibrium condition is

εε1 = 1

cε
Bε1〈Q1

2〉 = 1
4Hε sin 2θ cosφ,

in terms of the magnetostriction parameter Hε. In the basal-plane fer-
romagnet, εε1 and εε2 both vanish. The transformation (5.2.2) leads
to

Q1
2 = 1

4 (O0
2 −O2

2) sin 2θ cosφ−O1
2 cos 2θ cosφ+O−1

2 cos θ sinφ

+ 1
2O

−2
2 sin θ sinφ, (5.4.17)

and Q−1
2 is given by the same expression, if φ is replaced by φ− π

2 . This
implies that

Hε = 4

cε
Bε1〈1

4 (O0
2 −O2

2)〉 = 2

cε
Bε1J

(2)Î5/2[σ]η−1
+ . (5.4.18)

The static ε-strains are zero and do not contribute to the spin-wave
parameters A0(T ) ± B0(T ), but they affect the second derivative of F ,
with respect to θ, under zero-stress conditions and, corresponding to
(5.4.12), we have

A0(T ) +B0(T ) =
1

NJσ

∂2F

∂θ2

∣∣∣∣
ε=ε

= Λε +
1

NJσ
Fθθ, (5.4.19)
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with
Λε =

cε
4Jσ

H2
ε , (5.4.20)

where Λε in (5.4.19) just cancels the ε-contribution to Fθθ/(NJσ) de-
termined from eqn (2.2.34).

The dependence of the magnon energy gap in Tb on magnetic field
and temperature has been studied in great detail by Houmann et al.
(1975a). They expressed the axial- and hexagonal-anisotropy energies
of eqn (5.2.44) in the form

A0(T ) ±B0(T ) = P0(±) − P6(±) cos 6φ+ gµBH cos (φ− φH) (5.4.21)

and, by a least-squares fitting of their results, some of which are shown
in Fig. 5.4, they were able to deduce the values of the four parameters
P0,6(±), shown as a function of magnetization in Fig. 5.5. According to
eqns (5.3.22) and (5.4.9), these parameters are given at low temperatures
by:

P0(+) =
{
6B0

2J
(2) − 60B0

4J
(4) + 210B0

6J
(6) + cγ(2C2 +A2)

}
/J (a)

P6(+) =
{
6B6

6J
(6) + 3cγCA

}
/J (b)

P0(−) = 4cγ
{
C2 +A2

}
/J (c)

P6(−) =
{
36B6

6J
(6) + 10cγCA

}
/J, (d)

(5.4.22)
where, for convenience, we have set the renormalization parameters σ
and η± to unity. These expressions for the parameters P0,6(±) are de-
rived from a particular model. In general, additional contributions may
appear due to other magnetoelastic interactions, and to anisotropic two-
ion couplings. Nevertheless, within the RPA, the relations between the
spin-wave energy parameters A0(T ) ± B0(T ) and the bulk anisotropy
parameters, (5.4.12) and (5.4.19) combined with (5.3.7), should still be
valid. The values of the anisotropy parameters, and their temperature
dependences, determine the static magnetic and magnetoelastic proper-
ties, and can thus be obtained from bulk measurements on single crys-
tals. A comparison between such static parameters and the dynamic val-
ues P0,6(±), derived from the field dependence of the spin-wave energy
gap, can therefore elucidate the extent to which the spin-wave theory of
the anisotropic ferromagnet is complete and correct.

Such a comparison has been made by Houmann et al. (1975a). The
axial-anisotropy parameter P0(+)+P6(+), when the moments are along
the easy axis, agrees with the values deduced from torque and mag-
netization experiments, to within the rather large uncertainties of the
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Fig. 5.4. The dependence of the square of the magnon energy gap
in Tb on the internal magnetic field. Open symbols represent results
for the field in the hard direction, and closed symbols are for the easy
direction. The non-zero value of the gap at the critical field, which just
turns the moments into the hard direction, is due to the constant-strain
contribution Λγ . The full lines are least-squares fits of the theoretical ex-
pressions for the energy gap, given in the text, to the experimental results.

latter. The basal-plane anisotropies, as determined from the critical
field Hc and the magnetoelastic γ-strain parameters, are well established
by bulk measurements. Here P0(−) agrees, within the small combined
uncertainties, with that derived from (5.4.22c) and (5.4.11), both in
magnitude and temperature dependence. On the other hand, the small
parameter P6(−) differs from the static value, so that

δ6(−) ≡ P6(−) − gµBH̃c + 8cγCA/(Jσ) (5.4.23a)

is found to be non-zero. A part of this discrepancy may be explained by
a twelve-fold anisotropy term, but this would also affect P0(−), and is
expected to decrease more rapidly with increasing temperature than the
experiments indicate. Within the accuracy of the experimental results,
the non-zero value of δ6(−) is the only indication of an additional renor-
malization of the spin-wave energy gap, compared with that derived
from the second derivatives of the free energy.
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Fig. 5.5. Anisotropy parameters in Tb as a function of the relative
magnetization, deduced from results of the type illustrated in Fig. 5.4.

The σ3-dependence of P0(+) on temperature is consistent with the
σ2-renormalization of the dominant two-fold term in (5.4.22a) predicted
by the Callen–Callen theory, but a comparison with the studies of dilute
Tb-alloys by Høg and Touborg (1975) suggests that a large part of the
axial anisotropy may have its origin in the two-ion coupling. The effect
of the two-ion anisotropy is directly apparent in that part of the axial
anisotropy P6(+) which depends on the orientation of the moments in
the basal plane. If only single-ion anisotropy of the type which we have
considered is important, P6(+) in (5.4.22b) is directly related to the crit-
ical field necessary to turn the moments into the hard direction. How-
ever, the experimental value of P6(+) bears little relation to gµBH̃c/6,
even having the opposite sign. We can express this discrepancy by the
parameter ∆M , defined by

∆M = P6(+) − gµBH̃c/6. (5.4.23b)

The influence of ∆M can be directly seen in the results of Fig. 5.4, since
it is responsible for the difference between the slopes when the field is
applied in the easy and hard directions. Although it could in principle be
due to higher-rank γ-strain magnetoelastic terms, the large magnitude
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of ∆M , compared to the contributions of C and A to the energy gap,
effectively precludes this possibly. We must therefore ascribe it to two-
ion anisotropy.

In the analysis of the field dependence of the magnon energy gap,
the possible dependences of the renormalization parameters σ and η±
on magnetic field and the orientation of the moments were neglected
at zero temperature, but included at non-zero temperatures, assuming
the different parameters effectively to be functions of σ only. In the
case of Dy, the zero-temperature change of the renormalization as a
function of φ is of some importance (Egami 1972; Jensen 1975; Egami
and Flanders 1976), whereas in Tb we have estimated by various means
that both approximations are justified. There are some indications that
there might be a systematic error involved in the determination of the
φ-dependent energy-gap parameters P6(±), possibly arising from the
influence of the classical dipole forces on the inelastic neutron-scattering
at long wavelength, discussed in Section 5.5.1. An extrapolation of the
results found at non-zero wave-vectors to q = 0 suggests that both
P6(+) and P6(−) may be about a factor of two smaller than shown
in Fig. 5.5. If this were the case, ∆M would still be too large to be
explained by the γ-strain couplings, but δ6(−) would be reduced almost
to the level of the experimental uncertainties. Otherwise a non-zero
value of δ6(−) can only be explained by theories beyond the RPA, e.g.
by effects, proportional to the frequency, due to the interaction between
the spin-waves and the electron-hole pair-excitations of the conduction
electrons.

5.4.2 The magnon–phonon interaction
The displacement of the ith ion from its equilibrium position, δRi =
u(Ri), can be expanded in normal phonon coordinates in the usual way:

u(Ri) =
∑
νk

Fν
k(βνk + β+

ν−k)eik·Ri , (5.4.24a)

with

F ν
k,α =

[
h̄

2NMωνk

] 1
2

fν
k,α. (5.4.24b)

M is the mass of the ions and fν
k,α is the α-component of the phonon-

polarization vector. βνk is the phonon-annihilation operator and ωνk

the corresponding phonon frequency, where ν denotes one of the three
(acoustic) branches. The polarization vectors are normalized and are
mutually orthogonal: ∑

α

(fν
k,α)∗fν′

k,α = δνν′ . (5.4.24c)
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For simplicity, we assume that there is only one ion per unit cell, but
the results we shall derive are also applicable to the hcp lattice, at least
for the acoustic modes at long wavelengths. In this limit Hγ(dyn), eqn
(5.4.6), augmented by the kinetic energy of the ions, is adequate for
discussing dynamical effects due to the γ-strains, if εαβ are replaced by
their local values

εαβ(i) = εαβ + i

2

∑
νk

(kαF
ν
k,β + kβF

ν
k,α)(βνk + β+

ν−k)eik·Ri . (5.4.25)

We shall initially concentrate on the most important dynamical effects,
and consider only the inhomogeneous-strain terms involving Stevens op-
erators with odd m. Assuming for the moment that φ = pπ

2 , we obtain
the contribution −Bγ2{−2O−1

2 (Ji) cos 2φ}(εγ2(i)−εγ2) from eqn (5.4.6),
and a corresponding term in Bγ4. Introducing the spin-deviation oper-
ators through (5.2.8) and (5.2.9), we obtain, to leading order in m and
b,

Bγ2O
−1
2 (Ji) = J (2)Bγ2

i√
2J

{
a+

i − ai −
5

4J
(a+

i a
+
i ai − a+

i aiai)
}

= J (2)Bγ2
i√
2J

(
1 − 5

2m+ 5
4 b
)
(a+

i − ai)

= cγC
i√
2J

(
1 + 1

2m+ 1
4 b
)
(a+

i − ai)

= icγC
∑
q

[
Aq(T ) +Bq(T )

2NJσEq(T )

] 1
2

(α+
q − α−q) e−iq·Ri ,

(5.4.26)
utilizing the RPA decoupling (5.2.29) and introducing the (renormal-
ized) magnon operators α+

q and α−q, analogously with (5.2.39) and
(5.2.40). The Bγ4-term is treated in the same way, and introducing
the phonon-operator expansion of the strains (5.4.25) into (5.4.6), we
find that H + Hγ leads to the following Hamiltonian for the system of
magnons and phonons:

Hmp =
∑
k

Ek(T )α+
kαk+

∑
νk

{
h̄ωνkβ

+
νkβνk+W ν

k (α+
k −α−k)(βνk+β+

ν−k)
}

(5.4.27)
with a magnon–phonon interaction given by

W ν
k = −cγ

√
N(k1F

ν
k,2+k2F

ν
k,1)
[
Ak(T ) + Bk(T )

2JσEk(T )

] 1
2

(C cos 2φ+A cos 4φ).

(5.4.28)
This Hamiltonian includes the part of Hγ which is linear in the magnon
operators when φ = pπ

2 . The effects of the static deformations are
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included in Ek(T ) through (5.4.11). In general, W ν
k couples all three

phonon modes with the magnons. A simplification occurs when k is
along the 1- or 2-axis, i.e. when k is either parallel or perpendicular to
the magnetization vector. In this case, W ν

k is only different from zero
when ν specifies the mode as a transverse phonon with its polarization
vector parallel to the basal plane. In order to analyse this situation, we
introduce the four Green functions:

G1(k, ω) = 〈〈αk ; α+
k − α−k〉〉 G2(k, ω) = 〈〈α+

−k ; α+
k − α−k〉〉

G3(k, ω) = 〈〈βk ; α+
k − α−k〉〉 G4(k, ω) = 〈〈β+

−k ; α+
k − α−k〉〉,

(5.4.29)
where the phonon mode is as specified above (the index ν is suppressed).
Hmp then leads to the following coupled equations of motion for these
Green functions:

{h̄ω − Ek(T )}G1(k, ω) −Wk{G3(k, ω) +G4(k, ω)} = 1

{h̄ω + Ek(T )}G2(k, ω) −Wk{G3(k, ω) +G4(k, ω)} = 1

{h̄ω − h̄ωk}G3(k, ω) +W−k{G1(k, ω) −G2(k, ω)} = 0

{h̄ω + h̄ωk}G4(k, ω) −W−k{G1(k, ω) −G2(k, ω)} = 0.

(5.4.30)

These four equations may be solved straightforwardly and, using W−k =
−Wk, we obtain, for instance,

〈〈αk − α+
−k ; α+

k − α−k〉〉 = G1(k, ω) −G2(k, ω)

= 2Ek(T ){(h̄ω)2 − (h̄ωk)2}/D(k, ω),
(5.4.31)

where the denominator is

D(k, ω) = {(h̄ω)2−E2
k(T )}{(h̄ω)2−(h̄ωk)2}−4W 2

k h̄ωkEk(T ). (5.4.32)

In a similar way, introducing the appropriate Green functions, we find

〈〈αk+α+
−k ; α+

k +α−k〉〉 =
[
2Ek(T ){(h̄ω)2−(h̄ωk)2}+8W 2

k h̄ωk

]
/D(k, ω).

(5.4.33)
In this situation, the polarization factor is (k1fk,2 + k2fk,1) = ±k, with
k = |k|. At long wavelengths, the velocity v = ωk/k of the transverse
sound waves is related to the elastic constant c66 = ρv2, and hence

cγ = 4c66V/N = 4Mω2
k/k

2, (5.4.34)

and the coupling term in D(k, ω) can be written

4W 2
k h̄ωkEk(T ) = {Ak(T ) +Bk(T )}(h̄ωk)2Λγ , (5.4.35)
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where the parameter Λγ is given by (5.4.10). The magnetic susceptibil-
ities can be expressed in terms of the Green functions calculated above,
using (5.2.39) and (5.2.40), and we finally arrive at

χxx(q, ω) = Jσ
[
{Aq(T )−Bq(T )}{(h̄ωq)2−(h̄ω)2}−Λγ(h̄ωq)2

]
/D(q, ω)
(5.4.36a)

and

χyy(q, ω) = Jσ{Aq(T ) +Bq(T )}{(h̄ωq)2 − (h̄ω)2}/D(q, ω). (5.4.36b)

Because ωq ∝ q and E0(T ) > 0, it is possible to satisfy the inequality
Eq(T ) � h̄ωq by choosing a sufficiently small q. As mentioned ear-
lier, E0(T ) is always greater than zero, if the magnetoelastic coupling is
non-zero, on account of the constant-strain term Λγ . Under these cir-
cumstances the elementary-excitation energies, determined by the poles
of the susceptibilities or by D(q, ω) = 0, are found to be

(h̄ω)2 =
{
E2

q(T ) + 4W 2
q h̄ωq/Eq(T )

(h̄ωq)2 − 4W 2
q h̄ωq/Eq(T ),

(5.4.37)

to leading order in h̄ωq/Eq(T ). The different excitations have become
mixed magnetoelastic modes, which mutually repel due to the magneto-
elastic coupling, and their squared energies are shifted up or down by
an equal amount. When Eq(T ) � h̄ωq, the change in energy of the
upper, predominantly magnon-like branch can be neglected, whereas
the frequency of the lower phonon-like mode, as obtained from (5.4.37),
using the relation (5.4.35),

ω2 = ω2
q

(
1 − Λγ

A0(T ) −B0(T )

)
+ O

(
{h̄ωq/Eq(T )}4

)
, (5.4.38a)

may be modified appreciably relative to the unperturbed phonon fre-
quency. This relation implies that the elastic constant, relative to the
unperturbed value, as determined by the velocity of these magneto-
acoustic sound waves, is

c∗66
c66

= 1 − Λγ

A0(T ) −B0(T )
; q ‖ or ⊥ 〈J〉. (5.4.38b)

At q = 0, the dynamic coupling vanishes identically and the spin-wave
energy gap is still found at h̄ω = E0(T ) = {A2

0(T )−B2
0(T )}1/2, with the

static-strain contributions included in A0(T ) ± B0(T ). Due to the van-
ishing of the eigenfrequencies of the elastic waves at zero wave-vector, the
lattice cannot respond to a uniform precession of the magnetic moments
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at a non-zero frequency. Therefore the spin-wave mode at q = 0 per-
ceives the lattice as being completely static or ‘frozen’. This is clearly
consistent with the result (5.4.12), that the spin-wave energy gap is
proportional to the second derivative of the free energy under constant-
strain, rather than constant-stress, conditions.

If the lattice is able to adapt itself to the applied constant-stress
condition, in the static limit ω � ωq, then, according to (5.4.36b),

χyy(q → 0, 0) = χyy(q ≡ 0, 0) =
Jσ

A0(T ) −B0(T ) − Λγ
= N

(Jσ)2

Fφφ

,

(5.4.39)
in agreement with (5.3.7). However, the first equality is not generally
valid. The susceptibility depends on the direction from which q ap-
proaches 0. If the direction of q is specified by the spherical coordinates
(θq, φq), then eqn (5.4.39) is valid only in the configuration considered,
i.e. for θq = π

2 and φq = 0 or π
2 . If we assume elastically isotropic

conditions (c11 = c33, c44 = c66, and c12 = c13), which is a reasonable
approximation in Tb and Dy, we find that (5.4.39) is replaced by the
more general result

χyy(q → 0, 0) =
Jσ

A0(T ) −B0(T ) − Λγ sin2 θq{1 − (1 − ξ) sin2 θq sin2 2φq}
,

(5.4.40)

when φ = 0 or π
2 , and ξ = c66/c11 (� 0.3 in Tb or Dy). The rea-

son for this modification is that discussed in Section 2.2.2; the abil-
ity of the lattice to adapt to various static-strain configurations is lim-
ited if these strains are spatially modulated. If q is along the c-axis
(θq = 0), the γ-strains are ‘clamped’, remaining constant throughout
the crystal, so that the susceptibilities at both zero and finite frequen-
cies are determined by the uniform γ-strain contributions alone. We
note that, according to (5.4.28), W ν

k vanishes if k is parallel to the c-
axis (k1 = k2 = 0). The opposite extreme occurs when θq = π

2 and
φq = 0 or π

2 . The relevant strain-mode is determined by the equilib-
rium conditions (5.4.3) at zero constant stress, but generalized to the
non-uniform case where the y-component of the moments has a small
modulation, with the wave-vector q along the x-direction. This strain
mode (εγ2(i)+ω21(i) ∝ cos (q ·Ri + ϕ)) coincides with a phonon eigen-
state, the transverse phonon at q with its polarization vector in the basal
plane. This coincidence makes the equilibrium strain-mode viable, which
then explains the constant-stress result (5.4.39) obtained for χyy in this
situation.

