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LINEAR RESPONSE THEORY

This chapter is devoted to a concise presentation of linear response the-
ory, which provides a general framework for analysing the dynamical
properties of a condensed-matter system close to thermal equilibrium.
The dynamical processes may either be spontaneous fluctuations, or
due to external perturbations, and these two kinds of phenomena are
interrelated. Accounts of linear response theory may be found in many
books, for example, des Cloizeaux (1968), Marshall and Lovesey (1971),
and Lovesey (1986), but because of its importance in our treatment of
magnetic excitations in rare earth systems and their detection by inelas-
tic neutron scattering, the theory is presented below in adequate detail
to form a basis for our later discussion.

We begin by considering the dynamical or generalized susceptibility,
which determines the response of the system to a perturbation which
varies in space and time. The Kramers–Kronig relation between the
real and imaginary parts of this susceptibility is deduced. We derive
the Kubo formula for the response function and, through its connection
to the dynamic correlation function, which determines the results of a
scattering experiment, the fluctuation–dissipation theorem, which relates
the spontaneous fluctuations of the system to its response to an external
perturbation. The energy absorption by the perturbed system is deduced
from the susceptibility. The Green function is defined and its equation of
motion established. The theory is illustrated through its application to
the simple Heisenberg ferromagnet. We finally consider the calculation
of the susceptibility in the random-phase approximation, which is the
method generally used for the quantitative description of the magnetic
excitations in the rare earth metals in this book.

3.1 The generalized susceptibility

A response function for a macroscopic system relates the change of an
ensemble-averaged physical observable 〈B̂(t)〉 to an external force f(t).
For example, B̂(t) could be the angular momentum of an ion, or the mag-
netization, and f(t) a time-dependent applied magnetic field. As indi-
cated by its name, the applicability of linear response theory is restricted
to the regime where 〈B̂(t)〉 changes linearly with the force. Hence we
suppose that f(t) is sufficiently weak to ensure that the response is lin-
ear. We further assume that the system is in thermal equilibrium before
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the external force is applied.
When the system is in thermal equilibrium, it is characterized by

the density operator

ρ0 = 1

Z
e−βH0 ; Z = Tr e−βH0 , (3.1.1)

where H0 is the (effective) Hamiltonian, Z is the (grand) partition func-
tion, and β = 1/kBT . Since we are only interested in the linear part of
the response, we may assume that the weak external disturbance f(t)
gives rise to a linear time-dependent perturbation in the total Hamilto-
nian H:

H1 = −Â f(t) ; H = H0 + H1, (3.1.2)

where Â is a constant operator, as for example
∑

i Jzi, associated with
the Zeeman term when f(t) = gµBHz(t) (the circumflex over A or B
indicates that these quantities are quantum mechanical operators). As
a consequence of this perturbation, the density operator ρ(t) becomes
time-dependent, and so also does the ensemble average of the operator
B̂:

〈B̂(t)〉 = Tr{ρ(t) B̂}. (3.1.3)

The linear relation between this quantity and the external force has the
form

〈B̂(t)〉 − 〈B̂〉 =
∫ t

−∞
φBA(t − t′) f(t′)dt′, (3.1.4)

where 〈B̂〉 = 〈B̂(t = −∞)〉 = Tr{ρ0 B̂}; here f(t) is assumed to vanish
for t → −∞. This equation expresses the condition that the differential
change of 〈B̂(t)〉 is proportional to the external disturbance f(t′) and
the duration of the perturbation δt′, and further that disturbances at
different times act independently of each other. The latter condition
implies that the response function φBA may only depend on the time
difference t−t′. In (3.1.4), the response is independent of any future per-
turbations. This causal behaviour may be incorporated in the response
function by the requirement

φBA(t − t′) = 0 for t′ > t, (3.1.5)

in which case the integration in eqn (3.1.4) can be extended from t to
+∞.

Because φBA depends only on the time difference, eqn (3.1.4) takes
a simple form if we introduce the Fourier transform

f(ω) =
∫ ∞

−∞
f(t) eiωtdt, (3.1.6a)
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and the reciprocal relation

f(t) =
1
2π

∫ ∞

−∞
f(ω) e−iωtdω. (3.1.6b)

In order to take advantage of the causality condition (3.1.5), we shall
consider the Laplace transform of φBA(t) (the usual s is replaced by
−iz):

χBA(z) =
∫ ∞

0

φBA(t) eiztdt. (3.1.7a)

z = z1 + iz2 is a complex variable and, if
∫ ∞
0

|φBA(t)|e−εtdt is assumed
to be finite in the limit ε → 0+, the converse relation is

φBA(t) =
1
2π

∫ ∞+iε

−∞+iε

χBA(z) e−iztdz ; ε > 0. (3.1.7b)

When φBA(t) satisfies the above condition and eqn (3.1.5), it can readily
be shown that χBA(z) is an analytic function in the upper part of the
complex z-plane (z2 > 0).

In order to ensure that the evolution of the system is uniquely de-
termined by ρ0 = ρ(−∞) and f(t), it is necessary that the external
perturbation be turned on in a smooth, adiabatic way. This may be
accomplished by replacing f(t′) in (4) by f(t′) eεt′ , ε > 0. This force
vanishes in the limit t′ → −∞, and any unwanted secondary effects may
be removed by taking the limit ε → 0+. Then, with the definition of the
‘generalized’ Fourier transform

〈B̂(ω)〉 = lim
ε→0+

∫ ∞

−∞

(
〈B̂(t)〉 − 〈B̂〉

)
eiωt e−εtdt, (3.1.8)

eqn (3.1.4) is transformed into

〈B̂(ω)〉 = χBA(ω) f(ω), (3.1.9a)

where χBA(ω) is the boundary value of the analytic function χBA(z) on
the real axis:

χBA(ω) = lim
ε→0+

χBA(z = ω + iε). (3.1.9b)

χBA(ω) is called the frequency-dependent or generalized susceptibility
and is the Fourier transform, as defined by (3.1.8), of the response func-
tion φBA(t).

The mathematical restrictions (3.1.5) and (3.1.7) on φBA(t) have
the direct physical significance that the system is respectively causal
and stable against a small perturbation. The two conditions ensure that
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χBA(z) has no poles in the upper half-plane. If this were not the case,
the response 〈B̂(t)〉 to a small disturbance would diverge exponentially
as a function of time.

The absence of poles in χBA(z), when z2 is positive, leads to a rela-
tion between the real and imaginary part of χBA(ω), called the Kramers–
Kronig dispersion relation. If χBA(z) has no poles within the contour
C, then it may be expressed in terms of the Cauchy integral along C by
the identity

χBA(z) =
1

2πi

∫
C

χBA(z′)
z′ − z

dz′.

The contour C is chosen to be the half-circle, in the upper half-plane,
centred at the origin and bounded below by the line parallel to the z1-
axis through z2 = ε′, and z is a point lying within this contour. Since
φBA(t) is a bounded function in the domain ε′ > 0, then χBA(z′) must
go to zero as |z′| → ∞, whenever z′2 > 0. This implies that the part
of the contour integral along the half-circle must vanish when its radius
goes to infinity, and hence

χBA(z) = lim
ε′→0+

1
2πi

∫ ∞+iε′

−∞+iε′

χBA(ω′ + iε′)
ω′ + iε′ − z

d(ω′ + iε′).

Introducing z = ω + iε and applying ‘Dirac’s formula’:

lim
ε→0+

1
ω′ − ω − iε

= P 1
ω′ − ω

+ iπδ(ω′ − ω),

in taking the limit ε → 0+, we finally obtain the Kramers–Kronig rela-
tion (P denotes the principal part of the integral):

χBA(ω) =
1
iπ

P
∫ ∞

−∞

χBA(ω′)
ω′ − ω

dω′, (3.1.10)

which relates the real and imaginary components of χ(ω).

