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2.3 Magnetic structures of the elements

As we have seen, the ‘exotic spin configurations’ first observed by Koeh-
ler and his colleagues in the heavy rare earths may be understood as the
result of a compromise between the competing magnetic interactions to
which the moments are subjected. The complex changes which occur
as the temperature is varied stem primarily from the temperature de-
pendence of the expectation values of the terms in the MF Hamiltonian
(2.1.16). The crystal-field parameters Bm

l are expected to change little
with temperature but, as shown in the previous section, the variation
of the expectation values 〈Om

l 〉 of the Stevens operators may give rise
to a very pronounced temperature dependence of the anisotropy forces,
including the magnetoelastic effects. The contribution from the two-ion
coupling generally varies more slowly, since the exchange field is pro-
portional to 〈Jj〉 or σ, but changes in the magnitude and orientation of
the ordered moments alter the band structure of the conduction elec-
trons, which in turn modifies the indirect exchange J (ij). Hence the
Fourier transform J (q), and in particular the value Q at which it at-
tains its maximum, may change with temperature in the ordered phase.
In addition, the possibility that anisotropic two-ion coupling may be
of importance implies that the effective parameters of the simple MF
Hamiltonian (2.1.16) may all depend on the magnitude and orientation
of the moments.

The anisotropy forces favour a set of crystallographic directions,
related by a rotational symmetry operator, along which the moments
tend to align themselves. In particular, the low-order crystal-field term
B0

2〈O0
2(J)〉 gives rise to an axial anisotropy, which strives to confine

the magnetization either to the basal plane or along the c-axis, and de-
clines relatively slowly with temperature. Except for Gd, the rare earth
elements all have a J (q) with a maximum at Q �= 0, reflecting the com-
plexities of the Fermi surface and corresponding to a periodicity which is
not generally commensurable with the lattice. Transverse and longitu-
dinal magnetic structures can accomodate both the anisotropy and the
periodicity constraints at high temperatures, with respectively uniform
helical or longitudinal-wave configurations of the moments, character-
ized by a single wave-vector. As the temperature is lowered, however,
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conditions develop which favour commensurable structures, including
the ferromagnet. The hexagonal anisotropy distorts the helical struc-
ture, while the development of higher harmonics, assisted by the axial-
anisotropy forces, favours commensurability in the longitudinal struc-
ture. The higher-order axial-anisotropy terms may also tend to pull the
moments away from their planar or axial orientations. The application
of a magnetic field requires further compromises, until it is so great that
it coerces all the moments into alignment.

The variation of temperature and field thus reveals a rich variety
of intermediate phase transitions to different structures. Most of these
transitions are discontinuous, but occasionally a second-order transition
is observed. In the following, we will discuss the relation between the
interactions, and their variation, and the magnetic structures in the rare
earths. We shall give a summary of the rather complete understand-
ing which has been attained of the heavy elements, followed by a brief
discussion of the complex structures of Nd, which is the only light rare
earth which has been studied in comparable detail. The effect of a mag-
netic field will be exemplified by a description of the magnetization of
Ho. Finally we will consider the new features which emerge when one
dimension of the magnetic lattice is bounded, illustrated by some of the
results from the rapidly developing study of thin films and superlattices.

2.3.1 Bulk magnetic structures

The manner in which the competing interactions express themselves is
very well illustrated by the heavy hcp rare earths. In their magnetically
ordered phases, all the moments in a particular plane normal to the c-
axis are aligned, but their relative orientations may change from plane to
plane. Fig. 1.19 illustrates some of the simpler of these structures, while
the transition temperatures TN and TC to ordered states, respectively
without and with a net moment, are given in Table 1.6.

Gd is magnetically by far the simplest of the rare earths. The ex-
change favours ferromagnetism and the 4f charge-cloud is spherically
symmetric, so that the crystal-field interactions (1.4.4) are zero. How-
ever there is a residual magnetic anisotropy, which causes the moments
to point preferentially along the c-axis just below TC . At lower temper-
atures, the easy axis begins to deviate towards the basal plane, reaching
a maximum tilt angle of 60◦ at 180K before decreasing to just below 30◦

at 4.2K (Corner and Tanner 1976). The anisotropy parameters are typ-
ically two or three orders of magnitude smaller than those of the other
heavy rare earths (Mishima et al. 1976). Since the c/a ratio of Table 1.2
is less than the ideal value, the dipolar coupling induces an anisotropy,
discussed in Section 5.5.1, which tends to hold the moments along the
c-direction and has roughly the observed magnitude (Brooks and Good-
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ings 1968). There is in addition a competing anisotropy, which has its
origin in the spin–orbit coupling (1.2.13) of the conduction electron gas,
which restricts the free rotation of the spins relative to the lattice. The
indirect-exchange interaction then ensures that the localized spins are
correspondingly constrained. The magnitude of this effect could in prin-
ciple be calculated from the electronic structure, at least at absolute
zero, but no serious attempts have yet been made to do so.

The small anisotropy of Gd leads to an unusual sequence of struc-
tures when it is diluted with Y. The latter has a very strong tendency to
impose a periodic magnetic structure on dissolved rare earth moments
(Rainford et al. 1988a; Caudron et al. 1990) and, in a concentration
above about 30% in Gd, induces a helical structure below TN . The
magnetic behaviour of these alloys is completely dominated by the ex-
change, and the transition to the ferromagnetic structure, both with
increasing Gd concentration and, as occurs if the Y concentration is not
too high, with decreasing temperature, takes place by a continuous re-
duction of the turn angle of the helix (Palmer et al. 1986), as the peak
in J (q) moves smoothly to the origin. At higher Y concentrations, a
longitudinal wave is also formed along the c-axis, over a temperature
range and with a wave-vector which are different from those of the he-
lix. As discussed in Section 2.1.5, this behaviour shows explicitly that
the exchange must be anisotropic. Furthermore, at Y concentrations
just above the critical value for the formation of a helix, a ferromagnetic
structure, with the easy direction along the c-axis, forms at TC , is trans-
formed into a basal-plane helix through a first-order transition at a lower
temperature TN , and at an even lower temperature transforms back into
the aforementioned ferromagnetic structure, with the moments canted
away from the c-direction.

