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MAGNETIC STRUCTURES

The mean-field theory introduced in the previous section is used in this
chapter as a basis for examining some of the magnetic structures as-
sumed by the rare earth metals. The theory is presented at length in
the first section. Beginning with the expression for the free energy, some
general results are established for the magnetization, and applied ana-
lytically to the calculation of the susceptibility in the high-temperature
limit. The mean-field approximation is then developed, and a numerical
method for solving the resulting equations self-consistently, for magnetic
structures which are commensurable with the lattice, is described. The
Landau expansion of the free energy in terms of the order parameters
of the magnetic system provides the starting point for a discussion of
a number of the periodic magnetic structures which arise as a result
of the long range of the indirect-exchange interaction. The ordering
temperatures are calculated by analytical means, and the relative sta-
bility of different structures compared. In the following section, the
important extension by Callen and Callen of the Zener power-law for
the temperature dependence of the magnetic anisotropy is derived. The
thermal expectation values 〈Om

l 〉 of the Stevens operators are calcu-
lated and their dependence on the magnetization determined. From the
free energy, the magnetic anisotropy and the magnetoelastic coefficients
are deduced. We conclude with a detailed discussion of some magnetic
structures, using the aforementioned analytical methods, supplemented
by numerical calculations, to help identify those characteristics of the
magnetic interactions which lead to the stability of different moment-
configurations under various conditions. This account is illustrated by
various examples, with emphasis on the the diverse magnetic phases of
Ho. Among other structures, we consider the ferromagnet, the cone, the
helix, the longitudinal wave, the cycloid, and commensurable spin slips.
The effect of a magnetic field in stabilizing fan and helifan structures,
and the ordering of thin films and superlattices, are also discussed.

2.1 Mean-field theory of magnetic ordering

The simplest form of Hamiltonian which is adequate to explain the oc-
currence of most of the observed magnetic structures is

H =
∑
i

Hcf(i)− 1

2

∑
ij

J (ij)Ji ·Jj +HZ, (2.1.1a)
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where the first sum is the single-ion crystal-field Hamiltonian

Hcf(i) =
∑

l=2,4,6

B0
l O

0
l (Ji) +B6

6O
6
6(Ji), (2.1.1b)

the two-ion term is assumed to be isotropic, and the Zeeman term is

HZ = −
∑
i

µi ·Hi. (2.1.1c)

The field may vary spatially, so that we must specify its value on each
site, writing Hi ≡ H(Ri), and the magnetic moment on the ith ion is
µi = gµBJi.

The static-susceptibility tensor may be derived as the second deriva-
tive of the free energy, and we shall therefore begin by recapitulating a
few basic thermodynamic results. The free energy is

F = U − TS = − 1

β
lnZ, (2.1.2)

where U is the internal energy, S the entropy, and β = (kBT )
−1. The

partition function is

Z = Tr
{
e−βH}

=
∑
p

e−βEp . (2.1.3)

Tr indicates the trace over a complete set of states, and the final sum-
mation may be performed if the eigenvalues Ep of the Hamiltonian are
known. The expectation value of an operator A is

〈A〉 = 1

Z
Tr

{
Ae−βH}

. (2.1.4)

The derivative of the free energy with respect to a variable x is

∂F

∂x
= − 1

βZ

∂Z

∂x
=

1

Z
Tr

{
∂H
∂x

e−βH
}

=
〈∂H
∂x

〉
. (2.1.5)

This expression is obtained by utilizing the invariance of the trace to the
basis used, assuming it to be independent of x and a cyclic permutation
of the operators, thus allowing a conventional differentiation of the ex-
ponential operator, as may be seen by a Taylor expansion. This result is
general, but the exponential operator can only be treated in this simple
way in second derivatives if ∂H/∂x commutes with the Hamiltonian,
which is usually not the case. However, we may be interested only in
the leading-order contributions in the limit where β is small, i.e. at high
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temperatures. Expanding in powers of β, we may use the approximation
exp{−βH} � 1− βH + 1

2β
2H2. In this case, we may proceed as above,

and the result is

∂2F

∂x∂y
=

〈 ∂2H
∂x∂y

〉
+ β

(〈∂H
∂x

〉〈∂H
∂y

〉− 〈∂H
∂x

∂H
∂y

〉)

−β
2

2

〈[∂H
∂x

,
∂H
∂y

]
H〉

+O(β3),

(2.1.6)

where the second- and higher-order terms vanish if one of the derivatives
of H commutes with H itself.

In many instances, it is more convenient to consider the angular
momentum rather than the magnetic moment, with a corresponding
field variable hi = gµBHi, so that the Zeeman term (2.1.1c) becomes

HZ = −
∑
i

µi ·Hi = −
∑
i

Ji · hi. (2.1.7)

Since the exchange and anisotropy terms in H do not depend explicitly
on the field, ∂H/∂Hiα = −µiα and, using eqn (2.1.5), we have

〈µiα〉 = −∂F/∂Hiα or 〈Jiα〉 = −∂F/∂hiα. (2.1.8)

Next, we define the non-local susceptibilities

χµ
αβ(ij) = ∂〈µi〉/∂Hjβ = −∂2F/∂Hiα∂Hjβ , (2.1.9a)

and similarly

χJ
αβ(ij) = (gµB)

−2χµ
αβ(ij) = −∂2F/∂hiα∂hjβ , (2.1.9b)

and the corresponding Fourier transforms, e.g.

χJ
αβ(q) =

1

N

∑
ij

χJ
αβ(ij)e

−iq·(Ri−Rj) =
∑
j

χJ
αβ(ij)e

−iq·(Ri−Rj).

(2.1.9c)
The final equality only applies in a uniform system. If the field is in-
creased by an infinitesimal amount δH(q)exp(iq ·Ri), the individual
moments are changed by

δ〈µiα〉 =
∑
j

∑
β

χµ
αβ(ij)δHβ(q)e

iq·Rj , (2.1.10a)

according to (2.1.9). Hence the added harmonically-varying field intro-
duces one Fourier component in the magnetization:

δMα(q) =
1

V

∑
i

δ〈µiα〉e−iq·Ri =
N

V

∑
β

χµ
αβ(q)δHβ(q), (2.1.10b)
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proportional to the susceptibility at the wave-vector considered. The
usual definition of the susceptibility components (per unit volume),
as used in Chapter 1, is δMα(q)/δHβ(q). The susceptibility used in
(2.1.10b) differs from this by the factor V/N , i.e. we are here considering
the susceptibility per atom instead of per unit volume. Furthermore,
since we shall not make any further use of χµ

αβ(q), we shall reserve the

notation χαβ(q) for the q-dependent susceptibility χJ
αβ(q), introduced

in eqn (2.1.9b), throughout the rest of the book. So in terms of the
susceptibility per atom, ‘in units of (gµB)

2’, the above equation may be
written

δ〈Jα(q)〉 = 1

N

∑
i

δ〈Jiα〉e−iq·Ri =
∑
β

χαβ(q)δhβ(q), (2.1.10c)

with the upper index J in χJ
αβ(q) being suppressed from now on.

