
164 4. MAGNETIC SCATTERING OF NEUTRONS

4.1 The differential cross-section in the dipole

approximation

A neutron-scattering experiment is performed by allowing a collimated
beam of monochromatic (monoenergetic) neutrons to impinge upon a
sample, and then measuring the energy distribution of neutrons scat-
tered in different directions. As illustrated in Fig. 4.1, a uniform en-
semble of neutrons in the initial state |ksn > is created, typically by
utilizing Bragg-reflection in a large single-crystal monochromator, plus
suitable shielding by collimators. We may write the state vector for this
initial plane-wave state

|ksn > = V −1/2exp(ik · rn) |sn > ,

representing free neutrons with an energy (h̄k)2/2M and a flux j(ksn) =
V −1h̄k/M . When passing through the target, the probability per unit
time that a neutron makes a transition from its initial state to the state
|k′s′n > is determined by Fermi’s Golden Rule:

W (ksn,k′s′n) =
2π

h̄

∑
if

Pi |<ksn; i |Hint |k′s′n; f >|2 δ(h̄ω + Ei − Ef ).

(4.1.1)
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Fig. 4.1. The principle of a neutron-scattering experiment, carried out
on a triple-axis spectrometer. An incident beam of neutrons, with well-
defined momenta, is selected from the continuous reactor spectrum by the
monochromator crystal, and scattered from the sample. The intensity of
the scattered beam of neutrons, with generally different momenta defined
by the analyser crystal, is measured by the detector. The scattered in-
tensity, proportional to the scattering cross-section, is thus determined
as a function of the energy transfer h̄ω and the momentum transfer h̄κ
to the sample, whose orientation relative to κ can be varied by rotating

the sample table.

Hint is the Hamiltonian describing the interaction between the neutrons
and the sample, and the sum extends over all possible scattering pro-
cesses. It comprises a summation over all possible final states |f > of
the sample, and an average over all initial states |i> , which occur with
the probability Pi. Energy conservation requires that the energy differ-
ence between the final and initial states of the sample, Ef − Ei, must
be equal to the energy transferred from the neutron to it:

h̄ω =
(h̄k)2

2M
− (h̄k′)2

2M
. (4.1.2)

The linear momentum transferred to the sample is h̄κ = h̄k− h̄k′, where
κ is the scattering vector,

κ = k − k′. (4.1.3)

The information about the sample is obtained by measuring the scat-
tered intensity as a function of the natural variables of the experiment,
the energy transfer h̄ω and the momentum transfer h̄κ.

The scattered neutrons with momenta lying in a narrow range
around h̄k′ are counted by placing a detector in a direction along k′,
subtending a small element of solid angle dΩ. The value of k′, or the final
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neutron energy, is determined by again making use of Bragg-reflection
in a single-crystal analyser, so that only neutrons with energies in a
small interval dE around (h̄k′)2/2M strike the counter. The number of
neutrons in this range, corresponding to a state vector |k′s′n > for the
scattered neutrons, is

δN = V (2π)−3(k′)2dk′dΩ = V (2π)−3(Mk′/h̄2)dEdΩ.

The number of neutrons arriving at the counter per unit time and per
incident neutron is proportional to the scattering area dσ = |j(ksn)|−1×
W (ksn,k′s′n)δN , or to the differential scattering cross-section

d2σ

dEdΩ
=

k′

k

(
M

2πh̄2

)2 ∑
if

Pi |<sn; i |Hint(κ) |s′n; f >|2 δ(h̄ω + Ei −Ef ),

(4.1.4a)
where

Hint(κ) =
∫

Hint e−iκ·rndrn. (4.1.4b)

This result of time-dependent perturbation theory, in the first Born ap-
proximation, is accurate because of the very weak interaction between
the neutrons and the constituents of the sample.

In order to proceed further, it is necessary to specify the interaction
Hamiltonian Hint. The magnetic moment of the neutron is

µn = −gnµNsn ; gn = 3.827 ; µN =
m

M
µB =

eh̄

2Mc
,

with sn = 1
2 . In this chapter, in the interest of conformity with the rest

of the literature, we do not reverse the signs of the electronic angular-
momentum vectors, which are therefore antiparallel to the corresponding
magnetic moments, as is also the case for the neutron.