Tb and Dy both have large axial anisotropies which confine the mo-
ments to their basal planes, and the peaks in J (q), illustrated in Fig.
1.17, induce helical structures at the respective Néel temperatures. In
Tb, this peak is very small, and the spin-wave measurements illustrated
in Fig. 6.1 indicate that it becomes even smaller as the helical phase
is established and the superzone energy-gaps grow. Simultaneously, the
(negative) anisotropy energy in the ferromagnetic phase increases, par-
ticularly the cylindrically-symmetric magnetoelastic term proportional
to C2 in (2.2.27), which makes no contribution in the helical phase be-
cause of lattice clamping. Consequently, this anisotropy energy over-
whelms the exchange-energy difference (1.5.35) only ten degrees below
TN , and a first-order transition occurs to a ferromagnetic structure. The
peak in the exchange function in Dy is more robust, and the helical phase
correspondingly more stable but, as we have discussed in Section 1.5, a
ferromagnetic transition ultimately takes place at 85K.
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An instructive example of competing anisotropy forces has been
observed in a Tb0.5Dy0.5 crystal (Spano et al. 1988). This alloy, as would
be anticipated, forms a helical structure at 206K, and transforms into a
ferromagnet at 152K. At this temperature, the predominant anisotropy
is due to the Tb magnetoelastic forces in (2.2.28), since the coefficient
A is almost zero for Dy (Martin and Rhyne 1977), and the hexagonal
crystal-field anisotropy for both types of ion has renormalized to a very
small value. Consequently, the easy axis of magnetization is the b-axis,
as in pure Tb. As the temperature is further reduced, however, the
crystal-field contribution grows, roughly as σ21, and since it is much
greater for Dy than Tb, the easy axis switches at about 100K to the
a-direction, as in pure Dy.

Table 2.1. Crystal-field parameters (meV).

B0
2 B0

4 B0
6 B6

6

Ho 0.024 0.0 −9.6·10−7 9.2·10−6

Er −0.027 −0.3·10−4 1.3·10−6 −9.0·10−6

Tm −0.096 0.0 −9.2·10−6 8.9·10−5

Compared with these relatively straightforward systems, the be-
haviour of the remainder of the magnetic heavy rare earth series, Ho,
Er, and Tm, is more intriguing. As illustrated in Fig. 1.17, the peaks
in J (q) are large, so that periodic structures are stabilized down to low
temperatures. The crystal-field anisotropy also allows the moments to
move out of the plane. In Table 2.1 are given the anisotropy parameters
deduced from studies of the magnetic structures and excitations. Al-
though these must to some extent be considered as effective values, sub-
suming for example the effects of two-ion and magnetoelastic anisotropy,
they are among the best estimates which we have for the crystal fields
in the rare earths, and they correlate well with the Stevens factors of
Table 1.4.

Ho demonstrates the interplay of the various interactions in an ex-
emplary manner. The positive value of B0

2 and the peak in the exchange
function again stabilize the helix at TN . The peak value J (Q) is now so
large, however, that the cylindrically-symmetric magnetoelastic energy,
which is substantially smaller than that of Dy, is unable to induce a
ferromagnetic transition. On the other hand, the hexagonal crystal-field
anisotropy is nearly three times as big as in Dy, and distorts the helix
drastically when the temperature is reduced, as revealed by the appear-
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ance of higher harmonics in neutron diffraction (Koehler et al. 1966). As
illustrated in Fig. 2.4, the peak in J (q) simultaneously moves to smaller
values of q, and the Q of the magnetic structure decreases correspond-
ingly. However this change does not occur uniformly with temperature,
but rather a series of commensurable wave-vectors is traversed, with ap-
parently discontinuous jumps between them (Gibbs et al. 1985). At 20
K, a second-order transition to a shallow cone structure, with an opening
angle which decreases continuously towards 80◦ as the temperature is
lowered, is observed. The helical component is commensurable with the
lattice, with an average turn angle of 30◦, but the moments are strongly
bunched around the easy b-axes, as shown in Fig. 1.20.

To interpret this rich variety of phenomena, we will use the model
of Larsen et al. (1987). The Hamiltonian which they constructed has

Fig. 2.4. The Fourier transform, for wave-vectors in the c-direction,
of the indirect-exchange interaction in Ho at different temperatures, de-
duced from the magnetic excitations and used in the calculation of the
structures. The maximum in J⊥(q) increases in magnitude and moves to
larger wave-vectors as the temperature is increased, leading to a decrease

in the repeat distance of the periodic structures.
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the form of (2.1.1), augmented by the magnetic dipole–dipole interaction
(1.4.26) which, as we shall see, is of crucial importance. The crystal-field
parameters Bm

l were determined primarily from a fit to the magnetic
structures and magnetization curves at low temperatures, shown in Fig.
1.20, and the temperature dependence of these parameters was assumed
to be negligible. The initial values for the isotropic Heisenberg exchange
were taken from an analysis of the spin waves in Ho (Jensen 1988a),
and depend explicitly on the temperature, as shown in Fig. 2.4. They
were adjusted slightly (Mackintosh and Jensen 1990) to reproduce cor-
rectly the transition fields from the helical phase, but remain consistent
with the spin-wave data, within the experimental error. The magnetic
properties are calculated by means of the method described in Section
2.1.2, assuming an initial distribution 〈Ji〉 of the moments at a given
temperature. The structure is taken to be commensurable, with a re-
peat distance, deduced from experimental data, which may be as high as
50–100 atomic layers for the more complex configurations. The assumed
values of 〈Ji〉 are inserted into the Hamiltonian and a new set of moments
calculated, using the mean-field method to reduce the two-ion term to
the single-ion form. This procedure is repeated until self-consistency is
attained. The free energy and the moments on the different sites can
then readily be calculated for the self-consistent structure.