2.1.1 The high-temperature susceptibility

In order to calculate χ(q) in zero field, we shall first use the approxi-
mation (2.1.6) to the derivative of the free energy, valid at high temper-
atures. In this limit 〈Ji〉 = 0, and only one term in the expansion is
non-zero:

χαβ(ij) = βTr
{
JiαJjβ(1 − βH)

}/
Tr

{
1− βH}

, (2.1.11)

to second order in β. The commutator in the third term on the right-
hand side of (2.1.6) is either zero or purely imaginary (if i = j and
α �= β), showing immediately that the expectation value of this term
must vanish in all cases. To first order in β, we obtain from (2.1.11)

χαβ(ij) � βTr
{
JiαJjβ

}/
Tr

{
1
}
= 1

3J(J + 1)βδαβδij ,

using the product of the eigenvectors of Jiα as the basis, and recalling
that ∑

m2 = 1
3J(J + 1)(2J + 1),

when m runs from −J to J . In order to calculate the second-order
contribution, we shall utilize the general tensor properties of the Stevens
operators, which satisfy the orthogonality condition:

Tr
{
Om

l (Ji)O
m′
l′ (Jj)

}
= δijδll′δmm′Tr

{
[Om

l (Ji)]
2
}

and Tr
{
Om

l (Ji)
}
= 0,

(2.1.12)

when l and l′ are both non-zero. O0
0 is just the identity operator. Jiα is

a linear combination of Om
1 (Ji), m = −1, 0, 1, and (2.1.12) then implies
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that the trace of the Hamiltonian (2.1.1) vanishes, and hence that the
denominator in (2.1.11) is Tr{1} = (2J + 1)N . For the second-order
term in the numerator, we find

Tr
{
JiαJjβH

}
= δijB

0
2Tr

{
JiαJiβO

0
2(Ji)

}− J (ij)Tr
{
JiαJjβJi ·Jj

}
= δijδαβB

0
2Tr

{
J2
iα[3J

2
iz − J(J + 1)]

}− δαβJ (ij)Tr
{
J2
iαJ

2
jα

}
,

utilizing that JiαJjβ is a linear combination of second- and lower-rank
tensors for i = j, and a product of first-rank tensors for i �= j. When
α = z (or ζ), we may readily calculate the first trace, using∑

m4 = 1
15J(J + 1)(2J + 1)(3J2 + 3J − 1).

The traces with α = x or α = y must be equal, and using this equality
in the case α = x, for instance, we may replace J2

x in the trace by
1
2 (J

2
x + J2

y ) → 1
2J(J + 1) − 1

2J
2
z . As the constant term multiplied by

3J2
z − J(J + 1) does not contribute (as Tr{3J2

z − J(J + 1)} = 0), the
trace with α = x or y is equal to −1/2 times that with α = z. Only the
single-ion terms contribute to the trace when i = j (J (ii) is assumed to
be zero), and of these only the lowest-rank term B0

2 appears, to leading
order. The two-ion coupling only occurs in the trace, and hence in
χαβ(ij), when i �= j, and this contribution may be straightforwardly
calculated. To second order in β, the off-diagonal terms are zero, whereas

χαα(ij) = δij
1
3J(J + 1)β

[
1− 2

5 (3δαζ − 1)B0
2(J − 1

2 )(J + 3
2 )β

]
+
[1
3J(J + 1)β

]2J (ij).

Introducing the Fourier transform of the two-ion coupling,

J (q) =
∑
j

J (ij)e−iq·(Ri−Rj), (2.1.13)

we find that, to the order considered, the inverse of the q-dependent
susceptibility may be written

1/χαα(q) =
3kBT

J(J + 1)
+(3δαζ −1)

6(J − 1
2 )(J + 3

2 )

5J(J + 1)
B0

2 −J (q)+O(1/T ).

(2.1.14)
The inverse susceptibility in the high-temperature limit thus increases
linearly with the temperature, with a slope inversely proportional to the
square of the effective paramagnetic moment (∝ {J(J + 1)}1/2). The
susceptibilities determined experimentally by magnetization measure-
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Fig. 2.1. The inverse susceptibility, in atomic units, in Tm above TN .
The full lines depict the results of a mean-field calculation and the dashed
lines are extrapolations of the high-temperature limit. Experimental val-
ues are also shown. The MF theory predicts a deviation from the high-
temperature expression as the ordering temperature is approached from

above, because of crystal-field anisotropy effects.

ments are the bulk values at zero wave-vector. The straight lines found
at high temperatures for the inverse-susceptibility components 1/χαα(0)
versus temperature may be extrapolated to lower values, as illustrated in
Fig. 2.1. The values at which these lines cross the temperature axis are
the paramagnetic Curie temperatures θ‖ and θ⊥, determined respectively

when the field is parallel and perpendicular to the c-axis (ζ-axis). The
high-temperature expansion then predicts these temperatures to be

kBθ‖ = 1
3J(J + 1)J (0)− 4

5 (J − 1
2 )(J + 3

2 )B
0
2 , (2.1.15a)

and

kBθ⊥ = 1
3J(J + 1)J (0) + 2

5 (J − 1
2 )(J + 3

2 )B
0
2 . (2.1.15b)

Hence the paramagnetic Curie temperatures are determined by the
lowest-rank interactions in the Hamiltonian, i.e. those terms for which
l+ l′ = 2. The difference between the two temperatures depends only on
B0

2 , because of the assumption that the two-ion coupling is an isotropic
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Heisenberg exchange. The mean temperature (θ‖+2θ⊥)/3 is determined

by J (0) which, from (2.1.13), is the algebraic sum of the isotropic two-
ion interactions, and this temperature may be measured directly with a
polycrystalline sample. The two basal-plane components are found to
be equal. This is not just due to the assumption of high temperatures,
but is generally valid as long as there is no ordered moment in the basal-
plane. In this case, the c-axis is a three-fold symmetry axis, or effectively
a six-fold axis, due to the symmetry of the basal-plane anisotropy B6

6 in
the Hamiltonian. The susceptibility is a second-rank tensor, according
to (2.1.9), and it cannot therefore vary under rotation about a three- or
six-fold axis.

2.1.2 The mean-field approximation

The high-temperature expansion may be extended to higher order in β,
but the calculations rapidly become more complex, so we shall instead
adopt another approach, the mean-field approximation. In this method,
the correlated fluctuations of the moments around their equilibrium val-
ues are neglected. In order to introduce 〈Ji〉 into the Hamiltonian, we
utilize the identity

Ji · Jj = (Ji − 〈Ji〉) · (Jj − 〈Jj〉) + Ji · 〈Jj〉+ Jj · 〈Ji〉 − 〈Ji〉 · 〈Jj〉.