This magnetic dipole moment at rn gives rise to a vector potential,
at the position re,

An(re, rn) = An(r = re − rn) = µn × r/r3,

with r = |r|. The magnetic-interaction Hamiltonian for a neutron at rn

with a single electron of charge −e, with coordinate re, momentum p,
and spin s is

Hint(re, rn) =
1

2m

(
p +

e

c
(An + Ae)

)2

− 1
2m

(
p +

e

c
Ae

)2

+ 2µBs ·Bn

= 2µB

( 1
h̄
An · p′ + s · (∇× An)

)
, (4.1.5)
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neglecting the diamagnetic term of second order in µN . Ae denotes the
additional contribution to the total vector potential from the surround-
ing electrons, or an external magnetic field. The prime on p only plays
a role if Ae is non-zero, in which case p′ = p + e

cAe. We note that An

commutes with p′, because ∇e ·An = ∇ · An and

∇ ·An(r) = ∇ · {−µn ×∇(1
r )} = µn · ∇ ×∇(1

r ) = 0,

recalling that r/r3 = −∇(1
r ).

The Fourier transform of An with respect to the neutron coordinate,
defining x = rn − re, is∫

An(re−rn) e−iκ·rndrn = e−iκ·re

∫
An(−x) e−iκ·xdx

= −e−iκ·re

∫
(µn × x)x−3e−iκ·xdx = −e−iκ·re

4π

iκ
µn × κ̂,

where κ̂ is a unit vector along κ (the integration is performed straight-
forwardly in spherical coordinates). Applying Green’s theorem and as-
suming V to be a sphere of radius r,∫

∇× (
e−iκ·xAn(x)

)
dx ∝ (κr)−1 → 0 for r → ∞,

from which we deduce∫ (∇× An(x)
)
e−iκ·xdx = −

∫ (∇ e−iκ·x) × An(x)dx

= iκ ×
∫

e−iκ·xAn(x)dx = 4πκ̂ × µn × κ̂

(we note that ∇×An(r) = ∇(x)×An(x)). From these results, we obtain

Hint(κ) =
∫

Hint(re, rn)e−iκ·rndrn

= 2µB e−iκ·re 4π
( i

h̄κ
µn × κ̂ · p′ + s · (κ̂ × µn × κ̂)

)
,

or

Hint(κ) = 8πµB µn ·
( i

h̄κ
κ̂ × p′ + κ̂ × s × κ̂

)
e−iκ·re . (4.1.6)

κ̂ × p′ commutes with κ · re and therefore also with exp(−iκ · re), and
we have made use of the identity κ̂ × a× κ̂ = a− (κ̂ · a)κ̂.
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For discussing the rare earths, we may restrict ourselves to the case
of electrons localized around the lattice sites in a crystal. Further, we
define re = R̃j +r, with r now being the relative position of the electron
belonging to the jth atom at the position R̃j . Equation (4.1.6) may
then be written

Hint(κ) = 8πµB µn · (Qp + Qs) e−iκ·R̃j , (4.1.7a)

introducing

Qp =
i

h̄κ
κ̂ × p′ e−iκ·r ; Qs = κ̂ × s × κ̂ e−iκ·r. (4.1.7b)

In order to calculate the matrix element < i |Qp,s |f >, the factor
exp(−iκ · r) is expanded in spherical Bessel functions jn(ρ), and with
ρ = κr and cos θ = κ · r/ρ,

e−iκ·r =
∞∑

n=0

(2n + 1) (−i)n jn(ρ)Pn(cos θ)

� j0(ρ) − 3i j1(ρ) cos θ = j0(ρ) − iκ · r{j0(ρ) + j2(ρ)},
(4.1.8)

using jn(ρ) = ρ{jn−1(ρ) + jn+1(ρ)}/(2n + 1). The truncation of the
series is valid for small values of ρ, where

jn(ρ) = (ρn/(2n + 1)!!){1 − ρ2/(4n + 6) + · · ·}.
We note that, although κ × p′ commutes with exp(−iκ · r), it does not
commute with the individual terms in (4.1.8). Introducing this expan-
sion in the expression for Qp, we find