The results of such self-consistent calculations for different temper-
atures and commensurable periodicities are shown in Fig. 2.5. The data
indicate that B0

4 is zero, to within the experimental error, whereas B0
6

has the opposite sign to B0
2 . As the temperature is reduced in the helical

phase and B0
6〈O0

6〉 increases, this term tends to pull the moments out
of the plane. If the only two-ion coupling were the isotropic exchange,
this would give rise to a continuous transition to a tilted helix, which re-
duces the exchange energy more effectively than the cone (Elliott 1971,
Sherrington 1972). However, the dipolar interaction strongly favours
a ferromagnetic orientation of the c-axis moments, because the dipolar
energy associated with a longitudinal wave is very high, as we discuss in
detail in Section 5.5.1. Consequently, the dipolar contribution shifts the
position of the maximum in J‖(q) from q = Q to zero wave-vector, as

illustrated in Fig. 5.7, and the vanishing of the axial anisotropy (2.2.33)
at q = 0 leads to a second-order transition at T ′

N to the cone phase. In
this special case, we can therefore conclude that it is the temperature
dependence of B0

6〈O0
6〉 which drives the helix into instability, and that

the dipolar interaction chooses the cone, rather than the tilted helix, as
the stable low-temperature phase.

At 4K, in the cone phase, the large hexagonal anisotropy causes the
helical component of the moments to bunch around the easy directions
of magnetization, in the twelve-layer structure described by eqn (1.5.3),
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so that the constant angle φ in the plane between any moment and the

nearest b-axis is only 5.8◦, as shown in Fig. 2.5(a), compared with the 15◦

which corresponds to a uniform helix. As the temperature is increased,

the expectation value 〈O6
6〉 decreases with the relative magnetization,

roughly like σ21, and φ increases correspondingly. Simultaneously Q

tends to increase, reflecting the change in the position of the maximum

Fig. 2.5. The self-consistent periodic structures in Ho, calculated at
different temperatures. Each circle represents the magnitude and direc-
tion of the ordered moment in a specific plane, relative to the size of the
moment at absolute zero (10µB), indicated by the length of the horizon-
tal lines. The orientation of moments in adjacent planes is depicted by
the positions of neighbouring circles.

(a) The 12-layer zero-spin-slip structure at 4K. The open circle in the
centre indicates the ferromagnetic component in the cone structure.
(b) The 11-layer one-spin-slip structure at 25K. The bunched pairs of
moments are disposed unsymmetrically with respect to the easy axis in
the vicinity of the spin slip.
(c) The 19-layer structure at 50K. The orientation of the moments in
successive layers is determined by following first the filled circles in an
anticlockwise direction, as indicated, and then the open circles.
(d) The 9-layer trigonal structure at 75K. This may be looked upon as
a three-spin-slip structure, but the bunching is so slight that it is more
useful to regard it as an almost regular helix, in which every third plane
aligns its moments close to an easy axis, in order to reduce the anisotropy
energy.
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in J (q), so that the structure at 25K has reduced its periodicity to 11
layers by introducing a regularly-spaced series of spin slips, at which one
plane of a bunched doublet is omitted while the remaining member ori-
ents its moments along the adjacent easy axis. The configuration of Fig.
2.5(b), in which one spin slip is introduced for each repeat distance of
the perfect commensurable structure, is the primordial spin-slip struc-
ture and has a number of interesting features. It is particularly stable,
existing over a range of temperature (Gibbs et al. 1985), possesses a
net moment, and the bunching angle is still rather small. Although the
angle 2φ between two bunched planes is almost constant, the exchange
interaction distorts the structure near the spin slips so that the moments
are not symmetrically disposed around the easy axis. As the tempera-
ture is increased further, the bunching decreases and the concept of spin
slips becomes less useful. Thus the configuration of Fig. 2.5(d) can be
considered as a distorted three spin-slip structure, but it is simpler to
regard it as a commensurable, almost regular helix in which every third
plane aligns its moments close to an easy axis in order to reduce the
anisotropy energy.

The spin-slip structures of Ho have been subjected to a careful and
extensive neutron-diffraction study by Cowley and Bates (1988). They
interpreted their results in terms of three parameters:

b - the number of lattice planes between spin slips,

2α - the average angle between the moments in a bunched pair,

σG - a Gaussian-broadening parameter for α.

In a perfect, undistorted structure, α = φ and σG = 0. The parameter
σG takes into account two effects; the distortions which occur in perfect
periodic structures such as that illustrated in Fig. 2.5(b), and possible
irregularities in the positions of the spin-slip planes. The former is in
principle included in the calculations, whereas the latter is not. From
the calculated magnetic structures, such as those illustrated in Fig. 2.5,
it is possible to deduce the corresponding neutron-diffraction patterns
and hence, by fitting the peak intensities, determine the values for α
and σG (Mackintosh and Jensen 1990). The parametrization suggested
by Cowley and Bates is in practice rather satisfactory; it allows a fit of
all the calculated neutron-diffraction intensities, which vary over about
five orders of magnitude, with a relative error of in all cases of less than
20%. Furthermore, the parameter α is close to the average values of
the angle φ determined directly from the calculated structures. The
measured and calculated values of α are in good agreement, taking into
account the experimental uncertainties, but there are some discrepan-
cies in σG. It is noteworthy that the agreement between the predicted
and observed neutron-diffraction intensities is very good for the b = 11,
one-spin-slip structure, but that the experimental values of σG otherwise
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lie consistently above the theoretical. This may indicate that the per-
fect periodicity of the less stable spin-slip structures is more effectively
disturbed by imperfections.