The MF approximation then consists in neglecting the first term on
the right-hand side, which is associated with two-site fluctuations, since
i �= j. The Hamiltonian (2.1.1) is then effectively decoupled into a sum
of N independent terms for the single sites; H � ∑

iHMF(i), where

HMF(i) = Hcf(i)− Ji · hi −
(
Ji − 1

2 〈Ji〉
) ·∑

j

J (ij)〈Jj〉, (2.1.16)

in the presence of an external magnetic field hi = gµBHi. Introducing
the effective field

heff
i = hi +

∑
j

J (ij)〈Jj〉, (2.1.17a)

we may write the MF Hamiltonian

HMF(i) = Hcf(i)− Ji · heff
i + 1

2 〈Ji〉 · (heff
i − hi). (2.1.17b)

Self-consistent solutions of the MF equations may sometimes be obtained
analytically, but numerical methods may be used more generally, pro-
vided that the periodicity of the magnetic structure is commensurable
with that of the lattice. For an assumed distribution of 〈Jj〉, the effec-
tive field and hence the MF Hamiltonian for the ith site is calculated.
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Diagonalizing this Hamiltonian, we may derive the partition function
Zi, the free energy Fi, and the expectation value 〈Ji〉 for this site. The
last term in (2.1.17b) just adds a constant contribution to Fi, without
affecting 〈Ji〉. Performing this calculation for all the different ions, we
determine the various values of 〈Jj〉, and the total free energy is the
sum of the Fi. The derived values of 〈Jj〉 are used as the input for
a new MF Hamiltonian, and this iterative procedure is repeated un-
til self-consistency is attained. The self-consistent solution of the MF
Hamiltonian may be one in which 〈Ji〉 is non-zero even in zero field, thus
describing the occurrence of a spontaneous ordering of the moments.

Having found the self-consistent solution for the angular momenta,
we may proceed to calculate the susceptibility. The MF Hamiltonian for
the ith site has been diagonalized, and we shall denote the (2J+1) eigen-
states by | p >, with corresponding energy eigenvalues Ep. If the effec-
tive field is changed by a small amount δheffβ , the Zeeman term −Jiβδheffβ
must be added to the Hamiltonian, and E

(1)
p = Ep− <p | Jiβ | p> δheffβ ,

to first order in the perturbation, provided that | p > is a set which di-
agonalizes the perturbation within the possibly degenerate subspaces of
the zero-field Hamiltonian. The new eigenstates are

| p(1)> = | p> −δheffβ
∑
p′

′| p′><p′ | Jiβ | p> /(Ep − Ep′),

where the terms for which Ep = Ep′ vanish. Using (2.1.3) and (2.1.4),

we then have, to first order in δheffβ ,

〈J (1)
iα 〉 =

∑
p

<p(1) | Jiα | p(1)> n(1)
p =

∑
p

<p | Jiα | p> n(1)
p

− δheffβ
∑
pp′

′
<p | Jiα | p′><p′ | Jiβ | p> np/(Ep − Ep′)

− δheffβ
∑
pp′

′
<p | Jiβ | p′><p′ | Jiα | p> np/(Ep − Ep′),

where the last two sums extend over states for which Ep �= Ep′ . The

population factor of the pth level at δheffβ = 0 is np = exp(−βEp)/Zi,

and n
(1)
p is the corresponding factor at the field δheffβ . By differentiation,

we find

∂n(1)
p /∂(δheffβ ) =

{
<p | Jiβ | p> −

∑
p′

<p′ | Jiβ | p′> np′
}
βnp

=
{
<p | Jiβ | p> − 〈Jiβ〉

}
βnp.

Introducing this result in the equation above, and interchanging p and
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p′ in the last sum, we obtain finally:

χ o
αβ(i) = ∂〈Jiα〉/∂heffβ =

Ep �=Ep′∑
pp′

<p | Jiα | p′><p′ | Jiβ | p>
Ep′ − Ep

(np − np′)

+ β

Ep=Ep′∑
pp′

<p | Jiα | p′><p′ | Jiβ | p> np − β〈Jiα〉〈Jiβ〉. (2.1.18)

The second summation is transformed in such a way that it is no longer
necessary for Jiβ to be diagonal within the degenerate subspaces, as re-
quired initially. The first term in the susceptibility is the Van Vleck con-
tribution, which becomes constant at zero temperature, whereas the sec-
ond term, the Curie contribution, diverges as 1/T in the low-temperature
limit. The susceptibility deduced above is that determining the response
due to a change of the effective field, δ〈Ji〉 = χ

o
(i)δheff

i , whereas we wish
to know the response due to a small change of the external field. If a
small harmonically-varying field δhqexp(iq ·Ri) is applied, the effective
field, according to (2.1.17a), is

δheff
i = δhqe

iq·Ri +
∑
j

J (ij)χ
o
(j)δheff

j .

This equation may be solved by a Fourier transformation if χ
o
(i) = χ

o

is site-independent, which it is so long as 〈Ji〉 is independent of i, as
in the high-temperature paramagnetic phase, for example, where 〈Ji〉 =
0. Neglecting any site-dependence of χ

o
, and introducing the notation

δheff
i = δheff

q exp(iq ·ri), we get

δheff
q =

{
1− χ

oJ (q)
}−1

δhq,

or, by the definition of the susceptibility,

χ(q) =
{
1− χ

oJ (q)
}−1

χ
o
. (2.1.19a)

In the following, we shall assume that the external magnetic field is
zero. With this restriction, χ(q) is diagonal in the (ξηζ)-coordinate
system, and the reciprocal susceptibility, in the MF approximation, may
be written

1/χαα(q) = 1/χ o
αα − J (q). (2.1.19b)

In the degenerate case, (2.1.18) implies that χ o
αα = βJ(J + 1)/3. How-

ever, if Hcf is non-zero, the expression (2.1.18) for the susceptibility be-
comes quite complex. A drastic simplification is achieved by assuming a
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small value of β. In this high temperature limit, χ
o
may be calculated

by a procedure equivalent to that used in deriving (2.1.14), except that
J (ij) = 0. Hence, to second order in β, we have

χ o
αα � 1

3J(J + 1)β
[
1− 2

5 (3δαζ − 1)(J − 1
2 )(J + 3

2 )B
0
2β

]
. (2.1.20)

Introducing (2.1.20) in (2.1.19), we obtain the same result as previously
derived in (2.1.14), demonstrating that the MF approximation is cor-
rect in the high-temperature limit. Although the thermal fluctuations
increase when the temperature is raised, they also become increasingly
uncorrelated. It is the latter effect which is the most pronounced, and
the correction to the MF value of the free energy, proportional to the cor-
relation energy of the two-site fluctuations J (ij){〈Ji ·Jj〉 − 〈Ji〉 · 〈Jj〉},
decreases with temperature at high temperatures. In the other limit
of zero temperature, the correlation effects are much stronger, but the
fluctuations themselves are small. We may therefore also expect the
MF approximation to be accurate in this limit, and to provide a useful
interpolation at intermediate temperatures.