3.2 Response functions

In this section, we shall deduce an expression for the response function
φBA(t), in terms of the operators B̂ and Â and the unperturbed Hamil-
tonian H0. In the preceding section, we assumed implicitly the use of
the Schrödinger picture. If instead we adopt the Heisenberg picture,
the wave functions are independent of time, while the operators become
time-dependent. In the Heisenberg picture, the operators are

B̂(t) = eiHt/h̄ B̂ e−iHt/h̄, (3.2.1)
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corresponding to the equation of motion

d

dt
B̂(t) =

i

h̄
[H , B̂(t) ] (3.2.2)

(assuming that B̂ does not depend explicitly on time). Because the
wave functions are independent of time, in the Heisenberg picture, the
corresponding density operator ρH must also be. Hence we may write
(3.1.3)

〈B̂(t)〉 = Tr
{
ρ(t) B̂

}
= Tr

{
ρH B̂(t)

}
. (3.2.3)

Introducing (3.2.1) into this expression, and recalling that the trace is
invariant under a cyclic permutation of the operators within it, we obtain

ρ(t) = e−iHt/h̄ ρH eiHt/h̄,

or
d

dt
ρ(t) = − i

h̄
[H , ρ(t) ]. (3.2.4)

The equation of motion derived for the density operator, in the Schrö-
dinger picture, is similar to the Heisenberg equation of motion above,
except for the change of sign in front of the commutator.

The density operator may be written as the sum of two terms:

ρ(t) = ρ0 + ρ1(t) with [H0 , ρ0] = 0, (3.2.5)

where ρ0 is the density operator (3.1.1) of the thermal-equilibrium state
which, by definition, must commute with H0, and the additional contri-
bution due to f(t) is assumed to vanish at t → −∞. In order to derive
ρ1(t) to leading order in f(t), we shall first consider the following density
operator, in the interaction picture,

ρI(t) ≡ eiH0t/h̄ ρ(t) e−iH0t/h̄, (3.2.6)

for which

d

dt
ρI(t) = eiH0t/h̄

{ i

h̄
[H0 , ρ(t) ] +

d

dt
ρ(t)

}
e−iH0t/h̄

= − i

h̄
eiH0t/h̄ [H1 , ρ(t) ] e−iH0t/h̄.

Because H1 is linear in f(t), we may replace ρ(t) by ρ0 in calculating
the linear response, giving

d

dt
ρI(t) � − i

h̄

[
eiH0t/h̄ H1 e−iH0t/h̄ , ρ0

]
=

i

h̄
[ Â0(t) , ρ0 ]f(t),
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using (3.2.5) and defining

Â0(t) = eiH0t/h̄ Â e−iH0t/h̄.

According to (3.2.6), taking into account the boundary condition, the
time-dependent density operator is

ρ(t) = e−iH0t/h̄
( ∫ t

−∞

d

dt′
ρI(t

′)dt′ + ρ0

)
eiH0t/h̄

= ρ0 +
i

h̄

∫ t

−∞
[ Â0(t

′ − t) , ρ0 ] f(t′)dt′,
(3.2.7)

to first order in the external perturbations. This determines the time
dependence of, for example, B̂ as

〈B̂(t)〉 − 〈B̂〉 = Tr
{

(ρ(t) − ρ0) B̂
}

=
i

h̄
Tr

{ ∫ t

−∞
[ Â0(t

′ − t) , ρ0 ] B̂ f(t′)dt′
}

and, utilizing the invariance of the trace under cyclic permutations, we
obtain, to leading order,

〈B̂(t)〉 − 〈B̂〉 =
i

h̄

∫ t

−∞
Tr

{
ρ0 [ B̂ , Â0(t

′ − t) ]
}

f(t′)dt′

=
i

h̄

∫ t

−∞
〈 [ B̂0(t) , Â0(t

′) ] 〉0 f(t′)dt′.
(3.2.8)

A comparison of this result with the definition (3.1.4) of the response
function then gives

φBA(t − t′) = i

h̄
θ(t − t′)〈 [ B̂(t) , Â(t′) ] 〉, (3.2.9)

where the unit step function, θ(t) = 0 or 1 when t < 0 or t > 0 respec-
tively, is introduced in order to ensure that φBA satisfies the causality
principle (3.1.5). In this final result, and below, we suppress the index 0,
but we stress that both the variations with time and the ensemble aver-
age are thermal-equilibrium values determined by H0, and are unaffected
by the external disturbances. This expression in terms of microscopic
quantities, is called the Kubo formula for the response function (Kubo
1957, 1966).

The expression (3.2.9) is the starting point for introducing a number
of useful functions:

KBA(t) = i

h̄
〈 [B̂(t) , Â ] 〉 = i

h̄
〈 [B̂ , Â(−t) ] 〉 (3.2.10)
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is also called a response function. Â is a shorthand notation for Â(t = 0).
The inverse response function KAB(t), which determines 〈Â(t)〉 caused
by the perturbation H1 = −f(t)B̂, is

KAB(t) = i

h̄
〈 [Â(t) , B̂ ] 〉 = −KBA(−t),

and KBA(t) can be expressed in terms of the corresponding causal re-
sponse functions as

KBA(t) =

{
φBA(t) for t > 0

−φAB(−t) for t < 0.

The susceptibility is divided into two terms, the reactive part

χ′
BA(z) = χ′

AB(−z∗) ≡ 1

2

{
χBA(z) + χAB(−z∗)

}
, (3.2.11a)

and the absorptive part

χ′′
BA(z) = −χ′′

AB(−z∗) ≡ 1

2i

{
χBA(z) − χAB(−z∗)

}
, (3.2.11b)

so that
χBA(z) = χ′

BA(z) + iχ′′
BA(z) (3.2.11c)

and, according to the Kramers–Kronig relation (3.1.10),

χ′
BA(ω) =

1
π
P

∫ ∞

−∞

χ′′
BA(ω′)
ω′ − ω

dω′ ; χ′′
BA(ω) = − 1

π
P

∫ ∞

−∞

χ′
BA(ω′)
ω′ − ω

dω′.

(3.2.11d)
In these equations, χAB(−ω) is the boundary value obtained by taking
z = ω + iε, i.e. as limε→0+ χAB(−z∗ = −ω + iε), corresponding to the
condition that χAB(−z∗), like χAB(z), is analytic in the upper half-
plane. The appropriate Laplace transform of KBA(t) with this property
is

KBA(z) =
∫ ∞

−∞
KBA(t) ei(z1t+iz2|t|)dt

=
∫ ∞

0

φBA(t) eiztdt −
∫ ∞

0

φAB(t) e−iz∗tdt.

Hence
KBA(z) = 2i χ′′

BA(z). (3.2.12)

Next we introduce the dynamic correlation function, sometimes re-
ferred to as the scattering function. It is defined as follows:

SBA(t) ≡ 〈B̂(t) Â〉 − 〈B̂〉〈Â〉 = 〈B̂ Â(−t)〉 − 〈B̂〉〈Â〉, (3.2.13)



3.2 RESPONSE FUNCTIONS 141

and is related to the response function introduced earlier by

KBA(t) = i

h̄

{
SBA(t) − SAB(−t)

}
. (3.2.14)

The different response functions obey a number of symmetry rela-
tions, due to the invariance of the trace under a cyclic permutation of
the operators. To derive the first, we recall that the Hermitian conjugate
of an operator is defined by

(< α |B̂ |α′ >)∗ = < α′ |B̂† |α > .

If we assume that a certain set of state vectors |α > constitutes a diag-
onal representation, i.e. H0|α > = Eα|α >, then it is straightforward to
show that

〈B̂(t) Â〉∗ = 〈Â†
(−t) B̂

†〉,
leading to the symmetry relations

K∗
BA(t) = KB†A†(t)

and
χ∗

BA(z) = χB†A†(−z∗). (3.2.15)

Another important relation is derived as follows:

〈B̂(t) Â〉 = 1

Z
Tr

{
e−βH0 eiH0t/h̄ B̂ e−iH0t/h̄ Â

}
= 1

Z
Tr

{
eiH0(t+iβh̄)/h̄ B̂ e−iH0(t+iβh̄)/h̄ e−βH0 Â

}
= 1

Z
Tr

{
e−βH0 Â B̂(t + iβh̄)

}
= 〈Â B̂(t + iβh̄)〉,

implying that
SBA(t) = SAB(−t − iβh̄). (3.2.16)

In any realistic system which, rather than being isolated, is in con-
tact with a thermal bath at temperature T , the correlation function
SBA(t) vanishes in the limits t → ±∞ , corresponding to the condition
〈B̂(t = ±∞) Â〉 = 〈B̂〉〈Â〉. If we further assume that SBA(t) is an an-
alytic function in the interval |t2| ≤ β of the complex t-plane, then the
Fourier transform of (3.2.16) is

SBA(ω) = eβh̄ω SAB(−ω), (3.2.17)

which is usually referred to as being the condition of detailed balance.
Combining this condition with the expressions (3.2.12) and (3.2.14), we
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get the following important relation between the correlation function
and the susceptibility:

SBA(ω) = 2h̄
1

1 − e−βh̄ω
χ′′

BA(ω), (3.2.18)

which is called the fluctuation–dissipation theorem. This relation ex-
presses explicitly the close connection between the spontaneous fluctu-
ations in the system, as described by the correlation function, and the
response of the system to external perturbations, as determined by the
susceptibility.

