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MAGNETIC SCATTERING OF NEUTRONS

The scattering of low-energy neutrons provides an extremely powerful
experimental technique for studying the properties of solids. The neu-
tron has a number of special characteristics, on which its utility as a
tool for examining magnetic materials depends. Because it is a neutral
particle, it can penetrate deeply into most crystals, interacting through
its magnetic moment with the electronic moments strongly enough to be
measurably scattered, but without disturbing the magnetic system too
severely. As a consequence, the great majority of neutrons participate
in at most one scattering event, and they sense the properties of the
unperturbed crystal. Thermal neutrons, with energies of the order of
25meV, corresponding to wavelengths of the order of 2 Å, match both
the interatomic spacings and the energies and momenta of the mag-
netic excitations, and are generated with adequate intensity by research
reactors. Cold neutrons, with energies around 5meV and wavelengths
about 4 Å, which are emitted from cooled moderators in reactors, may
be even more ideally suited for studying the spatial arrangement and
the dynamics of the magnetic moments.

The neutron-scattering cross-section contains precisely that infor-
mation which is needed to characterize a magnetic material, and to make
a stringent comparison with theoretical calculations of its properties.
The elastic Bragg scattering or neutron diffraction provides a systematic
procedure for determining the magnetic structure, or the mean values
of the magnetic-moment vectors on the different atomic sites. Inelastic
neutron scattering may be looked upon in three complementary ways.
Through conservation of energy and momentum, the scattered neutrons
measure the dispersion relation of the magnetic excitations. The scat-
tering cross-section is also directly related to the time-dependent pair-
correlation function, which describes the evolution in space and time
of the system of moments. Finally, through the fluctuation–dissipation
theorem presented in the last chapter, the cross-section may be expressed
in terms of the generalized susceptibility of the magnetic crystal, the
function describing the dynamics of the moments which is most read-
ily calculated theoretically. No other experimental technique can aspire
to providing such detailed microscopic information about magnetic sys-
tems.

This chapter does not pretend to be a complete exposition of the
theory of magnetic neutron scattering. We shall rather, by elementary
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means, derive the magnetic cross-section for unpolarized neutrons in the
simple dipole approximation, which is normally adequate for scattering
by rare earth ions, and will therefore suffice in our further discussion.
A neutron interacts with the nuclei in a solid through the nuclear force
and, through its magnetic moment, with the magnetic field due to the
electrons. In solids with unpaired electrons, the two kinds of scatter-
ing mechanism lead to cross-sections of the same order of magnitude.
The magnetic field of the electrons may be described by a multipole ex-
pansion, and the first term in this series, the dipole term, leads to the
dominating contribution to the cross-section at small scattering vectors.
We use this approximation in a derivation from first principles of a gen-
eral expression for the differential cross-section (Trammel 1953), which
we then separate into elastic and inelastic components. Using linear re-
sponse theory, we derive the different forms which the inelastic part may
exhibit, and illustrate some of the results by means of the Heisenberg
ferromagnet. A detailed treatment of both the nuclear and magnetic
scattering of neutrons may be found in Marshall and Lovesey (1971),
and Lovesey (1984), while a brief review of some of the salient features
of magnetic neutron scattering and its application to physical problems
has been given by Mackintosh (1983).

4.1 The differential cross-section in the dipole
approximation

A neutron-scattering experiment is performed by allowing a collimated
beam of monochromatic (monoenergetic) neutrons to impinge upon a
sample, and then measuring the energy distribution of neutrons scat-
tered in different directions. As illustrated in Fig. 4.1, a uniform en-
semble of neutrons in the initial state |ksn> is created, typically by
utilizing Bragg-reflection in a large single-crystal monochromator, plus
suitable shielding by collimators. We may write the state vector for this
initial plane-wave state

|ksn> = V −1/2exp(ik · rn) |sn> ,

representing free neutrons with an energy (h̄k)2/2M and a flux j(ksn) =
V −1h̄k/M . When passing through the target, the probability per unit
time that a neutron makes a transition from its initial state to the state
|k′s′n> is determined by Fermi’s Golden Rule:

W (ksn,k
′s′n) =

2π

h̄

∑
if

Pi |<ksn; i | Hint |k′s′n; f >|2 δ(h̄ω + Ei − Ef ).

(4.1.1)
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Fig. 4.1. The principle of a neutron-scattering experiment, carried out
on a triple-axis spectrometer. An incident beam of neutrons, with well-
defined momenta, is selected from the continuous reactor spectrum by the
monochromator crystal, and scattered from the sample. The intensity of
the scattered beam of neutrons, with generally different momenta defined
by the analyser crystal, is measured by the detector. The scattered in-
tensity, proportional to the scattering cross-section, is thus determined
as a function of the energy transfer h̄ω and the momentum transfer h̄κ
to the sample, whose orientation relative to κ can be varied by rotating

the sample table.

