
2.2 The magnetic anisotropy

In this section, we shall discuss the thermal expectation-values of the
Stevens operators of the single ions when their moments are non-zero,
so that |〈Ji〉| = σJ . We shall then consider the contribution which
the single-ion terms in the Hamiltonian make to the free energy, and
thereby derive the relationship between the microscopic parameters and
the macroscopic magnetic-anisotropy and magnetoelastic coefficients.

2.2.1 Temperature dependence of the Stevens operators

In a ferromagnet, the Zener power-law (1.5.15) for the expectation values
of the Stevens operators is valid only at the lowest temperatures. Callen
and Callen (1960, 1965) have derived 〈Om

l 〉 in exchange-dominated sys-
tems and obtained results which are useful over a much wider temper-
ature range than the Zener expression. They begin with the density
matrix for a single site in the MF approximation, including only the
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exchange and Zeeman energies,

ρMF(x) = 1

Z
exp(xJz/J) ; x = β{J (0)J2σ + gµBJH}, (2.2.1)

where σ = M/M0 is the relative magnetization, the direction of which
is assumed to be parallel to the field. In this case the nth moment of Jz

is determined as

σn = 〈(Jz/J)n〉 = 1

Z

J∑
p=−J

( p

J

)nexp(xp/J). (2.2.2)

This equation offers the possibility of relating the higher moments σn to
the first moment, which is the relative magnetization σ1 = σ, without
referring explicitly to the MF value of x in eqn (2.2.1). According to the
analysis of Callen and Shtrikman (1965), the functional dependence of
σn on σ has a wider regime of validity than the MF approximation, be-
cause it only utilizes the exponential form of the density matrix, which
is still valid when correlation effects are included in the random-phase
approximation, where the excitations are collective spin-waves, as we
shall discuss in Section 3.5. Furthermore, they found that the functions
σn = σn(σ); n ≥ 2, derived from (2.2.2), only depend very weakly on the
actual value of J , and for increasing values these functions rapidly con-
verge towards the results obtained in the limit of infinite J (Callen and
Callen 1965). In this limit, the sums in (2.2.2) are replaced by integrals,
and the reduced diagonal matrix-elements of the Stevens operators are

(1/J (l)) <Jz = p |Om
l | Jz = p>

∣∣
J→∞ = δm0clPl(u = p/J), (2.2.3)

where the J (l) are defined by eqn (1.5.25), Pl(u) are the Legendre poly-
nomials, and cl are constants. Multiplying the terms in the sum in
(2.2.2) by ∆p = J∆u = 1, and then taking the limit J → ∞, we obtain

1
clJ

(l)
〈O0

l 〉 =
∫ 1

−1

Pl(u)exudu

/ ∫ 1

−1

exudu = Il+ 1
2
(x)

/
I 1

2
(x) = Îl+ 1

2
(x).

(2.2.4)
Îl+ 1

2
(x) is the usual shorthand notation for the ratio of Il+ 1

2
(x) to I 1

2
(x),

and the functions Il+ 1
2
(x) = (−i)l+ 1

2 Jl+ 1
2
(ix) are the modified spherical

(or hyperbolic) Bessel functions. The relative magnetization

σ = Î 3
2
(x) = coth x − 1

x

is the familiar Langevin function L(x) and, eliminating x in (2.2.4) by
writing x = L−1(σ), we finally arrive at

〈Om
l (σ)〉 = δm0clJ

(l)Îl+ 1
2
[σ] with Îl+ 1

2
[σ] = Îl+ 1

2

(L−1(σ)
)
,

(2.2.5)
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for the thermal average of the Stevens operators as functions of σ =
σ(T, H), where c2 = 2, c4 = 8, and c6 = 16. This result has turned out
to be very useful for analysing the variation of the magnetic anisotropies
and the magnetoelastic strains with temperature and magnetic field. In
order to take full advantage of the theory, σ in eqn (2.2.5) is usually
taken as the experimental value. If this is not available, it is a bet-
ter approximation to use the correct MF value for it, rather than the
Langevin-function, i.e. σ = BJ (x) where BJ (x) is the Brillouin func-
tion (1.2.31), determined directly from (2.2.2), because the actual value
of J has some influence on the magnitude of σ. This is particularly
true for the change of σ with magnetic field. In the limit of infinite J ,
∂σ/∂(JH) � (1 − σ)gµB/(J2J (0)) at low temperatures, which is just
a factor of three smaller than the MF value for J = 6, which agrees
reasonably well with experiments on Tb.

