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4.2 Elastic and inelastic neutron scattering

If the scattering system is assumed to be in thermal equilibrium at tem-
perature T , the average over initial states in (4.1.16) is the same as the
thermal average 〈· · ·〉 = Tr{ρ0 · · ·}, where ρ0 is the density operator de-

fined in eqn (3.1.1). The atom at the position R̃j = Rj + uj vibrates
around its equilibrium position, the lattice point Rj , and we may write

〈e−iκ·(R̃j−R̃j′ )〉 = e−2W (κ) e−iκ·(Rj−Rj′ ),

where W (κ) is the Debye–Waller factor ≈ 1
6κ

2〈u2〉, discussed in de-
tail by, for example, Marshall and Lovesey (1971). We insert this term
in (4.1.16), and thereby neglect contributions from inelastic phonon-
scattering processes, the so-called magneto-vibrational part of the mag-
netic cross-section. The integral representation of the δ-function is

δ(h̄ω + Ei − Ef ) =
1

2πh̄

∫ ∞

−∞
ei(h̄ω+Ei−Ef )t/h̄dt,

which allows us to write

∑
if

Pi <i | Jjα | f ><f | Jj′β | i> δ(h̄ω + Ei − Ef )

=
∑
if

1

2πh̄

∫ ∞

−∞
dt eiωtPi <i | eiHt/h̄Jjαe

−iHt/h̄ | f ><f | Jj′β | i>

=
1

2πh̄

∫ ∞

−∞
dt eiωt

∑
i

Pi <i | Jjα(t)Jj′β(0) | i>

=
1

2πh̄

∫ ∞

−∞
dt eiωt〈Jjα(t)Jj′β(0)〉,
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where Jjα(t) is the angular-momentum operator in the Heisenberg pic-
ture, as in (3.2.1),

Jjα(t) = eiHt/h̄ Jjα e−iHt/h̄.

At thermal equilibrium, the differential cross-section can then be written

d2σ

dEdΩ
=

k′

k

(
h̄γe2

mc2

)2

e−2W (κ)
∑
αβ

(δαβ − κ̂ακ̂β)
∑
jj′

{1
2gF (κ)}j{1

2gF (−κ)}j′

× 1

2πh̄

∫ ∞

−∞
dt eiωte−iκ·(Rj−Rj′ )〈Jjα(t)Jj′β(0)〉. (4.2.1)

If the magnetic atoms are all identical, the form factor may be taken
outside the summation and the cross-section reduces to

d2σ

dEdΩ
= N

k′

k

(
h̄γe2

mc2

)2

e−2W (κ)|12gF (κ)|2
∑
αβ

(δαβ − κ̂ακ̂β)Sαβ(κ, ω),

(4.2.2a)
where we have introduced the Van Hove scattering function (Van Hove
1954)

Sαβ(κ, ω) =
1

2πh̄

∫ ∞

−∞
dt eiωt 1

N

∑
jj′

e−iκ·(Rj−Rj′ )〈Jjα(t)Jj′β(0)〉,

(4.2.2b)
which is (2πh̄)−1 times the Fourier transform, in space and time, of
the pair-correlation function 〈Jjα(t)Jj′β(0)〉. If 〈Jjα〉〈Jj′β〉 is added
and subtracted, the scattering function may be written as the sum of a
static and a dynamic contribution:

Sαβ(κ, ω) = Sαβ(κ) + Sαβ
d (κ, ω), (4.2.3a)

where the static or elastic component is

Sαβ(κ) = δ(h̄ω)
1

N

∑
jj′

〈Jjα〉 〈Jj′β〉e−iκ·(Rj−Rj′ ) (4.2.3b)

and the inelastic contribution is

Sαβ
d (κ, ω) =

1

2πh̄
Sαβ(κ, ω) =

1

π

1

1− e−βh̄ω
χ′′
αβ(κ, ω). (4.2.3c)
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We have introduced the dynamic correlation function Sαβ(κ, ω), defined
by eqn (3.2.13), with

α̂ = N− 1
2

∑
j

Jjαe
−iκ·Rj and β̂ = N− 1

2

∑
j′

Jj′βe
iκ·Rj′ ,

and the corresponding susceptibility function χαβ(κ, ω), utilizing the
relation between the two functions given by the fluctuation–dissipation
theorem (3.2.18).