Hint is the Hamiltonian describing the interaction between the neutrons
and the sample, and the sum extends over all possible scattering pro-
cesses. It comprises a summation over all possible final states |f > of
the sample, and an average over all initial states |i> , which occur with
the probability Pi. Energy conservation requires that the energy differ-
ence between the final and initial states of the sample, Ef − Ei, must
be equal to the energy transferred from the neutron to it:

h̄ω =
(h̄k)2

2M
− (h̄k′)2

2M
. (4.1.2)

The linear momentum transferred to the sample is h̄κ = h̄k− h̄k′, where
κ is the scattering vector,

κ = k− k′. (4.1.3)

The information about the sample is obtained by measuring the scat-
tered intensity as a function of the natural variables of the experiment,
the energy transfer h̄ω and the momentum transfer h̄κ.

The scattered neutrons with momenta lying in a narrow range
around h̄k′ are counted by placing a detector in a direction along k′,
subtending a small element of solid angle dΩ. The value of k′, or the final
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neutron energy, is determined by again making use of Bragg-reflection
in a single-crystal analyser, so that only neutrons with energies in a
small interval dE around (h̄k′)2/2M strike the counter. The number of
neutrons in this range, corresponding to a state vector |k′s′n > for the
scattered neutrons, is

δN = V (2π)−3(k′)2dk′dΩ = V (2π)−3(Mk′/h̄2)dEdΩ.

The number of neutrons arriving at the counter per unit time and per
incident neutron is proportional to the scattering area dσ = |j(ksn)|−1×
W (ksn,k

′s′n)δN , or to the differential scattering cross-section

d2σ

dEdΩ
=

k′

k

(
M

2πh̄2

)2 ∑
if

Pi |<sn; i | Hint(κ) |s′n; f >|2 δ(h̄ω+Ei −Ef ),

(4.1.4a)
where

Hint(κ) =

∫
Hint e

−iκ·rndrn. (4.1.4b)

This result of time-dependent perturbation theory, in the first Born ap-
proximation, is accurate because of the very weak interaction between
the neutrons and the constituents of the sample.

In order to proceed further, it is necessary to specify the interaction
Hamiltonian Hint. The magnetic moment of the neutron is

µn = −gnµNsn ; gn = 3.827 ; µN =
m

M
µB =

eh̄

2Mc
,

with sn = 1
2 . In this chapter, in the interest of conformity with the rest

of the literature, we do not reverse the signs of the electronic angular-
momentum vectors, which are therefore antiparallel to the corresponding
magnetic moments, as is also the case for the neutron.

This magnetic dipole moment at rn gives rise to a vector potential,
at the position re,

An(re, rn) = An(r = re − rn) = µn × r/r3,

with r = |r|. The magnetic-interaction Hamiltonian for a neutron at rn
with a single electron of charge −e, with coordinate re, momentum p,
and spin s is

Hint(re, rn) =
1

2m

(
p+

e

c
(An +Ae)

)2

− 1

2m

(
p+

e

c
Ae

)2

+ 2µBs ·Bn

= 2µB

( 1

h̄
An · p′ + s · (∇×An)

)
, (4.1.5)
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neglecting the diamagnetic term of second order in µN . Ae denotes the
additional contribution to the total vector potential from the surround-
ing electrons, or an external magnetic field. The prime on p only plays
a role if Ae is non-zero, in which case p′ = p+ e

cAe. We note that An

commutes with p′, because ∇e ·An = ∇ ·An and

∇ ·An(r) = ∇ · {−µn ×∇(1r )} = µn · ∇ ×∇(1r ) = 0,

recalling that r/r3 = −∇(1r ).
The Fourier transform ofAn with respect to the neutron coordinate,

defining x = rn − re, is∫
An(re−rn) e

−iκ·rndrn = e−iκ·re
∫

An(−x) e−iκ·xdx

= −e−iκ·re
∫
(µn × x)x−3e−iκ·xdx = −e−iκ·re 4π

iκ
µn × κ̂,

where κ̂ is a unit vector along κ (the integration is performed straight-
forwardly in spherical coordinates). Applying Green’s theorem and as-
suming V to be a sphere of radius r,∫

∇× (
e−iκ·xAn(x)

)
dx ∝ (κr)−1 → 0 for r → ∞,

from which we deduce∫ (∇×An(x)
)
e−iκ·xdx = −

∫ (∇ e−iκ·x)×An(x)dx

= iκ×
∫

e−iκ·xAn(x)dx = 4πκ̂× µn × κ̂

(we note that ∇×An(r) = ∇(x)×An(x)). From these results, we obtain

Hint(κ) =

∫
Hint(re, rn)e

−iκ·rndrn

= 2µB e−iκ·re 4π
( i

h̄κ
µn × κ̂ · p′ + s · (κ̂× µn × κ̂)

)
,

or

Hint(κ) = 8πµB µn ·
( i

h̄κ
κ̂× p′ + κ̂× s× κ̂

)
e−iκ·re . (4.1.6)

κ̂× p′ commutes with κ · re and therefore also with exp(−iκ · re), and
we have made use of the identity κ̂× a× κ̂ = a− (κ̂ · a)κ̂.
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For discussing the rare earths, we may restrict ourselves to the case
of electrons localized around the lattice sites in a crystal. Further, we
define re = R̃j+r, with r now being the relative position of the electron

belonging to the jth atom at the position R̃j . Equation (4.1.6) may
then be written

