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3.4 Linear response of the Heisenberg ferromagnet

In this section, we shall illustrate the use of linear response theory by
applying it to the case of the three-dimensional Heisenberg ferromagnet,
with the Hamiltonian

H = −1

2

∑
i�=j

J (ij)Si ·Sj , (3.4.1)

where Si is the spin on the ith ion, placed in a Bravais lattice at the
position Ri. The spatial Fourier transform of the exchange coupling,
with the condition J (ii) ≡ 0, is

J (q) = 1

N

∑
ij

J (ij) e−iq·(Ri−Rj) =
∑

j

J (ij) e−iq·(Ri−Rj), (3.4.2a)

and conversely

J (ij) = 1

N

∑
q

J (q) eiq·(Ri−Rj) =
V

N(2π)3

∫
J (q) eiq·(Ri−Rj)dq,

(3.4.2b)
depending on whether q, defined within the primitive Brillouin zone, is
considered to be a discrete or a continuous variable (we shall normally
assume it to be discrete). N is the total number of spins, V is the
volume, and the inversion symmetry of the Bravais lattice implies that
J (q) = J (−q) = J ∗(q). The maximum value of J (q) is assumed to
be J (q = 0), in which case the equilibrium state at zero temperature,
i.e. the ground state, is the ferromagnet:

〈Si〉 = S ẑ at T = 0, (3.4.3)

where ẑ is a unit vector along the z-axis, which is established as the
direction of magnetization by an infinitesimal magnetic field. This result
is exact, but as soon as the temperature is increased above zero, it is
necessary to make a number of approximations. As a first step, we
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introduce the thermal expectation-values 〈Si〉 = 〈S〉 in the Hamiltonian
which, after a simple rearrangement of terms, can be written

H =
∑

i

Hi − 1

2

∑
i�=j

J (ij)(Si − 〈S〉) · (Sj − 〈S〉), (3.4.4a)

with
Hi = −Sz

i J (0)〈Sz〉 + 1
2J (0)〈Sz〉2, (3.4.4b)

and 〈S〉 = 〈Sz〉 ẑ. In the mean-field approximation, discussed in the pre-
vious chapter, the dynamic correlation between spins on different sites is
neglected. This means that the second term in (3.4.4a) is disregarded,
reducing the original many-spin Hamiltonian to a sum of N indepen-
dent single-spin Hamiltonians (3.4.4b). In this approximation, 〈Sz〉 is
determined by the self-consistent equation

〈Sz〉 =
+S∑

M=−S

M eβMJ (0)〈Sz〉/ +S∑
M=−S

eβMJ (0)〈Sz〉 (3.4.5a)

(the last term in (3.4.4b) does not influence the thermal average) which,
in the limit of low temperatures, is

〈Sz〉 � S − e−βSJ (0). (3.4.5b)

In order to incorporate the influence of two-site correlations, to
leading order, we consider the Green function

G±(ii′, t) = 〈〈S+
i (t) ; S−

i′ 〉〉. (3.4.6)

According to (3.3.14a), the variation in time of G±(ii′, t) depends on
the operator

[ S+
i , H ] = −1

2

∑
j

J (ij)
(−2S+

i Sz
j + 2Sz

i S+
j

)
.

The introduction of this commutator in the equation of motion (3.3.14a)
leads to a relation between the original Green function and a new, more
elaborate Green function. Through its equation of motion, this new
function may be expressed in terms of yet another. The power of the
exchange coupling in the Green functions which are generated in this
way is raised by one in each step, and this procedure leads to an infi-
nite hierarchy of coupled functions. An approximate solution may be
obtained by utilizing the condition that the expectation value of Sz

i is
close to its saturation value at low temperatures. Thus, in this limit,
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Sz
i must be nearly independent of time, i.e. Sz

i � 〈Sz〉. In this random-
phase approximation (RPA) the commutator reduces to

[ S+
i , H ] � −

∑
j

J (ij)〈Sz〉 (
S+

j − S+
i

)
,

and the equations of motion lead to the following linear set of equations:

h̄ωG±(ii′, ω) +
∑

j

J (ij)〈Sz〉 {
G±(ji′, ω) − G±(ii′, ω)

}

= 〈 [ S+
i , S−

i′ ] 〉 = 2〈Sz〉 δii′ .

(3.4.7)

The infinite set of RPA equations is diagonal in reciprocal space. Intro-
ducing the Fourier transform

G±(q, ω) =
∑
i′

G±(ii′, ω) e−iq·(Ri−Ri′ ), (3.4.8)

we obtain

h̄ωG±(q, ω) + 〈Sz〉 {J (q)G±(q, ω) − J (0)G±(q, ω)
}

= 2〈Sz〉,

or

G±(q, ω) = lim
ε→0+

2〈Sz〉
h̄ω + ih̄ε − Eq

, (3.4.9)

where the dispersion relation is

Eq = 〈Sz〉 {J (0) − J (q)} . (3.4.10)

Introducing the susceptibility χ+−(q, ω) = −G±(q, ω), we obtain

χ+−(q, ω) =
2〈Sz〉

Eq − h̄ω
+ iπ 2〈Sz〉 δ(h̄ω − Eq). (3.4.11a)

Defining χ−+(q, ω) analogously to χ+−(q, ω), but with S+ and S− in-
terchanged, we obtain similarly, or by the use of the symmetry relation
(3.2.15),

χ−+(q, ω) =
2〈Sz〉

Eq + h̄ω
− iπ 2〈Sz〉 δ(h̄ω + Eq), (3.4.11b)

so that the absorptive susceptibility is

χ′′
+−(q, ω) = −χ′′

−+(q,−ω) = 2π 〈Sz〉 δ(h̄ω − Eq). (3.4.11c)
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The above susceptibilities do not correspond directly to physical observ-
ables but, for instance, χxx(q, ω) (where S+ and S− are both replaced
by Sx) does. It is straightforward to see (by symmetry or by direct
verification) that χ++(q, ω) = χ−−(q, ω) ≡ 0, and hence

χxx(q, ω) = χyy(q, ω) = 1

4

{
χ+−(q, ω) + χ−+(q, ω)

}
.