We shall now return to the discussion of the second-order transition
occurring at H = Hc, when the field is applied along a hard direction



224 5. SPIN WAVES IN THE FERROMAGNETIC RARE EARTHS

in the basal plane. From (5.4.36a), we see that χxx(q → 0, 0) does
not show an anomaly at the transition. The critical behaviour is con-
fined to the yy-component of the static susceptibility. At the transition,
A0(T ) − B0(T ) = Λγ , according to eqn (5.4.15), and (5.4.40) then pre-
dicts a very rapid variation of χyy(q → 0, 0) with the direction of q, with
a divergent susceptibility in the long wavelength limit in the two cases
where q is along the z- or the y-axis, both lying in the basal plane, paral-
lel or perpendicular to the magnetic moments. These divergences reflect
a softening of two modes in the system, the transverse phonons propa-
gating parallel to either of the two axes (θq = π

2 and φq = pπ
2 ), with

their polarization vectors in the basal plane. Equation (5.4.38) predicts
that the velocity of these modes is zero, or c∗66 = 0, at H = Hc, at which
field the dispersion is quadratic in q instead of being linear. The soften-
ing of these modes was clearly observed in the ultrasonic measurements
of Jensen and Palmer (1979). Although the ultrasonic velocity could not
be measured as a function of magnetic field all the way to Hc, because
of the concomitant increase in the attenuation of the sound waves, the
mode with q parallel to the magnetization could be observed softening
according to (5.4.38b), until the elastic constant was roughly halved. On
the other hand, as discussed in the next section, the dipolar interaction
prevents the velocity of the mode in which the ionic motion is along the
magnetization from falling to zero, and (5.4.38b) is replaced by (5.5.13).
When they took this effect into account, Jensen and Palmer (1979) could
fit their results over a wide range of fields and temperatures with the
RPA theory, without adjustable parameters or corrections for critical
phenomena, using the bulk values of the three basal-plane anisotropy
parameters C, A, and H̃c,

The absence of such corrections may be explained by the behaviour
of the critical fluctuations, which is the same as that found in a pure
structural phase-transition in an orthorhombic crystal, where c66 is again
the soft elastic constant (Cowley 1976; Folk et al. 1979). The strong
bounds set by the geometry on the soft modes in reciprocal space con-
strain the transition to exhibit mean-field behaviour. The marginal dim-
ensionality d∗, as estimated for example by Als-Nielsen and Birgeneau
(1977), using a real space version of the Ginzburg criterion, is d∗ = 2
in this kind of system. Whenever the dimensionality d of the system is
larger than d∗, as in this case, Wilson’s renormalization group theory
predicts no corrections to Landau’s mean-field theory. The transition
at H = Hc is thus profoundly influenced by the magnetoelastic effects.
Without them, i.e. with C = A = 0, the spin-wave energy gap would van-
ish at the transition, and the critical fluctuations, the long-wavelength
magnons, would not be limited to certain directions in q-space. Under
such circumstances, the system would behave analogously to a three-
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dimensional Ising model, d∗ = 4, with pronounced modifications in-
duced by the critical fluctuations. The original treatment by Turov and
Shavrov (1965) of the γ-strain contributions, which prevent the uniform
magnon mode from going soft at the critical field, included only the
static-strain components. The more complete analyses, including the
phonon dynamics, were later given by Jensen (1971a,b), Liu (1972b),
and Chow and Keffer (1973).

When the wave-vector is in the c-direction, the γ-strain couplings
vanish, but instead the ε-strains become important. The O1

2-term in Q1
2,

given by eqn (5.4.17), leads to a linear coupling between the magnons
and the phonons, and proceeding as in eqns (5.4.26–27), we find the
additional contribution to Hmp

∆Hmp =
∑
k

iW ν
k (ε)(α+

k + α−k)(βνk + β+
ν−k), (5.4.41a)

with

W ν
k (ε) = −1

4cε
√
N
{
(k1F

ν
k,3 + k3F

ν
k,1) cosφ+ (k2F

ν
k,3 + k3F

ν
k,2) sinφ

}
×
[
Ak(T ) −Bk(T )

2JσEk(T )

] 1
2

Hε, (5.4.41b)

in the long-wavelength limit. When k is parallel to the c-axis, (5.4.28)
and (5.4.41) predicts that only the transverse phonons with their polar-
ization vectors parallel to the magnetization are coupled to the magnons.
The calculation of the velocity of this coupled mode leads, by analogy
to (5.4.38), to an elastic constant

c∗44
c44

= 1 − Λε

A0(T ) +B0(T )
when fν

k ‖ 〈J〉. (5.4.42)

The same result is obtained for the transverse-phonon mode propagating
in the direction of the ordered moments, with the polarization vector
parallel to the c-axis. These are the two modes which go soft in the case
of a second-order transition to a phase with a non-zero c-axis moment.

We have so far only considered the dynamics in the long-wavelength
limit. At shorter wavelengths, where the phonon and spin-wave energies
may be comparable, the magnon–phonon interaction leads to a strong
hybridization of the normal modes, with energy gaps at points in the
Brillouin zone where the unperturbed magnon and phonon dispersion
relations cross each other, as illustrated in Fig. 5.6. The interaction
amplitudes (5.4.28) and (5.4.41b) are correct only for small wave-vectors.
At shorter wavelengths, we must consider explicitly the relative positions
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of neighbouring ions, instead of the local strains. Evenson and Liu (1969)
have devised a simple procedure for replacing the local-strain variables in
the magnetoelastic Hamiltonian with the relative displacements of the
neighbouring ions. Using their procedure, and assuming the nearest-
neighbour interactions to be dominant, we find that eqn (5.4.41b) is
replaced by

W ν
k (ε) = −1

4cε
√
N
(

2

c
sin (kc/2)

)
F ν

k,‖

[
Ak(T ) −Bk(T )

2JσEk(T )

] 1
2

Hε, (5.4.43)

when k is along the c-axis. c is the lattice constant and F ν
k,‖ is the com-

ponent of Fν
k parallel to the magnetization vector, which is only non-zero

for one of the transverse-phonon modes. This interaction does not dis-
tinguish between the two sublattices in the hcp crystal. This means
that W ν

k (ε) only couples the magnons with the phonons at a certain k if
the modes are either both acoustic or both optical, consistent with the
double-zone representation in the c-direction. Except for the replace-
ment of (5.4.41b) by (5.4.43), the interaction Hamiltonian (5.4.41a) is
unchanged. From the equations of motion of the Green functions, we
may derive the susceptibilities, when k is along the c-direction, in the
same way as before, eqns (5.4.29–36), and the results are found to be:

χxx(k, ω) = Jσ{Ak(T ) −Bk(T )}{(h̄ωtk)2 − (h̄ω)2}/Dε(k, ω)

χyy(k, ω) = Jσ{Ak(T ) +Bk(T )}
×
{
(h̄ωtk)2 − (h̄ω)2 − 4W 2

k(ε)h̄ωtk/Ek(T )
}
/Dε(k, ω),

(5.4.44)
with

Dε(k, ω) = {E2
k(T ) − (h̄ω)2}{(h̄ωtk)2 − (h̄ω)2} − 4W 2

k(ε)h̄ωtkEk(T ),
(5.4.45)

where ωtk is the angular frequency of the transverse phonon mode at k.
Introducing the parameter

Υk =
[
1 +

16h̄ωtkEk(T )W 2
k(ε)

{E2
k(T ) − (h̄ωtk)2}2

] 1
2

, (5.4.46)

we find the poles in the susceptibilities at

h̄ω = ±E±
k = ±

[1
2

{
E2

k(T ) + (h̄ωtk)2
}
± 1

2

{
E2

k(T ) − (h̄ωtk)2
}
Υk

] 1
2 ,

(5.4.47a)
corresponding to

Dε(k, ω) = {(E+
k )2 − (h̄ω)2}{(E−

k )2 − (h̄ω)2}. (5.4.47b)
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By a straightforward manipulation of these expressions, we obtain

χ′′
yy(k, ω) = Im

[
χyy(k, ω)

]
= πJσ

Ak(T ) +Bk(T )
2Ek(T )

×
[ E+

k

Ek(T )
Υk + 1
2Υk

{
δ(E+

k − h̄ω) − δ(E+
k + h̄ω)

}
+

E−
k

Ek(T )
Υk − 1
2Υk

{
δ(E−

k − h̄ω) − δ(E−
k + h̄ω)

}]
.

(5.4.48)
Almost the same expression is obtained for χ′′

xx(k, ω); the sign before
Bk(T ) is reversed and the factors E±

k /Ek(T ) are replaced by their re-
ciprocals. If Wk(ε) = 0, then Υk = 1 and E+

k = Ek(T ), and (5.4.48)
is equivalent to eqn (5.2.40b). When Wk(ε) is non-zero, Υk > 1 and
there are two poles in the magnetic susceptibilities, one at E+

k closest
to Ek(T ), and the other at E−

k closest to the energy of the transverse-
phonon mode. Both poles lie outside the energy interval between Ek(T )
and h̄ωtk. The two normal modes at k, the magnons and the transverse
phonons polarized parallel to the magnetization, are transformed into
two magnetoelastic modes, both of which give rise to a magnetic scat-
tering of neutrons. The cross-section for neutrons scattered by a pure
phonon-mode is proportional to (κ · fν

k )2. If the scattering vector κ is
along the c-axis, the transverse phonons in this direction do not therefore
scatter neutrons, unless they are coupled to the magnons. With κ par-
allel to the c-axis, the (magnetic) scattering amplitude is proportional
to χ′′

yy(k, ω) and, in this situation, eqn (5.4.48), combined with (4.2.2)
and (4.2.3), determines the total scattered intensity due to the coupled
magnon and transverse-phonon modes. If the energy difference between
the two uncoupled modes at some k is large, Υk is only slightly greater
than 1, and the coupling induces only a small repulsion of the mode en-
ergies. The pole at energy E+

k , close to the unperturbed magnons, then
dominates the magnetic scattering cross-section. The strongest modifi-
cation occurs at the k-vector where Ek(T ) = h̄ωtk, at which Υk → ∞
and eqn (5.4.48) predicts nearly equal scattering intensities of the two
modes at energies determined by

(h̄ω)2 = E2
k(T ) ± 2Ek(T )|Wk(ε)| ; Ek(T ) = h̄ωtk, (5.4.49a)

corresponding to an energy splitting, or energy gap, between the two
modes of magnitude

∆ � 2|Wk(ε)|, (5.4.49b)

to leading order. These resonance or hybridization phenomena, the re-
distribution of the scattered intensity and the creation of an energy gap,
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are observed whenever two normal modes are coupled linearly with each
other, and the value of the energy gap at the k-point where the two
coupled modes are closest in energy, or where their scattering intensities
are equal, gives a direct measure of the coupling amplitude at that par-
ticular k-vector. The effect of the magnon–phonon interaction on the
excitation spectrum in Tb is illustrated in Fig. 5.6.

Fig. 5.6. The dispersion relations
for the magnons and phonons propa-
gating in the c-direction of Tb at 53
K, illustrating the magnon–phonon
interaction. The calculated unper-
turbed modes are depicted by the
full curves. The normal modes are
mixed magnon–phonon states, and
energy gaps appear at the crossing
points of the unperturbed dispersion
relations. The acoustic magnons in-
teract both with the acoustic and the
optical phonons.

The method described above, based on the magnetoelastic Hamilto-
nian, is not sufficiently general to enable a prediction of all possible cou-
plings allowed by symmetry, i.e. the selection rules. To accomplish this,
it is necessary either to use group-theoretical arguments, or to derive
a general version of the magnon–phonon Hamiltonian based exclusively
on symmetry considerations. These two methods have been applied to
this system by respectively Cracknell (1974) and Jensen and Houmann
(1975). Their analyses show that, when k is along the c-direction, a
further mixing is allowed in addition to that considered above. This re-
quires the single-zone representation in the c-direction, since it couples
an acoustic mode to an optical mode at the same k-vector. The phonon
modes in question are once more transverse, but their coupling to the
magnons depends on the polarization relative to the direction of magnet-
ization. In an a-axis magnet, the polarization vector should be parallel
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to the magnetization, as is assumed in eqn (5.4.43), whereas in a b-axis
magnet, the acoustic–optical coupling involves the transverse phonons
polarized perpendicular to the magnetization (i.e. still along an a-axis).
The symmetry arguments show that this coupling must be quadratic in
k in the long wavelength limit, instead of linear as is Wk(ε). It there-
fore has no influence on the uniform strains or the elastic constants,
and accordingly no counterpart in the magnetoelastic Hamiltonian. Liu
(1972a) has discussed the possible origin of such an acoustic–optical in-
teraction, and he concludes that it cannot be a crystalline-field effect,
but must be mediated indirectly via the conduction electrons and be
proportional to the spin–orbit coupling forces. As is illustrated in Fig.
5.6, the acoustic–optical magnon–phonon interaction is clearly observed
in Tb, where it leads to the energy gap ∆2, the strongest hybridization
effect seen in the metal. However, a closer examination (Jensen and
Houmann 1975) shows that the transverse phonon modes involved are
those polarized parallel to the magnetization, in spite of the fact that Tb
has its magnetization vector in the b-direction. Hence this interaction
violates the selection rules deduced from the general symmetry argu-
ments, leading to the conclusion that the ground-state of Tb cannot be
a simple b-axis ferromagnet as assumed. The 4f moments are undoubt-
edly along an easy b-axis, but the spins of the conduction electrons are
not necessarily polarized collinearly with the angular momenta of the
core electrons, because of their spin–orbit coupling. If the ground-state
spin-density wave of the conduction electrons in Tb has a polarization
which varies in space within a single unit cell, a coupling mediated by this
spin-density wave may violate the selection rules based on the symmetry
properties of the simple ferromagnet. The presence of the ‘symmetry-
breaking’ acoustic–optical interaction in Tb demonstrates that the con-
duction electrons play a more active role than passively transmitting the
indirect-exchange interaction. This magnon–phonon coupling is directly
dependent on spin–orbit effects in the band electrons, in accordance with
Liu’s explanation, and its appearance demonstrates that the polarization
of the conduction-electron spins must have a component perpendicular
to the angular momenta.

To complete this section, we shall briefly discuss the additional
magnon–phonon interaction terms which are linear in the phonon oper-
ators, but quadratic in the magnon operators:

H(2)
mp =

∑
qkν

[
Uν(k,q)α+

q+kαq + 1
2Vν(k,q)α+

q+kα
+
−q

+1
2V

∗
ν (−k,−q)αqα−q−k

]
(βνk + β+

ν−k). (5.4.50)

Referring back to the magnetoelastic Hamiltonian, we find that such an
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interaction may originate from, for instance, the term

−Bγ2{(O0
2 +O2

2) − 〈O0
2 +O2

2〉}1
2 cos 2φ(εγ1 − εγ1)

in (5.4.6), or the corresponding terms in (5.4.16). In contrast to the lin-
ear couplings considered above, the symmetry-preserving α-strain part
of the magnetoelastic Hamiltonian makes a contribution to the quadratic
interaction terms. Using the procedure of Evenson and Liu (1969), it
is straightforward, if somewhat tedious, to relate the interaction am-
plitudes in eqn (5.4.50) to the magnetoelastic coupling parameters. We
shall not perform this analysis here, but refer instead to the detailed cal-
culations of Jensen (1971a,b). The interactions in eqn (5.4.50) have the
consequence that the equations of motion of the magnon Green func-
tion 〈〈αq ; α+

q〉〉 involve new, higher-order mixed Green functions like
〈〈αq−kβk ; α+

q〉〉. Performing an RPA or Hartree–Fock decoupling, as in
(5.2.29), of the three-operator products which occur in the equations of
motion of the new Green functions, we obtain a closed expression for
the magnon Green function, which may be written

〈〈αq ; α+
q 〉〉 =

1
h̄ω − Eq(T ) − Σ(q, ω)

, (5.4.51)

where Σ(q, ω) is the self-energy, due to the interactions in (5.4.50), of
the magnons of wave-vector q. Neglecting Vν(q,k), we find that the
self-energy at T = 0 is

Σ(q, ω) = lim
ε→0+

∑
kν

|Uν(k,q)|2
h̄ω + ih̄ε− Eq+k(0) − h̄ωνk

. (5.4.52)

These interactions are not diagonal in reciprocal space and the magnons
are therefore affected by all the phonons. Whenever k has a value
such that Eq(0) � Eq+k(0) + h̄ωνk, the real part of the denomina-
tor in (5.4.52) vanishes close to the magnon pole at q, as determined
by (5.4.51). This implies a negative imaginary contribution to Σ(q, ω),
when h̄ω � Eq(0), and hence a reduction in the lifetime of the magnons.
The energy of the magnons at q is approximately given by Eq(0) +
Re
[
Σ(q, ω)

]
, with h̄ω � Eq(0). At non-zero temperatures, the self-

energy terms increase in proportion to the Bose population-factors of
the magnons and phonons involved. These interactions, quadratic in
the magnon operators, do not lead to the kind of hybridization effects
produced by the linear couplings, but rather give rise to a (small) renor-
malization of the normal-mode energies and to a finite lifetime of the ex-
citations. These effects are entirely similar to those due to the magnon–
magnon interactions appearing in the spin-wave theory in the third order
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of 1/J . Equation (5.4.52) shows that the ‘zero-point’ motion of the ions,
at T = 0, has a slight effect on the magnons. A similar effect occurs due
to the magnon–magnon interactions, but only in an anisotropic ferro-
magnet where B is non-zero, as we discussed in the previous section. In
most cases, the contributions due to the magnon–magnon interactions
are expected to predominate, because the magnon–phonon coupling pa-
rameters are usually quite small, in comparison with the spin-wave inter-
actions. Although the interactions in (5.4.50) may not be important for
the magnons, they may have observable effects on the phonons at finite
temperatures. For instance, they affect the velocity of the transverse
sound waves propagating in the c-direction and polarized perpendicular
to the magnetization, but not those polarized parallel to the magneti-
zation, which are modified by the linear couplings as discussed above.
Deriving the perturbed phonon Green functions in the same way as the
magnon Green function, and taking the long-wavelength limit, we find
(Jensen 1971a,b)

c∗44
c44

= 1 − Λε
1
NJ

∑
q

nq

Eq(T )
when fν

k ⊥ 〈J〉. (5.4.53)

We note that this result is of higher order in 1/J than the effect due
to the linear coupling, given in (5.4.42). However, the extra factor 1/J
may be compensated by the magnon population-factor nq in the sum
over q, at elevated temperatures.

Modifications of the results obtained above may occur, due to an-
harmonic terms of third order in the strains, or magnetoelastic terms
quadratic in the strains. These higher-order contributions may possi-
bly be of some importance for the temperature dependence of the elas-
tic constants and the spin-wave parameters. However, they should be
of minor significance under the nearly constant-strain conditions which
obtain, for instance, when the magnetic-field dependence of the elastic
constants is considered.

5.5 Two-ion anisotropy

In this section, we discuss the components of the two-ion coupling which
cannot be included in the isotropic Heisenberg Hamiltonian considered
hitherto, i.e. the two-ion term in eqn (5.2.1). We first consider the clas-
sical magnetic dipole–dipole interaction in some detail, and show how
it may affect the spin-wave energies and ultrasonic velocities. There-
after we discuss some of the complexities resulting from the presence of
general two-ion couplings, which are consistent with the symmetry prop-
erties of the magnetic phase. The experimental manifestations of such
interactions, which either have been observed in the excitation spectrum
of Tb, or could in principle be observed, are finally summarized.
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5.5.1 The dipole–dipole interaction
A general two-ion Hamiltonian involving only the dipolar moments of
the 4f electrons is

Hdd = −1

2

∑
ij

∑
αβ

Jαβ(ij)JiαJjβ . (5.5.1)

The Heisenberg interaction, when expressed in this way, is diagonal, with
the form J (ij)δαβ . The most familiar example of an anisotropic two-ion
coupling is the classical magnetic dipole–dipole interaction, which gives
a contribution

∆Jαβ(ij) = N

V
(gµB)2Dαβ(ij), (5.5.2a)

where Dαβ(ij) is the dimensionless coupling parameter

Dαβ(ij) =
V

N

3(Riα −Rjα)(Riβ −Rjβ) − δαβ |Ri − Rj|2

|Ri − Rj |5
, (5.5.2b)

recalling that the magnetic moment of the ith ion is gµBJi. This cou-
pling is weak, being typically one or two orders of magnitude smaller
than the indirect exchange between near neighbours, but it is extremely
long-range and anisotropic and may therefore have important conse-
quences for the magnetic properties, as we shall discuss in the following.