As may be seen from Table 2.1, the easy direction in Er is the c-
axis at high temperature, so the moments order in a longitudinal-wave
structure at TN . As the temperature is reduced, the structure squares
up, as discussed in Section 2.1.4. The basic wave-vector Q describ-
ing the magnetic ordering increases approximately linearly just below
TN (Atoji 1974; Habenschuss et al. 1974). This is not in accord with
the quadratic dependence predicted by (2.1.35b) and furthermore, since
J ′(3Q) is probably negative, the predicted change in Q also has the
opposite sign to that observed. This behaviour can only be accounted
for if J (q) is temperature dependent, as is indicated even more clearly
at lower temperatures, where Q starts to decrease quite rapidly. At
T ′
N � 52K, a basal-plane component begins to order, through the mech-

anism described in Section 2.1.5. When the temperature is lowered fur-
ther, Q continues to decrease, exhibiting a number of plateaux, and a
rich harmonic structure is observed (Atoji 1974; Habenschuss et al. 1974;
Gibbs et al. 1986). Very detailed neutron-diffraction measurements by
Cowley (1991) have revealed a whole sequence of commensurable struc-
tures with decreasing temperature, with Q = 2/7, 3/11, 7/26, 4/15,
5/19, 6/23, and 1/4, in units of 2π/c. At 18K, a first-order transition to
a steep cone, with an opening angle of 30◦ and a wave-vector of ∼ 5/21,
is observed.

To explain these results, we may employ a modified version of the
model of Jensen (1976b), in which crystal fields, isotropic exchange, and
dipolar interactions are included. In addition, the anisotropic two-ion
coupling, which is required by the observed excitation spectrum and dis-
cussed in Section 6.1, is also taken into account. Mean-field calculations
then predict that the structure in the intermediate temperature range is
an elliptic cycloid, the hodograph of which at 48K, just below the transi-
tion temperature, is shown in Fig. 2.6. As discussed in Section 2.1.5, an
additional second-order transition may occur below T ′

N , to a phase with
a non-collinear, elliptical ordering of the basal-plane moments. In the
presence of random domains, the neutron-diffraction patterns from the
two structures are essentially indistinguishable, and if this transition oc-
curs in Er, the fluctuations expected near a second-order transition may
also be suppressed, because it is then likely that it coincides with one
of the first-order commensurable transitions. The model calculations
indicate that the non-collinear component in the basal plane is close
to becoming stable when the cycloidal phase is disrupted by the first-
order transition to the cone phase. Hence it is most probable that the
moments in Er are ordered in a planar elliptic-cycloidal structure in the
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whole interval between TC and T ′
N , but it is possible that a non-collinear

basal-plane component is present in some of the commensurable struc-
tures just above TC .

Fig. 2.6. The calculated mag-
netic structure in Er at 48K. Each
arrow represents the magnitude and
orientation, in the a-c plane, of the
ordered moment in a specific plane
normal to the c-axis, relative to the
magnitude of the moment at abso-
lute zero (9µB), indicated by the
length of the line along the a-axis.
The hodograph is very close to an
ellipse, with semi-axes of length 6.5
and 2.2µB , and this structure can be
considered as comprising four planes
of moments with a positive compo-
nent along the c-axis, followed by
three with a negative moment, with
the designation (43).

The structure shown in Fig. 2.6 comprises four planes of moments
with a positive component along the c-axis, followed by three with a neg-
ative moment. The basic wave-vector is therefore 2/7, and we may de-
scribe the structure as (43). The other commensurable structures listed
above are then respectively 2×(443), 2×(4434443), (4443), 2×(44443),
(444443), and (44) where, in each case, blocks of n moments with a
positive component along the c-axis alternate with negative blocks, and
the doubling is necessary to ensure periodicity if the number of blocks is
odd. These calculations give a good account of the neutron-diffraction
results of Cowley (1991). The lattice strains associated with a number
of these structures have been studied with synchrotron X-rays by Gibbs
et al. (1986). The fundamental wave-vector for the oscillating c-axis
strain in a structure like (44), which has inversion symmetry, is twice
that of the magnetic structure. However, the other examples above do
not have inversion symmetry, so charge-scattering of X-rays may occur
at the fundamental magnetic wave-vector. In the cone phase, the X-ray
scattering at the fundamental wave-vector of the helical component is
anomalously large, even though the longitudinal lattice-strain must be
very small. There is however also a contribution from charge scattering
associated with a transverse strain, discussed at the end of the previ-
ous section, which may arise when the mirror symmetry normal to the
c-axis is broken, as it is in this structure. The hexagonal symmetry of a
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particular plane is then maintained, but it suffers a lateral displacement
which follows the direction of the helical component of the moment.

The transition from the cycloidal to the cone structure in Er at 18
K reflects a shift in the balance between a number of competing effects.
At this low temperature, the entropy is not important, since most of the
moments are close to their saturation value near TC , nor does the dif-
ference between the single-ion crystal-field anisotropy energy in the two
phases play a significant role. Because of cancellation among the three
contributions, the axial anisotropy is relatively insensitive to the angle
between the c-axis and the moments, the average value of which does
not, in any case, change much at the transition. The small amplitude of
the basal-plane components ensures that the hexagonal-anisotropy en-
ergy also has only a minor influence. Hence the choice between the two
phases is dominated by the two-ion contributions to the energy. From
the spin-wave dispersion relation, discussed in Section 6.1, the difference
J⊥(Q)−J⊥(0) is estimated to be about 0.07–0.1meV, strongly favour-
ing a modulated structure. The tendency towards a modulation of the
c-axis component is opposed by three effects. Firstly, the anisotropy of
the classical dipole–dipole contribution reduces J‖(Q) − J‖(0) by 0.03
meV to about 0.04–0.07meV. Secondly, the modulated ordering of the
c-axis component cannot take full advantage of the large value of J‖(Q),
because of the squaring up which occurs as the temperature is decreased.
The energy due to the coupling of the longitudinal component of the mo-
ments is