The functions Îl+ 1
2
(x), for l = 2, 3, · · · are most easily calculated

from the recurrence relation

Îl+ 3
2
(x) = Îl− 1

2
(x) − 2l + 1

x
Îl+ 1

2
(x). (2.2.6)

At low temperatures, where x � 1 and σ � 1− 1
x , it may easily be shown

from (2.2.6) that Îl+ 1
2
[σ] � σl(l+1)/2 (differences appear only in the third

order of m = 1−σ). Hence the result (2.2.5) of the Callen–Callen theory
agrees with the Zener power-law in the low-temperature limit. With
increasing temperature, as x becomes comparable to 1, the exponential
terms in the expansion of σ � 1 − 1

x + 2exp(−2x) + · · ·, which have no
counterpart in the classical Zener power-law, start to be important. In
Chapter 5, we shall develop a detailed description of the excitations in
the ferromagnet, the spin-waves. The thermal population of the spin-
wave states is described by Bose statistics, assuming the availability of
an infinite number of states of the single angular-momentum operators.
The spin-wave theory reproduces the result of the Callen–Callen theory,
in an expansion in powers of m = 1 − σ, but only if the exponential
corrections above are negligible. The appearance of these terms at high
temperatures signals the breakdown of the Bose approximation for the
spin-wave excitations, which occurs because the actual number of states
is not unlimited. As would be anticipated, this limitation in the number
of states (or bandwidth if J is infinite) begins to be effective when the
population of the uppermost level, which in the MF approximation is
just proportional to exp(−2x), becomes significant. In the limit of a
small relative magnetization, where x � 1, the Zener power-law and the
spin-wave theory are both inadequate, whereas the Callen–Callen theory
may still be applicable. In this limit, we may use the approximation

Îl+ 1
2
[σ] =

3l

(2l + 1)!!
σl ; σ � 1. (2.2.7)
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One of the advantages of the Callen–Callen theory is that the results
only depend on the one parameter σ, but not explicitly on the Hamil-
tonian. The relative magnetization may then be determined either by
experiment, or by MF or more accurate theories, which result in a σ
which depends on the actual Hamiltonian employed. The simplicity of
this result may be impaired if the magnetic anisotropy of the system is
substantial, so that the exchange interaction is no longer the dominant
term in the density matrix. We shall be mostly concerned with the ap-
plicability of the theory at low temperatures, and the introduction of an
axial-anisotropy term, such as B0

2O0
2(Ji), is not inimical to the theory

in this regime, provided that the magnetization is along the anisotropy
c-axis, i.e. if B0

2 is negative. Since only the lowest states are important
at low temperatures and, in the MF approximation, these are still rea-
sonably well accounted for by the density matrix in eqn (2.2.1), only the
value of x is changed, with no direct consequences for the result. There
are however noticeable effects if the anisotropy destroys the rotational
symmetry about the magnetization axis. This is the case if B0

2 is positive
and forces the moments to lie in the basal plane, so that it requires a
magnetic field to pull them out of it, whereas they may rotate much more
freely within the plane, since B6

6 is unimportant compared to the axial
anisotropy. As we shall discuss in detail in Chapter 5, the ground state
in this situation is no longer the fully-polarized state, the expectation
value of Jz is slightly smaller than J at zero temperature, and the lower
symmetry of the anisotropy field has direct consequences for the nature
of the elementary spin-wave excitations, and thus for the form of the
density matrix. The necessary modification of the Callen–Callen theory
may be developed in two ways. One is to analyse the influence of the
anisotropy on the low-temperature elementary excitations, and thereby
derive the density matrix, as is done in Chapter 5. The other approach
is numerical and involves the construction of a Hamiltonian which has
the right transition temperature and the correct anisotropy fields, in the
MF approximation. ρMF may then be calculated as a function of tem-
perature, and results corresponding to (2.2.5), relating the expectation
values of the various Stevens operators to the relative magnetization,
may be obtained numerically. By the same argumentation as that used
by Callen and Shtrikman (1965), these results may be expected to be
insensitive to the actual model Hamiltonian used for describing the sys-
tem. In the low temperature limit, the spin-wave theory supports this
point of view, as its results are described in terms of only two param-
eters. One is the relative magnetization σ, as before, while the other,
b̃ or η± = (1 ± b̃)(1 − 1

2 b̃2), measures the eccentricity of the anisotropic
potential about the axis of magnetization.

In our discussion of the Callen–Callen theory, we have assumed
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that the quantization axis (z-axis), defining the Stevens operators, co-
incides with the direction of magnetization. We shall continue to use
this convention, but must then take account of the difficulty that the
crystal-field Hamiltonian in the hcp metals only has the simple form
of eqn (1.4.6b) if the quantization axis is chosen to be along the c- or
ζ-direction. In order to distinguish between the two systems, we shall
denote the Stevens operators in the Hamiltonian defined with respect
to the crystallographic axes, i.e. in the (ξ, η, ζ)-coordinate system, by
Qm

l (J). The direction of magnetization, the z-axis, is specified by the
polar angles (θ, φ) in the (ξ, η, ζ)-coordinate system, and we must intro-
duce the following transformation of the angular momentum operators
in Qm

l (J):

Jξ = Jz sin θ cosφ − Jx cos θ cosφ + Jy sin φ

Jη = Jz sin θ sin φ − Jx cos θ sin φ − Jy cosφ

Jζ = Jz cos θ + Jx sin θ,

(2.2.8)

choosing the y-axis to lie in the basal-plane. By this transformation,
Qm

l is expressed as a linear combination of the Stevens operators Om′
l ,

with the same l but various m′-values. For instance, we have

Q0
2 = 3J2

ζ − J(J + 1)

= 3J2
z cos2 θ + 3J2

x sin2 θ + 3
2 (JzJx + JxJz) sin 2θ − J(J + 1)

= 1
2O0

2(3 cos2 θ − 1) + 3
2O2

2 sin2 θ + 3O1
2 sin 2θ.