We wish to calculate the spatial Fourier transform

Dαβ(q) = 1

N

∑
i

∑
j

Dαβ(ij) e−iq·(Ri−Rj). (5.5.3)

If q is along the c-axis, which is a three-fold axis of the hcp lattice,
the symmetry dictates that the only non-zero elements of Jαβ(q) are
Jξξ(q) = Jηη(q) and Jζζ(q). In addition, the condition

∑
αDαα(q) = 0

implies that

Dζζ(q) = −2Dξξ(q) = −2Dηη(q) ; q ‖ c− axis, (5.5.4)

with the extra stipulation that q �= 0, in which case the surface of the
sample does not contribute. In the limit of long wavelengths, the shape
of the sample becomes important, and for convenience we assume it to
be an ellipsoid, with the principal axes along the symmetry ξ-, η-, and
ζ-axes. We consider first the limit q = 0 where, because the sample is an
ellipsoid, the summation over j in (5.5.3) leads to a result independent
of i, since an ellipsoid placed in a constant magnetic field has a uniform
magnetization throughout its interior. Furthermore, when r = Ri − Rj

becomes large, it may be replaced by a continuous variable, and the sum
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over j may be split into a sum over the lattice points lying within a large
sphere plus an integral over the rest of the sample:

∑
j

· · · =
∑

j∈sphere

· · · + N

V

∫ sample

sphere

· · · dr.

The value of the integral for the zz-component is∫
1
r3
(3z2

r2
− 1
)
dr = −

∫
∇ ·
( z
r3

)
dr =

∫
sphere

z · dS
r3

−
∫

sample

z · dS
r3

=
4π
3

−Nz,

where dS is a vectorial surface element of the sphere/sample, and Nξ is
the demagnetization factor

Nξ =
∫

sample

(
ξ̂ · r
r3

)
ξ̂ · dS, (5.5.5)

where ξ̂ is a unit vector along the ξ-axis. It is easily seen that Nξ +Nη +
Nζ = 4π. Hence we obtain

Dξξ(0) =
4π
3

+
[
Dξξ(0)

]
L
−Nξ, (5.5.6)

plus equivalent results for the other diagonal components. The first
term is the Lorentz factor, and

[
Dξξ(0)

]
L

is the value of the lattice sum
over the sphere, satisfying the relations

[
Dζζ(0)

]
L

= −2
[
Dξξ(0)

]
L

=
−2
[
Dηη(0)

]
L
. In the case of a cubic lattice, the lattice sums vanish

by symmetry. This is nearly also true for an hcp lattice with an ideal
c/a-ratio, because of the close relationship between the fcc lattice and
the ideal hcp lattice. The hcp lattice of the heavy rare earths is slightly
distorted, as may be seen from Table 1.2, in which case the lattice sums
become non-zero, approximately proportionally to the deviation from
the ideal c/a-ratio;

[
Dξξ(0)

]
L

= −0.0024 + 1.50
(
c/a−

√
8/3
)
. Brooks

and Goodings (1968) overestimate the anisotropy in the free energy due
to the dipole interaction by a factor of two.

When considering the lattice sum determining Dαβ(q) − Dαβ(0),
we may immediately apply the continuum approximation in the long-
wavelength limit 2π/q � a, and replace the sum with the correspond-
ing integral. In the calculation above at q = 0, this approximation
is not directly applicable, because the corresponding integral contains
a divergence at the origin, which is however removed in the difference
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Dαβ(q) − Dαβ(0). In addition to the condition q � 2π/a, we shall
assume that q � 2π/L, or more specifically q ≥ 10/L (Keffer 1966),
where L is a length dimension of the crystal, in which case the effects
of the boundaries on Dαβ(q) are averaged out because of the relatively
rapid variation of the exponential factor on the surface. Using these two
conditions, we find

Dαβ(q) = Dαβ(0) +
∫ 3(α̂·r)(β̂ ·r) − δαβ r

2

r5
(
eiq·r − 1

)
dr

=
[
Dαβ(0)

]
L
+∫∫ 3(α̂·r)(β̂ ·r) − δαβr

2

r5

[ ∞∑
l=0

[4π(2l+ 1)]1/2 il jl(qr)Yl0(θ, φ)
]
r2drdΩ.

The q-independent term in the first integral leads to the same result as in
(5.5.6), but without the lattice-sum contribution, and adding Dαβ(0),
we are left with the term

[
Dαβ(0)

]
L
. The q-dependent exponential

is expanded in terms of the spherical Bessel functions, as in (4.1.8),
with the polar axis chosen to be parallel to q. The dipole factor in the
resulting integral may be written as a linear combination of the spherical
harmonics of second rank Y2m(θ, φ), multiplied by r−3, ensuring that
only the term with l = 2 in the sum over l survives the integration over
solid angles. Further, if α̂ and β̂ are either parallel or perpendicular to
q, only the diagonal components may differ from zero. With α̂ and β̂
both parallel to q, the longitudinal component is

D‖(q) −
[
D‖(0)

]
L

=
∫∫

[16π/5]1/2Y20(θ, φ)r−3[4π · 5]1/2(−1)j2(qr)Y20(θ, φ)r2drdΩ

= −8π
∫ ∞

0

1
ρ
j2(ρ)dρ = −8π

[
− j1(ρ)

ρ

]∞
0

= −8π
3
,

recalling that j1(ρ)/ρ→ 1
3 or 0, for respectively ρ→ 0 or ∞. This result

implies that the two transverse components are

D⊥(q) −
[
D⊥(0)

]
L

= −1
2

{
D‖(q)−

[
D‖(0)

]
L

}
=

4π
3

; (5.5.7)

when 2π/L� q � 2π/a.

The dipole-coupling components change from the values given by (5.5.6)
to those above within a very narrow range of q, i.e. when q goes from
zero to about 10/L, as shown by the detailed analysis of Keffer (1966).
At larger wave-vectors, the variation of Dαβ(q) is smooth and gradual,
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and it may be described by a few interplanar coupling parameters of the
type used for other two-ion interactions. Cohen and Keffer (1955) have
calculated the q-dependence for the three cubic Bravais lattices, and
their results also determine approximately Dαβ(q), with q along the c-
axis, in the hcp lattice with the ideal c/a-ratio, since this is equivalent to
q along a (111)-direction in the fcc crystal. In the distorted case, with
c/a = 0.963

√
8/3 (corresponding to Ho), a numerical calculation gives

Dξξ(q) + 0.02214π

3
=
{
0.9190 + 0.0816 cos (qc/2) − 0.0006 cos(qc)

}4π

3

when q ‖ c-axis and q ≥ 10/L, so that the q-dependence in the c-
direction is very weak, except for the jump at small q, which is illustrated
for the example of Ho in Fig. 5.7.

In a uniform ferromagnet, the demagnetization factor leads to a pos-
itive contribution to the internal energy. Without any external applied

Fig. 5.7. Parallel and perpendicular components of the Fourier trans-
form, for q along the c-direction, of the two-ion coupling in Ho, deduced
from the spin-wave energies. The coupling is assumed to comprise an
isotropic indirect-exchange contribution and the classical dipole–dipole
interaction, which gives rise to the discontinuity at q = 0 in the parallel

component, and stabilizes the cone structure at low temperatures.
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field, it is therefore energetically favourable for the system to split up
in domains, in which the magnetization vector points in different direc-
tions, so that the magnetization almost vanishes at the surface. The
greater the number of domains, the more effectively the demagnetiza-
tion contribution may be eliminated, but this tendency is opposed by
the cost in energy of the domain-walls. It is only the contribution due to
the demagnetization factor (as determined by the magnetization at the
surface) which is affected by the creation of domains, and in a simple
model in which the energy of the domain-walls is neglected, the internal
energy per unit volume, due to the dipole coupling and including the
Zeeman energy, is

UD + UZ � −1
2D

eff
zz (0)M2 + 1

2Nz〈M〉2 −HA〈M〉.

The demagnetization factor is considered separately, so that Deff
zz (0) =

4π/3 +
[
Dzz(0)

]
L
, and HA is the field applied in the z-direction. M is

the magnetization,
M = N

V
gµB〈Jz〉 (5.5.8)

in each domain, whereas 〈M〉 is the magnetization averaged over the
whole crystal. If the internal field HI and the demagnetization field HD

are defined by

HI = HA −HD ; HD = Nz〈M〉, (5.5.9)

the energy is minimized by the conditions; HI = 0 when 〈M〉 < M , and
〈M〉 = M when HI > 0. As a function of HI , the magnetization jumps
from zero to its ‘saturation’ value at HI = 0.

The strong q-dependence of the dipole coupling at small q is re-
flected in the energies of the magnetic excitations. In the case of the
anisotropic ferromagnet, it is straightforward to deduce that the two-
ion coupling of eqn (5.5.1) leads to spin-wave energies determined by

E2
T (q) =

[
A0(T ) +B0(T ) + 〈Jz〉{Jξξ(0) − Jζζ(q)}

]
×
[
A0(T ) −B0(T ) + 〈Jz〉{Jξξ(0) − Jηη(q)}

]
−
[
〈Jz〉Jηζ(q)

]2
,

(5.5.10)
assuming that the magnetization vector in the basal plane is parallel
to the ξ-axis, and that Jηζ(q) = Jζη(q). This result may be obtained
by an extension of the procedure used in Section 5.2, most easily from
the MF susceptibility (5.2.42). Introducing the above results into this
expression, we find, at q ≡ 0,

E2
T (0) =

[
A′

0(T )+B′
0(T )+ gµB〈M〉Nζ

][
A0(T )−B0(T )+ gµB〈M〉Nη

]
,

(5.5.11a)
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where the H appearing in A0(T ) in (5.2.37) or (5.3.22) is the internal
field HI , and

A′
0(T ) +B′

0(T ) = A0(T ) +B0(T ) + gµBM
([
Dξξ(0)

]
L
−
[
Dζζ(0)

]
L

)
.

(5.5.11b)
In comparison with the other anisotropy terms, the lattice-sum contribu-
tion to A′

0(T )+B′
0(T ) is very small (except in Gd) and may be neglected.

Equation (5.5.11) demonstrates that the energy gap at q = 0 depends
on the shape of the sample, as was first pointed out by Kittel (1948).
The same is the case with all other spin-wave modes in the magneto-
static region q ≤ 10/L, which are the observable states in ferromagnetic
resonance experiments. In a neutron-scattering experiment, the volume
in reciprocal space enclosed by the resolution function is normally sev-
eral orders of magnitude larger than the volume of the magnetostatic
region. The spin-waves in the long-wavelength limit, detected by inelas-
tic neutron-scattering, therefore emanate from the much larger region
where q ≥ 10/L, but is still much smaller than 2π/a, so that any two-ion
coupling, except for the dipole coupling, is the same as that at q = 0.
The spin-wave energies in this regime are determined by eqn (5.5.10),
when the dipole-coupling tensor in (5.5.7) is transformed to the (ξηζ)-
coordinate system, and are

E2
T (q ≈ 0) = E2

T (0̃) + 4πgµBM
[
{A0(T ) −B0(T )} cos2 θq

+ {A′
0(T ) +B′

0(T )} sin2 θq sin2 φq

]
, (5.5.12a)

where (θq, φq) are the polar angles of q with respect to the c-axis or
ζ-axis, and

E2
T (0̃) =

[
A′

0(T ) +B′
0(T )

][
A0(T ) −B0(T )

]
. (5.5.12b)

As long as the magnetization is in the basal-plane, this result is gener-
ally valid if φq is redefined to be the angle between the magnetization
vector and the projection of q on the basal-plane. ET (0̃) is the min-
imum excitation energy, and the corresponding spin waves propagate
parallel to the magnetization vector. If A′

0(T ) + B′
0(T ) is significantly

larger than A0(T ) − B0(T ) (in Tb it is an order of magnitude greater
at T = 0), the maximum value of ET (q ≈ 0) occurs when q lies in the
basal plane perpendicular to the magnetic moments, whereas the spin
waves propagating in the c-direction only have an energy slightly greater
than ET (0̃). An inelastic neutron-scattering experiment, with the mean
value of the scattering vector equal to a reciprocal lattice vector, will
sample a whole spectrum of spin waves with energies between the two
extremes. The shape of the scattering peak will be dependent on the
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form of the resolution function. With a spherical resolution, the scatter-
ing will be quite sharply peaked at the intermediate energy of the spin
waves propagating in the c-direction, as illustrated in the case of Tb
in Fig. 5.8. The calculated sharp peak at about 1.8meV and the high-
energy shoulder are clearly apparent in the experimental measurements
of Houmann et al. (1975a). In the measurements of Bjerrum Møller
and Mackintosh (1979), on the other hand, the resolution function was
such that the modes propagating in the basal plane perpendicular to
the magnetization were most heavily weighted, so that the predominant
peak occurs at about 2.0meV. In Ho, the effect of the dipole interaction
on the long-wavelength spin waves is even more pronounced. This is an
example of the opposite extreme, where A′

0(T )+B′
0(T ) is much smaller

than A0(T ) − B0(T ), so that the maximum value of ET (q ≈ 0) occurs
when q lies along the c-direction. As illustrated in Fig. 5.9, the dipolar
splitting in this case is sufficiently great that the neutron scattering at
q ≈ 0 can be resolved into two peaks.

Another consequence of the strong directional dependence of the
dipolar contributions to the spin-wave energies is found in the behaviour
of the coupled magneto-acoustic sound waves, discussed in the previ-
ous section. The region in q-space sampled in ultrasonic measurements
(with frequencies in the MHz regime) is just that in which eqn (5.5.12)

Fig. 5.8. The state density of the long-wavelength spin-wave mode
ET (q ≈ 0) in Tb at 4K, calculated from eqn (5.5.12), taking into account
the splitting of the dispersion relations by the dipole–dipole interaction.

The sharp peak is due to the branch in the c-direction.
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applies. If q is parallel to the magnetization, the spin-wave energies
are unchanged from the values deduced in Sections 5.2–4, provided that
the lattice-sum contribution is included in the axial anisotropy term
(5.5.11b), and eqn (5.4.38) is still valid. On the other hand, when q is
in the basal-plane and perpendicular to the magnetization, the ultrasonic

Fig. 5.9. Dispersion relations, in the double-zone representation, for
magnetic excitations propagating in the c-direction of Ho90Tb10 in the
ferromagnetic phase (upper branch), and the bunched helical structure
(lower branch). The full and dashed lines for the ferromagnetic phase
show the theoretical dispersion relations at 4K and 16K respectively, and
the open and filled symbols are the corresponding experimental results.
The calculated long-wavelength energies in the basal plane are shown to
the left of the ordinate axis and the discontinuity, which is due to the
dipole–dipole interaction, is clearly manifested in the neutron-scattering
spectra in the inset. This discontinuity also appears in the helical phase,
and the bunching causes an energy gap on the ALH face of the Brillouin

zone, which is not resolved in these measurements.
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velocities are determined by

c∗cc

c66
= 1 −

Λγ

A0(T ) −B0(T ) + 4πgµBM
; q ⊥ 〈J〉. (5.5.13)

This modification means that only the velocity of those magneto-acoustic
modes which propagate parallel to the magnetization vanishes at the
critical field HI = Hc where, according to (5.4.15), A0(T )−B0(T ) = Λγ ,
whereas the velocity of the modes propagating in the basal-plane per-
pendicular to the field remains non-zero. This difference in the velocities
of the ultrasonic modes was very clearly manifested in the ultrasonic ex-
periment on Tb discussed in Section 5.4 (Jensen and Palmer 1979). This
example shows that the dipolar coupling is able to lift the degeneracy
in the velocities of two transverse sound-waves which are related to each
other by an interchange of the directions of the wave-vector and the
polarization vector. The same effect may be produced by the torque
exerted on the moments when the local magnetic anisotropy axes are
rotated by the transverse phonons relative to the direction of an exter-
nal magnetic field. As discussed by Melcher (1972) and Dohm and Fulde
(1975) the influence of this mechanism on the sound velocities may be
derived from the principle that the total system has to be rotationally
invariant. Their theory has been extended by Jensen (1988b), who finds
that the dipolar-coupling contribution strongly dominates in a ferromag-
net, but that the importance of the two mechanisms may be comparable
in paramagnets.

5.5.2 General two-ion interactions
The two-ion couplings described by eqn (5.5.1) only involve the dipolar
moments of the 4f electrons. A more general two-ion Hamiltonian is

HJJ = −1

2

∑
ij

∑
l+l′:even

∑
mm′

[
Kmm′

ll′ (ij)Õlm(Ji)Õl′m′(Jj)

+ (−1)m+m′{Kmm′
ll′ (ij)}∗Õl −m(Ji)Õl′ −m′(Jj)

]
,

(5.5.14)
expressed in terms of the Racah operators or tensor operators Õlm(Ji)
introduced in Section 1.4, rather than the Stevens operators. Tables
of these operators and a discussion of their properties may be found in
Buckmaster et al. (1972) and in Lindg̊ard and Danielsen (1974). Here
we neglect the possible effects of the polar tensors, which vanish for the
isolated ions. In principle, these polar tensors may be non-zero in the
hcp metals, because the surroundings lack inversion symmetry, but they
occur only because of odd-parity configuration-mixing of the 4f wave-
functions, which should be insignificant for the ground-state multiplet.
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This leaves only the axial tensors, i.e. magnetic multipoles of odd rank
and electric multipoles of even rank. Time reversal of these tensors ef-
fects the transformation cÕlm → c∗(−1)l+mÕl −m, whereas Hermitian

conjugation gives
(
cÕlm

)† = c∗(−1)mÕl −m. The requirement that HJJ

should be invariant under both transformations allows only those terms
in eqn (5.5.14) for which l + l′ is even. The violation of time-reversal
symmetry which occurs when the system is magnetically ordered im-
plies that HJJ should be supplemented by interactions proportional to
〈Õλµ〉Õlm(Ji)Õl′m′(Jj), satisfying the condition that λ + l + l′ is even.
An obvious example is magnetoelastic contributions to the Hamiltonian
such as eqn (5.4.5). The tensor operators in (5.5.14) emanate from lo-
calized 4f wavefunctions with the orbital quantum number lf = 3, which
puts the further restriction on the phenomenological expansion of HJJ

that l and l′ cannot be larger than 2lf+1 = 7, as the operator-equivalents
of higher rank than this vanish identically.

In the rare earth metals, several different mechanisms may give rise
to such anisotropic two-ion couplings, and these have been listed by,
for instance, Wolf (1971) and Jensen et al. (1975). We have already
considered the magnetostatic coupling of lowest rank in the magnetic
multipole expansion, namely the classical magnetic dipole–dipole inter-
action. This is of importance only because of its long range. The higher
order magnetostatic couplings are of shorter range (∝ (1/r)l+l′+1) and
have negligible effects. The electrostatic Coulomb interaction gives rise
to terms in (5.5.14) in which both l and l′ are even. The single-ion
contributions (l′ = 0) are of decisive importance, when L �= 0, but
even the lowest-order electrostatic two-ion term, which contributes to
the quadrupole–quadrupole interactions, is so small that it may be ne-
glected.