Hint(κ) = 8πµB µn · (Qp +Qs) e
−iκ·R̃j , (4.1.7a)

introducing

Qp =
i

h̄κ
κ̂× p′ e−iκ·r ; Qs = κ̂× s× κ̂ e−iκ·r. (4.1.7b)

In order to calculate the matrix element < i |Qp,s |f >, the factor
exp(−iκ · r) is expanded in spherical Bessel functions jn(ρ), and with
ρ = κr and cos θ = κ · r/ρ,

e−iκ·r =
∞∑

n=0

(2n+ 1) (−i)n jn(ρ)Pn(cos θ)

� j0(ρ)− 3i j1(ρ) cos θ = j0(ρ)− iκ · r{j0(ρ) + j2(ρ)},
(4.1.8)

using jn(ρ) = ρ{jn−1(ρ) + jn+1(ρ)}/(2n + 1). The truncation of the
series is valid for small values of ρ, where

jn(ρ) = (ρn/(2n+ 1)!!){1− ρ2/(4n+ 6) + · · ·}.
We note that, although κ× p′ commutes with exp(−iκ · r), it does not
commute with the individual terms in (4.1.8). Introducing this expan-
sion in the expression for Qp, we find

Qp = κ̂×
( i

h̄κ
j0(ρ)p

′ +
1

h̄
{j0(ρ) + j2(ρ)}(κ̂ · r)p′ + · · ·

)
,

which can be rearranged to read

Qp = 1
2{j0(ρ) + j2(ρ)} κ̂× l′ × κ̂+Q′

p. (4.1.9a)

We have defined

Q′
p = κ̂×

( i

h̄κ
j0(ρ)p

′ +
1

2h̄
{j0(ρ) + j2(ρ)}{(κ̂ · r)p′ + (κ̂ · p′)r}+ · · ·

)
,

(4.1.9b)
where the orbital momentum h̄l = r × p and h̄l′ = h̄l + e

c r ×Ae, and
used

κ̂× h̄l′ × κ̂ = −κ̂× {κ̂× (r× p′)} = κ̂× {(κ̂ · r)p′ − (κ̂ · p′)r},
where [ l′ , jn(ρ) ] = 0 and [ κ̂× r , κ̂ · p′ ] = 0.
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If H is defined to be the Hamiltonian for the electron, then

p′ = p+
e

c
Ae = mdr/dt = m

i

h̄
[H , r ],

and Q′
p may be written

Q′
p =

m

h̄2κ
κ̂×

(
−j0(ρ) [H , r ] +

iκ

2
{j0(ρ) + j2(ρ)} [H , (κ̂ · r)r ] + · · ·

)
.

(4.1.10)
Considering an arbitrary operator Â, we have

<i | [H , Â ] | f > = <i | HÂ− ÂH| f > = (Ei − Ef ) <i | Â | f >,

which implies that Q′
p does not contribute to the cross-section (4.1.4)

in the limit κ → 0. In this limit, jn(0) = δn0 and, utilizing the energy
δ-function in (4.1.4), the contribution to the cross section due to Q′

p is
seen to be proportional to

∣∣∣∣ m

h̄2κ
h̄ω κ̂×<i | r | f >

∣∣∣∣
2

→ 0 for κ → 0,

since |h̄ω| ≤ (h̄κ)2/2M . Introducing the vector operator K(κ), defined
so that

<i | κ̂×K× κ̂ | f > = <i |Qp +Qs | f >, (4.1.11)

we find, neglecting Q′
p in the limit κ → 0,

2µBK(0) = µB

(
l+

e

h̄c
r×Ae + 2s

)
≡ −µe, (4.1.12a)

or
Hint(0) = −4πµn · (κ̂× µe × κ̂), (4.1.12b)

implying that the magnetic cross-section (4.1.4), in the limit where the
scattering vector approaches zero, is determined by the magnetic dipole
moment µe of the electron. In the treatment given above, we have
included the diamagnetic contribution to µe, induced by external fields
∝ Ae. This term may however normally be neglected, as we shall do
from now on.

At non-zero κ, we cannot employ directly the above procedure for
obtaining an upper bound on the Q′

p matrix-element, because jn(ρ) does
not commute with H. However, if we restrict ourselves to scattering pro-
cesses in which the l quantum number is conserved, the matrix element
of the first term in (4.1.10) vanishes identically, because j0(ρ) and H
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are both diagonal with respect to l, whereas r has no diagonal elements
(cf. the electric-dipole selection rule ∆l = ±1). In the second term of
(4.1.10) we can, to leading order, replace H by the kinetic-energy oper-
ator and, if we also make the assumption ∆l = 0, this term transforms
like a second-rank tensor and so is quadrupolar. Symmetrizing Q′

p with
respect to the expansion in spherical Bessel functions, and taking (κ̂ · r̂)r̂
outside the commutator, which is allowed because ∆l = 0, we can write
the second term in (4.1.10) as

(κ̂ × r̂)(κ̂ · r̂)Qr,

with r̂ = r/r and

Qr = Q†
r = − i

8

(
{j0(ρ) + j2(ρ)}[∇2 , r2 ] + [∇2 , r2 ]{j0(ρ) + j2(ρ)}

)
.