An important consequence of (4.2.2–3) is that the inelastic scat-
tering of neutrons is proportional to the correlation function Sαβ(κ, ω),
which is essentially the Fourier transform of the probability that, if the
moment at site j has some specified vector value at time zero, then the
moment at site j′ has some other specified value at time t. An inelas-
tic neutron-scattering experiment is thus extremely informative about
the dynamics of the magnetic system. Poles in the correlation function,
or in χαβ(κ, ω), are reflected as peaks in the intensity of the scattered
neutrons. According to (4.1.2) and (4.1.3), each neutron in such a scat-
tering peak has imparted energy h̄ω and momentum h̄κ to the sample,
so the peak is interpreted, depending on whether h̄ω is positive or neg-
ative, as being due to the creation or annihilation of quasi-particles or
elementary excitations in the system, with energy |h̄ω| and crystal mo-
mentum h̄q = h̄(κ − τ ), where τ is a reciprocal lattice vector. A part
of the momentum h̄τ may be transferred to the crystal as a whole. If
the sample is a single crystal, with only one magnetic atom per unit
cell, Sαβ(κ, ω) = Sαβ(q = κ − τ , ω), where τ is normally chosen so
that q lies within the primitive Brillouin zone. The form factor in the
scattering amplitude is not however invariant with respect to the addi-
tion of a reciprocal lattice vector. This interpretation of the poles in
Sαβ(q, ω) governs the choice of sign in the exponential arguments in
both the temporal and the spatial Fourier transforms.

The relation (4.2.3c) between the scattering function and the gen-
eralized susceptibility implies that the neutron may be considered as
a magnetic probe which effectively establishes a frequency- and wave-
vector-dependent magnetic field in the scattering sample, and detects
its response to this field. This is a particularly fruitful way of look-
ing at a neutron scattering experiment because, as shown in Chapter
3, the susceptibility may be calculated from linear response theory, and
thus provides a natural bridge between theory and experiment. Using
the symmetry relation (3.2.15), which may here be written χ∗

αβ(q, z) =
χαβ(−q,−z∗), it is straightforward to show that χ′′

αβ(q, ω)+χ′′
βα(q, ω) is

real and equal to Im
{
χαβ(q, ω)+χβα(q, ω)

}
. In addition, the form of the

inelastic cross-section, and also the result (3.3.2) for the dissipation rate,
impose another analytic condition on the function χ′′

αβ(q, ω)+χ′′
βα(q, ω).
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It must be either zero, or positive or negative with ω (such functions are
called herglotz functions), because a negative value of the cross-section
is clearly unphysical.

If the magnetic moments in a Bravais lattice are ordered in a static
structure, described by the wave-vector Q, we may write

〈Jjα〉 = 1
2

(〈Jα〉 eiQ·Rj + 〈Jα〉∗e−iQ·Rj
)
, (4.2.4)

allowing 〈Jα〉 to be complex in order to account for the phase. The
static contribution to the cross-section is then proportional to

∑
αβ

(δαβ − κ̂ακ̂β)Sαβ(κ) =
∑
αβ

(δαβ − κ̂ακ̂β)Re {〈Jα〉〈Jβ〉∗}

× δ(h̄ω)
(2π)3

υ

∑
τ

1
4 (1 + δQ0) {δ(τ +Q− κ) + δ(τ −Q− κ)} ,

(4.2.5)
where δQ0 is equal to 1 in the ferromagnetic case Q = 0, and zero oth-
erwise, and υ is the volume of a unit cell. The magnetic ordering of
the system leads to δ-function singularities in momentum space, corre-
sponding to magnetic Bragg scattering, whenever the scattering vector
is equal to ±Q plus a reciprocal lattice vector τ . The static and dy-
namic contributions from Sαβ(κ) and Sαβ

d (κ, ω) to the total integrated
scattering intensity may be comparable, but the dynamic contributions,
including possibly a quasi-elastic diffusive term, are distributed more or
less uniformly throughout reciprocal space. Consequently, the elastic
component, determined by Sαβ(κ), in which the scattering is condensed
into points in reciprocal space, is overwhelmingly the most intense con-
tribution to the cross-section dσ/dΩ, obtained from the differential cross-
section (4.2.2a) by an energy integration:

dσ

dΩ
� N

(
h̄γe2

mc2

)2

e−2W (κ)|12gF (κ)|2
∑
αβ

(δαβ − κ̂ακ̂β)Re {〈Jα〉〈Jβ〉∗}

× (2π)3

υ

∑
τ

1
4 (1 + δQ0) {δ(τ +Q− κ) + δ(τ −Q− κ)} .

