
142 3. LINEAR RESPONSE THEORY

3.3 Energy absorption and the Green function
In this section, we first present a calculation of the energy transferred
to the system by the external perturbation H1 = −Â f(t) in (3.1.2),
incidentally justifying the names of the two susceptibility components
in (3.2.11). The energy absorption can be expressed in terms of χAA(ω)
and, without loss of generality, Â may here be assumed to be a Hermitian
operator, so that Â = Â

†
. In this case, f(t) is real, and considering a

harmonic variation

f(t) = f0 cos (ω0t) = 1
2f0

(
eiω0t + e−iω0t

)
with f∗

0 = f0,

then

f(ω) = πf0{δ(ω−ω0)+δ(ω+ω0)}, as
∫ ∞

−∞
ei(ω−ω0)tdt = 2πδ(ω−ω0),

and we have

〈Â(t)〉 − 〈Â〉 = 1
2f0

{
χAA(−ω0) eiω0t + χAA(ω0) e−iω0t

}
.

The introduction of Â = B̂ = Â
†

in (3.2.15), and in the definition
(3.2.11), yields

χ′
AA(ω)∗ = χ′

AA(ω) = χ′
AA(−ω)

χ′′
AA(ω)∗ = χ′′

AA(ω) = −χ′′
AA(−ω),

(3.3.1)
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and these symmetry relations allow us to write

〈Â(t)〉 − 〈Â〉 = f0 {χ′
AA(ω0) cos (ω0t) + χ′′

AA(ω0) sin (ω0t)} .

The part of the response which is in phase with the external force is pro-
portional to χ′

AA(ω0), which is therefore called the reactive component.
The rate of energy absorption due to the field is

Q =
d

dt
〈H〉 = 〈∂H/∂t〉 = −〈Â(t)〉 ∂f/∂t,

which shows that the mean dissipation rate is determined by the out-of-
phase response proportional to χ′′

AA(ω):

Q = 1
2f2

0 ω0 χ′′
AA(ω0) (3.3.2)

and χ′′
AA(ω) is therefore called the absorptive part of the susceptibility.

If the eigenvalues Eα and the corresponding eigenstates |α > for
the Hamiltonian H(= H0) are known, it is possible to derive an explicit
expression for χBA(ω). According to the definition (3.2.10),

KBA(t) =
i

h̄

1
Z

Tr
{

e−βH [ eiHt/h̄ B̂ e−iHt/h̄ , Â ]
}

=

i

h̄

1
Z

∑
αα′

e−βEα
{

eiEαt/h̄ < α |B̂ |α′ > e−iEα′ t/h̄ < α′ |Â |α >

− < α |Â |α′ > eiEα′ t/h̄ < α′ |B̂ |α > e−iEαt/h̄
}
.

Interchanging α and α′ in the last term, and introducing the population
factor

nα = 1

Z
e−βEα ; Z =

∑
α′

e−βEα′ , (3.3.3a)

we get

KBA(t) = i

h̄

∑
αα′

< α |B̂ |α′ >< α′ |Â |α > (nα − nα′) ei(Eα−Eα′)t/h̄,

(3.3.3b)
and hence

χBA(ω) = lim
ε→0+

∫ ∞

0

KBA(t) ei(w+iε)tdt

= lim
ε→0+

∑
αα′

< α |B̂ |α′ >< α′ |Â |α >

Eα′ − Eα − h̄ω − ih̄ε
(nα − nα′),

(3.3.4a)
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or equivalently

χAB(−ω) = lim
ε→0+

χAB(−ω + iε)

= lim
ε→0+

∑
αα′

< α |Â |α′ >< α′ |B̂ |α >

Eα′ − Eα + h̄ω − ih̄ε
(nα − nα′).

