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3.2 Response functions

In this section, we shall deduce an expression for the response function
φBA(t), in terms of the operators B̂ and Â and the unperturbed Hamil-
tonian H0. In the preceding section, we assumed implicitly the use of
the Schrödinger picture. If instead we adopt the Heisenberg picture,
the wave functions are independent of time, while the operators become
time-dependent. In the Heisenberg picture, the operators are

B̂(t) = eiHt/h̄ B̂ e−iHt/h̄, (3.2.1)
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corresponding to the equation of motion

d

dt
B̂(t) =

i

h̄
[H , B̂(t) ] (3.2.2)

(assuming that B̂ does not depend explicitly on time). Because the
wave functions are independent of time, in the Heisenberg picture, the
corresponding density operator ρH must also be. Hence we may write
(3.1.3)

〈B̂(t)〉 = Tr
{
ρ(t) B̂

}
= Tr

{
ρH B̂(t)

}
. (3.2.3)

Introducing (3.2.1) into this expression, and recalling that the trace is
invariant under a cyclic permutation of the operators within it, we obtain

ρ(t) = e−iHt/h̄ ρH eiHt/h̄,

or
d

dt
ρ(t) = − i

h̄
[H , ρ(t) ]. (3.2.4)

The equation of motion derived for the density operator, in the Schrö-
dinger picture, is similar to the Heisenberg equation of motion above,
except for the change of sign in front of the commutator.

The density operator may be written as the sum of two terms:

ρ(t) = ρ0 + ρ1(t) with [H0 , ρ0] = 0, (3.2.5)

where ρ0 is the density operator (3.1.1) of the thermal-equilibrium state
which, by definition, must commute with H0, and the additional contri-
bution due to f(t) is assumed to vanish at t → −∞. In order to derive
ρ1(t) to leading order in f(t), we shall first consider the following density
operator, in the interaction picture,

ρI(t) ≡ eiH0t/h̄ ρ(t) e−iH0t/h̄, (3.2.6)

for which

d

dt
ρI(t) = eiH0t/h̄

{ i

h̄
[H0 , ρ(t) ] +

d

dt
ρ(t)

}
e−iH0t/h̄

= − i

h̄
eiH0t/h̄ [H1 , ρ(t) ] e−iH0t/h̄.

Because H1 is linear in f(t), we may replace ρ(t) by ρ0 in calculating
the linear response, giving

d

dt
ρI(t) � − i

h̄

[
eiH0t/h̄ H1 e−iH0t/h̄ , ρ0

]
=

i

h̄
[ Â0(t) , ρ0 ]f(t),
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using (3.2.5) and defining

Â0(t) = eiH0t/h̄ Â e−iH0t/h̄.

According to (3.2.6), taking into account the boundary condition, the
time-dependent density operator is

ρ(t) = e−iH0t/h̄
( ∫ t

−∞

d

dt′
ρI(t

′)dt′ + ρ0

)
eiH0t/h̄

= ρ0 +
i

h̄

∫ t

−∞
[ Â0(t

′ − t) , ρ0 ] f(t′)dt′,
(3.2.7)

to first order in the external perturbations. This determines the time
dependence of, for example, B̂ as

〈B̂(t)〉 − 〈B̂〉 = Tr
{

(ρ(t) − ρ0) B̂
}

=
i

h̄
Tr

{ ∫ t

−∞
[ Â0(t

′ − t) , ρ0 ] B̂ f(t′)dt′
}

and, utilizing the invariance of the trace under cyclic permutations, we
obtain, to leading order,

〈B̂(t)〉 − 〈B̂〉 =
i

h̄

∫ t

−∞
Tr

{
ρ0 [ B̂ , Â0(t

′ − t) ]
}

f(t′)dt′

=
i

h̄

∫ t

−∞
〈 [ B̂0(t) , Â0(t

′) ] 〉0 f(t′)dt′.
(3.2.8)

A comparison of this result with the definition (3.1.4) of the response
function then gives

φBA(t − t′) = i

h̄
θ(t − t′)〈 [ B̂(t) , Â(t′) ] 〉, (3.2.9)

where the unit step function, θ(t) = 0 or 1 when t < 0 or t > 0 respec-
tively, is introduced in order to ensure that φBA satisfies the causality
principle (3.1.5). In this final result, and below, we suppress the index 0,
but we stress that both the variations with time and the ensemble aver-
age are thermal-equilibrium values determined by H0, and are unaffected
by the external disturbances. This expression in terms of microscopic
quantities, is called the Kubo formula for the response function (Kubo
1957, 1966).