Thus the second term is a product of an angular and a radial operator,
which are both Hermitian. Our next assumption is that the radial part
of the wavefunction, as specified by the principal quantum number ñ,
and by l, is the same in the initial and the final state, i.e. that both ñ
and l are unchanged. In this case, <i |Qr | f >=<ñl |Qr | ñl> vanishes
identically, because Qr is an imaginary Hermitian operator; Qr = Q†

r =
−Q∗

r. If the radial part of the wavefunction is changed in the scattering
process, or if H is not diagonal in l, then the quadrupole moment leads
to an imaginary contribution to K(κ), and gives a contribution to the
cross-section proportional to κ2. In most cases of interest, however, this
term is very small.

The assumption that | i > and | f > are linear combinations of
the states | (ñls)mlms >, where (ñls) is constant, implies that the two
lowest-order terms in the expansion of Q′

p in (4.1.9b) or (4.1.10) can be
neglected. Furthermore, the radial and angular dependences are then
factorized, both in the expansion of the operators and in the wave-
functions, so that the radial part of the matrix elements may be cal-
culated separately. Hence the orbital contribution Kp to K is approxi-
mately

Kp(κ) =
1
2 {〈j0(κ)〉+ 〈j2(κ)〉} l, (4.1.13a)

with

〈jn(κ)〉 =
∫ ∞

0

r2R2(r)jn(κr)dr ;

∫ ∞

0

r2R2(r)dr = 1, (4.1.13b)

where R(r) is the normalized radial wavefunction. The assumption that
the final and initial states have the same parity implies that only the
terms in the expansion (4.1.8) for which n is odd may contribute to Kp.
By the same argument, the spin part Ks of K only involves the terms
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in (4.1.8) with n even. Neglecting the (n = 2)-term in Ks, proportional
to s times an orbital quadrupole moment, we have Ks(κ) � 〈j0(κ)〉 s, or

K(κ) = K(κ) = 1
2 〈j0(κ)〉(l + 2s) + 1

2 〈j2(κ)〉 l. (4.1.14)

This result for K(κ) is the basis of the dipole approximation for the
scattering cross-section. Within this approximation, it is straightfor-
wardly generalized to the case of more than one electron per atom, as
the contributions are additive, in the sense that l and s are replaced by
L =

∑
l and S =

∑
s, and R2(r) by the normalized distribution for all

unpaired electrons belonging to the atom at R̃j.
The orbital contribution is important in the case of rare earth or

actinide ions. In transition-metal ions, the orbital momentum is fre-
quently quenched, and Kp may then be neglected to leading order. In
the rare earths, the spin–orbit coupling is strong and only matrix ele-
ments within the ground-state multiplet of J2 = (L+S)2 contribute. In
this case, as discussed in Section 1.2, L + 2S = gJ and L = (2 − g)J,
where g is the Landé factor, and we have

K(κ) = 1
2 〈j0(κ)〉(L+ 2S) + 1

2 〈j2(κ)〉L = 1
2gF (κ)J, (4.1.15a)

where F (κ) is the form factor

F (κ) = 〈j0(κ)〉+ 1

g
(2− g)〈j2(κ)〉, (4.1.15b)

defined so that F (0) = 1. When the spin–orbit interaction is introduced,
the (n = 2)-term in the expansion of Ks gives a contribution to the
dipolar part of K(κ) proportional to 〈j2(κ)〉, but this is an order of
magnitude smaller than the orbital term in (4.1.14). A more systematic
approach, making extensive use of Racah tensor-algebra, is required to
calculate this term and to include the contributions of the higher-rank
multipoles produced by the expansion of exp(−iκ · r). This analysis
may be found in Marshall and Lovesey (1971), Stassis and Deckman
(1975, 1976), and references therein. Within the present approximation,
only tensors of odd rank give a contribution to K, proportional to κτ−1,
where τ is the rank of the tensors (terms with τ = 3 appear already in
order κ2). In contrast to the dipole contributions, the higher-rank tensor
couplings give rise to an angular dependence of K = K(κ). The smaller
the scattering wavelength λ = 2π/κ, the more the neutron senses the
details of the spin and current distributions within the atom, but as long
as λ is larger than approximately the mean radius 〈r〉 of the unpaired
electrons, only the dipolar scattering is important. For rare earth ions,
〈r〉 ≈ 0.6 Å, indicating that (4.1.15) is a valid approximation as long as
κ is smaller than about 6 Å−1.
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Experimental studies of the form factor and the associated moment
densities have been reviewed by Sinha (1978). For an accurate interpre-
tation of the data, it is generally necessary to proceed beyond the dipole
approximation. In the heavy rare earths, the deduced 4f densities are
in good agreement with atomic calculations, provided that relativistic
effects are included, but the conduction-electron distributions are much
less certain. In the light elements, crystal-field effects become impor-
tant, as observed for example in Pr and Nd by Lebech et al. (1979). Of
especial interest is Sm, where the opposition of spin and orbital moments
leads to a form factor which has its maximum at a non-zero κ, and the
conduction-electron polarization seems to be very strong (Koehler and
Moon 1972).