The calculations above do not depend on the starting assumption
that B̂ (or Â) is a physical observable, i.e. that B̂ should be equal to
B̂

†
. This has the advantage that, if the Kubo formula (3.2.9) is taken to

be the starting point instead of eqn (3.1.4), the formalism applies more
generally.

3.3 Energy absorption and the Green function

In this section, we first present a calculation of the energy transferred
to the system by the external perturbation H1 = −Â f(t) in (3.1.2),
incidentally justifying the names of the two susceptibility components
in (3.2.11). The energy absorption can be expressed in terms of χAA(ω)
and, without loss of generality, Â may here be assumed to be a Hermitian
operator, so that Â = Â

†
. In this case, f(t) is real, and considering a

harmonic variation

f(t) = f0 cos (ω0t) = 1
2f0

(
eiω0t + e−iω0t

)
with f∗

0 = f0,

then

f(ω) = πf0{δ(ω−ω0)+δ(ω+ω0)}, as
∫ ∞

−∞
ei(ω−ω0)tdt = 2πδ(ω−ω0),

and we have

〈Â(t)〉 − 〈Â〉 = 1
2f0

{
χAA(−ω0) eiω0t + χAA(ω0) e−iω0t

}
.

The introduction of Â = B̂ = Â
†

in (3.2.15), and in the definition
(3.2.11), yields

χ′
AA(ω)∗ = χ′

AA(ω) = χ′
AA(−ω)

χ′′
AA(ω)∗ = χ′′

AA(ω) = −χ′′
AA(−ω),

(3.3.1)
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and these symmetry relations allow us to write

〈Â(t)〉 − 〈Â〉 = f0 {χ′
AA(ω0) cos (ω0t) + χ′′

AA(ω0) sin (ω0t)} .

The part of the response which is in phase with the external force is pro-
portional to χ′

AA(ω0), which is therefore called the reactive component.
The rate of energy absorption due to the field is

Q =
d

dt
〈H〉 = 〈∂H/∂t〉 = −〈Â(t)〉 ∂f/∂t,

which shows that the mean dissipation rate is determined by the out-of-
phase response proportional to χ′′

AA(ω):

Q = 1
2f2

0 ω0 χ′′
AA(ω0) (3.3.2)

and χ′′
AA(ω) is therefore called the absorptive part of the susceptibility.

If the eigenvalues Eα and the corresponding eigenstates |α > for
the Hamiltonian H(= H0) are known, it is possible to derive an explicit
expression for χBA(ω). According to the definition (3.2.10),

KBA(t) =
i

h̄

1
Z

Tr
{

e−βH [ eiHt/h̄ B̂ e−iHt/h̄ , Â ]
}

=

i

h̄

1
Z

∑
αα′

e−βEα
{

eiEαt/h̄ < α |B̂ |α′ > e−iEα′ t/h̄ < α′ |Â |α >

− < α |Â |α′ > eiEα′ t/h̄ < α′ |B̂ |α > e−iEαt/h̄
}
.

Interchanging α and α′ in the last term, and introducing the population
factor

nα = 1

Z
e−βEα ; Z =

∑
α′

e−βEα′ , (3.3.3a)

we get

KBA(t) = i

h̄

∑
αα′

< α |B̂ |α′ >< α′ |Â |α > (nα − nα′) ei(Eα−Eα′)t/h̄,

(3.3.3b)
and hence

χBA(ω) = lim
ε→0+

∫ ∞

0

KBA(t) ei(w+iε)tdt

= lim
ε→0+

∑
αα′

< α |B̂ |α′ >< α′ |Â |α >

Eα′ − Eα − h̄ω − ih̄ε
(nα − nα′),

(3.3.4a)
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or equivalently

χAB(−ω) = lim
ε→0+

χAB(−ω + iε)

= lim
ε→0+

∑
αα′

< α |Â |α′ >< α′ |B̂ |α >

Eα′ − Eα + h̄ω − ih̄ε
(nα − nα′).

(3.3.4b)

An interchange of α and α′ shows this expression to be the same as
(3.3.4a), with ε replaced by −ε. The application of Dirac’s formula then
yields the absorptive part of the susceptibility (3.2.11b) as

χ′′
BA(ω) = π

∑
αα′

< α |B̂ |α′ >< α′ |Â |α > (nα −nα′) δ
(
h̄ω− (Eα′ −Eα)

)
(3.3.5)

(equal to KBA(ω)/2i in accordance with (3.2.12)), whereas the reactive
part (3.2.11a) is

χ′
BA(ω) =

Eα �=Eα′∑
αα′

< α |B̂ |α′ >< α′ |Â |α >

Eα′ − Eα − h̄ω
(nα − nα′) + χ′

BA(el) δω0,

(3.3.6a)
where

δω0 ≡ lim
ε→0+

iε

ω + iε
=

{
1 if ω = 0
0 if ω �= 0,

and the elastic term χ′
BA(el), which only contributes in the static limit

ω = 0, is

χ′
BA(el) = β

{Eα=Eα′∑
αα′

< α |B̂ |α′ >< α′ |Â |α > nα − 〈B̂〉〈Â〉}. (3.3.6b)

We remark that χ′
BA(ω) and χ′′

BA(ω) are often referred to respectively as
the real and the imaginary part of χBA(ω). This terminology is not valid
in general, but only if the matrix-element products are real, as they are
if, for instance, B̂ = Â

†
. The presence of the elastic term in the reactive

response requires some additional consideration. There are no elastic
contributions to KBA(t), nor hence to χ′′

BA(ω), because nα − nα′ ≡ 0
if Eα = Eα′ . Nevertheless, the appearance of an extra contribution at
ω = 0, not obtainable directly from KBA(t), is possible because the
energy denominator in (3.3.4) vanishes in the limit |ω + iε| → 0, when
Eα = Eα′ . In order to derive this contribution, we consider the equal-
time correlation function

SBA(t = 0) = 〈(B̂ − 〈B̂〉)(Â − 〈Â〉)〉
=

∑
αα′

< α |B̂ |α′ >< α′ |Â |α > nα − 〈B̂〉〈Â〉 (3.3.7a)
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which, according to the fluctuation–dissipation theorem (3.2.18), should
be

SBA(t = 0) =
1
2π

∫ ∞

−∞
SBA(ω) dω =

1
π

∫ ∞

−∞

1
1 − e−βh̄ω

χ′′
BA(ω)d(h̄ω).

(3.3.7b)
Introducing (3.3.5), the integration is straightforward, except in a nar-
row interval around ω = 0, and we obtain

SBA(t = 0) =
Eα �=Eα′∑

αα′
< α |B̂ |α′ >< α′ |Â |α > nα + lim

γ→0+

∫ γ

−γ

χ′′
BA(ω)
πβω

dω

after replacing 1− e−βh̄ω with βh̄ω in the limit ω → 0. A comparison of
this expression for SBA(t = 0) with (3.3.7a) shows that the last integral
has a definite value:

lim
γ→0+

∫ γ

−γ

χ′′
BA(ω)
πβω

dω =
Eα=Eα′∑

αα′
< α |B̂ |α′ >< α′ |Â |α > nα − 〈B̂〉〈Â〉.