(3.3.4b)

An interchange of α and α′ shows this expression to be the same as
(3.3.4a), with ε replaced by −ε. The application of Dirac’s formula then
yields the absorptive part of the susceptibility (3.2.11b) as

χ′′
BA(ω) = π

∑
αα′

< α |B̂ |α′ >< α′ |Â |α > (nα −nα′) δ
(
h̄ω− (Eα′ −Eα)

)
(3.3.5)

(equal to KBA(ω)/2i in accordance with (3.2.12)), whereas the reactive
part (3.2.11a) is

χ′
BA(ω) =

Eα �=Eα′∑
αα′

< α |B̂ |α′ >< α′ |Â |α >

Eα′ − Eα − h̄ω
(nα − nα′) + χ′

BA(el) δω0,

(3.3.6a)
where

δω0 ≡ lim
ε→0+

iε

ω + iε
=

{
1 if ω = 0
0 if ω �= 0,

and the elastic term χ′
BA(el), which only contributes in the static limit

ω = 0, is

χ′
BA(el) = β

{Eα=Eα′∑
αα′

< α |B̂ |α′ >< α′ |Â |α > nα − 〈B̂〉〈Â〉}. (3.3.6b)

We remark that χ′
BA(ω) and χ′′

BA(ω) are often referred to respectively as
the real and the imaginary part of χBA(ω). This terminology is not valid
in general, but only if the matrix-element products are real, as they are
if, for instance, B̂ = Â

†
. The presence of the elastic term in the reactive

response requires some additional consideration. There are no elastic
contributions to KBA(t), nor hence to χ′′

BA(ω), because nα − nα′ ≡ 0
if Eα = Eα′ . Nevertheless, the appearance of an extra contribution at
ω = 0, not obtainable directly from KBA(t), is possible because the
energy denominator in (3.3.4) vanishes in the limit |ω + iε| → 0, when
Eα = Eα′ . In order to derive this contribution, we consider the equal-
time correlation function

SBA(t = 0) = 〈(B̂ − 〈B̂〉)(Â − 〈Â〉)〉
=

∑
αα′

< α |B̂ |α′ >< α′ |Â |α > nα − 〈B̂〉〈Â〉 (3.3.7a)
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which, according to the fluctuation–dissipation theorem (3.2.18), should
be

SBA(t = 0) =
1
2π

∫ ∞

−∞
SBA(ω) dω =

1
π

∫ ∞

−∞

1
1 − e−βh̄ω

χ′′
BA(ω)d(h̄ω).

(3.3.7b)
Introducing (3.3.5), the integration is straightforward, except in a nar-
row interval around ω = 0, and we obtain

SBA(t = 0) =
Eα �=Eα′∑

αα′
< α |B̂ |α′ >< α′ |Â |α > nα + lim

γ→0+

∫ γ

−γ

χ′′
BA(ω)
πβω

dω

after replacing 1− e−βh̄ω with βh̄ω in the limit ω → 0. A comparison of
this expression for SBA(t = 0) with (3.3.7a) shows that the last integral
has a definite value:

lim
γ→0+

∫ γ

−γ

χ′′
BA(ω)
πβω

dω =
Eα=Eα′∑

αα′
< α |B̂ |α′ >< α′ |Â |α > nα − 〈B̂〉〈Â〉.

(3.3.8)
The use of the Kramers–Kronig relation (3.1.10), in the form of (3.2.11d),
for calculating χ′

BA(0) then gives rise to the extra contribution

χ′
BA(el) = lim

γ→0+

1
π

∫ γ

−γ

χ′′
BA(ω)

ω
dω (3.3.9)

to the reactive susceptibility at zero frequency, as anticipated in (3.3.6b).
The zero-frequency result, χBA(0) = χ′

BA(0), as given by (3.3.6), is the
same as the conventional isothermal susceptibility (2.1.18) for the mag-
netic moments, where the elastic and inelastic contributions are respec-
tively the Curie and the Van Vleck terms. This elastic contribution is
discussed in more detail by, for instance, Suzuki (1971).