The overlap between the 4f wavefunctions of neighbouring ions is so
weak that it cannot generate any two-ion coupling of significance. The
dominant terms in the two-ion Hamiltonian HJJ therefore arise indi-
rectly via the propagation of the conduction electrons. We have already
mentioned in Section 1.4 the most important of these, due to the ex-
change interaction between the band electrons and the 4f electrons, and
it will be discussed in more detail in Section 5.7. In the simplest ap-
proximation, the indirect exchange is invariant with respect to a uniform
rotation of the angular momenta, i.e. this RKKY interaction is isotropic.
However, the neglect of the contribution of the orbital moment in the
scattering process is not generally justified. If L is non-zero, the or-
bital state of the 4f electrons may change in an exchange-scattering
process, if the conduction electron is scattered into a state with a dif-
ferent orbital momentum relative to the ion. The leading-order correc-
tions to the isotropic RKKY interaction due to such processes have been
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considered by Kaplan and Lyons (1963) and Kasuya and Lyons (1966).
In order to obtain an estimate of the importance of the corrections, they
assumed plane-wave states for the conduction electrons, expanded in a
series of spherical Bessel functions centred at the ion. These calculations
indicated anisotropic two-ion couplings with a magnitude of the order of
10% of the isotropic coupling, or greater (Specht 1967). As discussed in
Section 1.3, the free-electron model does not provide a very satisfactory
description of the conduction electrons in the rare earths. It is partic-
ularly inadequate when orbital effects are involved, since the expansion
of the plane-wave states clearly underestimates the (l = 2)-character of
the d-like band-electrons, which dominates the exchange interaction in
the (L = 0)-case of Gd (Lindg̊ard et al. 1975). When L is non-zero, the
Kaplan–Lyons terms may be of comparable importance to the RKKY
interaction in the rare earth metals. The relativistic modification of the
band states, due to the spin–orbit coupling, may enhance the orbital
effects and also lead to anisotropic interactions in Gd. In addition to
the exchange, the direct Coulomb interaction between the 4f and the
band electrons may contribute to eqn (5.5.14), with terms in which l
and l′ are both even. This coupling mechanism, via the conduction elec-
trons, is probably more important for this kind of term than the direct
electrostatic contribution mentioned above.

The RKKY interaction is derived on the assumption that the 4f
electrons are localized in the core, and that their mixing with the conduc-
tion electrons is exclusively due to the exchange. However, the Coulomb
interaction may lead to a slight hybridization of the localized 4f states
with the band states. In recent years, Cooper and his co-workers (Cooper
et al. 1985; Wills and Cooper 1987) have analysed the consequences of
a weak hybridization between an ion with one or two f electrons and
the band electrons, with special reference to the magnetic behaviour of
Ce compounds and the actinides. They find that the magnetic two-ion
coupling becomes highly anisotropic in the Ce compounds. Although
Ce is the rare earth element in which the strongest hybridization effects
would be expected to occur, these results and the analysis of Kaplan and
Lyons (1963) suggest that the presence of anisotropic two-ion couplings
should be a common feature in rare earth metals with orbital angular
momentum on the ion.

As is clear from the above discussion, an analysis from first prin-
ciples cannot at present give a reliable estimate of the relative magni-
tude of the Heisenberg exchange interaction and the various possible
anisotropic two-ion couplings in the rare earth metals. We cannot a
priori exclude any terms of the form given by eqn (5.5.14). In order to
arrive at such an estimate, it is necessary to calculate the consequences
of the anisotropic two-ion terms and compare the predictions with exper-
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imental observations. In the case of the nearly saturated ferromagnet, it
is straightforward to take into account the effects of HJJ on the ground-
state properties and the spin-waves. The Racah operators, defined with
reference to the (ξ, η, ζ)-coordinate system, may be expanded in terms
of the spin deviation operators. When the moments in the basal-plane
(θ = π/2) are close to their saturation value (〈Jz〉 � J),

〈Õlm〉 �
(

4π
2l+ 1

)1/2

J (l)Ylm(θ =
π

2
, φ) = J (l)Γlm eimφ, (5.5.15a)

where

Γlm =

⎧⎪⎨⎪⎩ (−1)(l+m)/2 [(l +m)!(l −m)!]1/2

(l +m)!!(l −m)!!
, l +m even

0 , l +m odd.
(5.5.15b)

Utilizing the equivalence between the Racah operators and the spherical
harmonics, and the connection between the spin-wave energies and the
angular derivatives of the expectation values (which leads to the relation
(5.3.14)), we have to first order in 1/J (Jensen et al. 1975):

Õlm(Ji) =(
1 − m√

2J
(a+

i − ai) −
l(l+ 1)

2J
a+

i ai −
l(l+ 1) − 2m2

4J
(a+

i a
+
i + aiai)

)
× J (l)Γlme

imφ, (5.5.16a)

if l +m is even, and if l +m is odd

Õlm(Ji) =[
(l + 1)2 −m2

]1/2
( 1√

2J
(a+

i + ai) −
m

2J
(a+

i a
+
i − aiai)

)
J (l)Γl+1 me

imφ.

(5.5.16b)

Introducing these expressions into the two-ion Hamiltonian, we may
derive the spin-wave energies, to leading order in 1/J . The number of
terms in eqn (5.5.14) which contribute to the excitation energies, in this
order, may be reduced by the symmetry elements of the lattice which
leave the q-vector unchanged. In the simplest case, where q is along
the c-axis, the three-fold symmetry about this axis plus the mirror-
plane perpendicular to the ξ-axis (i.e. the a-axis) ensure that only terms
with m + m′ = 3p, where p is an integer, contribute, and that their
contribution is proportional to cos (3pφ). The terms in which p is an
odd integer couple the acoustic and optical magnons, but they do not
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lift the degeneracy of the modes at A on the Brillouin-zone boundary
of Fig 1.4. When q is parallel to the c-axis, a direct calculation of the
spin-wave energies (Jensen et al. 1975) shows that the two-ion terms in
HJJ lead to the following modifications of the earlier results (5.2.38) and
(5.3.22):

(i) The two-ion anisotropy may contribute to the parameters
Aq(T ) ±Bq(T ) at zero wave-vector.

(ii) Bq(T ) becomes dependent on q to leading order in 1/J .
(iii) The q-dependent parts ofAq(T )±Bq(T ) may change when

the direction of magnetization is changed.

There are no direct ways of separating the single- and two-ion con-
tributions to the energy gap at zero wave-vector. However, a strong
q-dependence of Bq(T ) is only possible if the two-ion Hamiltonian is
anisotropic. One way to determine Bq(T ) is to utilize the dependence of
the neutron cross-section on this parameter, given by eqn (5.2.41). This
method requires accurate intensity measurements and is not straightfor-
ward. The other possibility is to measure the field dependence of the
spin-wave energies since, from (5.2.38) or (5.3.22),

αq(T ) ≡ ∂E2
q(T )/∂(gµBH) � 2Aq(T ), (5.5.17)

when the field is parallel to the magnetization. This relation is only true
to first order in 1/J , and corrections have to be made for the influence
of any field-dependent changes of the correlation functions σ and η±.
Both Aq(T ) and Bq(T ) may be determined from the energies and initial
slopes, since

Aq(T ) ±Bq(T ) � 1
2αq(T ) ± 1

2 [α2
q(T ) − 4E2

q(T )]
1
2 . (5.5.18)

This method was used by Jensen et al. (1975) for a comprehensive study
ot the two-ion anisotropy in Tb. The values of Aq(T ) and Bq(T ), de-
duced from eqn (5.5.18), were parametrized in various ways, and clearly
the best least-squares fit was obtained with expressions of the form

(Aq +Bq) − (A0 +B0) = I(q) + K(q) − C(q) cos 6φ

(Aq −Bq) − (A0 −B0) = I(q) −K(q) −D(q) cos 6φ,
(5.5.19)

where A0 ± B0 were taken from the simultaneous measurements of
the magnetic anisotropy at q = 0, discussed in the previous section.
The low-temperature isotropic coupling I(q), which in the absence of
anisotropy would just be J [J (0) − J (q)], and the φ-independent two-
ion anisotropy K(q) are shown in Fig. 5.10. The φ-dependent axial
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Fig. 5.10. Isotropic and anisotropic two-ion coupling parameters I(q)
(upper curve) and K(q) (lower curve) for Tb at 4K, deduced from the
field dependence of the spin-wave energies. The former is closely related
to J [J (0)−J (q)], an estimate of which is indicated by the dashed line.
The magnon–phonon interaction causes relatively large uncertainties at

intermediate wave-vectors.

anisotropy C(q) is about the same magnitude as K(q), while D(q) is
very small. The φ-dependent anisotropy is detected very clearly in the
experiments, since it gives rise to a change in the dispersion Eq(T ),
when the moments are rotated from the the easy to the hard planar
direction. C(q) is the q-dependent generalization of the φ-dependent
anisotropy ∆M in A0 + B0, introduced in the previous section, and
∆M ≈ −〈C(q)〉q.

As mentioned in Section 5.4.1, the corrections to the field depen-
dence of the magnon energies in (5.5.17) were included in an effective
fashion, neglecting changes due to the rotation of the moments and as-
suming η− � 1/η+ � {1−b(T = 0)}σ−k, where k may be estimated to be
about 0.3. The renormalization effects are thus taken as proportional to
σ raised to a power which depends on the term considered. We estimate
that the effects neglected in this approach only introduce corrections
of the order of the experimental uncertainties. The two-ion coupling
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parameters decrease with increasing temperature or decreasing mag-
netization. The three anisotropy component all decrease very rapidly,
roughly proportionally to σ15 (like ∆M), which means that they are only
important at low temperatures and may be neglected above about 150K.
The strong temperature dependence of the anisotropic components indi-
cates, according to the Callen–Callen theory, that higher-rank couplings
make the dominant contribution. The lowest-order term in eqn (5.5.14)
which contributes to C(q) involves K33

44 , and it should renormalize ap-
proximately as σ19. The renormalization is observed to be q-dependent
for all the parameters, being slower at larger wave-vectors, and it lies in
the range σ2-σ0.1 for I(q). In Tb, I(q) may include higher-rank con-
tributions besides the RKKY-exchange term, but the way in which it
renormalizes resembles quite closely the behaviour observed in Gd and
shown in Fig. 5.1. A q-dependent renormalization may partially be ac-
counted for, in the self-consistent RPA theory, by the k-sum terms in
(5.2.38).

When q is not along the c-axis, there are other ways in which the
presence of two-ion anisotropy may be detected in the ferromagnetic
excitation spectrum:

(iv) Spin-wave energy gaps may appear at the boundaries of
the Brillouin zone.

The isotropic two-ion coupling alone does not lead to energy gaps at
these boundaries, whereas anisotropic two-ion couplings may lift those
degeneracies which are not dictated by symmetry. In fact, the first in-
dication of the presence of two-ion anisotropy in the rare earth metals,
other than the classical magnetic-dipolar interaction, was the splitting
shown in Fig. 5.2 along the KH edge of the Brillouin zone in the ferro-
magnetic phase of Tb (Lindg̊ard and Houmann 1971). Finally, we have
the related effect:

(v) The spin-wave energies, at a particular q, in domains with
different angles between the q-vector and the magnetiza-
tion vectors, need not be equal if two-ion anisotropy is
important.

In a single domain, the two-ion anisotropy forces may lift the ‘accidental’
degeneracies between spin waves at q-vectors which are equivalent in the
paramagnetic phase, but which are no longer equivalent in the Brillouin
zone of the ferromagnet. This manifestation of the two-ion anisotropy
has not yet been subjected to experimental investigation, but it may
provide a useful supplement to studies of the q-dependence of Bq(T ).

As we have seen, the expectation values 〈Õlm〉 are approximately
proportional to σl(l+1)/2, if the extra modification due to the elliptical
polarization of the spin-waves is neglected. This means that the impor-
tance of the higher-rank couplings declines relatively rapidly with tem-
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perature. The effects of these interactions on the ground state and the
spin waves are therefore most pronounced in the low-temperature limit,
whereas the behaviour of the system at high temperatures which, in the
heavy rare earths, includes the critical region around the phase transi-
tion between the ordered and paramagnetic phases, is dominated by the
coupling between the dipolar moments, and the single-ion quadrupole
interaction, i.e. by the terms in eqn (5.5.14) with l + l′ = 2.

5.6 Binary rare earth alloys

The great similarity in the chemical properties of the different rare earth
metals allows almost complete mutual solubility. It is therefore possible
to fabricate rare earth alloys with nearly uniform electronic properties,
but containing ions with disparate magnetic properties, distributed ran-
domly on a single lattice. By a judicious choice of the constituents,
the macroscopic magnetic properties, such as the ordering temperatures
and the anisotropy parameters, may be continuously adjusted as desired.
From a macroscopic viewpoint, such an alloy resembles a uniform and
homogeneous crystal, with magnetic properties reflecting the character-
istics and concentrations of the constituents. The spectrum of magnetic
excitations also displays such average behaviour (Larsen et al. 1986),
but in addition, there are effects which depend explicitly on the dispar-
ity between the different sites.

We restrict ourselves to binary alloys, which are described by the
Hamiltonian,

H =
∑

i

{ciH1(J1i) + (1 − ci)H2(J2i)}

− 1

2

∑
i�=j

J (ij) {ciJ1i + γ(ij)(1 − ci)J2i} · {(cjJ1j + γ(ij)(1 − cj)J2j} ,

(5.6.1)
where ci is a variable which is 1 if the ion on site i is of type 1, and
0 if the ith ion is of type 2. The configurational average of ci is the
atomic concentration of the type-1 ions, 〈ci〉cf = c. In addition to the
simplifications made earlier in the Hamiltonian, we shall assume that
γ(ij) is a constant γ, independent of i and j. This approximation is
consistent with a model in which the indirect exchange is assumed to
dominate the two-ion coupling, in which case

γ(ij) = γ = (g2 − 1)/(g1 − 1), (5.6.2)

where the indices 1 and 2 refer to the two types of ions with angular
momenta J1 and J2.

In order to derive the excitation spectrum of the alloy system,
we first make the assumption that the surroundings of each ion are
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so close to the average that individual variations can be neglected.
Thus we replace the actual MF Hamiltonian of the ith ion with the
configurationally-averaged MF Hamiltonian and, considering a type 1
ion (ci = 1), obtain

HMF(i) � 〈HMF(i)〉cf =

H1(J1i) − (J1i − 1
2 〈J1i〉) ·

∑
j

J (ij){c〈J1j〉 + (1 − c) γ〈J2j〉}. (5.6.3)

From this equation, and the similar one for ci = 0, we may determine
the MF values of the two moments 〈J1〉 and 〈J2〉, and the corresponding
susceptibilities χ o

1 (ω) and χ
o
2 (ω). For a paramagnetic or ferromagnetic

system these quantities are all site-independent, in the present approx-
imation. We note that (5.6.3) is correct in the case of a paramagnet,
as possible environmental variations on the individual ions are already
neglected in the starting Hamiltonian. The next step is the introduction
of a 2× 2 matrix of susceptibility tensors χrs(ij, ω), where the elements
with r = 1 or 2 are defined in terms of ciJ1i or (1 − ci)J2i respectively,
and s = 1 or 2 similarly specifies the other component. We may then
write the RPA equation (3.5.7):

χrs(ij, ω) = χr(i, ω)
(
δrsδij +

∑
j′

∑
s′
γrs′J (ij′)χs′s(j

′j, ω)
)
, (5.6.4a)

where

χ1(i, ω) = ciχ
o
1 (ω) ; χ2(i, ω) = (1 − ci)χ

o
2 (ω), (5.6.4b)

recalling that c2i = ci (= 0 or 1), and defining Jrs(ij) = γrsJ (ij), with

γ11 = 1 ; γ12 = γ21 = γ ; γ22 = γ2. (5.6.4c)

In spite of the great simplification introduced through the random-phase
approximation, the RPA equation for the alloy is still very complicated,
because χr(i, ω) depends on the randomness, and it cannot be solved
without making quite drastic approximations. The simplest result is
obtained by neglecting completely the site-dependence of χr(i, ω), and
consequently replacing ci in (5.6.4b) by its average value c. This pro-
cedure corresponds to the replacement of each individual angular mo-
mentum Jri by the average cJ1i + (1 − c)J2i, and it is known as the
virtual crystal approximation (VCA). In this approximation, (5.6.4) may
be solved straightforwardly after a Fourier transformation, and defining
the T-matrices according to

χrs(q, ω) = χr(ω)δrs + χr(ω)T rs(q, ω)χs(ω), (5.6.5a)
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where

χ1(ω) = cχ
o
1 (ω) and χ2(ω) = (1 − c)χ o

2 (ω), (5.6.5b)

we find that these T-matrices are given by

T rs(q, ω) = γrsJ (q)D(q, ω)−1, (5.6.6a)

with

D(q, ω) = 1 −
{
cχ

o
1 (ω) + (1 − c) γ2 χ

o
2 (ω)

}
J (q). (5.6.6b)

This result is simplified by the assumption, (5.6.2) or (5.6.4c), that
J12(q) is the geometric mean of J11(q) and J22(q). In this and in
more complex cases, the introduction of the T-matrices in (5.6.5) makes
it somewhat easier to handle the RPA equations. The configurationally-
averaged susceptibility is χ(q, ω) =

∑
rs χrs(q, ω), but this does not di-

rectly determine the inelastic neutron-scattering cross-section. We must
take into account the difference in the form factor { 1

2gF (κ)} for the two
kinds of ions, in the differential cross-section (4.2.1). At small scattering
vectors, F (κ) is generally close to one and the most important variation
is due to the g-factor. In this case, the inelastic scattering is proportional
to the susceptibility:

g2χ(q, ω) ≡
∑
rs

grgsχrs(q, ω)

= g2
1c χ

o
1 (ω) + g2

2(1 − c)χ o
2 (ω) + χ3(ω)J (q)D(q, ω)−1χ3(ω),

(5.6.7a)
with

χ3(ω) = g1c χ
o
1 (ω) + g2(1 − c) γ χ o

2 (ω). (5.6.7b)

If χr(i, ω) only depends on ci, as assumed in (5.6.4b), the RPA
equation (5.6.4a) is equivalent to that describing the phonons in a crys-
tal with diagonal disorder, in the harmonic approximation. The possible
variation of the molecular field (or other external fields) from site to site,
which is neglected in (5.6.3), introduces off-diagonal disorder. If such
off-diagonal disorder is neglected, the main effects of the randomness, in
3-dimensional systems, are very well described in the coherent potential
approximation (CPA) (Taylor 1967; Soven 1967; Elliott et al. 1974; Lage
and Stinchcombe 1977; Whitelaw 1981). In the CPA, the different types
of ion are treated separately, but they are assumed to interact with a
common surrounding medium. This configurationally-averaged medium,
i.e. the effective medium, is established in a self-consistent fashion. The
method may be described in a relatively simple manner, following the
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approach of Jensen (1984). We first consider the case where χ
o
2 (ω)

vanishes identically, corresponding to the presence of non-magnetic im-
purities with a concentration 1 − c. The RPA equation (5.6.4a) may
then be solved formally by iteration:

χ(ij, ω) = ciχ
o(ω)δij + ciχ

o(ω)J (ij)cjχ
o(ω)

+
∑
j′
ciχ

o(ω)J (ij′)cj′χ
o(ω)J (j′j)cjχ

o(ω) + · · · .

(5.6.8)
The VCA result is obtained by assuming 〈cnj′ 〉cf = cn, which is incorrect
since 〈cnj′ 〉cf = 〈cj′〉cf = c. Consequently, the VCA leads to errors already
in the fourth term in this expansion, or in the third term if i = j, even
though J (ii) is zero. In order to ameliorate these deficiencies, we first
consider the series for χ(ii, ω), where i = j. The different terms in this
series may be collected in groups according to how many times the ith
site appears, which allows us to write

χ(ii, ω) = ci

[
χ

o(ω) + χ
o(ω)K(i, ω)χ o(ω)

+ χ
o(ω)K(i, ω)χ o(ω)K(i, ω)χ o(ω) + · · ·

]
= ci

{
1 − χ

o(ω)K(i, ω)
}−1

χ
o(ω), (5.6.9)

where K(i, ω) is the infinite sum of all the ‘interaction chains’ involv-
ing the ith site only at the ends, but nowhere in between. A similar
rearrangement of the terms in the general RPA series leads to

χ(ij, ω) = χ(ii, ω)δij + χ(ii, ω)T (ij, ω)χ(jj, ω), (5.6.10)

where T (ij, ω) is only non-zero if i �= j and, by exclusion, is the sum
of all the interaction chains in which the ith site appears only at the
beginning, and the jth site only at the end of the chains. Introducing
this expression in the RPA equation (5.6.4), we may write it

χ(ij, ω) =

ciχ
o(ω)

[
δij + J (ij)χ(jj, ω) +

∑
j′

J (ij′)χ(j′j′, ω)T (j′j, ω)χ(jj, ω)
]
.