(3.3.8)
The use of the Kramers–Kronig relation (3.1.10), in the form of (3.2.11d),
for calculating χ′

BA(0) then gives rise to the extra contribution

χ′
BA(el) = lim

γ→0+

1
π

∫ γ

−γ

χ′′
BA(ω)

ω
dω (3.3.9)

to the reactive susceptibility at zero frequency, as anticipated in (3.3.6b).
The zero-frequency result, χBA(0) = χ′

BA(0), as given by (3.3.6), is the
same as the conventional isothermal susceptibility (2.1.18) for the mag-
netic moments, where the elastic and inelastic contributions are respec-
tively the Curie and the Van Vleck terms. This elastic contribution is
discussed in more detail by, for instance, Suzuki (1971).

The results (3.3.4–6) show that, if the eigenstates of the Hamil-
tonian are discrete and the matrix-elements of the operators B̂ and Â
between these states are well-defined, the poles of χBA(z) all lie on the
real axis. This has the consequence that the absorptive part χ′′

BA(ω)
(3.3.5) becomes a sum of δ-functions, which are only non-zero when h̄ω
is equal to the excitation energies Eα′ −Eα. In such a system, no spon-
taneous transitions occur. In a real macroscopic system, the distribution
of states is continuous, and only the ground state may be considered as a
well-defined discrete state. At non-zero temperatures, the parameters of
the system are subject to fluctuations in space and time. The introduc-
tion of a non-zero probability for a spontaneous transition between the
‘levels’ α and α′ can be included in a phenomenological way by replac-
ing the energy difference Eα′ −Eα in (3.3.4) by (Eα′ −Eα)− i Γα′α(ω),
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where the parameters, including the energy difference, usually depend
on ω. According to the general stability and causality requirements,
the poles of χBA(z) at z = zα′α = (Eα′ − Eα) − i Γα′α must lie in the
lower half-plane, implying that Γα′α has to be positive (or zero). In the
case where |Eα′ − Eα| 	 Γα′α, the ω-dependence of these parameters
is unimportant, and the δ-function in (3.3.5) is effectively replaced by a
Lorentzian:

χ′′
BA(ω) �

∑
αα′

< α |B̂ |α′ >< α′ |Â |α >

(Eα′ − Eα − h̄ω)2 + Γ2
α′α

Γα′α(nα − nα′)

+
h̄ωΓ0

(h̄ω)2 + Γ2
0

χ′
BA(el),

(3.3.10)

with a linewidth, or more precisely FWHM (full width at half maximum),
of 2Γα′α. In (3.3.10), we have added the quasi-elastic response due to a
pole at z = −i Γ0, which replaces the one at z = 0. The corresponding
reactive part of the susceptibility is

χ′
BA(ω) �

∑
αα′

< α |B̂ |α′ >< α′ |Â |α >

(Eα′ − Eα − h̄ω)2 + Γ2
α′α

(Eα′ − Eα − h̄ω)(nα − nα′)

+
Γ2

0

(h̄ω)2 + Γ2
0

χ′
BA(el). (3.3.11)

The non-zero linewidth corresponds to an exponential decay of the oscil-
lations in the time dependence of, for instance, the correlation function:

SBA(t) ∼ e−izα′αt/h̄ = e−i(Eα′−Eα)t/h̄ e−Γα′αt/h̄.

The absorption observed in a resonance experiment is proportional
to χ′′

AA(ω). A peak in the absorption spectrum is interpreted as an ele-
mentary or quasi-particle excitation, or as a normal mode of the dynamic
variable Â, with a lifetime τ = h̄/Γα′α. A pole at z = −iΓ0 is said to
represent a diffusive mode. Such a pole is of particular importance for
those transport coefficients determined by the low-frequency or hydro-
dynamic properties of the system. Kubo (1957, 1966) gives a detailed
discussion of this subject. As we shall see later, the differential scatter-
ing cross-section of, for example, neutrons in the Born-approximation is
proportional to a correlation function, and hence to χ′′(ω). This implies
that the presence of elementary excitations in the system leads to peaks
in the intensity of scattered neutrons as a function of the energy transfer.
Finally, the dynamic correlation-functions are related directly to various
thermodynamic second-derivatives, such as the compressibility and the
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magnetic susceptibility, and thereby indirectly to the corresponding first-
derivatives, like the specific heat and the magnetization. Consequently,
most physical properties of a macroscopic system near equilibrium may
be described in terms of the correlation functions.

As a supplement to the response function φBA(t − t′), we now in-
troduce the Green function, defined as

GBA(t − t′) ≡ 〈〈B̂(t) ; Â(t′)〉〉
≡ − i

h̄
θ(t − t′)〈 [ B̂(t) , Â(t′) ] 〉 = −φBA(t − t′).

(3.3.12)

This Green function is often referred to as the double-time or the retarded
Green function (Zubarev 1960), and it is simply our previous response
function, but with the opposite sign. Introducing the Laplace transform
GBA(z) according to (3.1.7), we find, as before, that the corresponding
Fourier transform is

GBA(ω) ≡ 〈〈B̂ ; Â〉〉ω = lim
ε→0+

GBA(z = ω + iε)

= lim
ε→0+

∫ ∞

−∞(0)

GBA(t) ei(ω+iε)tdt = −χBA(ω).
(3.3.13)

We note that, if Â and B̂ are dimensionless operators, then GBA(ω) or
χBA(ω) have the dimensions of inverse energy.

If t′ = 0, the derivative of the Green function with respect to t is

d

dt
GBA(t) = − i

h̄

(
δ(t)〈 [ B̂(t) , Â ] 〉 + θ(t)〈 [ dB̂(t)/dt , Â ] 〉

)
= − i

h̄

(
δ(t)〈 [ B̂ , Â ] 〉 − i

h̄
θ(t)〈 [ [ B̂(t) , H ] , Â ] 〉

)
.

A Fourier transformation of this expression then leads to the equation
of motion for the Green function:

h̄ω〈〈B̂ ; Â〉〉ω − 〈〈 [ B̂ , H ] ; Â〉〉ω = 〈 [ B̂ , Â ] 〉. (3.3.14a)

The suffix ω indicates the Fourier transforms (3.3.13), and h̄ω is short-
hand for h̄(ω + iε) with ε → 0+. In many applications, Â and B̂ are
the same (Hermitian) operator, in which case the r.h.s. of (3.3.14a) van-
ishes and one may proceed to the second derivative. With the condition
that 〈 [ [ [ Â(t) , H ] , H ] , Â ] 〉 is −〈 [ [ Â(t) , H ] , [ Â , H ] ] 〉, the equation
of motion for the Green function 〈〈 [ Â , H ] ; Â〉〉ω leads to

(h̄ω)2〈〈Â ; Â〉〉ω + 〈〈 [ Â , H ] ; [ Â , H ] 〉〉ω = 〈 [ [ Â ,H ] , Â ] 〉. (3.3.14b)
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The pair of equations (3.3.14) will be the starting point for our applica-
tion of linear response theory.

According to the definition (3.2.10) of KBA(t), and eqn (3.2.12),

KBA(ω) = 2iχ′′
BA(ω) = −2iG′′

BA(ω).

We may write

i

π

∫ ∞

−∞
χ′′

BA(ω) e−iωtdω = i

h̄
〈 [ B̂(t) , Â ] 〉 (3.3.15)

and, setting t = 0, we obtain the following sum rule:

h̄

π

∫ ∞

−∞
χ′′

BA(ω)dω = 〈 [ B̂ , Â ] 〉, (3.3.16)

which may be compared with the value obtained for the equal-time corre-
lation function 〈B̂ Â〉−〈B̂〉〈Â〉, (3.3.7). The Green function in (3.3.14a)
must satisfy this sum rule, and we note that the thermal averages in
(3.3.14a) and (3.3.16) are the same. Equation (3.3.16) is only the first
of a whole series of sum rules.

The nth time-derivative of B̂(t) may be written

dn

dtn
B̂(t) =

(
i

h̄

)n

LnB̂(t) with LB̂(t) ≡ [H , B̂(t) ].

Taking the nth derivative on both sides of eqn (3.3.15), we get

i

π

∫ ∞

−∞
(−iω)nχ′′

BA(ω) e−iωtdω =
(

i

h̄

)n+1

〈 [LnB̂(t) , Â ] 〉.

Next we introduce the normalized spectral weight function

FBA(ω) =
1

χ′
BA(0)

1
π

χ′′
BA(ω)

ω
, where

∫ ∞

−∞
FBA(ω)dω = 1.