(2.2.9)
Carrying out the same transformation on Q2

2 we find the following rela-
tions:

Q0
2 = 1

2 (−O0
2 + 3O2

2)

Q2
2 = 1

2 (O0
2 + O2

2) ; φ = pπ,
(2.2.10)

when the moment is in the basal-plane (θ = π/2). The expectation value
of Q2

2 is relevant for determining the γ-strain εγ1, as shown in (1.5.29).
According to the result (2.2.5) of Callen and Callen, 〈O2

2〉 should vanish,
but in a basal-plane ferromagnet this may not occur. The eccentricity
parameter mentioned above is just defined as

b̃ = 〈O2
2〉/〈O0

2〉, (2.2.11)

which is zero, by definition, only if the anisotropy is invariant with re-
spect to a rotation about the z-axis.

The numerical programme sketched above has been carried through
for a model corresponding to Tb. The effective basal-plane anisotropy
is about a factor of 10 smaller than the axial anisotropy, so that b̃ is
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about −0.03 at zero temperature. The negative sign of b̃ shows that the
fluctuations of the moments within the plane are larger than those out of
the plane, as measured respectively by 〈J2

y 〉 and 〈J2
x〉, since O2

2 = J2
x−J2

y .
In Fig. 2.2 the numerical results for 〈O0

2 ± O2
2〉/J (2) are compared with

the predictions of the Callen–Callen theory, and of the linear spin-wave
theory developed in Chapter 5, in which the MF values (5.3.23) of mo

and bo are used, instead of (5.3.18). The Callen–Callen theory predicts
that both thermal averages vary like Î5/2(σ), which is not consistent
with a b̃ different from zero. Furthermore, the effective power-laws in
the zero-temperature limit are changed from σ3 to 〈O0

2 − O2
2〉 ∝ σ2.65,

and 〈O0
2 + O2

2〉 ∝ σ3.3. The predictions of the spin-wave theory are con-
sistent with the numerical results at low temperatures, both with respect
to the absolute magnitude of the expectation values and to the effective
power-laws, and it appears to give a reasonably correct description of

Fig. 2.2. Calculations of the dependence of the expectation values
of the Stevens operators 〈O0

2 ± O2
2〉 on the relative magnetization in Tb.

The numerical calculations described in the text differ from the Callen–
Callen result Î5/2(σ), but agree at low temperatures with the predictions

of spin-wave theory.
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the system as long as σ is greater than about 0.8. The same picture holds
true for other combinations of Stevens operators, but the discrepancies
between the different theories are accentuated as the rank increases.
Figure 2.3 shows the example of 〈Q6

6〉. The absolute magnitude of this
quantity is reduced by nearly 40% in the zero-temperature limit, as
compared with the Callen–Callen theory, and the slope of the numerical
calculation, in the semi-logarithmic plot, changes with σ, leading to an
effective power-law depending on the interval over which it is measured.
In the zero-temperature limit, 〈Q6

6〉 is proportional to approximately
σ26, instead of the Callen–Callen result σ21.

Fig. 2.3. The dependence on the relative magnetization of the expec-
tation value of the Stevens operator 〈Q6

6〉, which determines the hexag-
onal magnetic anisotropy, in Tb. The numerical calculations and the
spin-wave theory both predict a large reduction in this quantity at low

temperatures, compared with the Callen–Callen theory.

The numerical results are expected to be sensitive to the magnitude
of the anisotropy, rather than to the actual parameters which determine
the anisotropy, and the spin-wave theory indicates that this expectation
is fulfilled, at least at low temperatures. However, in order to obtain
the right variation of the anisotropy fields with temperature, i.e. of b̃
compared to σ, it is necessary to select appropriate linear combinations
of Stevens operators of various ranks for the modelling of the different
anisotropy terms. At high temperatures, for instance, b̃ is determined
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by the low-rank terms alone, i.e. by B0
2 if anisotropic dipole–dipole cou-

pling is neglected. Using β = (kBT )−1 as an expansion parameter, and
assuming the magnetization to lie in the basal plane, we find, to leading
order in the crystal-field parameters introduced in eqn (1.4.6b),

〈Q2
2〉 = 3

5J (2)σ2 J + 3
2

J + 1
� J (2)Î5/2[σ], (2.2.12a)

using (2.2.7) and neglecting the small 1/J corrections, whereas

〈Q0
2〉 = −〈Q2

2〉 − 4
5J (2)(J + 1)(J + 3

2 )βB0
2 , (2.2.12b)

which depends on the anisotropy, but only on the term of lowest rank.
Considering the field dependence of the two expectation values, as de-
termined by their dependence on σ, we observe that the Callen–Callen
theory leads to the right result in this high-temperature limit. The two
relations above explain the behaviour of 〈O0

2 ± O2
2〉 in Fig. 2.2, when σ

becomes small, as 〈O0
2 +O2

2〉/2J (2) should approach Î5/2(σ) at small val-
ues of σ, and go to zero at the transition temperature. 〈O0

2 −O2
2〉/2J (2),

on the other hand, should still be non-zero (about 0.23 as determined
by TN � 229K and the value B0

2 = 0.18meV used in the model) when
TN is approached from below and σ vanishes.