χ
o
increases steadily with decreasing temperature. If the crystal-

field ground state is degenerate, the second sum in (2.1.18) is non-zero
and χ

o
diverges in the zero-temperature limit. Because of the Kramers

degeneracy, the ground state is always at least doubly degenerate if 2J is
odd. When J is an integer, the ground state may be a singlet, in which
case χ

o
saturates at a constant value at zero temperature. Except in this

special case, it is always possible to find a temperature where 1/χαα(q)
is zero, corresponding to an infinite χαα(q). The largest value of the
q-dependent susceptibility is found at the wave-vector Q at which J (q)
has its maximum. Of the three non-zero components of χ(Q), the cc-
component is the largest if B0

2 is negative. If B0
2 is positive, on the

other hand, the two equal basal-plane components are the largest. It
is the maximum component of the susceptibility at q = Q which first
diverges when the system is cooled. This divergence signals that the
paramagnetic ground-state becomes unstable against the formation of
an ordered state in which the moments are modulated with the wave-
vectorQ, and point along or perpendicular to the c-direction, depending
on whether B0

2 is respectively negative or positive. Hence, a second-order
phase transition takes place at this critical temperature, called the Curie
temperature, TC , or the Néel temperature, TN , depending on whether
Q = 0 or Q �= 0. Just below TN , the ordered moment 〈Ji〉 is small, and
the free energy of the ith ion may be expanded in powers of this moment.
In order to establish this expansion, we first consider the Hamiltonian
H′(i) = Hcf(i)− Ji · h. The corresponding free energy may be written

F ′
i = F0/N − 〈Ji〉 · h+

∑
α

Aα〈Jiα〉2 +
∑
αβ

Bαβ〈Jiα〉2〈Jiβ〉2 + · · · .
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Except for the field term, this expansion only includes products of com-
ponents in which the sum of the exponents is even, because of time-
reversal symmetry. Using the equilibrium condition ∂F ′

i/∂〈Jiα〉 = 0,
and recalling that 〈Jiα〉 = χ o

αα(σ = 0)hα to leading order, in the zero-
field limit, we obtain

Aα =
{
2χ o

αα(σ = 0)
}−1

, (2.1.21a)

where χ o
αα(σ = 0) is the MF susceptibility (2.1.18), in the limit of zero

magnetization (field). The susceptibility decreases with increasing mag-
netization (or field), as described by the fourth-order terms. An order-
of-magnitude estimate of Bαβ may be obtained by neglecting Hcf(i). In
this case, the magnetization as a function of the field is given by the
Brillouin function (1.2.31):

〈Jiα〉 = JBJ (βJhα) � 1
3J(J + 1)βhα

{
1− 1

15 (J
2 + J + 1

2 )β
2h2α

}
,

which, in combination with the equilibrium condition for the free energy,
determines Bαα. The off-diagonal terms may be obtained straightfor-
wardly by utilizing the condition that, when Hcf(i) is neglected, the free
energy should be invariant with respect to any rotation of the magneti-
zation vector, implying that all the coefficients Bαβ are equal, or

Bαβ ≈ 9

20

J2 + J + 1
2

J3(J + 1)3
kBT. (2.1.21b)

The introduction of the crystal-field terms of course modifies this result,
but rather little in the high-temperature limit. Under all circumstances,
the effective six-fold symmetry around the c-axis implies that Bαβ is
symmetric, Bξξ = Bηη = Bξη, and Bξζ = Bηζ , and it also eliminates
the possibility that any other fourth-order terms may contribute. The
expansion of the free energy of the total system, when the external
field is zero, is obtained from the expansion of F ′

i , summed over i, by
substituting the exchange field heff

i =
∑

j J (ij)〈Jj〉 for h, and adding

the ‘constant’ 1
2 〈Ji〉 · heff

i , so that

F = F0− 1

2

∑
ij

J (ij)〈Ji〉·〈Jj〉+
∑
i

[∑
α

Aα〈Jiα〉2+
∑
αβ

Bαβ〈Jiα〉2〈Jiβ〉2
]

(2.1.22)
to fourth order in the magnetization. This expansion of the free energy
in terms of the order parameter(s) is called the Landau expansion.

Assuming the ordered phase to be described by a single wave-vector,
we may write

〈Jiα〉 = Jσα cos(q ·Ri + ϕα), (2.1.23)
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where σα = σα(q) is the relative magnetization at the wave-vector q.
Introducing this into the free-energy expression, and utilizing the condi-
tion that

∑
i cos(q

′ ·Ri + ϕ) = 0, if q′ is not a reciprocal lattice vector,
we find

f = (F−F0)/N = 1
4J

2
∑
α

{2Aα − J (q)}σ2
α

+ 1
8J

4
∑
αβ

Bαβ{2 + cos 2(ϕα − ϕβ)}σ2
ασ

2
β , (2.1.24)

if 4q is different from a reciprocal lattice vector. The coefficients of
the second power are thus ∝ {2Aα − J (q)} = 1/χαα(q, σ = 0), where
the susceptibility is evaluated at zero magnetization. As long as all the
second-order coefficients are positive, at any value of q, the free energy
is at its minimum when σα = 0, i.e. the system is paramagnetic. The
smallest of these coefficients are those at q = Q, where J (q) has its
maximum. In the heavy rare earths, with the exception of Gd, Q is
non-zero and is directed along the c-axis. Depending on the sign of
B0

2 , the magnetic structures occurring in the heavy rare earths may be
divided into two classes, which we will discuss in turn.

2.1.3 Transversely ordered phases

When B0
2 > 0, as in Tb, Dy, and Ho, the two basal-plane components

of χ(Q) both diverge at the same critical temperature TN . Using the
approximate high-temperature value (2.1.20) for the susceptibility, we
find that 1/χξξ(Q, σ = 0) = 1/χηη(Q, 0) = 2Aξ − J (Q) vanishes at the
temperature determined by

kBTN � 1
3J(J + 1)J (Q)

[
1 + 2

5 (J − 1
2 )(J + 3

2 )B
0
2/kBTN

]
. (2.1.25)

Below TN , both σξ and ση are generally non-zero at the wave-vector Q,
and the free energy f , given by (2.1.24) with σζ = 0, is minimized when
σξ(Q) = ση(Q) = σQ, and

σQ =

(J (Q)− 2Aξ

4J2Bξξ

)1/2

; ϕξ − ϕη = ±π
2
, (2.1.26a)

corresponding to the helical ordering:

〈Jiξ〉 = JσQ cos (Q ·Ri + ϕ)

〈Jiη〉 = ±JσQ sin (Q ·Ri + ϕ).
(2.1.26b)

The length of the angular-momentum vector is JσQ, independent of the
site considered. There are two energetically-degenerate configurations,
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a right- or a left-handed screw, depending on the choice of sign. From
the condition 1/χξξ(Q, 0) ∝ (T − TN), sufficiently close to TN , we get

the usual MF result that the order parameter σQ ∝ (TN − T )1/2. Al-
though 1/χξξ(Q, 0) becomes negative below TN , the inverse of the actual
susceptibility, 1/χξξ(Q) = 1/χξξ(Q, σQ), does not. Analogously to the
derivation of Aα in (2.1.21a), it may be seen that 1/χξξ(Q) is a second
derivative of the free energy, i.e.