Uζζ = −1
4N

∑

n odd

J‖(nQ)〈Jζ(nQ)〉2 = −1
2NJ ‖(Q)〈|Jζ |〉2, (2.3.1a)

introducing the effective coupling parameter J ‖(Q). At high tempera-

tures, close to TN , the two coupling parameters J ‖(Q) and J‖(Q) are

equal, but as the higher odd harmonics gradually develop, J ‖(Q) de-
creases, and when the structure is close to the square wave, we find from
(2.1.36) that

J ‖(Q) � 8

π2

{J‖(Q) + 1
9J‖(3Q) + · · ·}. (2.3.1b)

Just above the cone transition, the model calculations indicate that
J ‖(Q) is reduced by 0.02–0.03meV, compared to J‖(Q), which in com-
bination with the dipolar term removes most of the energy difference
between the modulated and ferromagnetic ordering of the c-axis compo-
nent. The final contribution, which tips the balance into the cone phase
below TC , is the magnetoelastic energy associated with the α-strains

Uα
me = −1

2 (c11 − c66)(ε11 + ε22)
2 − 1

2c33ε
2
33 − c13(ε11 + ε22)ε33. (2.3.2)
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The abrupt change in the uniform α-strains (Rhyne and Legvold 1965b)
at the transition to the cone phase reduces this energy by 0.19meV/ion
(Rosen et al. 1973), corresponding to an increase of J (0) by about 0.01
meV. In the cycloidal phase, there is also a longitudinal-strain mode
at wave-vector 2Q, which disappears in the cone phase, but the energy
gained by this distortion is estimated to be very small. Since the c-axis
moment is substantially squared up in the cycloidal phase just above
the transition, the change of the α-strains cannot have its origin in the
single-ion magnetoelastic coupling, which does not distinguish between
positive and negative moments. It must rather be caused by the strain-
dependence of the two-ion interaction

∆Hme = −
∑

ij

[
I1(ij){ε11(i) + ε22(i)}+ I3(ij)ε33(i)

]
JiζJjζ , (2.3.3)

which is that part of eqn (2.2.32) which changes at the transition. If
the basal-plane moments and the single-ion magnetoelastic terms are
assumed to be the same immediately above and below TC , ∆Hme gives
rise to the following changes at the transition:

(c11 − c66)∆(ε11 + ε22) + c13∆ε33 = N{I1(0)− I1(Q)}〈|Jζ |〉2

c13∆(ε11 + ε22) + c33∆ε33 = N{I3(0)− I3(Q)}〈|Jζ |〉2,
(2.3.4)

where the bars denote effective coupling parameters, as in (2.3.1), and
∆εαα = εαα(cone)−εαα(cycloid). Since the elastic constants are known,
and the strains are ∆ε33 = 3.1 · 10−3 and ∆(ε11+ ε22) = −2.4 · 10−3, the
two-ion magnetoelastic-coupling parameters may be determined from
this equation. The nature of this magnetoelastic contribution implies
that it should be possible to suppress the cone phase in Er by apply-
ing hydrostatic pressure. In the zero-temperature limit, the energy dif-
ference between the two phases is estimated to be only about 0.033
meV/ion, so a hydrostatic pressure of about 2.5 kbar, or alternatively a
uniaxial pressure along the c-axis of only about half this amount, should
be sufficient to quench the cone. The application of this modest pres-
sure should then allow experimental studies of the cycloidal phase in
Er below 18K, to ascertain, for example, whether the transition to the
phase with an elliptical ordering of the basal-plane moments occurs. We
shall return to this two-ion magnetoelastic interaction when we discuss
Er films and superlattices.

The negative value of B0
2 in Tm is large and B0

6 is also negative, as
may be seen in Table 2.1, so that the moments are firmly anchored to
the c-direction, and no ordered basal-plane component appears at any
temperature. A longitudinal-wave structure forms at 56K, and starts
to square up at about 40K, as the amplitude approaches the free-ion
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moment of 7.0µB. At 32K, there is a first-order transition to a com-
mensurable state, with a seven-layer repeat distance, which has a fer-
romagnetic component (Brun et al. 1970). At the lowest temperatures,
this has developed into a ferrimagnetic square-wave structure, compris-
ing a repeating pattern of four layers of positive moments followed by
three of negative moments. These structures, the susceptibility curves
of Fig. 2.1, and the excitation spectrum have been used to determine
the parameters of a model for Tm with the usual basic ingredients of
isotropic exchange, crystal fields, and dipolar interactions (McEwen et
al. 1991). As shown in Fig. 2.7, the observed squaring-up process is very
well accounted for by mean-field calculations based on this model. The
principal discrepancy with experiment is in the magnitude of the field
along the c-axis which is required to form a ferromagnetic structure,
where the calculation gives a value about 50% above the observed 28
kOe. This may indicate that the form of J (q) in Tm which, as illus-
trated in Fig. 1.17, has the largest peak in the whole heavy rare earth
series, changes substantially at this first-order transition.

The magnetic structures of the light rare earths have not generally
been described in the same detail as those of the hcp metals, with the
exception of Nd, which has been intensively studied for several decades.

Fig. 2.7. The calculated harmonics of the c-axis moment in Tm as a
function of temperature, compared with the results of neutron diffraction