Qp = κ̂ ×
( i

h̄κ
j0(ρ)p′ +

1
h̄
{j0(ρ) + j2(ρ)}(κ̂ · r)p′ + · · ·

)
,

which can be rearranged to read

Qp = 1
2{j0(ρ) + j2(ρ)} κ̂ × l′ × κ̂ + Q′

p. (4.1.9a)

We have defined

Q′
p = κ̂ ×

( i

h̄κ
j0(ρ)p′ +

1
2h̄

{j0(ρ) + j2(ρ)}{(κ̂ · r)p′ + (κ̂ · p′)r} + · · ·
)
,

(4.1.9b)
where the orbital momentum h̄l = r × p and h̄l′ = h̄l + e

c r × Ae, and
used

κ̂ × h̄l′ × κ̂ = −κ̂ × {κ̂ × (r × p′)} = κ̂ × {(κ̂ · r)p′ − (κ̂ · p′)r},
where [ l′ , jn(ρ) ] = 0 and [ κ̂ × r , κ̂ · p′ ] = 0.
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If H is defined to be the Hamiltonian for the electron, then

p′ = p + e

c
Ae = m dr/dt = m

i

h̄
[H , r ],

and Q′
p may be written

Q′
p =

m

h̄2κ
κ̂ ×

(
−j0(ρ) [H , r ] +

iκ

2
{j0(ρ) + j2(ρ)} [H , (κ̂ · r)r ] + · · ·

)
.

(4.1.10)
Considering an arbitrary operator Â, we have

<i | [H , Â ] | f > = <i |HÂ− ÂH| f > = (Ei − Ef ) <i | Â | f >,

which implies that Q′
p does not contribute to the cross-section (4.1.4)

in the limit κ → 0. In this limit, jn(0) = δn0 and, utilizing the energy
δ-function in (4.1.4), the contribution to the cross section due to Q′

p is
seen to be proportional to

∣∣∣∣ m

h̄2κ
h̄ω κ̂×<i | r | f >

∣∣∣∣
2

→ 0 for κ → 0,

since |h̄ω| ≤ (h̄κ)2/2M . Introducing the vector operator K(κ), defined
so that

<i | κ̂ × K× κ̂ | f > = <i |Qp + Qs | f >, (4.1.11)

we find, neglecting Q′
p in the limit κ → 0,

2µBK(0) = µB

(
l +

e

h̄c
r × Ae + 2s

)
≡ −µe, (4.1.12a)

or
Hint(0) = −4π µn · (κ̂ × µe × κ̂), (4.1.12b)

implying that the magnetic cross-section (4.1.4), in the limit where the
scattering vector approaches zero, is determined by the magnetic dipole
moment µe of the electron. In the treatment given above, we have
included the diamagnetic contribution to µe, induced by external fields
∝ Ae. This term may however normally be neglected, as we shall do
from now on.

At non-zero κ, we cannot employ directly the above procedure for
obtaining an upper bound on the Q′

p matrix-element, because jn(ρ) does
not commute with H. However, if we restrict ourselves to scattering pro-
cesses in which the l quantum number is conserved, the matrix element
of the first term in (4.1.10) vanishes identically, because j0(ρ) and H
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are both diagonal with respect to l, whereas r has no diagonal elements
(cf. the electric-dipole selection rule ∆l = ±1). In the second term of
(4.1.10) we can, to leading order, replace H by the kinetic-energy oper-
ator and, if we also make the assumption ∆l = 0, this term transforms
like a second-rank tensor and so is quadrupolar. Symmetrizing Q′

p with
respect to the expansion in spherical Bessel functions, and taking (κ̂ · r̂)r̂
outside the commutator, which is allowed because ∆l = 0, we can write
the second term in (4.1.10) as

(κ̂ × r̂)(κ̂ · r̂)Qr,

with r̂ = r/r and

Qr = Q†
r = − i

8

(
{j0(ρ) + j2(ρ)}[∇2 , r2 ] + [∇2 , r2 ]{j0(ρ) + j2(ρ)}

)
.