(3.3.17a)
The normalization of FBA(ω) is a simple consequence of the Kramers–
Kronig relation (3.2.11d). The nth order moment of ω, with respect to
the spectral weight function FBA(ω), is then defined as

〈ωn〉BA =
∫ ∞

−∞
ωnFBA(ω)dω, (3.3.17b)

which allows the relation between the nth derivatives at t = 0 to be
written

χ′
BA(0) 〈(h̄ω)n+1〉BA = (−1)n〈 [LnB̂ , Â ] 〉. (3.3.18a)
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These are the sum rules relating the spectral frequency-moments with
the thermal expectation-values of operators obtainable from B̂, Â, and
H. If B̂ = Â = Â

†
, then (3.3.1) shows thatFBA(ω) is even in ω, and all

the odd moments vanish. In this case, the even moments are

χ′
AA(0) 〈(h̄ω)2n〉AA = −〈 [L2n−1Â , Â ] 〉. (3.3.18b)

3.4 Linear response of the Heisenberg ferromagnet

In this section, we shall illustrate the use of linear response theory by
applying it to the case of the three-dimensional Heisenberg ferromagnet,
with the Hamiltonian

H = −1

2

∑
i�=j

J (ij)Si ·Sj , (3.4.1)

where Si is the spin on the ith ion, placed in a Bravais lattice at the
position Ri. The spatial Fourier transform of the exchange coupling,
with the condition J (ii) ≡ 0, is

J (q) = 1

N

∑
ij

J (ij) e−iq·(Ri−Rj) =
∑

j

J (ij) e−iq·(Ri−Rj), (3.4.2a)

and conversely

J (ij) = 1

N

∑
q

J (q) eiq·(Ri−Rj) =
V

N(2π)3

∫
J (q) eiq·(Ri−Rj)dq,

(3.4.2b)
depending on whether q, defined within the primitive Brillouin zone, is
considered to be a discrete or a continuous variable (we shall normally
assume it to be discrete). N is the total number of spins, V is the
volume, and the inversion symmetry of the Bravais lattice implies that
J (q) = J (−q) = J ∗(q). The maximum value of J (q) is assumed to
be J (q = 0), in which case the equilibrium state at zero temperature,
i.e. the ground state, is the ferromagnet:

〈Si〉 = S ẑ at T = 0, (3.4.3)

where ẑ is a unit vector along the z-axis, which is established as the
direction of magnetization by an infinitesimal magnetic field. This result
is exact, but as soon as the temperature is increased above zero, it is
necessary to make a number of approximations. As a first step, we
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introduce the thermal expectation-values 〈Si〉 = 〈S〉 in the Hamiltonian
which, after a simple rearrangement of terms, can be written

H =
∑

i

Hi − 1

2

∑
i�=j

J (ij)(Si − 〈S〉) · (Sj − 〈S〉), (3.4.4a)

with
Hi = −Sz

i J (0)〈Sz〉 + 1
2J (0)〈Sz〉2, (3.4.4b)

and 〈S〉 = 〈Sz〉 ẑ. In the mean-field approximation, discussed in the pre-
vious chapter, the dynamic correlation between spins on different sites is
neglected. This means that the second term in (3.4.4a) is disregarded,
reducing the original many-spin Hamiltonian to a sum of N indepen-
dent single-spin Hamiltonians (3.4.4b). In this approximation, 〈Sz〉 is
determined by the self-consistent equation

〈Sz〉 =
+S∑

M=−S

M eβMJ (0)〈Sz〉/ +S∑
M=−S

eβMJ (0)〈Sz〉 (3.4.5a)

(the last term in (3.4.4b) does not influence the thermal average) which,
in the limit of low temperatures, is

〈Sz〉 � S − e−βSJ (0). (3.4.5b)

In order to incorporate the influence of two-site correlations, to
leading order, we consider the Green function

G±(ii′, t) = 〈〈S+
i (t) ; S−

i′ 〉〉. (3.4.6)

According to (3.3.14a), the variation in time of G±(ii′, t) depends on
the operator

[ S+
i , H ] = −1

2

∑
j

J (ij)
(−2S+

i Sz
j + 2Sz

i S+
j

)
.

The introduction of this commutator in the equation of motion (3.3.14a)
leads to a relation between the original Green function and a new, more
elaborate Green function. Through its equation of motion, this new
function may be expressed in terms of yet another. The power of the
exchange coupling in the Green functions which are generated in this
way is raised by one in each step, and this procedure leads to an infi-
nite hierarchy of coupled functions. An approximate solution may be
obtained by utilizing the condition that the expectation value of Sz

i is
close to its saturation value at low temperatures. Thus, in this limit,
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Sz
i must be nearly independent of time, i.e. Sz

i � 〈Sz〉. In this random-
phase approximation (RPA) the commutator reduces to

[ S+
i , H ] � −

∑
j

J (ij)〈Sz〉 (
S+

j − S+
i

)
,

and the equations of motion lead to the following linear set of equations:

h̄ωG±(ii′, ω) +
∑

j

J (ij)〈Sz〉 {
G±(ji′, ω) − G±(ii′, ω)

}
= 〈 [ S+

i , S−
i′ ] 〉 = 2〈Sz〉 δii′ .

(3.4.7)

The infinite set of RPA equations is diagonal in reciprocal space. Intro-
ducing the Fourier transform

G±(q, ω) =
∑
i′

G±(ii′, ω) e−iq·(Ri−Ri′ ), (3.4.8)

we obtain

h̄ωG±(q, ω) + 〈Sz〉 {J (q)G±(q, ω) − J (0)G±(q, ω)
}

= 2〈Sz〉,

or

G±(q, ω) = lim
ε→0+

2〈Sz〉
h̄ω + ih̄ε − Eq

, (3.4.9)

where the dispersion relation is

Eq = 〈Sz〉 {J (0) − J (q)} . (3.4.10)

Introducing the susceptibility χ+−(q, ω) = −G±(q, ω), we obtain

χ+−(q, ω) =
2〈Sz〉

Eq − h̄ω
+ iπ 2〈Sz〉 δ(h̄ω − Eq). (3.4.11a)

Defining χ−+(q, ω) analogously to χ+−(q, ω), but with S+ and S− in-
terchanged, we obtain similarly, or by the use of the symmetry relation
(3.2.15),

χ−+(q, ω) =
2〈Sz〉

Eq + h̄ω
− iπ 2〈Sz〉 δ(h̄ω + Eq), (3.4.11b)

so that the absorptive susceptibility is

χ′′
+−(q, ω) = −χ′′

−+(q,−ω) = 2π 〈Sz〉 δ(h̄ω − Eq). (3.4.11c)
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The above susceptibilities do not correspond directly to physical observ-
ables but, for instance, χxx(q, ω) (where S+ and S− are both replaced
by Sx) does. It is straightforward to see (by symmetry or by direct
verification) that χ++(q, ω) = χ−−(q, ω) ≡ 0, and hence

χxx(q, ω) = χyy(q, ω) = 1

4

{
χ+−(q, ω) + χ−+(q, ω)

}
.