measurements, and the ferromagnetic moment (7Q).
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Such is the complexity of the observed neutron diffraction patterns, how-
ever, that it is only recently that a reasonably complete delineation of
the ordered moments has been attained (Zochowski et al. 1991). At the
Néel temperature of 19.9K, a weakly first-order transition leads to a
longitudinal-wave structure propagating in a b-direction on the hexag-
onal sites of the dhcp structure, with an incommensurable periodicity
given by Qh = 0.13b1. The moments on neighbouring hexagonal lay-
ers are ordered antiferromagnetically. Simultaneously, a c-axis moment
(plus a small component in the basal plane) with the same Q is induced
on the cubic sites by the anisotropic two-ion coupling. The moments on
neighbouring cubic layers are also ordered antiferromagnetically. As the
temperature is further lowered, another first-order transition at 19.2K
establishes a double-Q structure, with wave-vectors Q1 and Q2 aligned
approximately along a pair of b-axes but canted slightly, so that the
angle between them is somewhat less than 120◦. The polarization vec-
tors of the moments in the two waves are also canted away from the
corresponding b-axes and towards each other, but by a different amount
from the wave-vectors, so that the waves are no longer purely longitudi-
nal. Compared with the single-Q structure, this arrangement increases
the average ordered moment, which is further augmented, as the tem-
perature is lowered, by a squaring-up of the structure, which generates
harmonics in the neutron-diffraction pattern. Simultaneously, the period
gradually increases. At 8.2K, the planar components of the moments on
the cubic sites begin to order, and after undergoing a number of phase
transitions, the structure at low temperatures is characterized by the
four Q-vectors illustrated in Fig. 2.8. Although all four periodicities are
present on each type of site, Q1 and Q2, which are now aligned pre-
cisely along b-axes, but have different magnitudes 0.106b1 and 0.116b1,
generate the dominant structures on the hexagonal sites, while Q3 and
Q4, which have lengths 0.181b1 and 0.184b1 and are canted towards each
other, predominate on the cubic sites. The different types of Q-vector
are interrelated; within the experimental uncertainty Q3 + Q4 = 2Q1,
and the canting of Q3 and Q4 is related to the difference in length
between Q1 and Q2.

The explanation of these structures from first principles in terms
of the elementary magnetic interactions is clearly a formidable task
but, as we have seen in Section 2.1.6, the ordering on the hexagonal
sites at high temperatures can be satisfactorily accounted for by a phe-
nomenological Landau expansion of the free energy in terms of the or-
der parameters, and the role of the different interactions thereby clar-
ified. The anisotropic two-ion coupling between the dipoles confines
the moments to the basal plane and tends to favour the longitudinal-
wave structure. Two-ion coupling between the quadrupoles, proba-
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Fig. 2.8. The relative orienta-
tions and magnitudes of the funda-
mental wave-vectors which describe
the quadruple-Q magnetic structure
of Nd at low temperatures. All four
periodicities are present on each type
of site, but Q1 and Q2 generate the
dominant structures on the hexago-
nal sites, while Q3 and Q4 predom-
inate on the cubic sites.

bly of magnetoelastic origin, lifts the degeneracy between the different
multiple-Q structures and stabilizes the single-Q state just below TN .
The Landau expansion can also explain the rotation of the wave-vectors
and moments away from the b-axes, with the consequent stabilization of
the double-Q configuration, and account for the observed harmonics in
this structure. A similar analysis for the quadruple-Q structure in the
low-temperature region would provide the basis for understanding the
even more complicated phenomena which are observed when a magnetic
field is applied to Nd (Zochowski et al. 1991).

2.3.2 The magnetization of Holmium

The analytical mean-field treatment by Nagamiya et al. (1962) of the
effect of a magnetic field applied in the plane of a helical structure was
mentioned in Section 1.5. As the field is increased, the helix first distorts,
giving rise to a moment along H, and then undergoes a first-order tran-
sition to a fan structure, in which the moments oscillate about the field
direction. A further increase in the field reduces the opening angle of
the fan which, in the absence of magnetic anisotropy, goes continuously
to zero, establishing a ferromagnetic phase at a second-order transition.
Hexagonal anisotropy may modify this process by inducing a first-order
transition or, if it is large enough, eliminate the fan phase entirely.

The magnetization curves measured by Strandburg et al. (1962) and
Féron (1969) behaved in accordance with this description at low tem-
peratures, but above about 40K when the fan phase was first observed,
a further phase also appeared, manifested by a plateau corresponding to
a moment about one half of that attained in the fan phase. This extra
phase was clearly apparent in the magnetoresistance measurements of
Mackintosh and Spanel (1964), and later experiments by Akhavan and
Blackstead (1976), in which the field was changed continuously, revealed
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as many as five different phases at some temperatures. The structures
in a magnetic field were investigated with neutron diffraction by Koehler
et al. (1967), who identified two intermediate phases which they called
fans and characterized by the intensity distribution of the Bragg peaks.

These phenomena have been elucidated by means of calculations of
the effect of a magnetic field on the commensurable structures of Fig.
2.5 (Jensen and Mackintosh 1990). At low temperatures, the hexagonal
anisotropy has a decisive influence on the magnetic structures, ensuring
that a first-order transition occurs from the helix or cone to the ferro-
magnet, without any intermediate phases. Below about 20K, where the
cone is the stable structure in zero field, the cone angle is almost indepen-
dent of the applied field in the basal plane, but at the transition to the
ferromagnet, the c-axis moment disappears. When the field is applied
in the hard direction at these temperatures, the moments just above the
ferromagnetic transition do not point along the field direction, but are
aligned very closely with the nearest easy axis, so that 〈J‖〉 � 8 · √3/2,
as illustrated in Fig. 1.20. As the field is further increased, they turn
towards it, becoming fully aligned through a second-order phase transi-
tion at a critical field which is estimated from B6

6 to be about 460kOe
at absolute zero. At low temperatures, the hexagonal anisotropy also
hinders the smooth distortion of the helix in a field. The moments jump
discontinuously past the hard directions as the field is increased, giving
first-order transitions which may have been observed, for example, as
low-field phase boundaries below 20K in the measurements of Akhavan
and Blackstead (1976).