Thus the second term is a product of an angular and a radial operator,
which are both Hermitian. Our next assumption is that the radial part
of the wavefunction, as specified by the principal quantum number ñ,
and by l, is the same in the initial and the final state, i.e. that both ñ
and l are unchanged. In this case, <i |Qr | f > = <ñl |Qr | ñl> vanishes
identically, because Qr is an imaginary Hermitian operator; Qr = Q†

r =
−Q∗

r. If the radial part of the wavefunction is changed in the scattering
process, or if H is not diagonal in l, then the quadrupole moment leads
to an imaginary contribution to K(κ), and gives a contribution to the
cross-section proportional to κ2. In most cases of interest, however, this
term is very small.

The assumption that | i > and | f > are linear combinations of
the states | (ñls)mlms >, where (ñls) is constant, implies that the two
lowest-order terms in the expansion of Q′

p in (4.1.9b) or (4.1.10) can be
neglected. Furthermore, the radial and angular dependences are then
factorized, both in the expansion of the operators and in the wave-
functions, so that the radial part of the matrix elements may be cal-
culated separately. Hence the orbital contribution Kp to K is approxi-
mately

Kp(κ) = 1
2 {〈j0(κ)〉 + 〈j2(κ)〉} l, (4.1.13a)

with

〈jn(κ)〉 =
∫ ∞

0

r2R2(r)jn(κr)dr ;
∫ ∞

0

r2R2(r)dr = 1, (4.1.13b)

where R(r) is the normalized radial wavefunction. The assumption that
the final and initial states have the same parity implies that only the
terms in the expansion (4.1.8) for which n is odd may contribute to Kp.
By the same argument, the spin part Ks of K only involves the terms
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in (4.1.8) with n even. Neglecting the (n = 2)-term in Ks, proportional
to s times an orbital quadrupole moment, we have Ks(κ) � 〈j0(κ)〉 s, or

K(κ) = K(κ) = 1
2 〈j0(κ)〉(l + 2s) + 1

2 〈j2(κ)〉 l. (4.1.14)

This result for K(κ) is the basis of the dipole approximation for the
scattering cross-section. Within this approximation, it is straightfor-
wardly generalized to the case of more than one electron per atom, as
the contributions are additive, in the sense that l and s are replaced by
L =

∑
l and S =

∑
s, and R2(r) by the normalized distribution for all

unpaired electrons belonging to the atom at R̃j.
The orbital contribution is important in the case of rare earth or

actinide ions. In transition-metal ions, the orbital momentum is fre-
quently quenched, and Kp may then be neglected to leading order. In
the rare earths, the spin–orbit coupling is strong and only matrix ele-
ments within the ground-state multiplet of J2 = (L+S)2 contribute. In
this case, as discussed in Section 1.2, L + 2S = gJ and L = (2 − g)J,
where g is the Landé factor, and we have

K(κ) = 1
2 〈j0(κ)〉(L + 2S) + 1

2 〈j2(κ)〉L = 1
2gF (κ)J, (4.1.15a)

where F (κ) is the form factor

F (κ) = 〈j0(κ)〉 + 1

g
(2 − g)〈j2(κ)〉, (4.1.15b)