The presence of two-site correlations influences the thermal average
〈Sz〉. A determination of the correction to the MF result (3.4.5b) for
〈Sz〉, leading to a self-consistent RPA result for the transverse suscepti-
bility, requires a relation between 〈Sz〉 and the susceptibility functions
deduced above. The spin commutator-relation, [S+

i , S−
i′ ] = 2Sz δii′ ,

turns out to be satisfied identically, and thus leads to no additional
conditions. Instead we consider the Wortis expansion

Sz
i = S − 1

2S
S−

i S+
i − 1

8S2(S − 1
2 )

(S−
i )2(S+

i )2 − · · · (3.4.12)

for which the matrix elements between the p lowest single-spin (or MF)
levels are correct, where p ≤ 2S +1 is the number of terms in the expan-
sion. Using (3.4.11), we find from the fluctuation–dissipation theorem
(3.2.18):

〈S−
i S+

i 〉 = 1

N

∑
q

S−+(q, t = 0)

= 1

N

∑
q

1
π

∫ ∞

−∞

1
1 − e−βh̄ω

χ′′
−+(q, ω)d(h̄ω) = 2〈Sz〉Φ,

(3.4.13a)
with

Φ = 1

N

∑
q

nq ; nq =
1

eβEq − 1
, (3.4.13b)

where nq is the population factor for bosons of energy Eq. If S = 1
2 ,

then Sz is determined by the two first terms of (3.4.12), and

〈Sz〉 = S − Φ〈Sz〉/S,

or
〈Sz〉 = S2/(S + Φ) � 1

2 − Φ + 2Φ2 − · · ·
In general one may use a ‘Hartree–Fock decoupling’, 〈(S−

i )2(S+
i )2〉 �

2(〈S−
i S+

i 〉)2, of the higher-order terms in (3.4.13) in order to show that

〈Sz〉 = S − Φ + (2S + 1)Φ2S+1 − · · · � S − 1

N

∑
q

nq, (3.4.14)
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where the kinematic correction, of the order Φ2S+1, due to the limited
number of single-spin states, which is neglected in this expression, is
unimportant when S ≥ 1. Utilizing the Hartree–Fock decoupling once
more to write 〈Sz

i Sz
j 〉(i�=j) � 〈Sz〉2 � S2 − 2〈Sz〉Φ, we find the internal

energy to be

U = 〈H〉 = −1
2NJ (0)S2 +

∑
q

Eq nq

= −1
2NJ (0)S(S + 1) +

∑
q

Eq(nq + 1
2 ).

(3.4.15)

The second form, expressing the effect of the zero-point motion, is de-
rived using J (ii) = 1

N

∑
q J (q) ≡ 0.

The thermodynamic properties of the Heisenberg ferromagnet are
determined by (3.4.10), (3.4.14), and (3.4.15), which are all valid at low
temperatures. In a cubic crystal, the energy dispersion Eq is isotropic
and proportional to q2 in the long wavelength limit, and (3.4.14) then
predicts that the magnetization 〈Sz〉 decreases from its saturation value
as T 3/2. The specific heat is also found to be proportional to T 3/2. The
thermodynamic quantities have a very different temperature dependence
from the exponential behaviour (3.4.5b) found in the MF approxima-
tion. This is due to the presence of elementary excitations, which are
easily excited thermally in the long wavelength limit, since Eq → 0
when q → 0 in the RPA. These normal modes, which are described
as spin waves, behave in most aspects (disregarding the kinematic ef-
fects) as non-conserved Bose-particles, and they are therefore also called
magnons.

We shall not present a detailed discussion of the low-temperature
properties of the Heisenberg ferromagnet. Further details may be found
in, for instance, Marshall and Lovesey (1971), and a quite complete
treatment is given by Tahir-Kheli (1976). The RPA model is correct at
T = 0 where 〈Sz〉 = S, but as soon as the temperature is increased, the
magnons start to interact with each other, giving rise to finite lifetimes,
and the temperature dependence of the excitation energies is modified
(or renormalized). The temperature dependence of Eq = Eq(T ) is re-
sponsible for the leading order ‘dynamic’ corrections to 〈Sz〉 and to the
heat capacity. A more accurate calculation, which we will present in
Section 5.2, adds an extra term to the dispersion:

Eq = 〈Sz〉 {J (0) − J (q)} + 1

N

∑
k

{J (k) − J (k + q)}nk, (3.4.16)

from which the heat capacity of this non-interacting Bose-gas can be
determined as

C = ∂U/∂T =
∑
q

Eq dnq/dT. (3.4.17)
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We note that there are corrections to U , given by (3.4.15), of second
order in Φ. The low-temperature properties, as determined by (3.4.14),
(3.4.16), and (3.4.17), agree with the systematic expansion performed by
Dyson (1956), including the leading-order dynamical correction of fourth
power in T (in the cubic case), except for a minor kinematic correction
which is negligible for S ≥ 1.

3.5 The random-phase approximation

Earlier in this chapter, we have demonstrated that many experimentally
observable properties of solids can be expressed in terms of two-particle
correlation functions. Hence it is of great importance to be able to cal-
culate these, or the related Green functions, for realistic systems. We
shall therefore consider the determination of the generalized susceptibil-
ity for rare earth magnets, using the random-phase approximation which
was introduced in the last section, and conclude the chapter by apply-
ing this theory to the simple Heisenberg model, in which the single-ion
anisotropy is neglected.

3.5.1 The generalized susceptibility in the RPA
The starting point for the calculation of the generalized susceptibility
is the (effective) Hamiltonian for the angular momenta which, as usual,
we write as a sum of single- and two-ion terms:

H =
∑

i

HJ(Ji) − 1
2

∑
i�=j

J (ij)Ji ·Jj . (3.5.1)

For our present purposes, it is only necessary to specify the two-ion
part and, for simplicity, we consider only the Heisenberg interaction. As
in Section 2.2, we introduce the thermal expectation values 〈Ji〉 in the
Hamiltonian, which may then be written

H =
∑

i

HMF(i) − 1
2

∑
i�=j

J (ij) (Ji − 〈Ji〉) · (Jj − 〈Jj〉), (3.5.2)

where

HMF(i) = HJ(Ji) −
(
Ji − 1

2 〈Ji〉
) ·∑

j

J (ij)〈Jj〉. (3.5.3)

From the mean-field Hamiltonians HMF(i), we may calculate 〈Ji〉 as
before. The Hamiltonian (3.5.3) also determines the dynamic suscepti-
bility of the ith ion, in the form of a Cartesian tensor χ

o
i (ω), according

to eqns (3.3.4–6), with Â and B̂ set equal to the angular-momentum
components Jiα. We wish to calculate the linear response 〈Ji(t)〉 of
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the system to a small perturbative field hj(t) = gµBHj(t) (the Zeeman
term due to a stationary field is taken as included in HJ(Ji) ). From
(3.5.2), we may extract all terms depending on Ji and collect them in
an effective Hamiltonian Hi , which determines the time-dependence of
Ji. Transformed to the Heisenberg picture, this Hamiltonian is

Hi(t) = HMF(i, t) − (
Ji(t) − 〈Ji〉

) · ( ∑
j

J (ij)(Jj(t) − 〈Jj〉) + hi(t)
)
.

(3.5.4)
We note that a given site i appears twice in the second term of (3.5.2),
and that the additional term 〈Ji〉 · hi has no consequences in the limit
when hi goes to zero. The differences Jj(t) − 〈Jj(t)〉 fluctuate in a vir-
tually uncorrelated manner from ion to ion, and their contribution to
the sum in (3.5.4) is therefore small. Thus, to a good approximation,
these fluctuations may be neglected, corresponding to replacing Jj(t)
in (3.5.4) by 〈Jj(t)〉 (when j �= i). This is just the random-phase ap-
proximation (RPA), introduced in the previous section, and so called
on account of the assumption that Jj(t) − 〈Jj(t)〉 may be described in
terms of a random phase-factor. It is clearly best justified when the
fluctuations are small, i.e. at low temperatures, and when many sites
contribute to the sum, i.e. in three-dimensional systems with long-range
interactions. The latter condition reflects the fact that an increase in the
number of (nearest) neighbours improves the resemblance of the sum in
(3.5.4) to an ensemble average. If we introduce the RPA in eqn (3.5.4),
the only dynamical variable which remains is Ji(t), and the Hamiltonian
becomes equivalent to HMF(i), except that the probing field hi(t) is re-
placed by an effective field heff

i (t). With 〈Ji(ω)〉 defined as the Fourier
transform of 〈Ji(t)〉 − 〈Ji〉, then, according to eqn (3.1.9),

〈Ji(ω)〉 = χ
o
i (ω)heff

i (ω),

where the effective field is

heff
i (ω) = hi(ω) +

∑
j

J (ij)〈Jj(ω)〉. (3.5.5)

This may be compared with the response determined by the two-ion
susceptibility functions of the system, defined such that

〈Ji(ω)〉 =
∑

j

χ(ij, ω)hj(ω). (3.5.6)

The two ways of writing the response should coincide for all hj(ω), which
implies that, within the RPA,

χ(ij, ω) = χ
o
i (ω)

(
δij +

∑
j′

J (ij′)χ(j′j, ω)
)
. (3.5.7)
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This self-consistent equation may be solved under various conditions.
For convenience, we shall consider here only the uniform case of a ferro-
or paramagnet, where HMF(i) is the same for all the ions, i.e. 〈Ji〉 = 〈J〉
and χ

o
i (ω) = χ

o(ω), in which case we get the final result

χ(q, ω) =
{
1 − χ

o(ω)J (q)
}−1

χ
o(ω). (3.5.8)

Here 1 is the unit matrix, and we have used the Fourier transform (3.4.2)
of J (ij)

J (q) =
∑

j

J (ij) e−iq·(Ri−Rj). (3.5.9)

In the RPA, the effects of the surrounding ions are accounted for
by a time-dependent molecular field, which self-consistently enhances
the response of the isolated ions. The above results are derived from a
kind of hybrid MF-RPA theory, as the single-ion susceptibility χ

o
i (ω) is

still determined in terms of the MF expectation values. A self-consistent
RPA theory might be more accurate but, as we shall see, gives rise to fur-
ther problems. At high temperatures (or close to a phase transition), the
description of the dynamical behaviour obtained in the RPA is incom-
plete, because the thermal fluctuations introduce damping effects which
are not included. However, the static properties may still be described
fairly accurately by the above theory, because the MF approximation is
correct to leading order in β = 1/kBT .