Above about 40K, when the hexagonal anisotropy is not so domi-
nant, intermediate stable phases appear between the helix and the fer-
romagnet. The nature of these phases may be appreciated by noting
that the helix can be considered as blocks of moments with components
alternately parallel and antiparallel to the field, as is apparent from the
structures illustrated in Fig. 2.5. If we write this pattern schematically
as (+ − + −), then the fan structure may be described as (+ + + +).
The intermediate structures, the helifans, then correspond to patterns
of the type specified in Table 2.2. The notation helifan(p) is used to
designate a structure whose fundamental period is p times that of the
helix (the single number p is not generally adequate for discriminating
between the different helifans). It is clear that these structures repre-
sent compromises between the demands of the exchange for a periodic
structure, and the field for a complete alignment of the moments. They
are not due to the hexagonal anisotropy which, on the contrary, tends
to suppress them, and occur both when the field is applied along the
easy and hard directions in the plane. The free energies of the various
magnetic phases as a function of magnetic field in the easy direction at
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Table 2.2. The arrangement of blocks of spins in the helifan
structures. The first row shows the relative number of (−)

blocks in the different structures.

Helifan

Helix (4) (3) (3/2) (2) Fan

1/2 3/8 1/3 1/3 1/4 0

+ + + + + +
− + + + + +
+ + + − + +
− − − + − +
+ + + + + +
− − − − + +
+ + + + + +
− − + + − +
+ + + − + +
− + − + + +
+ + + + + +
− − − − − +

50K are shown in Fig. 2.9. In these calculations, the wave-vector Q
was allowed to vary in small, discrete steps, by changing the repeat dis-
tance, and the absolute minimum in the free energy for the structure
thereby determined, as illustrated in the insert to Fig. 2.9, leading to
the prediction that the stable magnetic structures follow the sequence
helix → helifan(3/2) → fan → ferromagnet as the field is increased. The
helifan(3/2) is depicted in Fig. 2.10. In a narrow interval between the he-
lix and the helifan(3/2), other stable phases appear, e.g. the helifan(4′)
(+ + − + + − + −), and similarly a sequence of helifans with m (+)
blocks followed by a (−) (m ≥ 3) occurs in the close neighbourhood of
the fan phase. The various structures are associated with characteristic
neutron-diffraction patterns. An examination of the neutron-diffraction
intensities which Koehler et al. (1967) associate with the phase which
they designate as ‘Fan I’ reveals a striking correspondence with the heli-
fan(3/2) pattern, with a very weak fundamental at Q0/3, where Q0

is approximately the wave-vector of the helix, strong second and third
harmonics, and a weak fourth harmonic. The basic periodicities of this
structure are 2Q0/3 for the component of the moments parallel to the
field, and Q0 for the perpendicular component; the weak Q0/3 peak
arises as the result of interference between them. Similar but more de-
tailed neutron-diffraction results have more recently been obtained by
Axe et al. (1991). The changes in the basic wave-vector are substantial,
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Fig. 2.9. Mean-field calculation of the free energy per ion for different
magnetic structures in Ho at 50K, as a function of the magnetic field
along an easy b-axis. The free energy is in each case minimized with re-
spect to the wave-vector which characterizes the structure, as illustrated

for the fan phase in the insert.

even though the underlying exchange function is constant, and they

agree very well with those observed by neutron diffraction. For the helix,

fan and helifan(3/2) structures, the experimental (theoretical) values of

Q are respectively 0.208 (0.211), 0.170 (0.168), and 0.063 (0.066), times

2π/c. The period of the fan phase increases relative to that of the he-

lix because of the resulting increase in the opening angle of the fan,

expressed by the relation (1.5.21). This allows a decrease in the ex-

change energy which is greater than the concomitant increase of the

Zeeman energy. The change in Q in the various helifan phases is there-

fore to a very good approximation proportional to their magnetization.
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Fig. 2.10. The helifan(3/2) struc-
ture in Ho at 50K. The moments lie
in planes normal to the c-axis and
their relative orientations are indi-
cated by arrows. A magnetic field of
11 kOe is applied in the basal plane,
and moments with components re-
spectively parallel and antiparallel
to the field are designated by filled
and open arrow-heads. This compo-
nent of the moments has a period-
icity which is 3/2 that of the corre-
sponding helix, and the helicity of
the structure changes regularly.

A detailed consideration (Mackintosh and Jensen 1990) of the mag-
netization curves measured in Ho indicates that the metastable heli-
fan(2) may replace or co-exist with the stable (3/2)-structure, if the
measurements are made so rapidly that complete thermodynamic equi-
librium is not attained. Other stable or metastable helifans may be
involved in the five phases observed by Akhavan and Blackstead (1976).
In addition, the very pronounced hysteresis which they observed is con-
sistent with the existence of a large number of phases which have almost
the same energy, but are not easily transformed into each other.

The stability of the various periodic structures is determined by the
form of the two-ion coupling, especially the long-range component. If
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the exchange is sufficiently short-range, the helix, helifans and fan are
almost degenerate at the critical field; it is the interaction between the
blocks which differentiates between these structures. One of the most
remarkable features of the helifans is the large number of hexagonal
layers involved in a single period, a characteristic which they share with
the commensurable structures observed in zero field in Ho and Er, which
were discussed in the preceding sub-section.

Helifans, or analogous structures, may also occur in other rare
earth systems where periodic ordering is observed. For example, the
modulated structures in Nd discussed previously may be described as
(+ − + − + − + −), indicating blocks of moments with a component
parallel or antiparallel to a magnetic field applied in the basal plane. A
periodic reversal of (−) blocks will then generate subharmonics of the
basic Q-vector. Thus the sequence (+ + + − + − + −) generates Q/4,
and (+ + + − + + + −) gives Q/2, both of which have been observed
by neutron diffraction in a magnetic field (Zochowski et al. 1991).

2.3.3 Films and superlattices

The development of the technique of molecular-beam epitaxy has allowed
the fabrication on a substrate of films of rare earth metals, with thick-
nesses ranging from a few to thousands of atomic planes. In addition,
superlattices, or multilayers, of the form [Al|Bm]n may be produced, in
which blocks comprising l planes of element A, followed by m planes of
element B, are replicated n times. It is clear that an endless variety of
such systems may be constructed, and the field is in a stage of rapid de-
velopment. We will restrict ourselves to a discussion of some of the new
physical principles involved in understanding the magnetic properties of
such structures, illustrated by a few specific examples.