2.2.2 Anisotropic contributions to the free energy
The anisotropy of a magnetic system is determined by those contribu-
tions to the free energy which depend on the polar angles (θ, φ), which
specify locally the direction of the moments. Restricting ourselves to
the case of a ferromagnet in a uniform field, we may expand the free
energy in terms of functions proportional to the spherical harmonics, as
in eqn (1.5.22). To relate this expansion to the Hamiltonian (2.1.1), we
may use (2.1.5), which states that any change in the free energy due to a
change of the angles is given by δF̃ =

〈
δH〉

. The field is the independent
variable in F̃ but, as in (2.1.22), we wish the magnetization to be the in-
dependent variable. To obtain this free energy F (θ, φ), we subtract the
Zeeman energy, so that F (θ, φ) = F̃ − 〈HZ〉, where the field needed for
establishing the specified angles is determined from the equilibrium con-
dition δF̃ = 0. In the ferromagnet, the moments all point in the same
direction, and any contributions from the isotropic-exchange coupling
cancel out in δH. The free-energy function F (θ, φ) is thus determined
by

δF (θ, φ) =
〈
δ(Hcf + HZ)

〉 − δ
〈HZ

〉
. (2.2.13)

Introducing the angle variables in the Hamiltonian by the transformation
(2.2.8), we find that the operators of rank l become angle-dependent
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linear combinations of the l-rank Stevens operators, which have their
polar axis along the z-axis defined by the direction of the moments. The
variational expression for the free energy then involves the calculation of
the expectation values of these Stevens operators. To leading order in the
crystal-field parameters, we may neglect the influence of the anisotropy
terms on the thermal averages in (2.2.13). This is the approximation
used by Callen and Callen, and we may utilize their result, eqn (2.2.5).
This has the consequence that, in the various linear combinations of
Stevens operators, only those terms in which m = 0 contribute to the
free energy, to leading order in the anisotropy parameters. From the
expansion (2.2.9) of Q0

2, we find the following result:〈
δ
(
Q0

2

)〉 � 〈O0
2〉δ

{ 1
2 (3 cos2 θ − 1)

}
and, repeating this calculation for the other operators, we have in general〈

δ
(
Q0

l

)〉 � 〈O0
l 〉δPl(cos θ) ;

〈
δ
(
Q6

6

)〉 � 1
16 〈O0

6〉δ
{

sin6 θ cos 6φ
}
.

(2.2.14)
Because 〈Jx〉 = 〈Jy〉 = 0, the Zeeman terms in (2.2.13) cancel within
this approximation, and an integration of δF (θ, φ) leads to

F (θ, φ)/N � f0+
∑

l

B0
l 〈O0

l 〉Pl(cos θ)+ 1
16B6

6〈O0
6〉 sin6 θ cos 6φ. (2.2.15)

Comparing this result with the free energy expression (1.5.22), and in-
troducing the anisotropy parameters κm

l (T ), we obtain to a first approx-
imation

κ0
l (T ) = clB

0
l J (l)Îl+ 1

2
[σ] ; κ6

6(T ) = B6
6J (6)Î13/2[σ], (2.2.16)

with σ = σ(T ), which leads to eqn (1.5.24) at zero temperature (σ = 1).
The equilibrium values of the angles in zero field are determined

by ∂F (θ, φ)/∂θ = ∂F (θ, φ)/∂φ = 0. In the above result for the free
energy, the φ-dependence is determined exclusively by B6

6 , the sign of
which then determines whether the a- or b-directions are the magneti-
cally easy or hard axes in the basal-plane (φ0 = pπ/3 or π/2 + pπ/3).
Because B6

6 is a sixth-rank coupling parameter, the importance of this
anisotropy decreases rapidly with the magnetization; Î13/2[σ] ∝ σ21 at
low temperatures, or σ6 when σ is small. The axial anisotropy derives
from all four parameters, and the equilibrium value θ0 is determined by
minimizing

f(u = cos θ) = F (θ, φ0)/N − f0

= 1
2κ0

2(3u2 − 1) + 1
8κ0

4(35u4 − 30u2 + 3)

+ 1
16κ0

6(231u6 − 315u4 + 105u2 − 5) − |κ6
6|(1 − u2)3.

(2.2.17)
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Equation (2.2.16) shows that the various anisotropy parameters depend
differently on temperature. At high temperatures, κ0

2 dominates and
its sign determines whether the moments are parallel or perpendicu-
lar to the c-axis. As the temperature is decreased, the importance of
the higher-rank terms grows, putting increasing weight on the terms of
fourth and sixth power in cos θ. The equilibrium value θ0(T ) of θ may
therefore change as a function of temperature, as occurs in Ho and Er,
and also in Gd where, however, the theory of this section is not imme-
diately applicable.