From (5.6.9), we have χ o(ω)−1 χ(ii, ω) = ci{1 +K(i, ω)χ(ii, ω)}, and a
comparison of this equation for χ(ij, ω) with (5.6.10), leads to the result:

δij+J (ij)χ(jj, ω) +
∑
j′

J (ij′)χ(j′j′, ω)T (j′j, ω)χ(jj, ω)

= {1 +K(i, ω)χ(ii, ω)}{δij + T (ij, ω)χ(jj, ω)}, (5.6.11)
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leaving out the common factor ci. Although this means that K(i, ω)
and T (ij, ω) may be non-zero even when ci is zero, this has no conse-
quences in eqn (5.6.10). In order to derive the configurational average of
this equation, we make the assumption that each site is surrounded by
the same effective medium. Hence K(i, ω) � K(ω) is considered to be
independent of the site considered, and therefore we have, from (5.6.9),

χ(ii, ω) = ciχ(ω) ; χ(ω) =
{
1 − χ

o(ω)K(ω)
}−1

χ
o(ω). (5.6.12)

With this replacement, the configurational average of eqn (5.6.11) may
be derived straightforwardly, as we can take advantage of the condition
that, for instance, cj′ only occurs once in the sum over j′. It is important
here that the common factor ci was cancelled, because T (j′j, ω) involves
the site i, making the averaging of ciT (j′j, ω) more complicated. Intro-
ducing the notation TE(ij, ω) =

〈
T (ij, ω)

〉
cf

, we get from (5.6.11) the
CPA equation

δij + cJ (ij)χ(ω) +
∑
j′
c2 J (ij′)χ(ω)TE(j′j, ω)χ(ω)

= {1 + cK(ω)χ(ω)}{δij + c TE(ij, ω)χ(ω)} (5.6.13)

for the effective medium, which may be diagonalized by a Fourier trans-
formation. Introducing the effective coupling parameter

J E(q) = J (q) −K(ω), (5.6.14)

where the scalar appearing in a matrix equation is, as usual, multiplied
by the unit matrix, we get

TE(q, ω) = J E(q)DE(q, ω)−1 ; DE(q, ω) = 1 − c χ(ω)J E(q)
(5.6.15)

and, from (5.6.10),

χ(q, ω) = c χ(ω) + c2 χ(ω)TE(q, ω)χ(ω) = DE(q, ω)−1c χ(ω). (5.6.16)

Hence the result is similar to that obtained in the VCA, except that the
parameters are replaced by the effective quantities introduced by eqns
(5.6.12) and (5.6.14). These effective values are determined from the
‘bare’ parameters in terms of K(ω). It is easily seen that we retain the
VCA result, i.e. K(ω) cancels out of (5.6.15), if (5.6.12) is replaced by
the corresponding VCA equation χ(ω) �

{
1 − c χ

o(ω)K(ω)
}−1

χ
o(ω).
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In the case c = 1, both the VCA and the CPA results coincide with the
usual RPA result. K(ω) is itself determined by the effective parameters,
and (5.6.13), with i = j, leads to the following self-consistent equation

K(ω) = 1

N

∑
q

cJ (q)χ(ω)TE(q, ω). (5.6.17a)

This result may be written

K(ω) = 1

N

∑
q

J (q)DE(q, ω)−1 =
∑
q

J (q)χ(q, ω)
/∑

q

χ(q, ω),

(5.6.17b)
corresponding to the condition that the effective T-matrix vanishes when
summed over q,

∑
q TE(q, ω) = 0, in accordance with our starting as-

sumption, (5.6.10).
In order to derive the effective medium result (5.6.13), χ(j′j′, ω)

in (5.6.11) was replaced by cj′χ(ω), which is an approximation, as this
response depends on the actual surroundings, including the sites i and
j. The CPA incorporates the same type of mistake as in the VCA, but
it is clear that the frequency of such errors is substantially reduced. The
dependence of χ(j′j′, ω) on ci and cj , corresponding to a site dependence
of K(j′, ω), becomes relatively unimportant if the configuration number
Z is large, since i or j may only be one of the Z neighbours of the site
j′.

The effective medium procedure is straightforwardly generalized to
the case where χ2(i, ω) is non-zero (Jensen 1984). Again the CPA result
may be expressed in the same way as the VCA result, (5.6.5–6), except
that all the quantities are replaced by their effective CPA counterparts;
J (q) becomes J E(q), given by (5.6.14), and χ o

r (ω) in (5.6.6) is replaced
by

χr(ω) =
{
1 − γrrχ

o
r (ω)K(ω)

}−1

χ
o
r (ω), (5.6.18)

where the effective-medium parameter K(ω) is determined by the same
self-consistent equation (5.6.17) as above. To a first approximation,
DE(q, ω)−1 in this equation may be replaced by the simpler virtual-
crystal result. Because of the poles in D(q, ω)−1, both the real and
imaginary parts of K(ω) are usually non-zero, and the imaginary con-
tribution then predicts a finite lifetime for the excitations, due to the
static disorder. This leading-order result may serve as the starting point
in an iterative calculation of K(ω), and thus of a more accurate CPA
result.

It is much more complicated to include the effects of off-diagonal
disorder. They have been considered in the papers referred to above, but
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only in relatively simple models like the dilute Heisenberg ferromagnet
with nearest-neighbour interactions. This model may be considered as
the extreme example of off-diagonal disorder, and the CPA concept of
an effective medium loses its meaning completely below the percolation
concentration, where all clusters of interacting spins are of finite size,
precluding any long-range order. If the molecular field is independent
of the site considered, i.e. HMF(i) = 〈HMF(i)〉cf in (5.6.3), as happens
in the paramagnetic case or if 〈J1〉 = γ〈J2〉, then the CPA result above
should apply. However, except in a pure boson or fermion system, the
‘dynamical’ disorder due to thermal fluctuations introduces corrections
to the RPA equation (5.6.4), with consequences of the same order of
magnitude as K(ω) in (5.6.16), at least at elevated temperatures. In
most magnetic systems, the two kinds of disorder may lead to damping
effects of the same magnitude, and furthermore the use of the CPA result
(5.6.16), without taking into account the dynamic renormalization of the
RPA, occasionally leads to misleading results, as discussed for instance
by Jensen (1984).

The excitations of binary heavy-rare-earth alloys have been studied
much less extensively than their magnetic structures. However, the effect
of 10% of Y, Dy, Ho, and Tm on the spin-wave spectrum of Tb has
been examined, and the characteristic influence of the different solutes
observed. The results of Larsen et al. (1986) for the Y and Dy alloys
could be interpreted in terms of a simple average-crystal model, in which
all sites are considered as equivalent, and the effect of the solute atoms
is to modify the average exchange and the effective single-ion anisotropy.
Thus Dy reduces the effective hexagonal anisotropy, and the spin-wave
energy gap therefore decreases. On the other hand, Y dilutes the two-
ion coupling, and therefore decreases TN and the spin-wave energies,
although the relative magnitude of the peak in J (q) increases, extending
the temperature range over which the helical structure is stable. The first
excited state of the Ho ion in the Tb host lies in the spin-wave energy
band, and the dispersion relation is consequently strongly perturbed
(Mackintosh and Bjerrum Møller 1972).

However, the most pronounced effects were observed by Larsen et
al. (1988) in Tb90Tm10, where the Tm ions, with a spin S = 1, are
relatively weakly coupled to the surrounding Tb moments, with S = 3.
Furthermore, the axial anisotropy of the Tm ions is large and of opposite
sign to that of Tb. As a result, well-defined quasi-localized states may
be excited on the Tm sites, as shown in Fig. 5.11. These rather complex
results were interpreted by means of a VCA calculation, in which the
crystal-field parameters for the Tm ions were deduced from the dilute-
alloy experiments of Touborg (1977), while the single-ion anisotropy and
the two-ion coupling between the Tb ions were taken from the analysis
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Fig. 5.11. Excitations in the c-direction of Tb90Tm10 at 4K. The
Tb magnon modes, the crystal-field excitations on the Tm ions, and
the transverse phonons polarized parallel to the magnetization mutu-
ally interfere to produce the calculated dispersion relations shown by the
thick lines. The dashed lines indicate the unperturbed Tb magnons, and
the short and long dashes the phonons. A and O signify acoustic and

optical respectively.

of Jensen et al. (1975) of the magnon dispersion relations. The magnon–
phonon interaction, which plays an important role in determining the
dispersion relations, was incorporated in the calculations by the method
which will be presented in Section 7.3.1, which leads to results consis-
tent with those derived in Section 5.4.2. The effective exchange between
the moments on the different ions was scaled as in eqn (5.6.1–2), but
γ was given the value 0.24, instead of the 0.33 which (5.6.2) yields, in
order to fix correctly the energy of the first excited state on the Tm
ions. Such a departure from the simple de Gennes scaling is not partic-
ularly surprising for ions with very different orbital angular momenta.
In the system Pr95Er5, for example, Rainford et al. (1988b) found that
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Fig. 5.12. Experimental and calculated neutron-scattering spectra
in Tb90Tm10 for the indicated scattering vectors, which correspond to a
reduced wave-vector of 0.33 in Fig. 5.11. In the lower curve, the scattering
vector is in the c-direction, while it is close to the hexagonal plane in the
upper, where an unperturbed transverse phonon is observed. The ratio
of the impurity intensity to the magnon peak is roughly doubled when
the scattering vector moves from the c-direction to the plane, showing
that the magnetic fluctuations in the impurity mode are predominantly

along the c-axis.

the Er ions modify the two-ion coupling of the host substantially.
The theoretical results give a good account both of the excitation

energies and of the observed neutron-scattering spectra, as illustrated
in Fig. 5.12. They reveal that the difference between the interactions
of the Tb and Tm ions in this alloy has a profound influence on the
magnetic behaviour at the two types of site. The exchange forces the
Tm moment to lie in the plane at low concentrations but, according to
the calculations, the crystal fields reduce it from the saturation value of
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7µB to about 5.9µB, whereas the Tb moment is very close to saturation.
Furthermore, the first excited-state on the Tm ions is at a relatively low
energy, and the associated magnetic fluctuations are predominantly in
the c-direction, reflecting an incipient realignment of the moments, which
actually occurs at higher concentrations (Hansen and Lebech 1976). The
Tb fluctuations, on the other hand, are largely confined to the plane,
with the result that the neutron-scattering intensity stemming from the
c-axis fluctuations is comparable for the two types of site, even though
only 10% of the ions are Tm.

The CPA theory has not yet been applied to heavy rare earth-alloys.
The extra linewidth-effects due to the randomness are not expected to
be very pronounced in the 10% alloys. At low temperatures, they are of
the order of the contribution of the scattering against the electron-hole
pair excitations of the conduction electrons, and they become decreas-
ingly important compared with intrinsic effects at higher temperatures.
The CPA theory has been applied to the light rare earth-alloy Pr95Nd5

(Jensen 1979a) in the paramagnetic phase, where the linewidth effects
predicted by the CPA at 9K are found to be of the same order as the
intrinsic effects due to thermal disorder.

5.7 Conduction-electron interactions

As we have already discussed in Section 1.4, the conduction electrons
in the rare earth metals act as the medium through which the coupling
is established between the 4f electrons localized on the ions. In this
section, we shall investigate this RKKY coupling in more detail, and
consider its influence on both the spin waves in the ferromagnetic phase,
and also on the conduction electrons themselves. The indirect-exchange
interaction is first derived, and its effects in limiting the lifetimes of
the spin waves and in polarizing the conduction electrons are deduced.
The enhancement of the effective mass of the conduction electrons by
the dynamical magnetic fluctuations is then calculated. Finally, the
modification of the electrical resistivity by the exchange interaction is
discussed, including the scattering of the conduction electrons by the
spin-wave excitations, and the influence of the magnetic ordering on the
conduction-electron band structure. For completeness, we include the
effect of magnetic superzones in periodic structures in this section.

5.7.1 The indirect-exchange interaction
The starting point for our consideration of the indirect exchange, or
RKKY coupling, of the localized moments is the Heisenberg–Dirac ex-
change between the 4f electrons and the conduction electrons. The 4f -
core electrons of the ion at site i are assumed to be described to a good
approximation by non-overlapping atomic wavefunctions φ4f (r − Ri).
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We shall neglect the spin–orbit coupling of the conduction electrons,
and assume their wavefunctions to be the Bloch functions

ψnk(r) = unk(r) eik·r = ψnk(r − Ri) eik·Ri , (5.7.1)

independent of the spin state σ. unk(r) = unk(r − Ri) has the period-
icity of the lattice, and n is the band index. The Hamiltonian of the
conduction electrons in second quantization is

Hs =
∑
nkσ

εnkc
+
nkσcnkσ, (5.7.2)

where the index s is conventionally used for the conduction electrons
even though, as we saw in Section 1.3, they have predominantly d char-
acter. c+nk↑ creates and cnk↑ annihilates a spin-up electron in the band-
state (nk), and they are Fermi-operators which satisfy the anticommu-
tation relations

{cnkσ , c
+
n′k′σ′} ≡ cnkσc

+
n′k′σ′ + c+n′k′σ′cnkσ = δnn′δkk′δσσ′

{c+nkσ , c
+
n′k′σ′} = {cnkσ , cn′k′σ′} = 0.

(5.7.3)

An exposition of second quantization may be found, for example, in
White (1983). The exchange interaction between a pair of electrons is
−2Is1 · s2, where I is the exchange integral. If s1 is the spin of a 4f
electron at site i, then the sum over all the 4f electrons at this site gives∑

4f el.

−2Is1 · s2 = −2ISi · s2 = −2I(g − 1)Ji · s2,

where I is an average value of the exchange integral for the 4f elec-
trons, and states other than those in the ground-state J-multiplet are
neglected. The spin-density of the conduction electrons at r may be
expressed in second-quantized form so that, for instance,

s2z(r) =
∑
nn′

∑
kk′

ψ∗
n′k′(r)ψnk(r)1

2

(
c+n′k′↑cnk↑ − c+n′k′↓cnk↓

)
. (5.7.4)

The sf-exchange interaction is determined by the following exchange
integral:∫

dr1dr2ψ
∗
n′k′(r1)φ∗4f (r2 − Ri)

e2

|r1 − r2|
ψnk(r2)φ4f (r1 − Ri)

=
1
N
I(n′k′, nk)e−i(k′−k)·Ri ,
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with

I(n′k′, nk) = N

∫
dr1dr2ψ

∗
n′k′(r1)φ∗4f (r2)

e2

|r1 − r2|
ψnk(r2)φ4f (r1),

(5.7.5)
whereN is the number of rare earth ions. If there are several 4f electrons
per ion, I(n′k′, nk) should again be averaged over their wavefunctions.
The Hamiltonian Hsf , describing the exchange interaction between the
conduction electrons and the 4f electrons, is then found to be

Hsf = − 1

N

∑
i

∑
nn′

∑
kk′

(g − 1)I(n′k′, nk)e−i(k′−k)·Ri

×
[
(c+n′k′↑cnk↑ − c+n′k′↓cnk↓)Jiz + c+n′k′↑cnk↓J

−
i + c+n′k′↓cnk↑J

+
i

]
,

(5.7.6)
in second quantization.

In the ordered ferromagnetic phase, we may use the MF approxi-
mation, in which case

Hsf (MF) = −
∑
nn′

∑
k

(g − 1)I(n′k, nk)(c+n′k↑cnk↑ − c+n′k↓cnk↓)〈Jz〉.

(5.7.7)
This Hamiltonian gives rise to both diagonal and off-diagonal contribu-
tions to the energies of the conduction electrons. The diagonal energies
are

εnk↑ = εnk − 〈Jz〉(g − 1)I(nk, nk)

εnk↓ = εnk + 〈Jz〉(g − 1)I(nk, nk).
(5.7.8)

Second-order perturbation theory then gives the energies of the band
electrons as

ε̃nkσ = εnkσ + 〈Jz〉2(g − 1)2
∑
n′ �=n

|I(n′k, nk)|2
εnk − εn′k

. (5.7.9)

This dependence of the energies of the perturbed band-electrons on their
state of polarization implies that the electron gas itself develops a non-
zero magnetization. In order to calculate this moment, we first note that
(5.7.9) corresponds to a replacement of Hs + Hsf (MF) by an effective
Hamiltonian for the band electron,

H̃s =
∑
nkσ

ε̃nkσ c̃
+
nkσ c̃nkσ, (5.7.10)

where the new Fermi operators are determined in terms of the old by

cnk↑ = c̃nk↑ +
∑
n′
Uk(n, n′)c̃n′k↑

cnk↓ = c̃nk↓ −
∑
n′
Uk(n, n′)c̃n′k↓,

(5.7.11a)
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to leading order. Uk(n, n) = 0 and, for n′ �= n,

Uk(n, n′) = (g − 1)〈Jz〉
I(nk, n′k)
εnk − εn′k

. (5.7.11b)

The (approximately) diagonal form of (5.7.9) implies that the thermal
expectation values are

〈c̃+
nkσ c̃n′k′σ′〉 = δnn′δkk′δσσ′ fnkσ, (5.7.12a)

where
fnkσ =

1

eβ(ε̃
nkσ

−µ
F

) + 1
(5.7.12b)

is the Fermi–Dirac distribution function and µF is the chemical poten-
tial, equal to the Fermi energy ε̃F in the temperature regime in which
we shall be interested. The moment density is determined by (5.7.4),
and introducing the new Fermi operators and using (5.7.12), we obtain

〈µz(r)〉c.el. = µB

∑
nn′

∑
kk,

ψ∗
n′k′(r)ψnk(r)

(
〈c+

n′k′↑cnk↑〉 − 〈c+
n′k′↓cnk↓〉

)
= µB

∑
nn′

∑
k

ψ∗
n′k(r)ψnk(r)

[
{δnn′ + U∗

k(n′, n)}(fnk↑ − fnk↓)

+ Uk(n, n′)(fn′k↑ − fn′k↓)
]
. (5.7.13)

The uniform, averaged part of this moment density can be obtained
by an integration of eqn (5.7.13) over space, and remembering that the
wavefunctions are orthogonal and normalized, we find the magnetic mo-
ment of the conduction electrons per ion to be

〈µz〉c.el. = µB
1

N

∑
nk

(
fnk↑ − fnk↓

)
. (5.7.14)

We note that, in addition to this uniform polarization of the conduction
electrons, there is a spatially non-uniform component of the polarization
density with the periodicity of the lattice. This non-uniform component
reflects the variation in the electronic density, including the perturba-
tive changes due to the interband contributions proportional to Uk(n, n′).
Furthermore, when the spin–orbit coupling of the conduction electrons
is of importance, the interband coupling may induce a positional depen-
dence in the direction of the spin polarization.