Labelling quantities pertaining to the jth atom with the index j,
and summing over all the atoms in the sample, we find that the total
Hint(κ) (4.1.7), in the dipole approximation, is given by

Hint(κ) = 8πµB

∑
j

{1
2gF (κ)}j e−iκ·R̃j µn · (κ̂ × Jj × κ̂).

The squared matrix element in (4.1.4) may furthermore be written

<sn; i | Hint(κ) |s′n; f ><s′n; f | Hint(−κ) |sn; i> .

We shall only consider the cross-section for unpolarized neutrons, so
that we sum over all the spin states |s′n > of the scattered neutrons,
and average over the spin-states |sn>, with the distribution Ps, of the
incoming neutrons. With an equal distribution of up and down spins,
Ps =

1
2 , and introducing Qj = κ̂×Jj × κ̂, we find that the cross-section

is proportional to∑
sns

′
n

Ps < sn |µn ·Qj | s′n><s′n |µn ·Qj′ | sn>

=
∑
s

Ps<sn | (µn ·Qj) (µn ·Qj′) | sn>=
(
1
2gnµN

)2

Qj ·Qj′ ,

as may readily be shown by using the Pauli-matrix representation, in
which Tr{σασβ} = 2 δαβ. We have further that Qj ·Qj′ may be written

(κ̂× Jj × κ̂) · (κ̂× Jj′ × κ̂) = (Jj − κ̂(Jj · κ̂)) · (Jj′ − κ̂(Jj′ · κ̂))
= Jj ·Jj′ − (Jj · κ̂) (Jj′ · κ̂) =

∑
αβ

(
δαβ − κ̂ακ̂β

)
Jjα Jj′β ,

in terms of the Cartesian components. Defining (J⊥)j to be the projec-
tion of Jj on the plane perpendicular to κ, we have∑

αβ

(
δαβ − κ̂ακ̂β

)
Jjα Jj′β = (J⊥)j · (J⊥)j′ .
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The various factors in these expressions may be combined to give

k′

k

(
M

2πh̄2 8πµB
1
2gnµN

)2

=
k′

k

(
h̄γe2

mc2

)2

; γ =
1

2h̄
gn.

γ is the gyromagnetic ratio of the neutron, and e2/mc2 = 2.82 fm is
the classical electron radius. The differential cross-section, in the dipole
approximation, for the scattering of unpolarized neutrons is then finally

d2σ

dEdΩ
=

k′

k

(
h̄γe2

mc2

)2 ∑
αβ

(δαβ − κ̂ακ̂β)
∑
jj′

{1
2gF (κ)}j{1

2gF (κ)}j′

×
∑
if

Pi<i | Jjα e−iκ·R̃j | f ><f | Jj′β eiκ·R̃j′ | i>δ(h̄ω + Ei − Ef ),

(4.1.16)
where the total magnetic cross-section is 4π(h̄γe2/mc2)2 = 3.65 barns.

4.2 Elastic and inelastic neutron scattering

If the scattering system is assumed to be in thermal equilibrium at tem-
perature T , the average over initial states in (4.1.16) is the same as the
thermal average 〈· · ·〉 = Tr{ρ0 · · ·}, where ρ0 is the density operator de-

fined in eqn (3.1.1). The atom at the position R̃j = Rj + uj vibrates
around its equilibrium position, the lattice point Rj , and we may write

〈e−iκ·(R̃j−R̃j′ )〉 = e−2W (κ) e−iκ·(Rj−Rj′ ),

where W (κ) is the Debye–Waller factor ≈ 1
6κ

2〈u2〉, discussed in de-
tail by, for example, Marshall and Lovesey (1971). We insert this term
in (4.1.16), and thereby neglect contributions from inelastic phonon-
scattering processes, the so-called magneto-vibrational part of the mag-
netic cross-section. The integral representation of the δ-function is

δ(h̄ω + Ei − Ef ) =
1

2πh̄

∫ ∞

−∞
ei(h̄ω+Ei−Ef )t/h̄dt,

which allows us to write

∑
if

Pi <i | Jjα | f ><f | Jj′β | i> δ(h̄ω + Ei − Ef )

=
∑
if

1

2πh̄

∫ ∞

−∞
dt eiωtPi <i | eiHt/h̄Jjαe

−iHt/h̄ | f ><f | Jj′β | i>

=
1

2πh̄

∫ ∞

−∞
dt eiωt

∑
i

Pi <i | Jjα(t)Jj′β(0) | i>

=
1

2πh̄

∫ ∞

−∞
dt eiωt〈Jjα(t)Jj′β(0)〉,
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where Jjα(t) is the angular-momentum operator in the Heisenberg pic-
ture, as in (3.2.1),

Jjα(t) = eiHt/h̄ Jjα e−iHt/h̄.