(4.2.6)
dσ/dΩ is the cross-section measured in neutron diffraction experiments,
in which all neutrons scattered in the direction of k′ are counted without
energy discrimination, i.e. without the analyser crystal in Fig. 4.1. This
kind of experiment is more straightforward to perform than one in which,
for instance, only elastically scattered neutrons are counted. In the
ordered phase, (4.2.6) is a good approximation, except close to a second-
order phase transition, where 〈Jα〉 is small and where critical fluctuations
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may lead to strong inelastic or quasi-elastic scattering in the vicinity of
the magnetic Bragg peaks.

Independently of whether the magnetic system is ordered or not,
the total integrated scattering intensity in the Brillouin zone has a def-
inite magnitude, determined by the size of the local moments and the
following sum rule:

1

N

∑
q

∑
α

∫ ∞

−∞
Sαα(q, ω)d(h̄ω)

=
1

N

∑
j

∑
α

〈Jjα〉2 + 1

N

∑
q

∑
α

Sαα(q, t = 0)

=
1

N

∑
j

∑
α

〈JjαJjα〉 = J(J + 1), (4.2.7)

and taking into account the relatively slow variation of the other param-
eters specifying the cross-section. This implies, for instance, that dσ/dΩ
is non-zero in the paramagnetic phase, when 〈Jα〉 = 0, but the distri-
bution of the available scattered intensity over all solid angles makes it
hard to separate from the background. In this case, much more useful in-
formation may be obtained from the differential cross-section measured
in an inelastic neutron-scattering experiment.

For a crystal with a basis of p magnetic atoms per unit cell, the
ordering of the moments corresponding to (4.2.4) is

〈Jjsα〉 = 1
2

(〈Jsα〉 eiQ·Rjs + 〈Jsα〉∗e−iQ·Rjs
)
, (4.2.8a)

where

Rjs = Rj0 + ds, with s = 1, 2, · · · , p. (4.2.8b)

Here Rj0 specifies the position of the unit cell, and ds is the vector
determining the equilibrium position of the sth atom in the unit cell.
The summation over the atoms in (4.2.2) may be factorized as follows:

∑
ij

e−iκ·(Ri−Rj)

=
∑
i0j0

e−iκ·(Ri0−Rj0)

p∑
s=1

e−iκ·(Ris−Ri0 )

p∑
r=1

eiκ·(Rjr−Rj0 )

=
∑
i0j0

e−iκ·(Ri0−Rj0) |FG(κ)|2 ; FG(κ) =

p∑
s=1

e−iκ·ds ,
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where FG(κ) is the geometric structure factor. The elastic cross-section
then becomes

dσ

dΩ
= N0

(
h̄γe2

mc2

)2

e−2W (κ)|12gF (κ)|2
∑
αβ

(δαβ − κ̂ακ̂β) |〈Jα〉〈Jβ〉| ×

(2π)3

υ

∑
τ

1
4 (1 + δQ0)Re

{
Fα(τ )F

∗
β (τ )

}{δ(τ +Q− κ) + δ(τ −Q− κ)}
(4.2.9a)

where N0 is the number of unit cells, and the structure factor is

Fα(τ ) = |〈Jα〉|−1
r∑

s=1

〈Jsα〉 e−iτ ·ds . (4.2.9b)

As an example, we return to the Heisenberg ferromagnet discussed
in Chapter 3. The magnitude of the ordered moments and their direction
relative to the crystal lattice, defined to be the z-axis, may be determined
by neutron diffraction, since

dσ

dΩ
= N

(
h̄γe2

mc2

)2

e−2W (κ)|12gF (κ)|2(1− κ̂2
z) 〈Sz〉2 (2π)3

υ

∑
τ

δ(τ − κ).