defined so that F (0) = 1. When the spin–orbit interaction is introduced,
the (n = 2)-term in the expansion of Ks gives a contribution to the
dipolar part of K(κ) proportional to 〈j2(κ)〉, but this is an order of
magnitude smaller than the orbital term in (4.1.14). A more systematic
approach, making extensive use of Racah tensor-algebra, is required to
calculate this term and to include the contributions of the higher-rank
multipoles produced by the expansion of exp(−iκ · r). This analysis
may be found in Marshall and Lovesey (1971), Stassis and Deckman
(1975, 1976), and references therein. Within the present approximation,
only tensors of odd rank give a contribution to K, proportional to κτ−1,
where τ is the rank of the tensors (terms with τ = 3 appear already in
order κ2). In contrast to the dipole contributions, the higher-rank tensor
couplings give rise to an angular dependence of K = K(κ). The smaller
the scattering wavelength λ = 2π/κ, the more the neutron senses the
details of the spin and current distributions within the atom, but as long
as λ is larger than approximately the mean radius 〈r〉 of the unpaired
electrons, only the dipolar scattering is important. For rare earth ions,
〈r〉 ≈ 0.6 Å, indicating that (4.1.15) is a valid approximation as long as
κ is smaller than about 6 Å−1.
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Experimental studies of the form factor and the associated moment
densities have been reviewed by Sinha (1978). For an accurate interpre-
tation of the data, it is generally necessary to proceed beyond the dipole
approximation. In the heavy rare earths, the deduced 4f densities are
in good agreement with atomic calculations, provided that relativistic
effects are included, but the conduction-electron distributions are much
less certain. In the light elements, crystal-field effects become impor-
tant, as observed for example in Pr and Nd by Lebech et al. (1979). Of
especial interest is Sm, where the opposition of spin and orbital moments
leads to a form factor which has its maximum at a non-zero κ, and the
conduction-electron polarization seems to be very strong (Koehler and
Moon 1972).

Labelling quantities pertaining to the jth atom with the index j,
and summing over all the atoms in the sample, we find that the total
Hint(κ) (4.1.7), in the dipole approximation, is given by

Hint(κ) = 8πµB

∑
j

{1
2gF (κ)}j e−iκ·R̃j µn · (κ̂ × Jj × κ̂).

The squared matrix element in (4.1.4) may furthermore be written

<sn; i |Hint(κ) |s′n; f ><s′n; f |Hint(−κ) |sn; i> .

We shall only consider the cross-section for unpolarized neutrons, so
that we sum over all the spin states |s′n > of the scattered neutrons,
and average over the spin-states |sn >, with the distribution Ps, of the
incoming neutrons. With an equal distribution of up and down spins,
Ps = 1

2 , and introducing Qj = κ̂×Jj × κ̂, we find that the cross-section
is proportional to∑

sns′n

Ps < sn |µn ·Qj | s′n ><s′n |µn ·Qj′ | sn >

=
∑
s

Ps <sn | (µn ·Qj) (µn ·Qj′) | sn > =
(

1
2gnµN

)2

Qj ·Qj′ ,

as may readily be shown by using the Pauli-matrix representation, in
which Tr{σασβ} = 2 δαβ. We have further that Qj ·Qj′ may be written

(κ̂ × Jj × κ̂) · (κ̂ × Jj′ × κ̂) = (Jj − κ̂(Jj · κ̂)) · (Jj′ − κ̂(Jj′ · κ̂))

= Jj ·Jj′ − (Jj · κ̂) (Jj′ · κ̂) =
∑
αβ

(
δαβ − κ̂ακ̂β

)
Jjα Jj′β ,

in terms of the Cartesian components. Defining (J⊥)j to be the projec-
tion of Jj on the plane perpendicular to κ, we have∑

αβ

(
δαβ − κ̂ακ̂β

)
Jjα Jj′β = (J⊥)j · (J⊥)j′ .
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The various factors in these expressions may be combined to give

k′

k

(
M

2πh̄2 8πµB
1
2gnµN

)2

=
k′

k

(
h̄γe2

mc2

)2

; γ =
1
2h̄

gn.

γ is the gyromagnetic ratio of the neutron, and e2/mc2 = 2.82 fm is
the classical electron radius. The differential cross-section, in the dipole
approximation, for the scattering of unpolarized neutrons is then finally

d2σ

dEdΩ
=

k′

k

(
h̄γe2

mc2

)2 ∑
αβ

(δαβ − κ̂ακ̂β)
∑
jj′

{1
2gF (κ)}j{1

2gF (κ)}j′

×
∑
if

Pi <i | Jjα e−iκ·R̃j | f ><f | Jj′β eiκ·R̃j′ | i>δ(h̄ω + Ei − Ef ),

(4.1.16)
where the total magnetic cross-section is 4π(h̄γe2/mc2)2 = 3.65 barns.