The results (3.3.4–6) show that, if the eigenstates of the Hamil-
tonian are discrete and the matrix-elements of the operators B̂ and Â
between these states are well-defined, the poles of χBA(z) all lie on the
real axis. This has the consequence that the absorptive part χ′′

BA(ω)
(3.3.5) becomes a sum of δ-functions, which are only non-zero when h̄ω
is equal to the excitation energies Eα′ −Eα. In such a system, no spon-
taneous transitions occur. In a real macroscopic system, the distribution
of states is continuous, and only the ground state may be considered as a
well-defined discrete state. At non-zero temperatures, the parameters of
the system are subject to fluctuations in space and time. The introduc-
tion of a non-zero probability for a spontaneous transition between the
‘levels’ α and α′ can be included in a phenomenological way by replac-
ing the energy difference Eα′ −Eα in (3.3.4) by (Eα′ −Eα)− i Γα′α(ω),
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where the parameters, including the energy difference, usually depend
on ω. According to the general stability and causality requirements,
the poles of χBA(z) at z = zα′α = (Eα′ − Eα) − i Γα′α must lie in the
lower half-plane, implying that Γα′α has to be positive (or zero). In the
case where |Eα′ − Eα| � Γα′α, the ω-dependence of these parameters
is unimportant, and the δ-function in (3.3.5) is effectively replaced by a
Lorentzian:

χ′′
BA(ω) �

∑
αα′

< α |B̂ |α′ >< α′ |Â |α >

(Eα′ − Eα − h̄ω)2 + Γ2
α′α

Γα′α(nα − nα′)

+
h̄ωΓ0

(h̄ω)2 + Γ2
0

χ′
BA(el),

(3.3.10)

with a linewidth, or more precisely FWHM (full width at half maximum),
of 2Γα′α. In (3.3.10), we have added the quasi-elastic response due to a
pole at z = −i Γ0, which replaces the one at z = 0. The corresponding
reactive part of the susceptibility is

χ′
BA(ω) �

∑
αα′

< α |B̂ |α′ >< α′ |Â |α >

(Eα′ − Eα − h̄ω)2 + Γ2
α′α

(Eα′ − Eα − h̄ω)(nα − nα′)

+
Γ2

0

(h̄ω)2 + Γ2
0

χ′
BA(el). (3.3.11)

The non-zero linewidth corresponds to an exponential decay of the oscil-
lations in the time dependence of, for instance, the correlation function:

SBA(t) ∼ e−izα′αt/h̄ = e−i(Eα′−Eα)t/h̄ e−Γα′αt/h̄.

The absorption observed in a resonance experiment is proportional
to χ′′

AA(ω). A peak in the absorption spectrum is interpreted as an ele-
mentary or quasi-particle excitation, or as a normal mode of the dynamic
variable Â, with a lifetime τ = h̄/Γα′α. A pole at z = −iΓ0 is said to
represent a diffusive mode. Such a pole is of particular importance for
those transport coefficients determined by the low-frequency or hydro-
dynamic properties of the system. Kubo (1957, 1966) gives a detailed
discussion of this subject. As we shall see later, the differential scatter-
ing cross-section of, for example, neutrons in the Born-approximation is
proportional to a correlation function, and hence to χ′′(ω). This implies
that the presence of elementary excitations in the system leads to peaks
in the intensity of scattered neutrons as a function of the energy transfer.
Finally, the dynamic correlation-functions are related directly to various
thermodynamic second-derivatives, such as the compressibility and the
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magnetic susceptibility, and thereby indirectly to the corresponding first-
derivatives, like the specific heat and the magnetization. Consequently,
most physical properties of a macroscopic system near equilibrium may
be described in terms of the correlation functions.

As a supplement to the response function φBA(t − t′), we now in-
troduce the Green function, defined as

GBA(t − t′) ≡ 〈〈B̂(t) ; Â(t′)〉〉
≡ − i

h̄
θ(t − t′)〈 [ B̂(t) , Â(t′) ] 〉 = −φBA(t − t′).

(3.3.12)

This Green function is often referred to as the double-time or the retarded
Green function (Zubarev 1960), and it is simply our previous response
function, but with the opposite sign. Introducing the Laplace transform
GBA(z) according to (3.1.7), we find, as before, that the corresponding
Fourier transform is

GBA(ω) ≡ 〈〈B̂ ; Â〉〉ω = lim
ε→0+

GBA(z = ω + iε)

= lim
ε→0+

∫ ∞

−∞(0)

GBA(t) ei(ω+iε)tdt = −χBA(ω).
(3.3.13)

We note that, if Â and B̂ are dimensionless operators, then GBA(ω) or
χBA(ω) have the dimensions of inverse energy.