The coefficients in the expansion for the free energy may be ob-
tained from experimental studies of the magnetization as a function of
the magnitude and direction of an applied magnetic field. The axial
part of the anisotropy is predominantly determined by the three κ0

l -
parameters, and it is not usually easy to separate their contributions.
At low temperatures, where the higher-rank terms become relatively im-
portant, the axial anisotropy in the heavy rare earths is frequently so
strong that it is only possible to change θ by a few degrees from its equi-
librium value. Under these circumstances, it is only possible to measure
the components of the susceptibility, allowing a determination of the
second derivatives of F (θ, φ) in the equilibrium state (θ, φ) = (θ0, φ0).
The x-axis lies in the symmetry z–ζ plane and the transverse part of the
susceptibility tensor is diagonal with respect to the (x, y)-axes. With a
field hx applied in the x-direction, the moments rotate through an angle
δθ = θ − θ0, giving a component 〈Jx〉 = −〈Jz〉δθ = χxxhx. Introducing
the notation Fθθ ≡ ∂2F (θ, φ)/∂θ2 at (θ, φ) = (θ0, φ0), and similarly for
the other second derivatives, we may write

F = F (θ0, φ0) + 1
2Fθθ(δθ)

2 + 1
2Fφφ(δφ)2 + N〈Jz〉δθhx,

in the limit where the field goes to zero. The term Fθφ = 0, because
sin 6φ0 = 0. At equilibrium, δθ = −N〈Jz〉hx/Fθθ, which determines the
susceptibility. When the field is applied in the y-direction, i.e. along the
direction (− sin φ0, cosφ0, 0), the Zeeman contribution to F is

N〈Jz〉hy sin θ sin (φ − φ0) = N〈Jz〉hy sin θ0δφ,

with 〈Jy〉 = −〈Jz〉 sin θ0δφ = χyyhy. Minimizing the free energy in the
presence of a field along the y-axis, we may derive the other susceptibility
component, obtaining

χxx = N〈Jz〉2/Fθθ ; χyy = N〈Jz〉2 sin2 θ0/Fφφ. (2.2.18)

In calculating χyy, we have assumed that θ0 �= 0; if θ0 = 0 then
χyy = χxx. Equation (2.2.18) is also valid in the presence of an ex-
ternal field, provided that the effects due to the Zeeman contribution,
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FZ = −NgµBH · 〈J〉, are included explicitly in F (θ0, φ0) and its deriva-
tives. Introducing the expression (2.2.17) for the free energy, in the
two cases where the moments are either parallel or perpendicular to the
c-axis, we find

1/χxx = 1/χyy = −(3κ0
2+10κ0

4+21κ0
6)/(σJ)2 ; θ0 = 0, (2.2.19a)

or

1/χxx = (3κ0
2 − 15

2 κ0
4 + 105

8 κ0
6 + 6|κ6

6|)/(σJ)2

1/χyy = 36|κ6
6|/(σJ)2

; θ0 =
π

2
,

(2.2.19b)
which must be positive if the structure is to be stable. In order to deter-
mine the higher derivatives of the free energy, a transverse field greater
than that corresponding to the linear regime described by the (zero-field)
susceptibility must be applied. The application of a large magnetic field
perpendicular to the magnetization axis, in a strongly anisotropic sys-
tem, creates a large mechanical torque, which may cause practical prob-
lems with maintaining the orientation of the crystal. If the experimental
facilities do not allow the determination of the higher derivatives, the
different temperature dependences of the various anisotropy parameters
may yield a rough separation of their contributions to the total axial
anisotropy. However the Callen–Callen theory is an approximation, the
corrections to which are important if the anisotropy is large, and there
are other contributions to the free energy than those which we have
considered above.

The results derived above are only valid if the anisotropy energies
are small compared to the exchange energy. In order to demonstrate the
kind of modifications which may appear in higher order, we shall consider
the simplest possible case, where only B0

2 is non-zero, and we shall only
calculate the free energy at zero temperature in the MF approximation,
i.e. the ground-state energy of a single site subjected to the exchange
field hex = 〈Jz〉J (0), with 〈Jz〉 = σJ . In this case, the MF Hamiltonian
(2.1.16) is

H = −(Jz − 1
2σJ)σJJ (0) − h(Jz cos θ + Jx sin θ)

+ B0
2

[
3J2

z cos2 θ + 3J2
x sin2 θ + 3

2 (JzJx + JxJz) sin 2θ − J(J + 1)
]
,

(2.2.20)
in an applied field h along the ζ-axis. With the Jz-eigenstates as the
basis, the leading-order ground-state energy is

E0
0 = <J |H | J > = −(1− 1

2σ)σJ2J (0)−hJ cos θ+B0
2J (2)(3 cos2 θ−1).
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The off-diagonal matrix elements involving the ground state are

<J − 1 |H | J > =
{
6(J − 1

2 )B0
2 cos θ − h

}
(J/2)1/2 sin θ

<J − 2 |H | J > = 3
2{2J (2)}1/2B0

2 sin2 θ.

We shall only be concerned with terms up to second order in B0
2 and h, so

that we may use second-order perturbation theory, and it is sufficiently
accurate to approximate the energy differences between the ground state
and the first and second excited-states by respectively ∆1 = JJ (0) and
∆2 = 2JJ (0). Because of the mixing of the states, σ = 〈Jz〉/J =
1−m becomes slightly smaller than 1, but this only affects the exchange
contribution quadratic in m, as (1− 1

2σ)σ = 1
2 (1−m2). To second order,

the ground-state energy is found to be

E0(h) = −1
2J2J (0) − hJ cos θ + B0

2J (2)(3 cos2 θ − 1)

− 1
2

{
6(J − 1

2 )B0
2 cos θ − h

}2 sin2 θ/J (0) − 9
4 (J − 1

2 )(B0
2)2 sin4 θ/J (0).