1/χξξ(Q) = ∂2f/∂(JσQ)2

� 1/χξξ(Q, σ = 0) + 12J2Bξξσ
2
Q = −2/χξξ(Q, σ = 0).

Hence, 1/χξξ(Q) is non-negative, as it must be to ensure that the system
is stable, as is also the case for any other component of the susceptibility.

Because |〈Ji〉| is constant, the umklapp contributions to the free
energy in (2.1.24), for which 4Q is a multiple of the reciprocal-lattice
parameter 4π/c, cancel. The free energy of the helix is therefore inde-
pendent of the lattice, at least to the fourth power in the magnetization.
If the anisotropy terms in Hcf can be neglected, the helix is the most
stable configuration satisfying the condition that |〈Ji〉| = Jσ is constant.
With this constraint, only the two-ion interaction term in the free en-
ergy (2.1.22) may vary, and this may be minimized by the method of
Lagrange multipliers (Nagamiya 1967). We will begin with the weaker
constraint;

∑
i〈Ji〉2 = N(Jσ)2 is constant, which means that we have

to minimize the energy expression

U = −1

2

∑
ij

J (ij)〈Ji〉 · 〈Jj〉+ λ
∑
i

(〈Ji〉2 − (Jσ)2
)

= N
∑
q

{− 1
2J (q) + λ

}〈J(q)〉 · 〈J(−q)〉 −Nλ(Jσ)2,
(2.1.27a)

where the introduction of 〈Ji〉 =
∑

q〈J(q)〉exp(iq ·Ri), as in (2.1.10c),
yields the second form. Minimizing this expression with respect to
〈J(−q)〉, we obtain the following equation:

∂U/∂〈J(−q)〉 = N
{− J (q) + 2λ

}〈J(q)〉 = 0,

assuming J (−q) = J (q). For a given value of λ, this condition is only
satisfied if either 〈J(q)〉 = 0, or if q = qλ, where J (qλ) = 2λ, which
implies that only 〈J(qλ)〉 may be non-zero. Introducing this condition
in U , we find

U = −Nλ(Jσ)2 = −1
2NJ (qλ)(Jσ)

2, (2.1.27b)
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which is then minimized with respect to q when qλ = Q, at which
wave-vectorJ (q) has its maximum. Hence the two-ion energy attains its
minimum when only the two Fourier components 〈Ji(±Q)〉 are non-zero.
The stronger constraint that |〈Ji〉| should be constant is then met only by
the helix (2.1.26). In the zero-temperature limit, this constraint derives
from the fact that the moments attain their saturation value, |〈Ji〉| = J ,
immediately the exchange field is not identically zero, since χ o

αα(σ = 0)
diverges in this limit when Hcf = 0. At elevated temperatures, it is
clear that the sum of the single-ion terms in the free energy (the A-
and B-terms in (2.1.22)) is most effectively minimized if the minimum
condition is the same for all the ions. When Hcf = 0, there are no
restrictions on the plane in which the moments spiral; it may be rotated
freely, without change in energy, as long as |Ji| is constant and all the
components vary with the wave-vector Q. This behaviour is analogous
to that of the Heisenberg ferromagnet, which may be considered as a
helically ordered system with Q = 0. If Q is not perpendicular to the
plane in which the moments lie, the structure is called the tilted helix
(Elliott 1971; Sherrington 1972) and the extreme case, with Q in the
plane of the moments, is the cycloidal structure. When B0

2 > 0, the
orientation of the plane is stabilized to be perpendicular to the c-axis,
and with Q along this axis we obtain the true helical structure.

If B0
2 > 0 is the only crystal-field parameter of importance, the

regular helix is the stable structure in the whole temperature interval
between zero and TN . If the Landau expansion (2.1.22) is continued to
the sixth power in the magnetization, a term appears proportional to
B6

6 , distinguishing between the a- and b-directions in the basal-plane.
Instead of using this expansion, we shall consider the alternative expres-
sion for the free energy, to leading order in B6

6 ,

F � F1 − 1

2

∑
ij

J (ij)〈Ji〉 · 〈Jj〉+
∑
i

B6
6〈O6

6(Ji)〉

= F1 − 1

2

∑
ij

(Jσ)2J (ij) cos (φi − φj) +
∑
i

κ66 cos 6φi,
(2.1.28)

where Ji = Jσ(cosφi, sinφi, 0) and F1 is the part independent of φi.
The expectation values are those obtained in the limit B6

6 = 0, i.e. σ
and κ66 are assumed to be independent of the angle φi. The presence
of the six-fold anisotropy term distorts the helix. In order to solve the
equilibrium equation

∂F/∂φi = (Jσ)2
∑
j

J (ij) sin (φi − φj)− 6κ66 sin 6φi = 0,

we introduce the expansion

φi = ui + γ sin 6ui + · · · ; ui = Q ·Ri, (2.1.29a)
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using the series

exp[i(u+ γ sin 6u)]

= J0(γ)e
iu + J1(γ)

(
ei7u − e−i5u

)
+ J2(γ)

(
ei13u + e−i11u

)
+ · · ·

� eiu +
γ

2

(
ei7u − e−i5u

)
, (2.1.29b)

where Jn(x) are the Bessel functions. To leading order in γ, the equi-
librium equation then gives

γ =
12κ66

(Jσ)2
{
2J (Q)− J (5Q)− J (7Q)

} , (2.1.30a)

and the free energy is reduced proportionally to γ2:

F/N = F1/N − 1
2 (Jσ)

2J (Q)− 1
8 (Jσ)

2
{
2J (Q)− J (5Q)− J (7Q)

}
γ2.

(2.1.30b)
The hexagonal anisotropy introduces harmonics, of equal magnitude,
in the basal-plane moments at the wave-vectors 6Q±Q and, in higher
order, at the wave-vectors 6mQ±Q. If κ66, and thus also γ, are negative,
the easy directions in the plane are the a-axes. In the special case
where the angle ui = π/12, i.e. the unperturbed ith moment is half-way
between an easy and a hard direction, the largest change φi − ui = γ
occurs in the orientation of the moments, and the angle to the nearest
easy direction is reduced, since ui lies between 0 and π/6, and κ66 is
negative. The moments in the helix are therefore distorted so that they
bunch around the easy axes.

The above calculation is not valid if Q is 0 or 2π/c, when the hexag-
onal anisotropy may be minimized without increasing the exchange en-
ergy, as it may also if the (average) turn angle ω of the moments from
one hexagonal plane to the next is a multiple of 60◦, so that 6Q is an
integer times 4π/c. The products of the fifth and seventh harmonics
introduce additional umklapp contributions to the free energy if 12Q is
a multiple of the effective reciprocal-lattice spacing 4π/c, implying that
the cases where ω is p30◦ and p = 1, 3, 5 are also special. In higher
order, corrections appear whenever m12Q = p4π/c, where m and p are
integers and 0 ≤ p ≤ 6m, i.e. at any commensurable value of Q, but
the corrections decrease rapidly with m, excluding cases where m and p
have common factors. In contrast to the result found above, the com-
mensurable contributions depend on the absolute phase ϕ in (2.1.26b),
and an adjustment of this phase will quite generally allow the system to
reduce the anisotropy energy through the umklapp terms. This change
in energy may compensate for the increase in the exchange energy when
the ordering wave-vector Q is changed from its value Q = Q0, at which
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J (q) has its maximum, to a nearby commensurable value Qc. Hence
the hexagonal anisotropy couples the helical magnetic structure to the
lattice, and it may induce continuous or abrupt changes of the ordering
wave-vector as a function of temperature, as discussed, for instance, by
Bak (1982). In Ho, 12Q0 is close to 4π/c, and the hexagonal anisotropy
is large at low temperatures. Experimental investigations have shown
that a number of commensurable values of Q are stabilized in this sys-
tem, as we shall discuss in more detail in the last section of this chapter.