In order to obtain order-of-magnitude estimates of the exchange
effects, we introduce a reasonable but somewhat crude approximation
for the exchange integral, which is due to Overhauser (1963) and has
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been discussed in detail by Freeman (1972). First we assume that the
Coulomb interaction in eqn (5.7.5) is strongly shielded, so that it can
be replaced by a δ-function. Next, using plane waves for the Bloch
functions, we obtain

(g − 1)I(nk′, nk) ≈ j(q = k′ − k) ∝
∫
dr|φ4f (r)|2e−iq·r, (5.7.15)

which is the form factor of the 4f -electron density, approximately the
same as the local moment density (4.1.15). In this simplified model,
where the conduction electrons are assumed to be free-electron-like, the
interband exchange integrals, in which n′ �= n, are obtained by adding
reciprocal-lattice vectors τ to q in eqn (5.7.15). In this model, we obtain
a rigid band-splitting, independent of k, between the spin-down and
spin-up bands, of magnitude

∆ = ε̃nk↓ − ε̃nk↑ = 2〈Jz〉j(0). (5.7.16)

Since j(0) has the same sign as (g − 1), it is positive in the heavy rare
earth metals. If N (ε) is the density of electronic states per ion and per
spin state in the paramagnetic phase, the shifts of the spin-up and spin-
down bands lead to an excess number of spin-up electrons proportional
to

N (ε̃F ) =
1
∆

∫ ε̃F +∆
2

ε̃
F
−∆

2

N (ε)dε, (5.7.17)

when the small modification of the density of states due to the interband
coupling is neglected, so that ε̃F is close to the Fermi energy εF of
the non-magnetic system. In combination with eqn (5.7.14), this result
predicts a (positive) augmentation of the ferromagnetic moment of the
4f electrons, due to the conduction electrons, of magnitude

〈µz〉c.el. = µBN (ε̃F )∆, (5.7.18)

when kBT � ε̃F . The total moment per ion may then be expressed in
terms of an effective g-factor:

〈µz〉 = gµB〈Jz〉 + 〈µz〉c.el. = (g + ∆g)µB〈Jz〉, (5.7.19a)

where
∆g = 2j(0)N (ε̃F ). (5.7.19b)

In the metals, the effective exchange integral j(0) is ∼ (g − 1)× 0.1 eV,
leading to an exchange splitting ∆ which, in Gd for example, is nearly 1
eV. This relatively large splitting has the consequence that N (ε̃F ) may
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differ somewhat from the value N (εF ) in the paramagnetic phase. In
the hcp metals, the band structure calculations discussed in Section
1.3 reveal that εF is near a peak in the density of states due to the d
electrons, and that N (εF ) � 1 eV−1 per spin state per ion, corresponding
to an electronic moment of the order of one-tenth of the local moment.
In the example of Gd, for which g = 2, ∆g = 0.18. The same value of
∆g/(g− 1) accounts fairly well for the conduction-electron contribution
to the moments of the other heavy rare earths in Table 1.6, bearing
in mind the uncertainties in the experimental results, and the possible
effects of the crystal fields in quenching the local moments.

The spin waves in the ferromagnetic phase are decisively influenced
by the sf -exchange interaction. In order to consider such effects, we
introduce the Bose operators acting on the angular-momentum states,
as in eqns (5.2.6–8), and find, to first order in 1/J ,

Hsf � Hsf (MF) − 1
N

∑
kqτ

∑
i

j(q + τ ) e−iq·Ri

[
−δq0(〈c+k+τ ↑ck↑〉

− 〈c+k+τ ↓ck↓〉)a+
i ai +

√
2Jc+k+q+τ ↑ck↓ a

+
i +

√
2Jc+k+q+τ ↓ck↑ ai

]
,

using the simplified exchange of eqn (5.7.15), and neglecting effects of
third or higher order in j(q) due to (c+k′σckσ − 〈c+k′σckσ〉)a+

i ai. q is
assumed to lie in the primitive Brillouin zone, but no such restriction
is placed on k. We note that c+k and c+k+τ , where τ is a reciprocal
lattice vector, create electrons in different bands in the free-electron
model. Introducing the crystal-field Hamiltonian to first order in 1/J
(eqn (5.2.14) with J (ij) = 0), and the Fourier transforms of the Bose
operators (5.2.16), we find that the total magnetic Hamiltonian becomes

H = H̃s +
∑
q

[
{A+ JJ̃ (0, 0)}a+

q aq +B 1
2 (aqa−q + a+

q a
+
−q)
]

−
√

2J/N
∑
kqτ

j(q + τ )
(
c+k+q+τ ↑ck↓ a

+
−q + c+k+q+τ ↓ck↑ aq

)
,

(5.7.20)
where

J̃ (0, 0) = 2j2(0)N (ε̃F ) +
2
N

∑
k,τ �=0

|j(τ )|2
fk↓ − fk+τ ↑
εk+τ − εk

, (5.7.21)

including the ‘interband’ contributions as in (5.7.9). The spin-wave en-
ergies may be obtained from the poles in the Green function 〈〈aq ; a+

q 〉〉.
The equation of motion (3.3.14) for this Green function is determined
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from H to be{
h̄ω −A−JJ̃ (0, 0)

}
〈〈aq ; a+

q 〉〉 −B〈〈a+
−q ; a+

q 〉〉

+
√

2J/N
∑
kτ

j(−q− τ )〈〈c+k−q−τ ↑ck↓ ; a+
q 〉〉 = 1. (5.7.22)

The equation of motion of the new Green function 〈〈c+k−q−τ ↑ck↓ ; a+
q 〉〉

involves the following commutator:

[ c+k−q−τ ↑ck↓ ,H ] =
(
εk↓ − εk−q−τ ↑

)
c+k−q−τ ↑ck↓

+
√

2J/N
∑
q′
j(q′)

(
c+k−q−τ+q′↓ck↓ − c+k−q−τ ↑ck−q′↑

)
aq′

�
(
εk↓ − εk−q−τ ↑

)
c+k−q−τ ↑ck↓ +

√
2J/N j(q + τ )

(
fk↓ − fk−q−τ ↑

)
aq

(5.7.23)
obtained by applying the anticommutator relations (5.7.3) and, in the
second equation, an RPA decoupling of the operator products. It is
not necessary here to differentiate between the new and the old Fermi
operators, as the differences introduce corrections only in the third order
of |j(q)|. Introducing this RPA result in the equation of motion for the
Green function 〈〈c+k−q−τ ↑ck↓ ; a+

q 〉〉, we obtain(
h̄ω − εk↓ + εk−q−τ ↑

)
〈〈c+k−q−τ ↑ck↓ ; a+

q 〉〉

−
√

2J/N j(q + τ )
(
fk↓ − fk−q−τ ↑

)
〈〈aq ; a+

q 〉〉 = 0,
(5.7.24)

which, in combination with (5.7.22), leads to{
h̄ω−A−JJ̃ (0, 0)+JJ̃ (q, ω)

}
〈〈aq ; a+

q 〉〉−B〈〈a+
−q ; a+

q 〉〉 = 1, (5.7.25)

where

J̃ (q, ω) = lim
ε→0+

2
N

∑
τ

|j(q + τ )|2
∑
k

fk↓ − fk−q−τ ↑
h̄ω + ih̄ε− εk↓ + εk−q−τ ↑

.

(5.7.26a)
This result may be expressed in terms of the susceptibility of the con-
duction electrons. Introducing the spin susceptibility per ion, which is
the usual magnetic susceptibility times (2µB)−2V/N , so that

χ+−
c.el.(q, ω) = − 1

N

∫
dr1dr2〈〈s+(r1) ; s−(r2)〉〉 e−iq·(r1−r2)

= − 1
N

∑
k′k′′

〈〈c+k′−q↑ck′↓ ; c+k′′+q↓ck′′↑〉〉

= lim
ε→0+

1
N

∑
k

fk↓ − fk−q↑
h̄ω + ih̄ε− εk↓ + εk−q↑

,

(5.7.26b)
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and neglecting the higher-order corrections to the spin-susceptibility,
due to the coupling to the local moments, we can write the above result

J̃ (q, ω) = 2
∑
τ

|j(q + τ )|2χ+−
c.el.(q + τ , ω), (5.7.26c)

where by the relation (3.2.15), χ+−
c.el.(q, ω) = [χ−+

c.el.(−q,−ω)]∗. In gen-
eral, when the Coulomb interaction cannot be approximated by a δ-
function, this factorization is not valid, and the indirect exchange is
instead given by

J̃ (q, ω) =

lim
ε→0+

2
N

∑
nn′

∑
k

(g − 1)2|I(n′k − q, nk)|2
fnk↓ − fn′k−q↑

h̄ω + ih̄ε− εnk↓ + εn′k−q↑
,

(5.7.27)
where k is now confined to the primitive Brillouin zone.

In the frequency regime of the spin waves, where |h̄ω| is much
smaller than the Fermi energy or the exchange splitting ∆, the fre-
quency dependence of J̃ (q, ω) can, to a good approximation, be ne-
glected. The spins of the conduction electrons respond essentially in-
stantaneously to any changes in the state of the local angular momenta,
compared with the time-scale of these changes. For a Bravais-lattice,
J̃ (q, ω) � J̃ (q, 0) = J̃ (−q, 0). A comparison of eqn (5.7.25) with the
1/J spin-wave result (5.2.18) shows that J̃ (0, 0) − J̃ (q, 0) replaces the
contribution of the Heisenberg interaction considered in eqn (5.2.1). In
this equation, J (ii) ≡ 0 by definition and, since this is not the case for
J̃ (ii) = (1/N)

∑
q J̃ (q, 0), J̃ (q, 0) cannot be associated directly with

J (q). The instantaneous or frequency-independent part of the coupling
of Ji with itself leads to a contribution 1

2N J̃ (ii)〈Ji · Ji〉 to the total
energy, where 〈Ji ·Ji〉 = J(J + 1), independently of the magnetic order-
ing or the temperature. This assertion may be verified (to first order
in 1/J) by a direct calculation of 〈H〉 from (5.7.20). For this purpose
〈c+k−q−τ ↑ck↓a

+
q 〉, for instance, is determined from eqn (5.7.24), but a

self-energy correction of a factor 1/2 must be included in its contribu-
tion to 〈H〉. Taking this condition into account, we may finally write

J (q) = J̃ (q, 0) − 1

N

∑
q′

J̃ (q′, 0). (5.7.28)

The exchange interaction between the 4f electrons and the conduction
electrons thus leads to an effective Heisenberg interaction between the
local angular momenta, as given in (5.2.1). This is the RKKY interaction
discussed earlier in Section 1.4.
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The above calculation has been performed for a Bravais lattice, but
the result (5.7.26) is readily generalized to a crystal with a basis of p
ions, as the conduction electrons, in the approximation adopted, are
not affected by the presence of the basis. If the couplings between the
different sublattices are introduced in an equivalent manner to (5.1.1),
then

J̃ss′ (q, ω) = 2

p

∑
τ

|j(q + τ )|2χ+−
c.el.(q + τ , ω) exp

(
iρss′ · τ

)
(5.7.29)

replaces (5.7.26c), where ρss′ is the vector connecting the two sublattices
s and s′.

The interaction between the localized moments is effectuated via
virtual electron-hole pair-excitations of the conduction electrons. The
transmission of any time-dependent event may be disturbed in two ways;
either by the finite propagation-time of the pairs, or by a decay of the
pair states into unbound electron and hole excitations, the so-called
Stoner excitations. The second effect produces by far the most impor-
tant correction to the instantaneous interaction, but we shall begin with
a discussion of the frequency-dependence of the real part of J̃ (q, ω), due
to the finite transmission time. Returning to the simple model leading
to (5.7.26), we find that the exchange coupling is proportional to the
susceptibility function χ+−

c.el.(q, ω), which for unpolarized free electrons
is the same as the Lindhard function (Lindhard 1954). If corrections of
the order kBT/εF are neglected, the real part at zero wave-vector is

Re
[
χ+−

c.el.(0, ω)
]

=
1
N

∑
k

fk↓ − fk↑
h̄ω − εk↓ + εk↑

=
1
N

∑
k

fk↑ − fk↓
∆ − h̄ω

= N (ε̃F )
(
1 +

h̄ω

∆

)
.

(5.7.30)

From this result, we find immediately that the intra-band contribution
at zero frequency to J̃ (q → 0, 0) in eqn (5.7.26a) is 2j2(0)N (ε̃F ), which
is the same as in (5.7.21). On the other hand, the interband contri-
butions differ in the two expressions, as the denominator in (5.7.26a)
involves the exchange splitting ∆, whereas that in (5.7.21) does not.
However, this difference can be neglected, as it is of the order (∆/εF )2

times the intra-band contribution, which is beyond the order considered
in these calculations. In fact, since the starting Hamiltonian (5.7.6) is
invariant with respect to the choice of z-axis for the electronic spins
and the angular momenta, the spin-wave frequency must vanish when
q → 0 and A = B = 0, according to the Goldstone theorem, which will
be discussed in the next chapter. Therefore J̃ (q → 0, 0) = J̃ (0, 0),
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and we simply assume that eqn (5.7.26a), with (q, ω) = (0, 0), replaces
eqn (5.7.21). In the presence of an external field, ∆ in eqn (5.7.16) is
increased by an amount 2µBH , which leads to the extra contribution
∆gµBH to J̃ (0, 0) in (5.7.21), as the change with field of the interband
terms may be neglected. To leading order, J̃ (q → 0, 0) is not affected
by the applied field, so to this order the extra polarization of the con-
duction electrons, due to an external field, may simply be accounted
for by replacing gµBH by (g + ∆g)µBH , both in the Zeeman energy
(5.7.19a) and in the spin-wave energy parameters (in A). Writing the
susceptibility in eqn (5.7.26b) as the sum of two terms, and replacing
k − q by k in the term involving fk−q↑, we obtain

Re
[
χ+−

c.el.(q, ω)
]

=

V

(2π)3
2π
N

∫ kF↓

0

k2dk

∫ 1

−1

dµ
[
h̄ω − ∆ +

(h̄q)2

2m
− h̄2kq

m
µ
]−1

− V

(2π)3
2π
N

∫ kF↑

0

k2dk

∫ 1

−1

dµ
[
h̄ω − ∆ − (h̄q)2

2m
− h̄2kq

m
µ
]−1

,

or

Re
[
χ+−

c.el.(q, ω)
]

=
V

N

m

(2πh̄)2
{
kF↓(1 − η)F

( q

2kF↓
(1 − η)

)
+ kF↑(1 + η)F

( q

2kF↑
(1 + η)

)}
(5.7.31a)

where we have introduced the function

F(x) =
1
2

+
1 − x2

4x
ln
∣∣∣∣1 + x

1 − x

∣∣∣∣ (5.7.31b)

and the parameter

η =
∆ − h̄ω

εF

(
kF

q

)2

. (5.7.31c)

The Fermi energy is εF = (h̄kF )2/2m, and the wave-vectors of the spin-
up and the spin-down electrons at the Fermi surface are

kF↑ = kF

(
1 +

∆
2εF

) 1
2 ; kF↓ = kF

(
1 − ∆

2εF

) 1
2 . (5.7.31d)

η → ∞ in the limit q → 0 and, using F(x) = 1/3x2 when |x| → ∞, we
may re-derive the result (5.7.30). At non-zero q, a numerical analysis
shows that, to a good approximation,

Re
[
χ+−

c.el.(q, ω)
]

= N (ε̃F )
{
F
( q

2kF

)
+ ξq

h̄ω

∆

}
, (5.7.32)
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even when ∆/εF is as large as 0.5. The parameter ξq is equal to 1
at q = 0, and peaks at q = q0 = kF↑ − kF↓, after which it rapidly
decreases (ξq � 0.25 at q = 2q0). For ∆/εF = 0.1, the maximum value
is about 4 and it decreases for increasing values of ∆, falling to about
3 at ∆/εF = 0.4. Usually q0 is much smaller than the length of any
reciprocal-lattice vector, which means that the frequency dependence of
the ‘interband’ term in the real part of J̃ (q, ω) can be neglected. The
intra-band contribution is 2|j(q)|2N (ε̃F )ξqh̄ω/∆, and using

{
h̄ω +A+ JJ̃ (0, 0) − JJ̃ ∗(−q,−ω)

}
〈〈a+

−q ; a+
q 〉〉 +B〈〈aq ; a+

q 〉〉 = 0,
(5.7.33)

which follows by symmetry from eqn (5.7.25), we may determine the
spin-wave energies from the real part of J̃ (q, ω) to be

h̄ω = E′
q = Eq

[
1 + ξqN (ε̃F )|j(q)|2/j(0)

]−1
, (5.7.34a)

to first order in 1/J , with Eq given by (5.2.22). The extra factor, which
originates from the frequency dependence of χ+−

c.el.(q, ω), differs from 1
by only a few per cent, and its q-dependent contribution could scarcely
be distinguished from that of J (q). However, the presence of this factor
at q = 0 means that the energy of the uniform spin-wave mode is no
longer determined exclusively by the magnetic anisotropy of the bulk,
according to (5.4.12) and (5.4.19), when the magnetoelastic effects are
included, but instead the energy gap is

E′
0 =

1
N

(
∂2F

∂θ2
∂2F

∂φ2

∣∣∣∣
ε

)1
2 1
〈Jz〉(1 + 1

2∆g)
. (5.7.34b)

Although this modification is small, it demonstrates that the frequency
dependence of χ+−

c.el.(q, ω) may cause small deviations between the static
anisotropy parameters and those derived from the energy gap, as possi-
bly detected in Tb in the form of a non-zero value of δ6(−), defined by
eqn (5.4.23a).

The dominant term in the real part of χ+−
c.el.(q, ω) is the frequency-

independent contribution proportional to F(q/2kF ). Including only this
contribution, and making the rather drastic simplifying assumption that
|j(q + τ )| in eqn (5.7.26c) is a constant |j0| at all wave-vectors, we may
derive the exchange coupling in real space, which then depends only on
the distance R between the different ions:

J (R) = 2|j0|2
V

N(2π)3

∫
N (ε̃F )F

( q

2kF

)
eiq·Rdq.
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The sum over τ in (5.7.26c) corresponds to letting q vary between 0 and
∞, and the result is

J (R) = 12πν|j0|2N (ε̃F )
sin(2kFR) − 2kFR cos(2kFR)

(2kFR)4
, (5.7.35)

where ν is the number of conduction electrons per ion; ν = V k3
F /3π

2N .
Although this result is not directly applicable to realistic systems, it
demonstrates explicitly that the indirect coupling mediated by the con-
duction electrons is long range, J (R) ∝ R−3 for large R, and that it
oscillates. The period of the oscillation is here 2π/2kF whereas, in a real
system, such oscillations may occur as a result of large parallel areas of
Fermi surface, the separation of which determines an effective value of
2kF . It is interesting that J (R), derived from the excitation spectrum
in Pr and shown in Fig. 1.18 on page 49, is reasonably well described
by the above function, especially when R is in the basal plane, provided
that an effective value of 2kF of about 1.1 Å−1 is used.

The magnetic scattering of the electron-hole pairs leads to a damp-
ing of the spin waves, which is determined by the imaginary part of the
susceptibility (5.7.26b). The complementary result to eqn (5.7.31a) is
then

Im
[
χ+−

c.el.(q, ω)
]

=

− V

(2π)3
2π
N

∫ ∞

0

k2dk

∫ 1

−1

dµπδ
(
h̄ω − ∆ +

(h̄q)2

2m
− h̄2kq

m
µ
)
fk↓

+
V

(2π)3
2π
N

∫ ∞

0

k2dk

∫ 1

−1

dµπδ
(
h̄ω − ∆ − (h̄q)2

2m
− h̄2kq

m
µ
)
fk↑.