(2.2.21)
The minimum condition ∂E0/∂θ = 0 leads to

h = h0 = 6(J − 1
2 )B0

2

[
1 + 3B0

2 sin2 θ/{2JJ (0)}] cos θ or sin θ = 0,

to second order in B0
2 . The free energy F (θ, φ) at zero temperature is

then, in both cases,

F (θ, φ)/N = E0(h0) + h0Jσ cos θ

= −1
2J2J (0) + 1

2 κ̃0
2(3 cos2 θ − 1) + 3

4bκ̃0
2 sin4 θ,

with
κ̃0

2 = 2B0
2J (2) ; b = −3B0

2/{2JJ (0)}, (2.2.22a)

and the relative magnetization is σ = 1 − (J − 1
2 )b2 sin4 θ. The b-

parameter introduced here is the leading order contribution to b̃, de-
fined in (2.2.11), when θ = π/2. One important feature illustrated by
this calculation is that the Om

2 -term in Q0
2, with m odd, is cancelled

by the Zeeman contribution, to second order in B0
2 . This is a conse-

quence of the freedom to replace the equilibrium condition ∂F/∂θ = 0
by the requirement that 〈Jx〉 (and 〈Jy〉) should vanish, by definition,
with the implication that the matrix-element <J − 1 |H | J > must be
zero within the present approximation. Bowden (1977) did not take the
Zeeman effect into account, and therefore obtained an erroneously strong
renormalization of the anisotropy. The second derivatives of F (θ, φ) are
Fφφ = 0, and

Fθθ/N = −3κ̃0
2(1 − b sin2 θ) cos 2θ + 3

2 κ̃0
2b sin2 2θ. (2.2.22b)
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There is no change in the axial susceptibility in the axial ferromag-
net, for which θ = 0, but the higher derivatives are affected by the
modifications κ0

2(0) = κ̃0
2(1 − 4

7b) and κ0
4(0) = 6

35bκ̃0
2. The correction

to the Callen–Callen theory is proportional to b, which is of the order
1/J times the ratio between the anisotropy and the exchange energy
(∝ B0

2J (2)/J2J (0)), and hence becomes smaller for larger values of J .
This calculation may be extended to higher order and to non-zero tem-
peratures, but the complications are much reduced by the application of
the Holstein–Primakoff transformation which utilizes directly the factor
1/J in the expansion, as we shall see in the discussion of the spin-wave
theory in Chapter 5.

In the ferromagnetic phase, the ordered moments may distort the
lattice, due to the magnetoelastic couplings, and this gives rise to addi-
tional contributions to F (θ, φ). We shall first consider the effects of the
γ-strains by including the magnetoelastic Hamiltonian, incorporating
(1.4.8) and (1.4.11),

Hγ =
∑

i

[1
2cγ(ε2γ1 + ε2γ2) − Bγ2

{
Q2

2(Ji)εγ1 + Q−2
2 (Ji)εγ2

}
− Bγ4

{
Q4

4(Ji)εγ1 − Q−4
4 (Ji)εγ2

}]
,

(2.2.23)

retaining only the lowest-rank couplings (l = 2 and 4 of respectively the
γ2 and γ4 terms). The equilibrium condition

∂F/∂εγ1 =
〈
∂Hγ/∂εγ1

〉
= 0, (2.2.24)

and similarly for εγ2, leads to the equilibrium strains

εγ1 =
(
Bγ2〈Q2

2〉 + Bγ4〈Q4
4〉

)
/cγ

εγ2 =
(
Bγ2〈Q−2

2 〉 − Bγ4〈Q−4
4 〉)/cγ .

(2.2.25)

The conventional magnetostriction parameters C and A are introduced
via the equations

εγ1 = C sin2 θ cos 2φ − 1
2A sin4 θ cos 4φ

εγ2 = C sin2 θ sin 2φ + 1
2A sin4 θ sin 4φ

(2.2.26a)

(Mason 1954). Expressing Qm
l in terms of Om

l , and retaining only the
terms with m = 0, we may derive these parameters from (2.2.25), ob-
taining

C = 1

cγ
Bγ2J

(2)Î5/2[σ]

A = − 2

cγ
Bγ4J

(4)Î9/2[σ].
(2.2.26b)
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Within this approximation, the γ-strain contribution Fγ(θ, φ) to the free
energy is

Fγ(θ, φ) =
〈Hγ

〉
= −1

2cγ

(
ε2γ1 + ε2γ2

)
N

= −1
2cγ

(
C2 sin4 θ + 1

4A2 sin8 θ − CA sin6 θ cos 6φ
)
N,
(2.2.27)

showing that these strains affect the axial-anisotropy parameters κ0
l (T ),

introducing effects of higher rank than l = 6, and that the six-fold
anisotropy in the basal plane is now

κ6
6(T ) = B6

6J (6)Î15/2[σ] + 1
2cγCA. (2.2.28)

When both C and A are non-zero, the maximum area-conserving elon-
gation of the hexagonal planes varies between |C + 1

2A| and |C − 1
2A|,

which results in a φ-dependent magnetoelastic energy, and thus a contri-
bution to κ6

6. The γ-strain hexagonal anisotropy decreases more slowly
(like σ13 at low temperatures) than the B6

6 term, as σ decreases, and
therefore dominates at sufficiently high temperatures.