The expression (3.2.9) is the starting point for introducing a number
of useful functions:

KBA(t) = i

h̄
〈 [B̂(t) , Â ] 〉 = i

h̄
〈 [B̂ , Â(−t) ] 〉 (3.2.10)
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is also called a response function. Â is a shorthand notation for Â(t = 0).
The inverse response function KAB(t), which determines 〈Â(t)〉 caused
by the perturbation H1 = −f(t)B̂, is

KAB(t) = i

h̄
〈 [Â(t) , B̂ ] 〉 = −KBA(−t),

and KBA(t) can be expressed in terms of the corresponding causal re-
sponse functions as

KBA(t) =

{
φBA(t) for t > 0

−φAB(−t) for t < 0.

The susceptibility is divided into two terms, the reactive part

χ′
BA(z) = χ′

AB(−z∗) ≡ 1

2

{
χBA(z) + χAB(−z∗)

}
, (3.2.11a)

and the absorptive part

χ′′
BA(z) = −χ′′

AB(−z∗) ≡ 1

2i

{
χBA(z) − χAB(−z∗)

}
, (3.2.11b)

so that
χBA(z) = χ′

BA(z) + iχ′′
BA(z) (3.2.11c)

and, according to the Kramers–Kronig relation (3.1.10),

χ′
BA(ω) =

1
π
P

∫ ∞

−∞

χ′′
BA(ω′)
ω′ − ω

dω′ ; χ′′
BA(ω) = − 1

π
P

∫ ∞

−∞

χ′
BA(ω′)
ω′ − ω

dω′.

(3.2.11d)
In these equations, χAB(−ω) is the boundary value obtained by taking
z = ω + iε, i.e. as limε→0+ χAB(−z∗ = −ω + iε), corresponding to the
condition that χAB(−z∗), like χAB(z), is analytic in the upper half-
plane. The appropriate Laplace transform of KBA(t) with this property
is

KBA(z) =
∫ ∞

−∞
KBA(t) ei(z1t+iz2|t|)dt

=
∫ ∞

0

φBA(t) eiztdt −
∫ ∞

0

φAB(t) e−iz∗tdt.

Hence
KBA(z) = 2i χ′′

BA(z). (3.2.12)

Next we introduce the dynamic correlation function, sometimes re-
ferred to as the scattering function. It is defined as follows:

SBA(t) ≡ 〈B̂(t) Â〉 − 〈B̂〉〈Â〉 = 〈B̂ Â(−t)〉 − 〈B̂〉〈Â〉, (3.2.13)
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and is related to the response function introduced earlier by

KBA(t) = i

h̄

{
SBA(t) − SAB(−t)

}
. (3.2.14)

The different response functions obey a number of symmetry rela-
tions, due to the invariance of the trace under a cyclic permutation of
the operators. To derive the first, we recall that the Hermitian conjugate
of an operator is defined by

(< α |B̂ |α′ >)∗ = < α′ |B̂† |α > .

If we assume that a certain set of state vectors |α > constitutes a diag-
onal representation, i.e. H0|α > = Eα|α >, then it is straightforward to
show that

〈B̂(t) Â〉∗ = 〈Â†
(−t) B̂

†〉,
leading to the symmetry relations

K∗
BA(t) = KB†A†(t)

and
χ∗

BA(z) = χB†A†(−z∗). (3.2.15)

Another important relation is derived as follows:

〈B̂(t) Â〉 = 1

Z
Tr

{
e−βH0 eiH0t/h̄ B̂ e−iH0t/h̄ Â

}
= 1

Z
Tr

{
eiH0(t+iβh̄)/h̄ B̂ e−iH0(t+iβh̄)/h̄ e−βH0 Â

}
= 1

Z
Tr

{
e−βH0 Â B̂(t + iβh̄)

}
= 〈Â B̂(t + iβh̄)〉,

implying that
SBA(t) = SAB(−t − iβh̄). (3.2.16)

In any realistic system which, rather than being isolated, is in con-
tact with a thermal bath at temperature T , the correlation function
SBA(t) vanishes in the limits t → ±∞ , corresponding to the condition
〈B̂(t = ±∞) Â〉 = 〈B̂〉〈Â〉. If we further assume that SBA(t) is an an-
alytic function in the interval |t2| ≤ β of the complex t-plane, then the
Fourier transform of (3.2.16) is

SBA(ω) = eβh̄ω SAB(−ω), (3.2.17)

which is usually referred to as being the condition of detailed balance.
Combining this condition with the expressions (3.2.12) and (3.2.14), we
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get the following important relation between the correlation function
and the susceptibility:

SBA(ω) = 2h̄
1

1 − e−βh̄ω
χ′′

BA(ω), (3.2.18)

which is called the fluctuation–dissipation theorem. This relation ex-
presses explicitly the close connection between the spontaneous fluctu-
ations in the system, as described by the correlation function, and the
response of the system to external perturbations, as determined by the
susceptibility.

The calculations above do not depend on the starting assumption
that B̂ (or Â) is a physical observable, i.e. that B̂ should be equal to

B̂
†
. This has the advantage that, if the Kubo formula (3.2.9) is taken to

be the starting point instead of eqn (3.1.4), the formalism applies more
generally.