Because −1 < µ < 1, the δ-function argument in the first term can only
be zero if εq ≡ (h̄q)2/(2m) lies between the two roots ε± = 2εk + ∆ −
h̄ω ± 2

[
εk(εk + ∆ − h̄ω)

]1/2. For the second term, the same condition
applies, except that the signs of ∆ and h̄ω are reversed, leading to the
extra requirement that εk > εK = ∆ − h̄ω. If these conditions are
satisfied,

Im
[
χ+−

c.el.(q, ω)
]

=

− V

N(2π)2

∫ ∞

0

πm

h̄2q
kf(εk + ∆

2 )dk +
V

N(2π)2

∫ ∞

K

πm

h̄2q
kf(εk − ∆

2 )dk,

where f(ε) = 1/
[
exp(ε−εF )+1

]
. By a suitable change of variables, the

two integrals acquire the same limits and the same condition on εq, and
they may therefore be combined in a single integral:

Im
[
χ+−

c.el.(q, ω)
]

=
V

N(2π)2
πm2

h̄4q

∫ ∞

∆−h̄ω
2

{
−f(ε+ h̄ω

2 ) + f(ε− h̄ω
2 )
}
dε.
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The integrand is only non-zero in a narrow interval of width |h̄ω| �
∆ < εF around the Fermi surface, in which case the condition on εq can
be written kF↑ − kF↓ < q < kF↑ + kF↓ (if ∆ = 0 the lower boundary is
replaced by (h̄ω)2/(4εF ) < εq). With this condition fulfilled,

Im
[
χ+−

c.el.(q, ω)
]

=
V

N(2π)2
πm2

h̄4q
h̄ω,

independent of T (as long as kBT � εF ). Using

Nσ(εF ) = (V/N)(2πh̄)−22mkFσ ; (V/N)(2π)−2 2
3 (k3

F↑ + k3
F↓) = ν,

where ν is the number of conduction electrons per ion (ν = 3), we may
write the result:

Im
[
χ+−

c.el.(q, ω)
]

=
π

3ν
N↑(εF )N↓(εF )

kF

q
h̄ω; (5.7.36)

kF↑ − kF↓ < q < kF↑ + kF↓,

neglecting corrections of second order in ∆/εF . In the zero-frequency
limit considered here, q has to exceed the threshold value q0 = kF↑−kF↓
before the imaginary part of χ+−

c.el.(q, ω) becomes non-zero. This thresh-
old value corresponds to the smallest distance in q-space between an oc-
cupied spin-down state and an unoccupied spin-up state, or vice versa,
of nearly the same energy (� εF ). At q = q0, the function makes a dis-
continuous step from zero to a finite value. The above result, combined
with eqn (5.7.26), leads to

Im
[
J̃ (q, ω)

]
= ζ(q)h̄ω, (5.7.37a)

with

ζ(q) =
2π
3ν

N↑(εF )N↓(εF )
∑
τ

|j(q + τ )|2 kF

|q + τ | , (5.7.37b)

where the sum is restricted to kF↑ − kF↓ < |q + τ | < kF↑ + kF↓. The
imaginary part of J̃ (q, ω) gives rise to a non-zero width in the spin-wave
excitations. If the above result is inserted in eqns (5.7.25) and (5.7.33),
the denominator of the Green functions may approximately be written
(h̄ω)2−(E′

q)2 +2iΓqh̄ω, where Γq is half the linewidth of the spin waves
at the wave-vector q, and is found to take the form

Γq = J
[
A+ J{J (0) − J (q)}

]
ζ(q) = JAq ζ(q). (5.7.38)
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Fig. 5.13. The linewidths of magnons propagating in the c-direction of
Tb at 4K, compared with a theory based upon the nearly-free-electron
model. The abrupt changes in the calculated lifetimes are due to the

spin-splitting of the Fermi surface.

The lifetimes of the magnons propagating in the c-direction in Tb
at 4K, at which temperature the conduction electrons provide the dom-
inant scattering process, were measured by Bjerrum Møller and Mack-
intosh (1979). As illustrated in Fig. 5.13, the linewidths are small, but
non-zero, at small wave-vectors, rise abruptly at about a quarter of the
way to the zone boundary, and fall again at large q. In order to inter-
pret these results rigorously, it would be necessary to use eqn (5.7.27),
with the correct band structure for Tb and realistic values for the ex-
change matrix elements I(n′k′, nk). However, it is possible to obtain a
semi-quantitative description by using the simple free-electron expres-
sion (5.7.37). As we shall see in the remainder of this section, this model,
with an sf -interaction determined, for example, from the polarization of
the conduction electrons (5.7.16–19), gives a surprisingly good account
of the real scattering processes involving the interaction between the 4f
and conduction electrons. Although the dominant d bands are far from
parabolic in the rare earths, the nearly-free-electron Fermi surface for a
trivalent hcp metal has a sheet with the form of a lens normal to the
c-axis (Mackintosh et al. 1963), which mimics the Fermi-surface webbing
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described in Section 1.3, and reproduces a number of observed features.
In the calculations of Jensen (1982a), compared with the experimen-
tal results in Fig. 5.13, the spin-splitting of this surface gives rise to the
critical value q0 at which the linewidths abruptly increase. The finite life-
times below this cut-off are due to interband transitions between states
on sections of the Fermi surface with opposite spin, which intersect in
the primitive Brillouin zone after translation through a reciprocal-lattice
vector. These effects will also occur in calculations based on a realistic
band structure, whereas the behaviour at higher q is much more depen-
dent on the details of the energy bands.

5.7.2 The mass-enhancement of the conduction electrons
The processes in which the spin waves are scattered by the electron-
hole pair excitations of the conduction electrons, and which therefore
limit their lifetime, also have consequences for the conduction electrons.
The energies of the conduction electrons are changed, and hence also
their effective mass at the Fermi surface m∗, as measured directly by
cyclotron resonance or the de Haas–van Alphen effect, or as determined
from the low-temperature heat capacity. In the zero-temperature limit,
the electronic part of the specific heat is

C = γT =
m∗

m
γ0T ; γ0 = 1

3π
2k2

B

{
N↑(ε̃F ) + N↓(ε̃F )

}
N, (5.7.39)

where m∗ = (m∗
↑ + m∗

↓)/2 in the spin-polarized case. The use of ε̃F

instead of εF is meant to indicate that all the effects of the MF Hamil-
tonian, including the interband couplings in (5.7.7), are assumed to be
incorporated in γ0 or m.

In order to calculate m∗, we shall utilize the Green functions of
the conduction electrons. Because these particles are fermions, it is
convenient to introduce an alternative type of Green function, in which
an anticommutator bracket replaces the commutator bracket occurring
in the definition (3.3.12), so that, for instance,

G↑(k, t− t′) ≡ 〈〈ck↑(t) ; c+k↑(t
′)〉〉+ = − i

h̄
θ(t− t′)〈{ck↑(t) , c

+
k↑(t

′)}〉.
(5.7.40)

The Fourier transform obeys an equation of motion equivalent to eqn
(3.3.14a), except that the commutator on the right-hand side of this
equation is replaced by the anticommutator, or

h̄ωG↑(k, ω) − 〈〈[ ck↑ , H ] ; c+k↑〉〉+ = 〈{ck↑ , c
+
k↑}〉 = 1. (5.7.41)

If H is approximated by H̃s, given by eqn (5.7.10), we obtain the non-
interacting value of the Green function

G↑(k, ω) � Go
↑(k, ω) =

1
h̄ω − εk↑

(5.7.42)
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(neglecting the minor difference between ε and ε̃), showing that the poles
of the Green function determine the energies of the conduction elec-
trons. Considering the total Hamiltonian, in the approximation given
by (5.7.20), we have instead

(h̄ω − εk↑)G↑(k, ω) +
√

2J/N
∑
qτ

j(q + τ )〈〈ck−q−τ ↓a
+
−q ; c+k↑〉〉+ = 1.

(5.7.43)
The equation of motion of the new Green function is determined from

[ ck−q−τ ↓a
+
−q , H ]

=
{
εk−q−τ ↓ −A− JJ̃ (0, 0)

}
ck−q−τ ↓a

+
−q −B ck−q−τ ↓aq

−
√

2J/N
∑
k′τ ′

j(−q − τ ′)
[
c+k′−q−τ ′↓ck−q−τ ↓ck′↑

+ δk−τ ,k′−τ ′ 〈a+
−qa−q〉ck+τ ′−τ ↑

]
,

using an RPA decoupling procedure to obtain the last term. To pro-
ceed further, we have to calculate 〈〈c+k′−q−τ ′↓ck−q−τ ↓ck′↑ ; c+k↑〉〉+ and,
within the RPA,

〈〈c+k′−q−τ ′↓ck−q−τ ↓ck′↑ ; c+k↑〉〉+
= δk′−τ ′,k−τ fk−q−τ ↓〈〈ck+τ ′−τ ↑ ; ck↑〉〉+

−
√

2J/N
j(q + τ ′){fk′↑ − fk′−q−τ ′↓}

h̄ω − εk′↑ − εk−q−τ ↓ + εk′−q−τ ′↓
〈〈ck−q−τ ↓a

+
−q ; c+k↑〉〉+.

Writing h̄ω1 = h̄ω − εk−q−τ ↓, we obtain from these equations

{
h̄ω1 +A+ JJ̃ (0, 0) − JJ̃ ∗(q,−ω1)

}
〈〈ck−q−τ ↓a

+
−q ; c+k↑〉〉+

+B〈〈ck−q−τ ↓aq ; c+k↑〉〉+
= −

√
2J/N

∑
τ ′

j(−q− τ ′)
(
fk−q−τ ↓ + 〈a+

−qa−q〉
)
〈〈ck+τ ′−τ ↑ ; c+k↑〉〉+.

(5.7.44)
In the sum, the terms with τ ′ �= τ only lead to higher-order corrections,
of the same type as those arising from the difference between ck↑ and
c̃k↑, and they can be neglected. Calculating 〈〈ck−q−τ ↓aq ; c+k↑〉〉+ in an
equivalent way, and introducing the notation:

Gm1(q, ω) = 〈〈aq ; a+
q 〉〉 ; Gm2(q, ω) = 〈〈a+

q ; aq〉〉 = G∗
m1(q,−ω)

Gm3(q, ω) = 〈〈a+
−q ; a+

q 〉〉 (5.7.45)
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for the magnon Green functions determined by (5.7.25) and (5.7.33), we
obtain

〈〈ck−q−τ ↓a
+
−q ; c+k↑〉〉+ =

√
2J/N j(−q− τ )G↑(k, ω)

×
[
{fk−q−τ ↓ + 〈a+

q aq〉}Gm2(q, ω1) − 〈aqa−q〉Gm3(q, ω1)
]
.

(5.7.46)

Defining the self-energy of the spin-up electrons by the relation

G↑(k, ω) =
1

h̄ω − εk↑ − Σ↑(k, ω)
, (5.7.47)

and using (3.1.10) to establish that

Gm(q, ω) =
1
iπ

∫
Gm(q, ω′)
h̄ω′ − h̄ω

d(h̄ω′),

we obtain finally

Σ↑(k, ω) = −2J
N

∑
qτ

|j(q + τ )|2 1
iπ

∫ ∞

−∞

d(h̄ω′)
h̄ω′ − h̄ω + εk−q−τ ↓

×
[
{fk−q−τ ↓ + 〈a+

q aq〉}Gm2(q, ω
′) − 〈aqa−q〉Gm3(q, ω

′)
]
. (5.7.48)

This result corresponds to that deduced by Nakajima (1967), as gener-
alized by Fulde and Jensen (1983).

The average effective mass of the spin-up electrons at the Fermi
surface is determined by

1
m∗

↑
=

1
h̄2k

∂Ek↑
∂k

∣∣∣∣
k=k

F↑

,

averaged over the direction of k. Here Ek↑ = εk↑+Re
[
Σ↑(k, Ek↑)

]
is the

corrected energy of the spin-up electrons. We can neglect the explicit
k-dependence of Σ↑(k, ω) in comparison to its frequency dependence,
disregarding terms of the order Eq/εF in the derivative of Ek↑, so that

∂Ek↑
∂k

=
∂εk↑
∂k

+
1
h̄

∂

∂ω
Re
[
Σ↑(k, ω)

]∣∣∣∣
h̄ω=E

k↑

∂Ek↑
∂k

,

or
m∗

↑
m

= 1 − 1
h̄

∂

∂ω
Re
[
Σ↑(kF↑, ω)

]∣∣∣∣
h̄ω=E

F

, (5.7.49)

averaged over the Fermi surface. Within the same approximation, the
terms in eqn (5.7.48) proportional to the magnon correlation-functions
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can be neglected and, to leading order, h̄ω = EF in the ω-derivative may
be replaced by εk↑, with k = kF↑. In the limit of zero temperature, the
free-electron model then gives

m∗
↑
m

= 1 +
2J
N

∑
qτ

|j(q + τ )|2 1
π

∫ ∞

−∞
d(h̄ω′)

× 1
2

∫ 1

−1

dµ
Im
[
Gm2(q, ω

′)
](

h̄ω′ + ∆ + (h̄|q+τ |)2
2m − h̄2k|q+τ |

m µ
)2 ,

subject to the conditions that k = kF↑ and |k − q − τ | < kF↓. These
conditions imply that kF↑−kF↓ < |q+τ | < kF↑+kF↓, and that the lower
bound −1 of the µ-integral is replaced by (h̄2q2+2m∆)/(2h̄2kF↑|q+τ |).
Because Im

[
Gm2(q, ω′)

]
is odd in ω′, the contribution due to the upper

bound in the µ-integral can be neglected (it is of the order h̄ω′/εF ).
Since

1
π

∫ ∞

−∞

Im
[
Gm2(q, ω′)

]
h̄ω′ d(h̄ω′) = Re

[
Gm2(q, 0)

]
= −

Aq

E2
q

,

the average mass-enhancement of the spin-up electrons at the Fermi
surface is

m∗
↑
m

= 1 +
N↓(εF )
2kF↑kF↓

∫ kF↑+kF↓

k
F↑−k

F↓

dq

∫
dΩq

4π
q|j(q)|2

2JAq

E2
q

, (5.7.50)

and, by symmetry, m∗
↓/m is given by the same expression, except that

N↓(εF ) is replaced by N↑(εF ). We note that the mass-enhancement only
depends on the static part of the susceptibility, i.e. Gm2(q, 0), and that
the magnitude of the mass-renormalization is intimately related to the
linewidth of the spin waves derived above in eqn (5.7.38). Utilizing this
connection, we can write the specific heat, in the zero-temperature limit,

C =
π2

3
k2

BT

[
N↑(εF ) + N↓(εF ) +

1
N

∑
q

2Γq

πE2
q

]
N, (5.7.51)

where again the q-sum only extends over the primitive Brillouin zone.
With typical values of EqN (εF ) ≈ 0.01 and 2Γq/Eq ≈ 0.05, this expres-
sion predicts a doubling of the linear term in the heat capacity due to the
interaction between the conduction electrons and the spin waves, which
therefore has an appreciable effect on the effective mass of the electrons
near the Fermi surface. More detailed analyses (Nakajima 1967; Fulde
and Jensen 1983) show that the deformation of the electronic bands is
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pinned to the Fermi surface, and occurs within a narrow interval with a
width corresponding to the spin-wave energies. This implies that, even
if the electronic energies εkσ appearing in the magnon Green-functions
were replaced with Ekσ, due to higher-order processes, this modification
would not be of much importance. The total electronic heat capacity
is Ce =

∑
kσ Ekσdfkσ/dT , when the imaginary part of the self-energy is

neglected. The extra contribution due to the coupling to the spin waves
is linear only at the lowest temperatures (kBT < 0.05Eq), after which it
increases more rapidly than linearly to its maximum at kBT � 0.15Eq.
Above kBT � 0.3Eq, this contribution becomes negative and finally dies
out when kBT ≈ Eq. This variation with temperature was described
by Fulde and Jensen (1983), and has been discussed in the context of
the phonon interaction by Grimvall (1981). The bosons (magnons and
phonons) do not contribute directly to the linear term in the heat capac-
ity, which is thus a characteristic phenomenon of the Fermi gas. How-
ever, the departure from the linear variation when kBT > 0.05Eq may
be influenced by the spin-wave contribution

Cm =
∑
q

1
π

∫ ∞

−∞
d(h̄ω) 2Γq(h̄ω)3{

(h̄ω)2 − E2
q(T )

}2
+
{
2Γqh̄ω

}2

d

dT

( 1
1 − e−βh̄ω

)
�
∑
q

Eq(T )
d

dT

(
nq + 1

2

)
+
π2

3
k2

BT
∑
q

2Γq

πE2
q

[
2

5y2
+

4

7y4
+ · · ·

]
y=βEq/2π

,

(5.7.52)
to first order in Γq/Eq. The first term is the RPA spin-wave contribu-
tion (5.3.3) derived before, which dominates strongly at elevated tem-
peratures. However, in the low-temperature limit, the second term is
of the same order of magnitude as the non-linear corrections to eqn
(5.7.51). For comparison, the last term in this equation is multiplied
by the factor

[
1 + 3/(5y2) + 5/(7y4) + · · ·

]
when the higher-order tem-

perature effects are included. The additional contribution due to the
non-zero linewidth of the bosons is normally not considered in the lit-
erature. It may be added to the pure electronic contribution derived by
Fulde and Jensen (1983), by replacing yL′(y) with 2yL′(y)+L(y) in their
eqn (17a). The mass-enhancement effect increases proportionally to the
inverse of Eq (Γq ∝ Aq). On the other hand, the interval in which the
linear variation occurs is diminished correspondingly, requiring a more
careful consideration of the higher-order modifications.

In the metals, the itinerant electrons also interact with the phonons,
and this leads to an entirely equivalent enhancement of their mass. This
effect has been calculated for the whole rare earth series by Skriver and
Mertig (1990), who find an increase of the band mass due to coupling to
the phonons of typically about 35% for the heavy elements. Assuming
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the different contributions to be additive, we may write the total mass-
enhancement

m∗

m
= 1 + λtot = 1 + λsw + λph + λc (5.7.53)

as a sum of contributions from the interactions with the spin waves and
the phonons, and from the possible exchange and Coulomb interactions
within the electron gas itself (λc). Although the different correlation
effects may increase the effective mass derived from band structure cal-
culations by a factor of two or more, it is difficult to isolate this en-
hancement in heat capacity measurements, because of the quite narrow
temperature interval where a truly linear behaviour can be anticipated.
This interval is bounded below because of the nuclear spins, which may
give large contributions to the heat capacity in the mK-range. The upper
bound is due partly to the higher-order temperature effects, but most
importantly to the disturbance by the normal boson contributions, ap-
proximately proportional to Tαexp(−E0/kBT ) and T 3 for the magnons
and the phonons respectively, which completely dominate the heat ca-
pacity at elevated temperatures. Because of this limitation, the most
reliable method of determining the mass-enhancement is by measuring
the temperature dependence of the dHvA effect, which also allows a
separation of the contributions from the different sheets of the Fermi
surface. Using this method, and comparing with the results of band
structure calculations, Sondhelm and Young (1985) found values of λtot

varying between 0.2 and 1.1 for Gd. The theoretical results of Fulde
and Jensen (1983) lie within this range, but these measurements point
to the necessity of discriminating between states of different symmetry
in considering the mass-enhancement of the conduction electron gas.