2.1.4 Longitudinally ordered phases

When B0
2 is negative, as in Er and Tm, χζζ(Q) is the component of the

susceptibility which diverges at the highest temperature, and the high-
temperature expansion predicts that 2Aζ − J (Q) vanishes at a critical
temperature determined by

kBTN � 1
3J(J + 1)J (Q)

[
1− 4

5 (J − 1
2 )(J + 3

2 )B
0
2/kBTN

]
. (2.1.31)

Just below this temperature, only the component σζ at the wave-vector
Q is non-zero and, from the free energy expansion (2.1.24), ∂f/∂σζ = 0
determines the relative magnetization as

σζ(Q) = σQ =

(J (Q)− 2Aζ

3J2Bζζ

)1/2

. (2.1.32)

The free energy is independent of the phase ϕ = ϕζ , so we set ϕ = 0. If
we add another Fourier component with q �= ±Q:

〈Jiζ〉 = JσQ cos (Q ·Ri) + Jσq cos (q ·Ri + ϕ′) (2.1.33)

then, if mQ± nq is different from a reciprocal lattice vector, where m
and n are integers and m+ n = ±4, the free energy is

f = 1
4J

2
[{2Aζ − J (Q)}σ2

Q + {2Aζ − J (q)}σ2
q

]
+ 1

8J
4Bζζ

[
3σ4

Q + 3σ4
q

+ 12σ2
Qσ

2
q + 4σ3

Qσqδq,±3Q cosϕ′ + 4σQσ
3
qδ3q,±Q cos 3ϕ′].

(2.1.34)
This result shows that, if q = 3Q or q = 1

3Q, there is an extra fourth-
order contribution to the free energy (q → −q represents the same
structure with ϕ′ → −ϕ′). Of these two special cases, the one where
q = 3Q is the most interesting, because the extra term is linear in σ3Q.
This means that the third harmonic appears simultaneously with the
basic Fourier component at Q. Minimizing the free energy given by
(2.1.34), we find

σ3Q =
J2Bζζ

J (Q)− J (3Q)
σ3
Q ; ϕ′ = ϕ+ π, (2.1.35a)
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neglecting a term proportional to σ2
Q in the denominator. The 3Q-

component is thus proportional to σ3
Q, and hence to (TN − T )3/2. De-

noting the wave-vector at which J (q) has its maximum by Q0, we con-
clude that the appearance of the third harmonic implies that f has its
minimum at a value of Q slightly different from Q0. Minimizing the free
energy with respect to Q along the c-axis, by requiring ∂f/∂Q = 0, we
obtain to leading order

Q = Q0 − 3
J ′(3Q0)

J ′′(Q0)

(
σ3Q
σQ

)2

. (2.1.35b)

J ′′(Q0) is negative, so the shift Q − Q0 has the same sign as J ′(3Q0)
and is proportional to (TN − T )2. The other special case, 3q = Q, re-
flects the possibility that, if J (Q0/3) is close to J (Q0), the system may
reduce its energy by making a first order transition to a state where
Q � Q0/3 is the fundamental wave-vector, with the third harmonic be-
ing close to Q0. The presence of a term in the free energy cubic in the
order parameter, σQ/3 in this case, implies that the transition becomes
of first order, so that the order parameter changes discontinuously from
zero to a finite value. The Q0/3-transition appears to be of no impor-
tance in real systems, so we shall return to the discussion of the other
case. If the free energy is expanded to higher (even) powers in the rel-
ative magnetization, it is clear that the (2n+ 2)-power term leads to a
contribution proportional to σ(2n+1)Qσ

2n+1
Q which, in combination with

the term quadratic in σ(2n+1)Q, implies that the ordering at the fun-
damental wave-vector Q induces a (2n + 1)-harmonic proportional to
σ2n+1
Q ∝ (TN − T )(2n+1)/2. Starting as a pure sinusoidally modulated

wave at TN , the moments approach the square wave

〈Jiζ〉 =
4J

π

(
cosx− 1

3 cos 3x+
1
5 cos 5x− 1

7 cos 7x+ · · · )
x=Q·Ri+ϕ

,

(2.1.36a)
in the limit of zero temperature where 〈Jiζ〉 = ±J , neglecting strong
anisotropy effects. Although the behaviour of the angular momentum
is simple, the dependence of the free energy on the wave-vector is com-
plicated. It is only when the ordering is incommensurable, i.e. mQ is
different from any multiple of the length 4π/c of the reciprocal-lattice
vector along the c-axis, that the energy of the square-wave structure at
T = 0 is

f(0) = 〈Hcf〉 − 4J2

π2

{J (Q) + 1
9J (3Q) + 1

25J (5Q) + · · ·}. (2.1.36b)

An infinitesimal change of the ordering wave-vector from Q, which min-
imizes f(0), to Qc may make it commensurable with the lattice, so that
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mQc = p(4π/c) and additional umklapp terms contribute to the free
energy. Again these contributions depend on the absolute phase ϕ, and
there will always be values of Qc close to Q leading to a lower free energy
than that obtained in the incommensurable case. In the low-temperature
limit, the modulation of the c-axis moment is therefore locked to the
lattice periodicity. This tendency is already apparent close to TN . In
the expansion of the free energy considered above for m = 4, umklapp
terms modify the fourth-power coefficient, and analogous effects occur in
higher powers of the magnetization. This indicates that the system may
stay commensurable even near TN although, in the close neighbourhood
of TN , the critical fluctuations neglected here may oppose this tendency.
The optimal value of Qc may change as a function of temperature, in
which case the system will exhibit a number of first-order, or possibly
continuous, transitions from one commensurable structure to another.
Of these structures, those for which Qc = 3Qc = 5Qc = · · ·, i.e. Qc = 0
or 2π/c, are particularly stable, as they only involve one wave-vector,
so that f(0) = 〈Hcf〉 − 1

2J
2J (Qc) (in this connection, we note that

1 + 1
9 + 1

25 + · · · = π2/8). The anisotropic Ising-model with competing
interactions, the so-called ANNNI model, is a simplified version of the
above, and it shows a rich variety of different incommensurable, com-
mensurable, and chaotic ordered structures as a function of temperature
and the coupling parameters (Bak 1982).