At thermal equilibrium, the differential cross-section can then be written

d2σ

dEdΩ
=

k′

k

(
h̄γe2

mc2

)2

e−2W (κ)
∑
αβ

(δαβ − κ̂ακ̂β)
∑
jj′

{1
2gF (κ)}j{1

2gF (−κ)}j′

× 1

2πh̄

∫ ∞

−∞
dt eiωte−iκ·(Rj−Rj′ )〈Jjα(t)Jj′β(0)〉. (4.2.1)

If the magnetic atoms are all identical, the form factor may be taken
outside the summation and the cross-section reduces to

d2σ

dEdΩ
= N

k′

k

(
h̄γe2

mc2

)2

e−2W (κ)|12gF (κ)|2
∑
αβ

(δαβ − κ̂ακ̂β)Sαβ(κ, ω),

(4.2.2a)
where we have introduced the Van Hove scattering function (Van Hove
1954)

Sαβ(κ, ω) =
1

2πh̄

∫ ∞

−∞
dt eiωt 1

N

∑
jj′

e−iκ·(Rj−Rj′ )〈Jjα(t)Jj′β(0)〉,

(4.2.2b)
which is (2πh̄)−1 times the Fourier transform, in space and time, of
the pair-correlation function 〈Jjα(t)Jj′β(0)〉. If 〈Jjα〉〈Jj′β〉 is added
and subtracted, the scattering function may be written as the sum of a
static and a dynamic contribution:

Sαβ(κ, ω) = Sαβ(κ) + Sαβ
d (κ, ω), (4.2.3a)

where the static or elastic component is

Sαβ(κ) = δ(h̄ω)
1

N

∑
jj′

〈Jjα〉 〈Jj′β〉e−iκ·(Rj−Rj′ ) (4.2.3b)

and the inelastic contribution is

Sαβ
d (κ, ω) =

1

2πh̄
Sαβ(κ, ω) =

1

π

1

1− e−βh̄ω
χ′′
αβ(κ, ω). (4.2.3c)
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We have introduced the dynamic correlation function Sαβ(κ, ω), defined
by eqn (3.2.13), with

α̂ = N− 1
2

∑
j

Jjαe
−iκ·Rj and β̂ = N− 1

2

∑
j′

Jj′βe
iκ·Rj′ ,

and the corresponding susceptibility function χαβ(κ, ω), utilizing the
relation between the two functions given by the fluctuation–dissipation
theorem (3.2.18).

An important consequence of (4.2.2–3) is that the inelastic scat-
tering of neutrons is proportional to the correlation function Sαβ(κ, ω),
which is essentially the Fourier transform of the probability that, if the
moment at site j has some specified vector value at time zero, then the
moment at site j′ has some other specified value at time t. An inelas-
tic neutron-scattering experiment is thus extremely informative about
the dynamics of the magnetic system. Poles in the correlation function,
or in χαβ(κ, ω), are reflected as peaks in the intensity of the scattered
neutrons. According to (4.1.2) and (4.1.3), each neutron in such a scat-
tering peak has imparted energy h̄ω and momentum h̄κ to the sample,
so the peak is interpreted, depending on whether h̄ω is positive or neg-
ative, as being due to the creation or annihilation of quasi-particles or
elementary excitations in the system, with energy |h̄ω| and crystal mo-
mentum h̄q = h̄(κ − τ ), where τ is a reciprocal lattice vector. A part
of the momentum h̄τ may be transferred to the crystal as a whole. If
the sample is a single crystal, with only one magnetic atom per unit
cell, Sαβ(κ, ω) = Sαβ(q = κ − τ , ω), where τ is normally chosen so
that q lies within the primitive Brillouin zone. The form factor in the
scattering amplitude is not however invariant with respect to the addi-
tion of a reciprocal lattice vector. This interpretation of the poles in
Sαβ(q, ω) governs the choice of sign in the exponential arguments in
both the temporal and the spatial Fourier transforms.

The relation (4.2.3c) between the scattering function and the gen-
eralized susceptibility implies that the neutron may be considered as
a magnetic probe which effectively establishes a frequency- and wave-
vector-dependent magnetic field in the scattering sample, and detects
its response to this field. This is a particularly fruitful way of look-
ing at a neutron scattering experiment because, as shown in Chapter
3, the susceptibility may be calculated from linear response theory, and
thus provides a natural bridge between theory and experiment. Using
the symmetry relation (3.2.15), which may here be written χ∗

αβ(q, z) =
χαβ(−q,−z∗), it is straightforward to show that χ′′

αβ(q, ω)+χ′′
βα(q, ω) is

real and equal to Im
{
χαβ(q, ω)+χβα(q, ω)

}
. In addition, the form of the

inelastic cross-section, and also the result (3.3.2) for the dissipation rate,
impose another analytic condition on the function χ′′

αβ(q, ω)+χ′′
βα(q, ω).
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It must be either zero, or positive or negative with ω (such functions are
called herglotz functions), because a negative value of the cross-section
is clearly unphysical.