5.7.3 Magnetic contributions to the electrical resistivity
The electrical resistivity of a metal can be calculated by solving the
Boltzmann equation. We shall not discuss the theory of transport prop-
erties in detail here, but instead refer to the comprehensive treatments
of Ziman (1960), and Smith and Højgaard Jensen (1989). The non-
equilibrium distribution function gkσ, generated by the application of
an external electric field E, is written in terms of the equilibrium distri-
bution function, and is determined by the Boltzmann equation:

gkσ = fkσ +fkσ(1−fkσ)ψkσ, where
∂gkσ

∂k
· dk
dt

=
dgkσ

dt

∣∣∣∣
coll

. (5.7.54)

The electrical current-density is then determined as

j = σ ·E = − e

V

∑
kσ

vkσfkσ(1 − fkσ)ψkσ,
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with h̄vkσ = ∂εkσ/∂k. In the linear regime, the left-hand side of the
Boltzmann equation is

∂gkσ

∂k
· dk
dt

� −∂fkσ

∂εkσ
evkσ · E = eβfkσ(1 − fkσ)vkσ ·E.

The collision term on the right-hand side is

dgkσ

dt

∣∣∣∣
coll

=
∑
k′σ′

[
gk′σ′(1− gkσ)W (k′σ′,kσ)− gkσ(1− gk′σ′)W (kσ,k′σ′)

]
,

where W (kσ,k′σ′) is the probability per unit time for an electronic
transition from an occupied state |kσ> to an unoccupied state |k′σ′>.
Linearizing the collision term, and using the principle of detailed balance,
so that this term must vanish if gkσ = fkσ, we may reduce the Boltzmann
equation to

eβfkσ(1 − fkσ)vkσ · E = −
∑
k′σ′

(1 − fkσ)fk′σ′W (k′σ′,kσ)
(
ψkσ − ψk′σ′

)
.

It is possible to find an upper bound on the resistivity from this equation,
with the use of a variational principle. Defining û to be a unit vector
along one of the principal axes of the resistivity tensor,

ρuu ≤ V

2βe2

∑
kσ

∑
k′σ′(1 − fk′σ′)fkσW (kσ,k′σ′)

(
φkσ − φk′σ′

)2[∑
kσ vkσ · û (1 − fkσ)fkσ φkσ

]2 ,

(5.7.55)
where φkσ is an arbitrary trial function, and where the equality applies
if φkσ = ψkσ. In the case of the free-electron model, the Boltzmann
equation possesses an exact solution, ψkσ ∝ k · û, if the scattering is
purely elastic. As discussed, for instance, by Hessel Andersen et al.
(1980), this trial function is still useful for treating possible inelastic
scattering mechanisms, at least as long as the resistivity is dominated
by elastic impurity scattering, so we shall use φkσ = k · û.

In the Born approximation, the transition probability per unit time
is given by the Golden Rule (4.1.1), which we may here write

W (kσ,k′σ′) =
2π
h̄

∑
if

Pi|<kσ; i |Hint |k′σ′; f > |2δ(h̄ω + Ei − Ef ),

where h̄ω = εkσ − εk′σ′ . Instead of basing the derivation of the mag-
netic resistivity on the linearized spin-wave expression (5.7.20) for Hint,
we shall be somewhat more general and use Hsf from eqn (5.7.6) as the
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interaction Hamiltonian. We assume that the system is uniform, param-
agnetic or ferromagnetically ordered, continue to utilize the simple free-
electron model, and replace (g−1)I(n′k′, nk) by j(k′−k+τ ). The MF
part (5.7.7) of the Hamiltonian may lead to a modification εkσ → ε̃kσ of
the electronic band-states, but we can neglect this difference to leading
order, and since the MF Hamiltonian does not lead to transitions be-
tween electronic states, we can replace Jiz by Ĵiz = Jiz − 〈Jz〉 in Hint,
and obtain

W (kσ,k′σ′) =
∫ ∞

−∞
d(h̄ω)δ(h̄ω − εkσ + εk′σ′)

× 2π
h̄

∑
if

Pi
1
N2

∑
jj′

|j(k′ − k)|2e−i(k′−k)·(Rj−Rj′ )

×
{
<i |J−

j′ | f ><f |J
+
j | i> δσ↑δσ′↓+ <i |J+

j′ | f ><f |J
−
j | i> δσ↓δσ′↑

+ <i |Ĵj′z| f ><f |Ĵjz | i> (δσ↑δσ′↑ + δσ↓δσ′↓)
}
δ(h̄ω + Ei − Ef ),

(5.7.56)
accounting explicitly for the condition on h̄ω by the integral over the
first δ-function. Using the same procedure as in the calculation of the
neutron-scattering cross-section, when going from (4.1.16) to (4.2.1–3),
we may write this:

W (kσ,k′σ′) =
2
Nh̄

∫ ∞

−∞
d(h̄ω)δ(h̄ω − εkσ + εk′σ′ )

1
1 − e−βh̄ω

|j(k − k′)|2

×
{
χ′′
−+(k − k′, ω)δσ↑δσ′↓ + χ′′

+−(k − k′, ω)δσ↓δσ′↑

+ χ′′
zz(k − k′, ω)(δσ↑δσ′↑ + δσ↓δσ′↓)

}
.

Introducing this expression into (5.7.55), and using φkσ = k · û and
k′ = k − q − τ , we proceed as in the derivation of eqn (5.7.36) for
Im
[
χ+−

c.el.(q, ω)
]
, obtaining

1

N

∑
k

fk↓(1 − fk−q↑)δ(h̄ω − εk↓ + εk−q↑) =

V

N(2π)2

∫ ∞

0

dk k2

∫ 1

−1

dµf(εk↓)
{
1 − f(εk↓− h̄ω)

}
δ
(
h̄ω−∆+ εq −µ

h̄2qk

m

)
= V

N(2π)2

∫ ∞

∆
2

dε
m2

h̄4q
f(ε)

{
1 − f(ε− h̄ω)

}
=

V

N(2π)2
m2

h̄4q

h̄ω

eβh̄ω − 1
,

where kF↑ − kF↓ < q < kF↑ + kF↓ (when kBT � εF ). The denom-
inator in (5.7.55) may be calculated in a straightforward fashion and
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is [Nν/(h̄β)]2, and we finally obtain the following expression for the
resistivity, or rather its upper limit:

ρuu(T ) � ρ0

3
(4kF↑kF↓)2j2u

∫ kF↑+kF↓

k
F↑−k

F↓

dq

∫
dΩq

4π

∫ ∞

−∞
d(h̄ω)

× |j(q)|2
(
q · û

)2
q

βh̄ω

sinh2 (βh̄ω/2)
1
π

∑
α

χ′′
αα(q, ω), (5.7.57a)

where

ρ0 =
3
2
V

N

πm

h̄e2εF

j2u =
m

ne2
π

h̄

{
N↑(εF ) + N↓(εF )

}
j2u, (5.7.57b)

n = νN/V is the electron density, and

j2u = 4
3

(2kF )4

∫ 2kF

0

dq

∫
dΩq

4π
|j(q)|2

(
q · û

)2
q. (5.7.57c)

For cubic symmetry, ρuu is independent of u and
(
q·û
)2 can be replaced

by q2/3. In the high-temperature limit, we have

1
π

∫ ∞

−∞
d(h̄ω)

βh̄ω

sinh2 (βh̄ω/2)

∑
α

χ′′
αα(q, ω) �

1
π

∫ ∞

−∞
d(h̄ω)

4
βh̄ω

∑
α

χ′′
αα(q, ω) =

4
β

∑
α

χ′
αα(q, 0) = 4J(J + 1),

recalling that χ′
αα(q, 0) = 1

3βJ(J + 1) in this limit. This result shows
that the magnetic resistivity saturates at temperatures which are so high
that the ions are uniformly distributed over the states in the ground-
state J-multiplet, since the condition kBT � εF is always satisfied:

ρuu(T ) → J(J + 1) ρ0 for T → ∞, (5.7.58)

and J(J + 1) ρ0 is called the saturation value of the spin-disorder re-
sistivity. Since ρ0 contains the factor (g − 1)2, the spin-disorder re-
sistivity is proportional to the de Gennes factor, as observed (Legvold
1972). If the crystal-field splitting of the energy levels is neglected, this
factor also determines the relative magnitudes of the contributions of
magnetic rare earth-impurities to the resistivity of a non-magnetic host
(Kasuya 1959). However, in analysing the measurements of Mackintosh
and Smidt (1962) of the resistivity changes produced by small amounts
of heavy rare earths in Lu, Hessel Andersen (1979) found that such
crystal-field effects are indeed important at 4K.
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In a metal, the total collision rate W (kσ,k′σ′) in eqn (5.7.55) is
actually the sum of contributions from several scattering mechanisms.
If the trial function for elastic impurity-scattering still leads to a re-
sult reasonably close to that determined by the exact solution of the
Boltzmann equation, then (5.7.55) implies that the different scattering
mechanisms contribute additively to the total resistivity, in accordance
with Matthiessen’s rule:

ρtotal(T ) = ρimp + ρm(T ) + ρph(T ). (5.7.59)

Here ρimp is the residual resistivity due to elastic scattering of the elec-
trons from impurities and from lattice defects. ρm(T ) is the contribution,
calculated above, due to the magnetic excitations, whereas ρph(T ) is the
equivalent term due to the phonons. The two last terms, associated with
the excitations in the metal, vanish in the limit of zero temperature, so
that ρtotal(T = 0) = ρimp. The problem of distinguishing between the
magnetic and phonon scattering can be approximately solved by esti-
mating the latter from the temperature dependence of the resistivity of
Lu, which has an electronic structure and phonon spectrum very similar
to those of the magnetic heavy rare earths, but no magnetic moment.
Using this method, Mackintosh (1963) was able to show that the mag-
netic scattering in Tb increases as exp(−E0/kBT ) at low temperatures,
where the spin-wave energy gap E0/kB was estimated to be about 20
K, a value which was subsequently verified by neutron scattering. This
analysis was refined by Hessel Andersen and Smith (1979), who used
the free-electron model to show that the magnetic resistivity associated
with the scattering by spin waves with an isotropic dispersion relation
Eq = E0 + h̄2q2/2msw is given by

ρm(T ) =
J

4
m2

sw

m2

E0kBT

ε2F
e−E0/kBT

(
1 + 2

kBT

E0

+ 1
2e

−E0/kBT + · · ·
)
ρ0,

(5.7.60)
approximating the lower cut-off kF↑−kF↓ by 0 in (5.7.57a). A numerical
calculation, utilizing the measured spin-wave energies and including one
scaling parameter for the magnetic scattering and one for the phonon
scattering, gave the excellent fit shown in Fig. 5.14. The disordered elec-
tric quadrupole moments of the 4f -charge distributions can also provide
a mechanism for the scattering of the conduction electrons. This is nor-
mally very difficult to distinguish from the magnetic scattering, but in
TmSb, where the exchange interaction is relatively small and the electric
quadrupoles large, the latter appear to dominate the electrical resistivity
at low temperatures (Hessel Andersen and Vogt 1979).

Even though kBT � εF , the residual resistivity ρimp is only inde-
pendent of temperature as long as the ground-state properties of the
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Fig. 5.14. A comparison of the measured and calculated resistivity of
a Tb single crystal, as a function of temperature, after Hessel Andersen
and Smith (1979). The residual resistivity has been subtracted from the
experimental results. The full line includes the calculated contributions
from both the magnon scattering and the phonons. The rapid increase
around 20K is predominantly due to the excitation of magnons across

the energy gap.

electron gas remain unchanged. If the resistivity of the unpolarized
electrons is ρ0

total(T ) and their density of states at the Fermi surface is
N (εF ), the polarization (5.7.16) of the conduction electrons in the ferro-
magnetic state leads to a scaling of the total resistivity, which according
to eqn (5.7.55) is

ρtotal(T ) =
{
1 + ζ(T )

}
ρ0
total(T ) ; ζ(T ) =

N↑(ε̃F ) + N↓(ε̃F )
2N (εF )

− 1.

(5.7.61)
In ρ0

total(T ), the residual resistivity is temperature independent and the
magnetic contribution is determined by the above result, if Nσ(εF ) in
(5.7.57b) is replaced by its paramagnetic value N (εF ). The modifica-
tion ζ(T ), due to the polarization of the conduction electrons, depends
on the temperature via the magnetization, and ζ(T ) ∝ 〈Jz〉2 at small
magnetization.

The most important effect on the resistivity produced by the spin-
polarization of the electronic states results from the change in the density
of states at the Fermi surface, taken into account by ζ(T ) in (5.7.61).
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Since the other modification, the appearance of kFσ instead of the para-
magnetic value kF in (5.7.57b), generally only causes a minor correction
to the value of the integral in this equation, the magnetic contribu-
tion to ρ0

total(T ) is approximately independent of the spin-polarization,
in this model. However, the spin-polarization in the real metals may
be sufficiently great to alter the topology of the Fermi surface, as dis-
cussed in Section 1.4, so that the resistivity may change abruptly with
temperature or magnetic field. Under these circumstances, the resistiv-
ity must be calculated from first principles, using a realistic model of
the spin-polarized energy bands. The zz-contribution should be treated
separately, as the q-integral for this case should go from 0 to 2kF , even
when the electron spins are polarized, since no spin-flip is involved in
the scattering process. This modification is, however, unimportant as
the dominating contributions, in the ordered phase, arise from the per-
pendicular spin-wave components of the susceptibility.

The above results also apply, to a good approximation, when the
moments are ordered antiferromagnetically, if the value of ζ(T ) is calcu-
lated for a spatial modulation of the moments. The spin-polarization of
the band electrons is determined by the MF Hamiltonian, and assuming
〈Jiz〉 = 〈Jz〉 cos (Q ·Ri), we may replace (5.7.7) by

Hsf (MF) = −
∑
nn′

∑
kk′

(g − 1)I(n′k′, nk)
(
c+n′k′↑cnk↑ − c+n′k′↓cnk↓

)
×1

2

(
δk′,k+Q+τ + δk′,k−Q+τ

)
〈Jz〉, (5.7.62)

showing that the modulated moments induce a coupling between the
band electrons at the wave-vectors k and k ± Q + τ . In the same way
as the periodic lattice potential lifts the degeneracy of the band states
at the Brillouin-zone boundaries (passing through k = τ/2), the above
MF Hamiltonian gives rise to energy gaps at the superzone boundaries,
the planes perpendicular to, and passing through, the vectors ks =
(±Q + τ )/2. If ks is along the c-axis, the value of the energy gap δ
is (g − 1)|I(nk, n − k)|〈Jz〉 in the nth band. The importance of the
superzone gaps for the resistivity was first pointed out by Mackintosh
(1962), and detailed theories were developed by Elliott and Wedgwood
(1963) and Miwa (1963). These theories utilized the free-electron model
and the relaxation time approximation, dgkσ/dt|coll = −(gkσ−fkσ)/τkσ,
giving a conductivity

σuu =
e2β

V

∑
kσ

τkσ

(
vkσ · û

)2
fkσ

(
1 − fkσ

)
or, if the relaxation time τkσ is assumed to be constant over the Fermi
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surface,

σuu � e2τ

(2π)3h̄2

∑
σ

∫
ε
kσ

=ε
F

(
∂εkσ

∂ku

)2 1
|∇kεkσ|

dS, (5.7.63)

where dS is a surface element of the Fermi surface. Even without de-
tailed calculations, this expression shows that the conductivity may be
reduced substantially if the superzone gaps are able to eliminate sig-
nificant areas of the Fermi surface. Furthermore, the Fermi-velocity
factor puts different weight on the various regions of the Fermi surface
in the different components of the conductivity tensor. If ks is parallel
to the c-axis, as in the heavy rare earths, and if its length is close to
that of the Fermi wave-vector in the c-direction, only the cc-component
of the conductivity is appreciably affected by the superzone boundary.
For instance, an internal field of 2 kOe in the basal plane of Ho at 4
K, which eliminates the superzone energy gaps by inducing a transi-
tion from the cone to ferromagnetic ordering, increases the conductivity
along the c-axis by about 30%, while decreasing the b-axis component
by only about 1% (Mackintosh and Spanel 1964). As illustrated in Fig.
5.15, the anomalous increase in the resistivity in the helical phase of
Tb is eliminated by a magnetic field which is large enough to suppress
this structure, leaving only a weak maximum similar to that observed
in Gd, which has been ascribed to critical scattering of the conduction
electrons by magnetic fluctuations (de Gennes and Friedel 1958). This
anomalous increase is not observed in the basal plane and the resistivity
is little affected by a magnetic field (Hegland et al. 1963).

The theoretical calculations of the superzone effects within the free-
electron model give a semi-quantitative account of the experimental ob-
servations, with a small number of adjustable parameters. For example,
a superzone boundary normal to the c-axis, which intersects the Fermi
surface, gives a positive contribution to ζcc(T ) in (5.7.61) which is pro-
portional to δ/εF , while ζbb(T ) decreases like (δ/εF )2. Bearing in mind
the analogy between the real and free-electron Fermi surfaces mentioned
above, this corresponds well with the observations in, for example, Ho.
In addition, the model calculations suggest that the superzone gaps are
important for the value of the ordering wave-vector Q, at which the
exchange energy has its maximum (Elliott and Wedgwood 1964; Miwa
1965), by predicting a gradual reduction of the length of Q with the
increase of the size of the superzone gaps, which are proportional to
〈Jz〉 below the Néel temperature. Hence the exchange coupling J (q) is
somewhat dependent on the magnetization, because the nearly elastic
intra-band contributions to the exchange interaction depend on the den-
sity of states near the Fermi surface, as is also true in the ferromagnetic
case, according to (5.7.21).
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Fig. 5.15. The c-axis resistivity of Tb in the vicinity of TN = 230K,
after Hegland et al. (1963). As the helical ordering develops, the magnetic
superzones cause a sharp increase in the resistivity, which disappears at
TC = 220 K. The superzones may also be eliminated by a magnetic field

in the b-direction, which suppresses the helical structure.

The agreement obtained between simple model calculations of the
variation of Q and that observed experimentally is surprisingly good,
to some extent fortuitously so. The band electrons are far from free-
electron-like in the rare earth metals, and the approximation in which
I(n′k′, nk) is replaced by j(k′−k+τ ) is rather crude. The effective free-
electron model, with j(q) proportional to a form factor

[
1 + (Aq)2

]−1

where A ≈ 0.2 Å and 2kF ≈ 2.8 Å−1, leads to a maximum in J (q)
at q � 0.3 Å−1 parallel to the c-axis, in the paramagnetic phase. In
this model, 1

N

∑
q J̃ (q) is found to be an order of magnitude larger

than J (0), and the same is the case with the interband contributions
(τ �= 0) to the exchange interaction, compared to the intra-band con-
tributions. However, various estimates indicate that all these terms are
of the same order of magnitude. Lindg̊ard et al. (1975) have made the
only existing ab initio calculation of J (q) in a rare earth metal, consid-
ering the simplest case of Gd, and they obtained a reasonable account
of the dependence on wave-vector, even though the magnitude differed
by as much as a factor of four from that determined experimentally.
Their calculations show that the exchange integral is dominated by the
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contributions of the d-like band electrons, as is the density of states
at the Fermi surface. Although the effective free-electron model is not
adequate for determining the exchange interaction, other quantities de-
rived above which depend on real scattering processes close to the Fermi
surface (i.e. the contributions to the spin-wave linewidths, the mass en-
hancement, and the resistivity), may be more trustworthy, particularly
if the actual density of states of the band electrons is substituted for
the free-electron value. This should especially be true for the linewidth
and mass-enhancement, but the strong polarization effect (5.7.60) on
the resistivity in the ferromagnetic phase, for which the maximum effect
occurs in Gd, with ζ(T ) approaching −0.5 in the zero temperature limit
(Fulde and Jensen 1983), may be somewhat exaggerated, because the
conductivity is strongly influenced by the sp-band electrons.