The presence of two-site correlations influences the thermal average
〈Sz〉. A determination of the correction to the MF result (3.4.5b) for
〈Sz〉, leading to a self-consistent RPA result for the transverse suscepti-
bility, requires a relation between 〈Sz〉 and the susceptibility functions
deduced above. The spin commutator-relation, [S+

i , S−
i′ ] = 2Sz δii′ ,

turns out to be satisfied identically, and thus leads to no additional
conditions. Instead we consider the Wortis expansion

Sz
i = S − 1

2S
S−

i S+
i − 1

8S2(S − 1
2 )

(S−
i )2(S+

i )2 − · · · (3.4.12)

for which the matrix elements between the p lowest single-spin (or MF)
levels are correct, where p ≤ 2S +1 is the number of terms in the expan-
sion. Using (3.4.11), we find from the fluctuation–dissipation theorem
(3.2.18):

〈S−
i S+

i 〉 = 1

N

∑
q

S−+(q, t = 0)

= 1

N

∑
q

1
π

∫ ∞

−∞

1
1 − e−βh̄ω

χ′′
−+(q, ω)d(h̄ω) = 2〈Sz〉Φ,

(3.4.13a)
with

Φ = 1

N

∑
q

nq ; nq =
1

eβEq − 1
, (3.4.13b)

where nq is the population factor for bosons of energy Eq. If S = 1
2 ,

then Sz is determined by the two first terms of (3.4.12), and

〈Sz〉 = S − Φ〈Sz〉/S,

or
〈Sz〉 = S2/(S + Φ) � 1

2 − Φ + 2Φ2 − · · ·
In general one may use a ‘Hartree–Fock decoupling’, 〈(S−

i )2(S+
i )2〉 �

2(〈S−
i S+

i 〉)2, of the higher-order terms in (3.4.13) in order to show that

〈Sz〉 = S − Φ + (2S + 1)Φ2S+1 − · · · � S − 1

N

∑
q

nq, (3.4.14)
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where the kinematic correction, of the order Φ2S+1, due to the limited
number of single-spin states, which is neglected in this expression, is
unimportant when S ≥ 1. Utilizing the Hartree–Fock decoupling once
more to write 〈Sz

i Sz
j 〉(i�=j) � 〈Sz〉2 � S2 − 2〈Sz〉Φ, we find the internal

energy to be

U = 〈H〉 = −1
2NJ (0)S2 +

∑
q

Eq nq

= −1
2NJ (0)S(S + 1) +

∑
q

Eq(nq + 1
2 ).

(3.4.15)

The second form, expressing the effect of the zero-point motion, is de-
rived using J (ii) = 1

N

∑
q J (q) ≡ 0.

The thermodynamic properties of the Heisenberg ferromagnet are
determined by (3.4.10), (3.4.14), and (3.4.15), which are all valid at low
temperatures. In a cubic crystal, the energy dispersion Eq is isotropic
and proportional to q2 in the long wavelength limit, and (3.4.14) then
predicts that the magnetization 〈Sz〉 decreases from its saturation value
as T 3/2. The specific heat is also found to be proportional to T 3/2. The
thermodynamic quantities have a very different temperature dependence
from the exponential behaviour (3.4.5b) found in the MF approxima-
tion. This is due to the presence of elementary excitations, which are
easily excited thermally in the long wavelength limit, since Eq → 0
when q → 0 in the RPA. These normal modes, which are described
as spin waves, behave in most aspects (disregarding the kinematic ef-
fects) as non-conserved Bose-particles, and they are therefore also called
magnons.

We shall not present a detailed discussion of the low-temperature
properties of the Heisenberg ferromagnet. Further details may be found
in, for instance, Marshall and Lovesey (1971), and a quite complete
treatment is given by Tahir-Kheli (1976). The RPA model is correct at
T = 0 where 〈Sz〉 = S, but as soon as the temperature is increased, the
magnons start to interact with each other, giving rise to finite lifetimes,
and the temperature dependence of the excitation energies is modified
(or renormalized). The temperature dependence of Eq = Eq(T ) is re-
sponsible for the leading order ‘dynamic’ corrections to 〈Sz〉 and to the
heat capacity. A more accurate calculation, which we will present in
Section 5.2, adds an extra term to the dispersion:

Eq = 〈Sz〉 {J (0) − J (q)} + 1

N

∑
k

{J (k) − J (k + q)}nk, (3.4.16)

from which the heat capacity of this non-interacting Bose-gas can be
determined as

C = ∂U/∂T =
∑
q

Eq dnq/dT. (3.4.17)
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We note that there are corrections to U , given by (3.4.15), of second
order in Φ. The low-temperature properties, as determined by (3.4.14),
(3.4.16), and (3.4.17), agree with the systematic expansion performed by
Dyson (1956), including the leading-order dynamical correction of fourth
power in T (in the cubic case), except for a minor kinematic correction
which is negligible for S ≥ 1.