If the magnetic moments in a Bravais lattice are ordered in a static
structure, described by the wave-vector Q, we may write

〈Jjα〉 = 1
2

(〈Jα〉 eiQ·Rj + 〈Jα〉∗e−iQ·Rj
)
, (4.2.4)

allowing 〈Jα〉 to be complex in order to account for the phase. The
static contribution to the cross-section is then proportional to

∑
αβ

(δαβ − κ̂ακ̂β)Sαβ(κ) =
∑
αβ

(δαβ − κ̂ακ̂β)Re {〈Jα〉〈Jβ〉∗}

× δ(h̄ω)
(2π)3

υ

∑
τ

1
4 (1 + δQ0) {δ(τ +Q− κ) + δ(τ −Q− κ)} ,

(4.2.5)
where δQ0 is equal to 1 in the ferromagnetic case Q = 0, and zero oth-
erwise, and υ is the volume of a unit cell. The magnetic ordering of
the system leads to δ-function singularities in momentum space, corre-
sponding to magnetic Bragg scattering, whenever the scattering vector
is equal to ±Q plus a reciprocal lattice vector τ . The static and dy-
namic contributions from Sαβ(κ) and Sαβ

d (κ, ω) to the total integrated
scattering intensity may be comparable, but the dynamic contributions,
including possibly a quasi-elastic diffusive term, are distributed more or
less uniformly throughout reciprocal space. Consequently, the elastic
component, determined by Sαβ(κ), in which the scattering is condensed
into points in reciprocal space, is overwhelmingly the most intense con-
tribution to the cross-section dσ/dΩ, obtained from the differential cross-
section (4.2.2a) by an energy integration:

dσ

dΩ
� N

(
h̄γe2

mc2

)2

e−2W (κ)|12gF (κ)|2
∑
αβ

(δαβ − κ̂ακ̂β)Re {〈Jα〉〈Jβ〉∗}

× (2π)3

υ

∑
τ

1
4 (1 + δQ0) {δ(τ +Q− κ) + δ(τ −Q− κ)} .

(4.2.6)
dσ/dΩ is the cross-section measured in neutron diffraction experiments,
in which all neutrons scattered in the direction of k′ are counted without
energy discrimination, i.e. without the analyser crystal in Fig. 4.1. This
kind of experiment is more straightforward to perform than one in which,
for instance, only elastically scattered neutrons are counted. In the
ordered phase, (4.2.6) is a good approximation, except close to a second-
order phase transition, where 〈Jα〉 is small and where critical fluctuations
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may lead to strong inelastic or quasi-elastic scattering in the vicinity of
the magnetic Bragg peaks.

Independently of whether the magnetic system is ordered or not,
the total integrated scattering intensity in the Brillouin zone has a def-
inite magnitude, determined by the size of the local moments and the
following sum rule:

1

N

∑
q

∑
α

∫ ∞

−∞
Sαα(q, ω)d(h̄ω)

=
1

N

∑
j

∑
α

〈Jjα〉2 + 1

N

∑
q

∑
α

Sαα(q, t = 0)

=
1

N

∑
j

∑
α

〈JjαJjα〉 = J(J + 1), (4.2.7)

and taking into account the relatively slow variation of the other param-
eters specifying the cross-section. This implies, for instance, that dσ/dΩ
is non-zero in the paramagnetic phase, when 〈Jα〉 = 0, but the distri-
bution of the available scattered intensity over all solid angles makes it
hard to separate from the background. In this case, much more useful in-
formation may be obtained from the differential cross-section measured
in an inelastic neutron-scattering experiment.

For a crystal with a basis of p magnetic atoms per unit cell, the
ordering of the moments corresponding to (4.2.4) is

〈Jjsα〉 = 1
2

(〈Jsα〉 eiQ·Rjs + 〈Jsα〉∗e−iQ·Rjs
)
, (4.2.8a)

where

Rjs = Rj0 + ds, with s = 1, 2, · · · , p. (4.2.8b)

Here Rj0 specifies the position of the unit cell, and ds is the vector
determining the equilibrium position of the sth atom in the unit cell.
The summation over the atoms in (4.2.2) may be factorized as follows:

∑
ij

e−iκ·(Ri−Rj)

=
∑
i0j0

e−iκ·(Ri0−Rj0)

p∑
s=1

e−iκ·(Ris−Ri0 )

p∑
r=1

eiκ·(Rjr−Rj0 )

=
∑
i0j0

e−iκ·(Ri0−Rj0) |FG(κ)|2 ; FG(κ) =

p∑
s=1

e−iκ·ds ,
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where FG(κ) is the geometric structure factor. The elastic cross-section
then becomes

dσ

dΩ
= N0

(
h̄γe2

mc2

)2

e−2W (κ)|12gF (κ)|2
∑
αβ

(δαβ − κ̂ακ̂β) |〈Jα〉〈Jβ〉| ×

(2π)3

υ

∑
τ

1
4 (1 + δQ0)Re

{
Fα(τ )F

∗
β (τ )