The essential difference between these structures and a bulk crystal
lies, of course, in the boundary conditions. Films and superlattices are
finite in one dimension, whereas a bulk crystal is assumed to be essen-
tially unbounded, and the magnetic layers are terminated by a medium
which may have very different magnetic properties, be it a vacuum, a
rare earth with quite different moments and interactions, or a nominally
non-magnetic metal such as Y, which is a very popular choice for the
intermediate layers in superlattices.

The influence of the finite size on the orientation of the ordered mo-
ments is illustrated in Fig. 2.11, which depicts the results of a mean-field
calculation, based on the model of Larsen et al. (1987), for a 15-plane
slab of Ho at 4K. The bunched commensurable helix encompassing the
inner 12 planes is enclosed by a single and a double plane, aligned almost
ferromagnetically with the respective outer planes. These ferromagnetic
clusters distort the adjacent bunched pairs in a manner reminiscent of
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spin slips. Such ferromagnetic terminations at the surfaces of slabs con-
taining planes of rotating moments are a general feature, reflecting the
predominantly ferromagnetic interaction between closely neighbouring
planes in the magnetic rare earths. This coupling normally gives rise to
a net moment in the slab, and is calculated to stabilize ferromagnetic
ordering at 4K in samples thinner than about nine atomic planes (Bohr
et al. 1989).

Fig. 2.11. Mean-field calculation of the orientation of the magnetic
moments in a 15-plane slab of Ho at 4K. The inner planes are close
to a bunched commensurable helix, but there is a strong tendency to

ferromagnetism near the surfaces.

The effect of the epitaxial strain is strikingly illustrated by the be-
haviour of thin films and superlattices of Dy and Er grown on Y, in both
of which ferromagnetism is suppressed, by somewhat different mecha-
nisms, in favour of periodic magnetic ordering. In 16-plane Dy films
embedded in Y in a variety of [Dy16|Ym] multilayers, with the c-axis
normal to the plane of the slab, Rhyne et al. (1989) found that the helix
persists to the lowest temperatures, and the ferromagnetic state is only
induced if a field of the order of 10 kOe is applied in the easy direction.
An obvious mechanism for this quenching of ferromagnetism is the con-
straint which the Y slabs impose on the Dy layers, so that the γ-strains
which provide the principal driving force for the transition cannot be
fully developed.

The ferromagnetic ordering of the axial moment is also suppressed
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in c-axis films and superlattices of Er (Borchers et al. 1988), but the
explanation in this case is not quite so evident. The dipolar energies are
unchanged in the films, nor is it likely that the anisotropy and exchange
contributions are decisively different. The strain-dependence of the ex-
change energy, expressed in eqn (2.3.3), can however provide a mecha-
nism. Y has a planar lattice-constant a of 3.648 Å, which is over two per
cent greater than that of Er, and the Y substrate therefore imposes a
strain on the Er film, which is measured to be ε11 = ε22 � 6×10−3. If the
atomic volume is assumed to be unchanged in the film, ε33 � −12×10−3.
The difference in exchange energy between the solid and a thin film may
then be found from (2.3.4), and is equivalent to a field of 13 kOe acting
on the c-axis moment of about 8µB . The above estimate of ε33 is prob-
ably too great, so this calculation may be considered in reasonably good
agreement with the observation that Er films with thicknesses between
860 Å and 9500 Å require fields varying linearly between 8kOe and 3kOe
to establish a ferromagnetic state at 10K. It is noteworthy that, since
Lu has a significantly smaller basal-plane lattice-constant than Er, the
cone structure should be favoured in a c-axis epitaxial film grown on Lu.

Many of the characteristic features of rare earth superlattices are
demonstrated by the aforementioned [Dy|Y] systems, which are observed
to form helical structures over the whole temperature range of magnetic
ordering. When the c-axis is normal to the plane of the film, a coherent
magnetic structure may be formed, in which the phase and chirality of
the helix are maintained over many bilayers, provided that the slabs of
non-magnetic Y are not too thick. The coherence length may be esti-
mated from the widths of the neutron-diffraction peaks, and corresponds
to more than 10 bilayers if the Y layers are less than about 10 planes
thick. If the thickness is increased to about 35 planes, however, the
coherence length, which is inversely proportional to the width of the Y
layers, is less than the bilayer thickness, so that the helix in one Dy layer
is uncorrelated with that in the next. In the long-range coherent struc-
tures, the phase change of the helix across the Dy layers corresponds
to a turn angle which varies with temperature and shows a tendency to
lock in to 30◦, with associated bunching. The phase change across the
Y layers, on the other hand, is independent of temperature and the turn
angle takes the much larger value of about 50◦, which is characteristic of
the periodic structures formed by dilute alloys of magnetic rare earths
in bulk Y. It therefore appears that the magnetic order is propagated
through the Y layers by a spin-density wave, which is incipient in the
unperturbed metal, and is associated with the very large susceptibility
χ(Q) of the conduction electrons. The helical ordering in the Dy layers
of the c-axis superlattice is disturbed by edge effects of the type illus-
trated for the Ho film in Fig. 2.11. Consequently, the ordered helical
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moment falls below the saturation value of 10µB at low temperatures,
even though the total integrated magnetic scattering corresponds to the
fully saturated moment. At higher temperatures, the coupling of the net
ferromagnetic moment in a Dy layer to an applied magnetic field breaks
the coherence of the helical structure between the layers well before the
transition to the true ferromagnetic phase occurs. A b-axis superlattice,
on the other hand, fails to form a coherent magnetic structure even when
the Y layer is as thin as 9 planes, since the static susceptibility at q = 0,
which is required to propagate the ferromagnetic coupling between the
basal planes of the Dy layers through the Y, is not particularly high. The
Dy layers therefore form helical magnetic structures with wave-vectors
in the plane of the layers, but no coherence of phase or chirality between
the layers.