2.1.5 Competing interactions and structures

The complex behaviour of the longitudinally ordered phase is a conse-
quence of the competition between the single-ion part of the free energy,
which favours a structure in which the magnitude of the moments varies
as little as possible, particularly at low temperature, and the two-ion
contributions, which prefer a single-Q ordering. When B0

2 is positive,
helical ordering satisfies both tendencies without conflict. This points
to another alternative which the longitudinal system may choose. Al-
though χζζ(Q) decreases below TN , the two perpendicular components
continue to increase, and they may therefore diverge at a lower temper-
ature T ′

N . Assuming the expansion (2.1.24) of the free energy still to be
valid at T ′

N , and neglecting the third and higher harmonics of 〈Jiζ〉, we
may write it:

f = f(σQ)+1
4J

2
∑

α=ξ,η

[
2Aξ − J (Q) +Bξζ(JσQ)2{2 + cos 2(ϕα − ϕ)}]σ2

α

+1
8J

4Bξξ

[
3σ4

ξ + 3σ4
η + 2{2 + cos 2(ϕξ − ϕη)}σ2

ξσ
2
η

]
. (2.1.37)

The effective coefficient of σ2
α (α = ξ or η) is smallest when ϕα = ϕ± π

2 ,
meaning that the basal-plane moments appearing just below T ′

N , where
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this coefficient vanishes, are locked to be out of phase by 90◦ with the
c-axis component. This phase difference arises because the transverse
MF susceptibility χ o

ξξ for the single sites increases as the c-axis exchange
field falls. Using the estimate (2.1.21b) for the B-tensor, and the high-
temperature value for Aξ, we find the transition temperature to be

kBT
′
N � 1

3J(J + 1)J (Q)
[
1 + 2

5 (J − 1
2 )(J + 3

2 )B
0
2/kBT

′
N

− 3
20{1 + 1

2 (J + 1)−2}σ2
Q

]
.

(2.1.38)

A slightly better estimate may be obtained by calculating the MF value
of the transverse susceptibility directly, in the presence of a non-zero
exchange field, which just causes the replacement of σQ in (2.1.38) by
3σQJ (Q)/[J(J + 1)kBT

′
N ] (Miwa and Yosida 1961). However, both re-

sults are based on the high-temperature expansion, which ceases to be
valid at low temperatures. In the zero-temperature limit, χ o

ξξ of the ith

site remains finite, being of the order J/heffiζ . This saturation implies
that the transition does not necessarily occur. If the c-axis is favoured
too strongly by the anisotropy terms, the basal-plane components re-
main disordered at low temperatures, as is observed in Tm. When the
basal-plane moments order, as in Er, eqn (2.1.38) may give a reasonable
estimate of the transition temperature. As mentioned previously, the
modulation of the basal-plane moments, just below T ′

N , is locked at 90◦

out of phase with that of the c-axis component. Since this applies to
both components, only a linearly-polarized moment can develop at the
transition temperature, with a relative magnitude σ⊥ = (σ2

ξ + σ2
η)

1/2,
in a specified but arbitrary direction in the plane. If the sixth-power
terms are included in the free energy, B6

6 favours either the a- or the
b-directions, but there are still six equivalent but different directions of
the moments in the basal plane with equal energies. To be specific, we
may assume that B6

6 is negative and that the ordered moments in the
basal plane establish themselves along the ξ-axis. In this case, the mo-
ments all lie in the ξ–ζ plane in an elliptic cycloidal structure. Displaced
to a common origin, the hodograph of the moments is an ellipse, with
its principal axes along the ξ- and ζ-axes, as is illustrated, in connection
with our discussion of Er, in Fig. 2.6 on page 120. The c-axis moments
will still show a strong tendency towards squaring up with decreasing
temperature, as long as they are large compared with the basal-plane
moments. Because of the phase-locking between the components, the
higher odd-harmonics in the modulation of the c-axis moments will also
be reflected in the basal-plane.

At high temperatures, B0
2 is the dominant anisotropy parameter,

and its sign determines whether the system orders in a helically or lon-
gitudinally polarized structure, when Q0 is along the c-axis. If B0

2 is still
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the most important axial-anisotropy parameter in the low-temperature
limit, the helix is still a stable structure at T = 0 whereas, in the lon-
gitudinally polarized case, the tendency to minimize the variation of
the lengths of the moments may result in two different paths. Either
the system stays in the longitudinally polarized phase, ending up as a
(commensurable) square-wave structure at T = 0, or it goes through
a transition to an elliptic cycloidal structure. The path which is cho-
sen depends on the magnitude of B0

2 ; if the effective axial anisotropy
−B0

2〈O0
2〉 is sufficiently large, the ordering of the basal-plane moments

is quenched. It has already been mentioned in Section 1.5 that this
anisotropy depends on the magnetization, being proportional approxi-
mately to σ3. We shall discuss this renormalization in more detail in
the next section, but it is worth mentioning here that this behaviour
of the effective anisotropy-parameter means that there is an intermedi-
ate range of B0

2 for which the system makes a transition to the elliptic
cycloidal structure, but leaves it again at a lower temperature, by re-
turning to the longitudinally polarized phase when −B0

2〈O0
2〉 becomes

large enough. When B0
4 and B0

6 are included, a more realistic situation
may occur, in which the low-temperature anisotropy favours an orienta-
tion of the moments making an angle θ with the c-axis, which is neither
0 or π/2 but some, temperature-dependent, intermediate value. In the
case of the helix, this means that there will be a critical temperature
T ′
N (below TN) where the effective axial anisotropy parameter vanishes,

and below which the c-axis moments are ordered. If the ordering wave-
vector for the c-axis component is the same as the helical wave-vector,
the structure adopted is the tilted helix. However the two-ion coupling
between the c-axis moments, J‖(q) with q ‖ c-axis, is not restricted
by any symmetry argument to be equal to the coupling between the
basal-plane moments, J⊥(q) = J (q) with its maximum at q = Q0.
If the maximum of J‖(q) lies at a q �= Q0, the c-component will or-
der at this wave-vector and not at Q0, as the extra energy gained by
the c-component by locking to the basal-plane moments is very small,
being proportional to {B6

6〈O6
6〉/(Jσ)2J (Q)}2. When B0

2 is negative, a
non-zero value of θ favours the elliptic cycloidal structure, compared to
the longitudinally polarized phase. If the system is already in the cy-
cloidal phase, it may undergo a new second-order transition, in which
the plane of the ellipse starts to tilt away from the ξ–ζ plane, in close
correspondence with the behaviour of the helix. Referring back to eqn
(2.1.37), we observe that this transition occurs when the coefficient of
σ2
η, with ϕη = ϕ (+π) = ϕξ ± π/2, becomes zero. The phase-locking en-

ergy, comprising the terms in (2.1.37) involving ϕη, is more important in
this case than in the helix, but it is nevertheless possible that the third
component may order at a wave-vector different from that of the other
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two. If the η-component is locked at the same wave-vector as the two
other components, and if the ellipse is tilted just such an amount that
ση = σξ, the structure is a helix superimposed on a modulated c-axis
moment. If a transition to the tilted cycloidal structure has occurred,
and the hexagonal anisotropy is small, it might be favourable for the
system at a lower temperature to pass directly, via a first-order transi-
tion, to this helical structure in which the c-axis component is no longer
phase-locked to the basal-plane moments.