The RPA, which determines the excitation spectrum of the many-
body system to leading order in the two-ion interactions, is simple to
derive and is of general utility. Historically, its applicability was ap-
preciated only gradually, in parallel with the experimental study of a
variety of systems, and results corresponding to eqn (3.5.8) were pre-
sented independently several times in the literature in the early 1970s
(Fulde and Perschel 1971, 1972; Haley and Erdös 1972; Purwins et al.
1973; Holden and Buyers 1974). The approach to this problem in the
last three references is very similar, and we will now present it, following
most closely the account given by Bak (1974).

We start by considering the MF Hamiltonian defined by (3.5.3). The
basis in which HMF(i) is diagonal is denoted |νi > ; ν = 0, 1, . . . , 2J ,
and we assume that HMF(i) is the same for all the ions:

HMF(i)|νi > = Eν |νi >, (3.5.10)

with Eν independent of the site index i . The eigenvalue equation defines
the standard-basis operators

aνµ(i) = |νi >< µi |, (3.5.11)



3.5 THE RANDOM-PHASE APPROXIMATION 157

in terms of which HMF(i) =
∑

ν Eνaνν(i). Defining the matrix-elements

Mνµ = < νi |Ji − 〈Ji〉|µi >, (3.5.12)

we may write
Ji − 〈Ji〉 =

∑
νµ

Mνµ aνµ(i),

and hence

H =
∑

i

∑
ν

Eν aνν(i) − 1

2

∑
ij

∑
νµ

∑
ν′µ′

J (ij)Mνµ · Mν′µ′ aνµ(i) aν′µ′(j).

(3.5.13)
We have expressed H in terms of the standard-basis operators, as we now
wish to consider the Green functions Gνµ,rs(ii′, ω) = 〈〈aνµ(i) ; ars (i′)〉〉.
According to (3.3.14), their equations of motion are

h̄ω Gνµ,rs(ii′, ω) − 〈〈 [ aνµ(i) , H ] ; ars(i′)〉〉 = 〈 [ aνµ(i) , ars(i′) ] 〉.
(3.5.14)

The MF basis is orthonormal, and the commutators are

[ aνµ(i) , ars(i′) ] = δii′{δµraνs(i) − δsνarµ(i)},

so we obtain

{h̄ω − (Eµ − Eν)}Gνµ,rs(ii′, ω)

+
∑

j

J (ij)
∑
ξν′µ′

〈〈{aνξ(i)Mµξ − aξµ(i)Mξν} · Mν′µ′ aν′µ′(j) ; ars(i′)〉〉

= δii′〈δµr aνs(i) − δsν arµ(i)〉. (3.5.15)

In order to solve these equations, we make an RPA decoupling of the
higher-order Green functions:

〈〈aνξ(i) aν′µ′(j) ; ars(i′)〉〉i�=j �
〈aνξ(i)〉〈〈aν′µ′(j) ; ars(i′)〉〉 + 〈aν′µ′(j)〉〈〈aνξ(i) ; ars(i′)〉〉.

(3.5.16)

This equation is correct in the limit where two-ion correlation effects
can be neglected, i.e. when the ensemble averages are determined by the
MF Hamiltonian. The decoupling is equivalent to the approximation
made above, when Jj(t) in (3.5.4) was replaced by 〈Jj(t)〉. The thermal
expectation value of a single-ion quantity 〈aνµ(i)〉 is independent of i,
and to leading order it is determined by the MF Hamiltonian:

〈aνµ〉 � 〈aνµ〉0 = 1

Z
Tr

{
e−βH(MF) aνµ

}
= δνµ nν , (3.5.17)
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and correspondingly 〈J〉 in (3.5.12) is assumed to take the MF value 〈J〉0.
Here Z is the partition function of the MF Hamiltonian, and thus nν is
the population factor of the νth MF level. With the two approximations
(3.5.16) and (3.5.17), and the condition that

∑
ν′µ′〈Mν′µ′aν′µ′(j)〉0 =

〈Jj − 〈Jj〉0〉0 = 0 by definition, (3.5.15) is reduced to a closed set of
equations by a Fourier transformation:

{h̄ω − (Eµ − Eν)}Gνµ,rs(q, ω)

+
∑
ν′µ′

J (q)(nν − nµ)Mµν · Mν′µ′ Gν′µ′,rs(q, ω) = (nν − nµ) δµrδνs.

(3.5.18)
We now show that these equations lead to the same result (3.5.8) as
found before. The susceptibility, expressed in terms of the Green func-
tions, is

χ(q, ω) = −
∑

νµ,rs

MνµMrsGνµ,rs(q, ω). (3.5.19)

MνµMrs is the dyadic vector-product, with the (αβ)-component given
by (MνµMrs)αβ = (Mνµ)α(Mrs)β . Further, from eqns (3.3.4–6), the
MF susceptibility is

χ
o(ω) =

Eν �=Eµ∑
νµ

MνµMµν

Eµ − Eν − h̄ω
(nν − nµ) +

Eν=Eµ∑
νµ

MνµMµνβ nν δω0.

(3.5.20)
Multiplying (3.5.18) by MνµMrs/(Eµ − Eν − h̄ω), and summing over
(νµ, rs), we get (for ω �= 0)

χ(q, ω) − χ
o(ω)J (q)χ(q, ω) = χ

o(ω), (3.5.21)

in accordance with (3.5.8). Special care must be taken in the case of
degeneracy, Eµ = Eν , due to the resulting singular behaviour of (3.5.18)
around ω = 0. For ω �= 0, Gνµ,rs(q, ω) vanishes identically if Eµ = Eν ,
whereas Gνµ,rs(q, ω = 0) may be non-zero. The correct result, in the
zero frequency limit, can be found by putting Eµ − Eν = δ in (3.5.18),
so that nν − nµ = nν(1 − e−βδ) � βnνδ. Dividing (3.5.18) by δ, and
taking the limit δ → 0, we obtain in the degenerate case Eν = Eµ:

−Gνµ,rs(q, 0) − β
∑
ν′µ′

J (q)nνMνµ ·Mν′µ′ Gν′µ′,rs(q, 0) = βnν δµr δνs.

(3.5.22)
Since χ(q, ω) does not depend on the specific choice of state-vectors in
the degenerate case, (3.5.22) must also apply for a single level, i.e. when
µ = ν. It then follows that (3.5.18), when supplemented with (3.5.22),
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ensures that (3.5.21) is also valid at ω = 0, as (3.5.22) accounts for
the elastic contributions due to χ

o(ω), proportional to δω0. This zero-
frequency modification of the equations of motion was derived in this
context in a slightly different way by Lines (1974a).

Although eqns (3.5.18) and (3.5.22) only lead to the result (3.5.8),
derived previously in a simpler manner, the equations of motion clarify
more precisely the approximations made, and they contain more infor-
mation. They allow us to keep track in detail of the different transitions
between the MF levels, which may be an advantage when performing ac-
tual calculations. Furthermore, the set of Green functions Gνµ,rs(q, ω)
is complete, and hence any magnetic single- or two-ion response function
may be expressed as a linear combination of these functions.