}{δ(τ +Q− κ) + δ(τ −Q− κ)}
(4.2.9a)

where N0 is the number of unit cells, and the structure factor is

Fα(τ ) = |〈Jα〉|−1
r∑

s=1

〈Jsα〉 e−iτ ·ds . (4.2.9b)

As an example, we return to the Heisenberg ferromagnet discussed
in Chapter 3. The magnitude of the ordered moments and their direction
relative to the crystal lattice, defined to be the z-axis, may be determined
by neutron diffraction, since

dσ

dΩ
= N

(
h̄γe2

mc2

)2

e−2W (κ)|12gF (κ)|2(1− κ̂2
z) 〈Sz〉2 (2π)3

υ

∑
τ

δ(τ − κ).

(4.2.10)
The Bragg-peak intensity is thus proportional to the square of the or-
dered moment and to sin2 θ, where θ is the angle between the magne-
tization and the scattering vector. The elastic scattering is therefore
strongest when κ = τ is perpendicular to the magnetization. On the
other hand, the inelastic scattering is strongest when the scattering vec-
tor κ = q+ τ is along the magnetization, in which case, from (3.4.11),

∑
αβ

(δαβ−κ̂ακ̂β)Sαβ(κ, ω) =
1

π

1

1− e−βh̄ω

(
χ′′
xx(q, ω) + χ′′

yy(q, ω)
)

= 〈Sz〉 1

1− e−βh̄ω
{δ(h̄ω − Eq)− δ(h̄ω + Eq)}

= 〈Sz〉 {(nq + 1)δ(h̄ω − Eq) + nq δ(h̄ω + Eq)} , (4.2.11)

where nq = (eβEq − 1)−1 is the Bose population factor. The magnon-
scattering intensity is thus proportional to the ordered moment, and
the stimulated emission and absorption of the boson excitations, i.e. the
magnons, due to the neutron beam, are proportional respectively to
(nq + 1) and nq, which may be compared with the equivalent result for
light scattering from a gas of atoms.
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Fig. 4.2. A typical spectrum of inelastically-scattered neutrons in a
constant-κ experiment, illustrating the determination of the dispersion
relation and the polarization vector of the magnetic excitations. The
peaks in the spectrum establish the energies of excitations which have a
wave-vector q, defined by the scattering vector through κ = q+ τ , and
thus determine points on the dispersion relation for Pr, shown in Fig.
7.1. The cross-section is proportional to the factor f(α) = 1− (κα/κ)

2.
Since q is along the ΓM (y)-axis, the absence of the peak of lower en-
ergy in the bottom figure shows unambiguously that it corresponds to a

longitudinal mode.

The dependence of the intensity of inelastically scattered neutrons

on the relative orientation of κ and the direction of the moment fluctu-

ations is illustrated for the example of Pr in Fig. 4.2, which is discussed

in more detail in Chapter 7. As in this figure, the scattering is nor-

mally measured as a function of h̄ω at a fixed value of q, a so-called

constant-q or constant-κ scan, but occasionally constant-energy scans
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may also be employed. In an actual experiment the directions and the
lengths of k and k′ are only defined with a limited degree of accuracy,
and the δ-functions occurring in (4.2.10–11) are broadened into peaks
with the shape of the instrumental resolution function, which to a good
approximation is a Gaussian in the four-dimensional (κ, ω)-space. If the
resolution function is known, it is possible to deconvolute the scattering
peaks obtained in constant q-scans from the broadening due to instru-
mental effects, and thereby determine the lifetimes of the excitations.

In this chapter, we have concentrated on the magnetic scattering of
neutrons, but they may also be scattered through the interaction, via
nuclear forces, with the nuclei in the sample. This interaction leads to
a cross-section of the same order of magnitude as in the magnetic case,
and it results in analogous phenomena to those discussed above, with
the positions of the atoms replacing the magnetic moments as the fluc-
tuating variables. The elastic Bragg scattering reveals the positions of
the atoms in the crystal, and the elementary excitations appearing in
the correlation functions are phonons. The fluctuations in the nuclear
cross-section, due to the different spin states of the nuclei, give rise to
an incoherent scattering, determined by the self-correlation of the indi-
vidual atoms, in contrast to the coherent scattering, which is governed
by the atomic pair-correlation function, in analogy with the magnetic
scattering discussed above. Incoherence can also be produced by differ-
ent isotopes of a particular element in a crystal, just as the variation of
the magnetic moments in disordered alloys leads to incoherent magnetic
scattering.

The magnetic scattering may be difficult to separate experimentally
from the nuclear component. One possibility is to utilize the different
temperature dependences of the two contributions, since the nuclear
scattering normally changes relatively slowly with temperature. If this
is not adequate, it may be necessary to perform polarized neutron scat-
tering, in which the spin states of the incoming and scattered neutrons
are determined, making it possible to isolate the scattering of purely
magnetic origin (Moon, Riste and Koehler 1969). For further details of
neutron scattering by nuclei in solids we refer to the texts mentioned at
the beginning of this chapter.