The ε-strains may be included in a similar way. Retaining only the
lowest-rank coupling Bε1 ≡ B

(l=2)
ε1 in eqn (1.4.12), we have

Hε =
∑

i

[1
2cε(ε

2
ε1 + ε2ε2) − Bε1

{
Q1

2(Ji)εε1 + Q−1
2 (Ji)εε2

}]
. (2.2.29)

Introducing the magnetostriction parameter Hε of Mason (1954) (the
index ε should prevent any confusion with the magnetic field) by

εε1 = 1
4Hε sin 2θ cosφ ; εε2 = 1

4Hε sin 2θ sin φ, (2.2.30a)

we obtain within the Callen–Callen theory

Hε = 2

cε
Bε1J

(2)Î5/2[σ], (2.2.30b)

and the ε-strain contribution to the free energy

Fε(θ, φ) = − 1
32NcεH

2
ε sin2 2θ. (2.2.31)

The α-strains (1.4.10) do not influence the symmetry of the system, but
they do make a contribution, essentially proportional to 〈Q0

2〉, to the
anisotropy, the effects of which may be derived in the same way as those
of the γ- and ε-strains. The magnetoelastic contributions to the free en-
ergy can be estimated experimentally if the elastic constants are known,
by a determination of the strains as a function of the magnetization. The
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knowledge of the equilibrium strains may also be used for a reasonable
estimate of the magnetoelastic modifications of the second derivatives,
provided that the additional assumption is made that the couplings of
lowest rank are dominant. For example, the higher-rank γ-strains in the
basal-plane magnet make contributions to the axial anisotropy which
cannot be written in terms of C and A in eqn (2.2.27). A more direct
estimate of the contributions to the second derivatives requires an exper-
imental determination of how the strains behave when the direction of
the magnetization is changed. In basal-plane ferromagnets, such as Tb
and Dy, it may be possible to observe the φ-dependence of the strains
(Rhyne and Legvold 1965a), whereas if the axial anisotropy is large, it
may be very difficult to determine the variation of the strains with θ.
In the case of the α-strains, the argument that the (l = 2) couplings are
dominant is not sufficient for a determination of their effect on the axial
anisotropy. The reason is that the two-ion magnetoelastic couplings of
lowest rank, i.e. the dipolar interactions

∆Hα
me = −

∑
ij

[{
D10(ij)εα1 + D20(ij)εα2

}
Ji ·Jj

+
{
D13(ij)εα1 + D23(ij)εα2

}
JiζJjζ

]
,

(2.2.32)

may be important. This is the case in Tb and Dy, as shown by the
analysis of the stress-dependence of the Néel temperatures (Bartholin et
al. 1971). These interactions affect the α-strains, but they contribute
differently to the axial anisotropy from the (l = 2)-terms in the single-ion
magnetoelastic Hamiltonian (1.4.10).

The simplifications introduced in the above discussion of the ferro-
magnet may also be utilized in non-uniform systems, because the MF
approximation allows the individual ions to be treated separately. How-
ever, the isotropic two-ion contributions no longer cancel in δF (θ, φ) in
(2.2.13), since the direction of the exchange field depends on the site
considered. We consider as an example the helically ordered phase. If
we neglect the bunching effect due to the hexagonal anisotropy, the axial
anisotropy is independent of the site considered. Treating the ions as
isolated, but subject to a constant exchange-field, we may calculate F o

θθ,
corresponding to 1/χ o

xx, and then use (2.1.19) to account for the induced
exchange-field due to an applied field in the x- or c-direction, modulated
with a wave-vector q along the c-axis. If the two-ion coupling between
the moments is allowed to be anisotropic, the leading order result is

1/χxx(q) = J⊥(Q) − J‖(q) +
(
3κ0

2 − 15
2 κ0

4 + 105
8 κ0

6

)
/(σJ)2. (2.2.33)

This is the anisotropy parameter which determines the plane in which
the moments spiral, and it vanishes at the temperature T ′

N at which
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the c-axis moments begin to order. Just below T ′
N , the c-component is

modulated with the wave-vector Q′ at which J‖(q) has its maximum,
and only if Q′ = Q is the structure the tilted helix. If Q′ = 0, so that the
c-axis moments are ferromagnetically ordered, the resulting structure is
the cone.

The magnetoelastic contributions require special treatment when
the structures are modulated, because of the limited ability of the lattice
to adapt to various strain configurations, when the strains are spatially
modulated. The magnetoelastic Hamiltonians considered above are only
strictly valid in the uniform case, but they may be generalized to non-
uniform structures by replacing the strains by their local values εαβ(i), at
least in the limit where the wavelength of the modulation is much longer
than the range of the interactions. At shorter wavelengths, the form
of the magnetoelastic-interaction Hamiltonian may still be applicable,
but the effective coupling parameters may depend on the wave-vector.
This suggests that the above discussion may be largely unchanged if
the magnetic structure is modulated, provided that we take account of
the new constraints which we shall now examine. The displacement of
the ith ion, u(Ri) = R̃i − Ri, from its equilibrium position Ri may
be divided into a uniform and a non-uniform component, and the non-
uniform part may be written as a linear combination of contributions
from the normal phonon modes at various wave-vectors. It follows from
this that a displacement of the ions which varies with a certain wave-
vector should be describable in terms of the normal phonon modes at
that particular wave-vector, in order to ensure that such a displacement
is compatible with the lattice.