In the derivation of the RPA result, we utilized two approximate
equations, (3.5.16) and (3.5.17). The two approximations are consistent,
as both equations are correct if two-ion correlation effects are negligible.
However, the RPA Green functions contain implicitly two-ion correla-
tions and, according to (3.3.7), we have in the linear response theory:

〈aνµ(i) ars(j)〉 − 〈aνµ(i)〉〈ars(j)〉 =

1

N

∑
q

eiq·(Ri−Rj)
1
π

∫ ∞

−∞

−1
1 − e−βh̄ω

G′′
νµ,rs(q, ω)d(h̄ω),

(3.5.23)
where, by the definition (3.2.11b),

G′′
νµ,rs(q, ω) =

1
2i

lim
ε→0+

{
Gνµ,rs(q, ω + iε) − Grs,νµ(−q,−ω + iε)

}
.

Equation (3.5.23), with i = j, might be expected to give a better esti-
mate of the single-ion average 〈aνµ〉 than that afforded by the MF ap-
proximation used in (3.5.17). If this were indeed the case, the accuracy of
the theory could be improved by using this equation, in a self-consistent
fashion, instead of (3.5.17), and this improvement would maintain most
of the simplicity and general utility of the RPA theory. Unfortunately,
such an improvement seems to occur only for the Heisenberg ferromagnet
discussed previously, and the nearly-saturated anisotropic ferromagnet,
which we will consider later. Equation (3.5.23) allows different choices
of the Green functions Gνµ,rs(q, ω) for calculating 〈aνν〉, and the results
in general depend on this choice. Furthermore, (3.5.23) may lead to
non-zero values for 〈aνµ(i) ars(i)〉, when µ �= r, despite the fact that
< µi |ri > = 0 by definition. The two-ion correlation effects which are
neglected by the RPA decoupling in (3.5.18) might be as important,
when using eqn (3.5.23) with i = j, as those effects which are accounted
for by the RPA. Nevertheless, it might be possible that certain choices
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of the Green functions, or a linear combination of them, would lead to
an accurate determination of 〈aνν〉 (the most natural choice would be to
use G′′

ν0,0ν(q, ω) ). However, a stringent justification of a specific choice
would require an analysis of the errors introduced by the RPA decou-
pling. We conclude that a reliable improvement of the theory can only
be obtained by a more accurate treatment of the higher-order Green
functions than that provided by the RPA. General programs for ac-
complishing this have been developed, but they have only been carried
through in the simplest cases, and we reserve the discussion of these
analyses to subsequent sections, where a number of specific systems are
considered.

3.5.2 MF-RPA theory of the Heisenberg ferromagnet
We conclude this chapter by applying the RPA to the Heisenberg model,
thereby demonstrating the relation between (3.5.8) and the results pre-
sented in the previous section. In order to do this, we must calculate
χ

o(ω). The eigenstates of the MF Hamiltonian (3.4.4b) are |Sz = M > ,
with M = −S,−S + 1, · · · , S, and we neglect the constant contribution
to the eigenvalues

EM = −MJ (0)〈Sz〉0 = −M∆ with ∆ = J (0)〈Sz〉0,

denoting the MF expectation-value (3.4.5a) of Sz by 〈Sz〉0. According
to (3.3.4a), we then have (only terms with α = M + 1 and α′ = M
contribute):

χ o
+−(ω) =

S−1∑
M=−S

< M + 1 |S+ |M >< M |S− |M + 1 >

EM − EM+1 − h̄ω
(nM+1 − nM )

= 1

Z

S−1∑
−S

S(S + 1) − M(M + 1)

∆ − h̄ω

(
eβ(M+1)∆ − eβM∆

)

= 1

∆ − h̄ω

1

Z

( S∑
−S+1

{
S(S + 1) − (M − 1)M

}
eβM∆

−
S−1∑
−S

{
S(S + 1) − M(M + 1)

}
eβM∆

)

= 1

∆ − h̄ω

1

Z

S∑
−S

2MeβM∆ =
2〈Sz〉0
∆ − h̄ω

,

as all the sums may be taken as extending from −S to S. Similarly
χ o
−+(ω) = χ o

+−(−ω), whereas χ o
++(ω) = χ o

−−(ω) = 0, from which we
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obtain

χ o
xx(ω) = χ o

yy(ω) = 1

4

{
χ o

+−(ω) + χ o
−+(ω)

}
=

∆〈Sz〉0
∆2 − (h̄ω)2

, (3.5.24a)

and

χ o
xy(ω) = −χ o

yx(ω) = i

4

{
χ o

+−(ω) − χ o
−+(ω)

}
=

ih̄ω〈Sz〉0
∆2 − (h̄ω)2

. (3.5.24b)

We note here that χ o
xy

′(ω) and χ o
xy

′′(ω), obtained by replacing ω by
ω + iε and letting ε → 0+, are both purely imaginary. Of the remaining
components in χ

o(ω), only χ o
zz(ω) is non-zero, and it comprises only an

elastic contribution

χ o
zz(ω) = β (δSz)2δω0, with (δSz)2 ≡ 〈(Sz)2〉0 − 〈Sz〉20. (3.5.25)

Because χ o
±z(ω) = 0, the RPA equation (3.5.8) factorizes into a 2 × 2

(xy)-matrix equation and a scalar equation for the zz-component. In-
verting the (xy)-part of the matrix {1 − χ

o(ω)J (q)}, we find

χxx(q, ω) =
χ o

xx(ω) − |χ o(ω)|J (q)
1 − {χ o

xx(ω) + χ o
yy(ω)}J (q) + |χ o(ω)|J 2(q)

,

where the determinant is

|χ o(ω)| = χ o
xx(ω)χ o

yy(ω) − χ o
xy(ω)χ o

yx(ω) =
〈Sz〉20

∆2 − (h̄ω)2
.

By a straightforward manipulation, this leads to

χxx(q, ω) =
E0

q〈Sz〉0
(E0

q)2 − (h̄ω)2
, (3.5.26a)

with

E0
q = ∆ − 〈Sz〉0J (q) = 〈Sz〉0{J (0) − J (q)}. (3.5.26b)

The same result is obtained for χyy(q, ω). We note that (3.5.26a) should
be interpreted as

χxx(q, ω) = 1
2 〈Sz〉0 lim

ε→0+

(
1

E0
q − h̄ω − ih̄ε

+
1

E0
q + h̄ω + ih̄ε

)
.

This result is nearly the same as that deduced before, eqns (3.4.10–
11), except that the RPA expectation-value 〈Sz〉 is replaced by its MF
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value 〈Sz〉0, reflecting the lack of self-consistency in this analysis. As a
supplement to the previous results, we find that

χzz(q, ω) =
χ o

zz(ω)
1 − χ o

zz(ω)J (q)
=

β(δSz)2

1 − β(δSz)2 J (q)
δω0, (3.5.27a)

and the corresponding correlation function is

Szz(q, ω) = 2πh̄
(δSz)2

1 − β(δSz)2 J (q)
δ(h̄ω). (3.5.27b)

The zz-response vanishes in the zero-temperature limit and, in this ap-
proximation, it is completely elastic, since (δSz)2 is assumed indepen-
dent of time. However, this assumption is violated by the dynamic
correlation-effects due to the spin waves. For instance, the (n = 1)-sum-
rule (3.3.18b) indicates that the second moment 〈(h̄ω)2〉zz is non-zero,
when q �= 0 and T > 0, which is not consistent with a spectral function
proportional to δ(h̄ω).

Although this procedure leads to a less accurate analysis of the
Heisenberg ferromagnet than that applied previously, it has the advan-
tage that it is easily generalized, particularly by numerical methods, to
models with single-ion anisotropy, i.e. where HJ(Ji) in (3.5.1) is non-
zero. The simplicity of the RPA result (3.5.8), or of the more general
expression (3.5.7), furthermore makes it suitable for application to com-
plex systems. As argued above, its validity is limited to low tempera-
tures in systems with relatively large coordination numbers. However,
these limitations are frequently of less importance than the possibility of
making quantitative predictions of reasonable accuracy under realistic
circumstances. Its utility and effectiveness will be amply demonstrated
in subsequent chapters.