(4.2.10)
The Bragg-peak intensity is thus proportional to the square of the or-
dered moment and to sin2 θ, where θ is the angle between the magne-
tization and the scattering vector. The elastic scattering is therefore
strongest when κ = τ is perpendicular to the magnetization. On the
other hand, the inelastic scattering is strongest when the scattering vec-
tor κ = q+ τ is along the magnetization, in which case, from (3.4.11),

∑
αβ

(δαβ−κ̂ακ̂β)Sαβ(κ, ω) =
1

π

1

1− e−βh̄ω

(
χ′′
xx(q, ω) + χ′′

yy(q, ω)
)

= 〈Sz〉 1

1− e−βh̄ω
{δ(h̄ω − Eq)− δ(h̄ω + Eq)}

= 〈Sz〉 {(nq + 1)δ(h̄ω − Eq) + nq δ(h̄ω + Eq)} , (4.2.11)

where nq = (eβEq − 1)−1 is the Bose population factor. The magnon-
scattering intensity is thus proportional to the ordered moment, and
the stimulated emission and absorption of the boson excitations, i.e. the
magnons, due to the neutron beam, are proportional respectively to
(nq + 1) and nq, which may be compared with the equivalent result for
light scattering from a gas of atoms.
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Fig. 4.2. A typical spectrum of inelastically-scattered neutrons in a
constant-κ experiment, illustrating the determination of the dispersion
relation and the polarization vector of the magnetic excitations. The
peaks in the spectrum establish the energies of excitations which have a
wave-vector q, defined by the scattering vector through κ = q+ τ , and
thus determine points on the dispersion relation for Pr, shown in Fig.
7.1. The cross-section is proportional to the factor f(α) = 1− (κα/κ)

2.
Since q is along the ΓM (y)-axis, the absence of the peak of lower en-
ergy in the bottom figure shows unambiguously that it corresponds to a

longitudinal mode.

The dependence of the intensity of inelastically scattered neutrons

on the relative orientation of κ and the direction of the moment fluctu-

ations is illustrated for the example of Pr in Fig. 4.2, which is discussed

in more detail in Chapter 7. As in this figure, the scattering is nor-

mally measured as a function of h̄ω at a fixed value of q, a so-called

constant-q or constant-κ scan, but occasionally constant-energy scans
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may also be employed. In an actual experiment the directions and the
lengths of k and k′ are only defined with a limited degree of accuracy,
and the δ-functions occurring in (4.2.10–11) are broadened into peaks
with the shape of the instrumental resolution function, which to a good
approximation is a Gaussian in the four-dimensional (κ, ω)-space. If the
resolution function is known, it is possible to deconvolute the scattering
peaks obtained in constant q-scans from the broadening due to instru-
mental effects, and thereby determine the lifetimes of the excitations.

In this chapter, we have concentrated on the magnetic scattering of
neutrons, but they may also be scattered through the interaction, via
nuclear forces, with the nuclei in the sample. This interaction leads to
a cross-section of the same order of magnitude as in the magnetic case,
and it results in analogous phenomena to those discussed above, with
the positions of the atoms replacing the magnetic moments as the fluc-
tuating variables. The elastic Bragg scattering reveals the positions of
the atoms in the crystal, and the elementary excitations appearing in
the correlation functions are phonons. The fluctuations in the nuclear
cross-section, due to the different spin states of the nuclei, give rise to
an incoherent scattering, determined by the self-correlation of the indi-
vidual atoms, in contrast to the coherent scattering, which is governed
by the atomic pair-correlation function, in analogy with the magnetic
scattering discussed above. Incoherence can also be produced by differ-
ent isotopes of a particular element in a crystal, just as the variation of
the magnetic moments in disordered alloys leads to incoherent magnetic
scattering.

The magnetic scattering may be difficult to separate experimentally
from the nuclear component. One possibility is to utilize the different
temperature dependences of the two contributions, since the nuclear
scattering normally changes relatively slowly with temperature. If this
is not adequate, it may be necessary to perform polarized neutron scat-
tering, in which the spin states of the incoming and scattered neutrons
are determined, making it possible to isolate the scattering of purely
magnetic origin (Moon, Riste and Koehler 1969). For further details of
neutron scattering by nuclei in solids we refer to the texts mentioned at
the beginning of this chapter.