To be more specific, we shall consider the wave-vector to be along
the c-axis in the hcp lattice. In the double-zone representation, which
neglects the two different displacements of the hexagonal layers, there
are only three normal modes; one longitudinal and two energetically-
degenerate transverse modes. All three modes correspond to rigid dis-
placements of the hexagonal layers. The γ-strains describe an elongation
of these layers along a certain direction in the plane. If the γ-strains are
uniform within each hexagonal layer, the magnitude or the direction of
the elongation cannot be allowed to vary from one layer to the next,
as this would destroy the crystal. Hence, even though 〈Q2

2(Ji)〉 in the
equilibrium equation for εγ1(i), corresponding to eqn (2.2.25), varies in
a well-defined way in a helical structure with Q along the c-axis, εγ1(i)
is forced to stay constant. The site-dependent version of (2.2.25) is only
valid when the right-hand sides are replaced by their averages with re-
spect to any variation along the c-axis, and these averages vanish in
the helix. This phenomenon was named the lattice clamping effect by
Cooper (1967), and further discussed by Evenson and Liu (1969). One
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of its consequences is that the γ-strain contributions (2.2.27) to the free
energy cancel out in the helical phase. This behaviour of the γ-strains
therefore enhances the tendency of the wave-vector of the helix to jump
to one of the two commensurable values Q = 0 or 2π/c, or may in-
crease the stability of other commensurable structures which have a net
moment in the basal-plane.

The only strain modes which are allowed to vary along the c-axis
are those deriving from the transverse modes, which are εε1(i) and
εε2(i), and the longitudinal component ε33(i). Like the γ-strains, the
α-strains ε11(i) and ε22(i) must remain constant. In the longitudinally
polarized phase, the ε-strains are not affected by the ordered moment.
The uniform α-strains are determined by the average of Q0

l (Ji) and, in
addition, the c-axis moments induce a non-uniform longitudinal-strain
mode ε33(i) ∝ 〈Jiζ〉2 at the wave-vector 2Q, twice the ordering wave-
vector. The amplitude ε2Q, in ε33(i) = ε2Q cos (2QRiζ), may be de-
termined by the equilibrium conditions for the single sites, with the
magnetoelastic-coupling parameters replaced by those corresponding to
2Q. The longitudinal strain at site i is directly related to the displace-
ment of the ion along the ζ-axis; ε33(i) = ∂uζ/∂Riζ and hence uζ(Ri) =
(2Q)−1ε2Q sin (2Q ·Ri). Below T ′

N , where 〈Jiξ〉 becomes non-zero, the
cycloidal ordering induces an εε1-strain, modulated with the wave-vector
2Q. The presence of a (static) transverse phonon mode polarized along
the ξ-direction corresponds to ∂uξ/∂Riζ = ε13(i) + ω13(i) �= 0, whereas
∂uζ/∂Riξ = ε13(i) − ω13(i) = 0. Hence it is εε1(i) + ω13(i), with
ω13(i) = εε1(i), which becomes non-zero, and not just ε13(i) = εε1(i).
In these expressions, ω13(i) is the antisymmetric part of the strain ten-
sor, which in the long-wavelength limit describes a rigid rotation of the
system around the η-axis. Because such a rotation, in the absence of ex-
ternal fields, does not change the energy in this limit, the magnetoelastic
Hamiltonian may still be used for determining εε(i). Only when the rela-
tion between the strains and the transverse displacements is considered,
is it important to include the antisymmetric part. In helically-ordered
systems, the γ-strains are zero, due to the clamping effect, as are the
ε-strains, because the moments are perpendicular to the c-axis. Only
the α-strains may be non-zero, and because 〈Q0

l (Ji)〉 are independent of
the direction of the basal-plane moments, the α-strains are the same as
in the ferromagnet (we neglect the possible six-fold modification due to
B66

α in (1.4.10)). Their contributions to the axial anisotropy (2.2.33), to
be included in κ0

l , are also the same as in the ferromagnetic case. In the
basal-plane ferromagnet, the ε strains contribute to the axial anisotropy
1/χxx in eqn (2.2.19b):

∆(1/χxx) =
1

N(σJ)2
∂2Fε/∂θ2 = −1

4cεH
2
ε /(σJ)2 ; θ0 =

π

2
, (2.2.34)
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as derived from (2.2.31). It is straightforward to see that we get the
equivalent contribution in the helix at q = 0 in eqn (2.2.33), except that
the coupling parameters in (2.2.34) should have the effective values at
the wave-vector Q. In the conical phase, both εε1(i) and εε2(i) become
non-zero, 90◦ out of phase with each other, corresponding to a transverse
displacement of the planes, in a direction which follows the orientation
of the moments in the basal plane.