If t′ = 0, the derivative of the Green function with respect to t is

d

dt
GBA(t) = − i

h̄

(
δ(t)〈 [ B̂(t) , Â ] 〉 + θ(t)〈 [ dB̂(t)/dt , Â ] 〉

)
= − i

h̄

(
δ(t)〈 [ B̂ , Â ] 〉 − i

h̄
θ(t)〈 [ [ B̂(t) , H ] , Â ] 〉

)
.

A Fourier transformation of this expression then leads to the equation
of motion for the Green function:

h̄ω〈〈B̂ ; Â〉〉ω − 〈〈 [ B̂ , H ] ; Â〉〉ω = 〈 [ B̂ , Â ] 〉. (3.3.14a)

The suffix ω indicates the Fourier transforms (3.3.13), and h̄ω is short-
hand for h̄(ω + iε) with ε → 0+. In many applications, Â and B̂ are
the same (Hermitian) operator, in which case the r.h.s. of (3.3.14a) van-
ishes and one may proceed to the second derivative. With the condition
that 〈 [ [ [ Â(t) , H ] , H ] , Â ] 〉 is −〈 [ [ Â(t) , H ] , [ Â , H ] ] 〉, the equation
of motion for the Green function 〈〈 [ Â , H ] ; Â〉〉ω leads to

(h̄ω)2〈〈Â ; Â〉〉ω + 〈〈 [ Â , H ] ; [ Â , H ] 〉〉ω = 〈 [ [ Â ,H ] , Â ] 〉. (3.3.14b)
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The pair of equations (3.3.14) will be the starting point for our applica-
tion of linear response theory.

According to the definition (3.2.10) of KBA(t), and eqn (3.2.12),

KBA(ω) = 2iχ′′
BA(ω) = −2iG′′

BA(ω).

We may write

i

π

∫ ∞

−∞
χ′′

BA(ω) e−iωtdω = i

h̄
〈 [ B̂(t) , Â ] 〉 (3.3.15)

and, setting t = 0, we obtain the following sum rule:

h̄

π

∫ ∞

−∞
χ′′

BA(ω)dω = 〈 [ B̂ , Â ] 〉, (3.3.16)

which may be compared with the value obtained for the equal-time corre-
lation function 〈B̂ Â〉−〈B̂〉〈Â〉, (3.3.7). The Green function in (3.3.14a)
must satisfy this sum rule, and we note that the thermal averages in
(3.3.14a) and (3.3.16) are the same. Equation (3.3.16) is only the first
of a whole series of sum rules.

The nth time-derivative of B̂(t) may be written

dn

dtn
B̂(t) =

(
i

h̄

)n

LnB̂(t) with LB̂(t) ≡ [H , B̂(t) ].

Taking the nth derivative on both sides of eqn (3.3.15), we get

i

π

∫ ∞

−∞
(−iω)nχ′′

BA(ω) e−iωtdω =
(

i

h̄

)n+1

〈 [LnB̂(t) , Â ] 〉.

Next we introduce the normalized spectral weight function

FBA(ω) =
1

χ′
BA(0)

1
π

χ′′
BA(ω)

ω
, where

∫ ∞

−∞
FBA(ω)dω = 1.

(3.3.17a)
The normalization of FBA(ω) is a simple consequence of the Kramers–
Kronig relation (3.2.11d). The nth order moment of ω, with respect to
the spectral weight function FBA(ω), is then defined as

〈ωn〉BA =
∫ ∞

−∞
ωnFBA(ω)dω, (3.3.17b)

which allows the relation between the nth derivatives at t = 0 to be
written

χ′
BA(0) 〈(h̄ω)n+1〉BA = (−1)n〈 [LnB̂ , Â ] 〉. (3.3.18a)
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These are the sum rules relating the spectral frequency-moments with
the thermal expectation-values of operators obtainable from B̂, Â, and
H. If B̂ = Â = Â

†
, then (3.3.1) shows thatFBA(ω) is even in ω, and all

the odd moments vanish. In this case, the even moments are

χ′
AA(0) 〈(h̄ω)2n〉AA = −〈 [L2n−1Â , Â ] 〉. (3.3.18b)