Instead of basing our analysis on the Hamiltonian (2.1.1), we may
use symmetry arguments for deriving the most general behaviour of the
magnetic ordering in hcp crystals. We have already indicated that J‖(q)
may differ from J⊥(q) and mentioned some of the consequences. The
assumption that the c-axis is effectively a six-fold axis of the lattice leads
to the strong restriction that the expansion of the free energy, (2.1.22) or
(2.1.24), only involves even powers of each of the Cartesian components,
when q is along this axis. This has the consequence, for example, that
all the main transitions, at TN or T ′

N , are predicted to be of second
order, excluding those involving changes of the same component, i.e.
transitions between different commensurable structures. However, there
are two-ion terms which reflect the fact that the c-axis is only a three-fold
axis. The term of lowest rank has the form

H3(i ∈ s’th plane) = (−1)sK3

[
(Jiζ − 1

2 〈Jiζ〉)
〈
O−3

3 (Js+1)−O−3
3 (Js−1)

〉
+(O−3

3 (Ji)− 1
2 〈O−3

3 (Ji)〉)
〈
Js+1,ζ − Js−1,ζ

〉]
, (2.1.39)

in the MF approximation, where only interactions between neighbouring
planes are included. O−3

3 = (J3
+ − J3

−)/2i, and Js±1 denotes a moment
in the (s±1)th plane. The contribution of this coupling to the expansion
(2.1.22) of the free energy to the fourth power is found by adding

∑
i〈H3〉

to F , using the approximation 〈O−3
3 (Ji)〉 ∝ 〈Jiη〉(3〈Jiξ〉2 − 〈Jiη〉2) =

〈J⊥〉3 sin 3φi. One remarkable effect is that this coupling introduces a
term linear in 〈Jiζ〉 in the helix. If the basal-plane moments are ordered
with the wave-vector Q, they induce a c-axis moment modulated with
a wave-vector along the c-axis of length 2π/c − 3Q, provided that 6Q
is not a reciprocal lattice vector. In the elliptic cycloidal structure, this
coupling induces an ordering of the η-component at the two wave-vectors
of length 2π/c−Q and 2π/c− 3Q, when the ellipse is assumed to lie in
the ξ–ζ plane and only the fundamental at Q is considered. Although
this additional coupling may not change the nature of the transitions at
TN or T ′

N , it has qualitative consequences for the magnetic structures,
and it may introduce new effects associated with commensurability. For
instance, the three-fold symmetrical interaction will favour the commen-
surable structure with Q = π/2c (an average turn angle of 45◦). In the
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case of a helix with this particular period, the coupling induces a modu-
lation of the c-axis moments with the same wave-vector, 2π/c−3Q = Q,
causing a tilting of the plane of the helix.

2.1.6 Multiply periodic structures

We have so far only considered order parameters which are specified by
two Q-vectors (±Q), or one Q plus a phase. This is a consequence of
the assumption that Q is along the c-axis. If Q is in the basal-plane,
as in the light rare earths Pr and Nd, there are six equivalent ordering
wave-vectors, ±Q1, ±Q2, and ±Q3, where the three vectors make an
angle of 120◦ with each other. This leads to the possibility that the
ordered structure is a multiple-Q structure, where

〈Ji〉 = J1 cos (Q1 ·Ri + ϕ1)+J2 cos (Q2 ·Ri + ϕ2)+J3 cos (Q3 ·Ri + ϕ3)
(2.1.40)

referred to as single-, double-, or triple-Q ordering, depending on the
number of vectors Jp which are non-zero. The transition at TN will
generally involve only a single real vector Jp for each Qp, as implic-
itly assumed in (2.1.40). We will not therefore consider multiple-Q cy-
cloidal/helical structures, but restrict the discussion to configurations
which correspond to the type observed in Pr or Nd. We furthermore
neglect the complications due to the occurrence of different sublattices
in the dhcp crystals, by assuming the lattice to be primitive hexagonal.
This simplification does not affect the description of the main features
of the magnetic structures. On the hexagonal sites of Pr and Nd, the
ordered moments below TN lie in the basal plane. This confinement is
not primarily determined by the sign of B0

2 , but is decisively influenced
by the anisotropic two-ion coupling

Han =
1

2

∑
ij

K(ij)
[
(JiξJjξ−JiηJjη) cos 2φij +(JiξJjη+JiηJjξ) sin 2φij

]
,

(2.1.41)
where φij is the angle between the ξ-axis and the projection of Ri −Rj

on the basal plane. This anisotropic coupling, which includes a minor
contribution from the classical dipole–dipole interaction, is known from
the excitation spectrum to be of the same order of magnitude as the
isotropic coupling in Pr, as we shall discuss in Chapter 7, and must
be of comparable importance in Nd. We define the coupling parameter
K(q) = K0(q) + K6(q) cos 6ψq, where ψq is the angle between q (in the
basal plane) and the ξ-axis, and K0(q)±K6(q) is the Fourier transform
of ±K(ij) cos 2φij when q is respectively parallel or perpendicular to
the ξ-axis. Introducing Jp = Jσp, and assuming the moments to be
perpendicular to the c-axis, we find the mean-field free energy of second
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order in σp to be

f2(σp) =
1
4J

2
∑
p

[{2Aξ − J (Qp)}σ2
p +K(Qp){2(σp ·Q̂p)

2 − σ2
p}
]
,

(2.1.42)
where Q̂p = Qp/Qp. In Pr and Nd, the maximum of J (q) ± K(q) is
found at q = Q along the η-axis, or the other equivalent b-axes, with Q
being about one fourth of the distance to the Brillouin-zone boundary,
and K(Q) is negative. The transition between the paramagnetic phase
and a phase described by (2.1.40), with Jp lying in the hexagonal plane,
then occurs when the coefficient 2Aξ −J (Q)+K(Q) vanishes, at which
temperature the corresponding factor for the c-component of the mo-
ments, 2Aζ −J (Q), is still positive in Pr and Nd. Besides confining the
moments to the hexagonal planes, K(Q) also removes the degeneracy
between the two states in which Jp is parallel or perpendicular to Qp.
With a negative K(Q), the anisotropic coupling favours a longitudinal
ordering of the moments at TN , with Jp parallel to Qp. Just below TN ,
the magnitude of the ordered moments is determined by f2(σp), together
with the fourth-order contributions. When the moments lie in the basal
plane (B = Bξξ = Bηη = Bξη), we obtain, from eqn (2.1.22),

f4(σp) = B
1

N

∑
i

(〈Ji〉 · 〈Ji〉
)2

= BJ4
[
3
8

∑
p

σ4
p +

1
4

∑
p�=p′

{
σ2
pσ

2
p′ + 2(σp ·σp′)2

}]
.

(2.1.43)

Introducing the effective order parameter σ, defined by σ2 =
∑

p σ
2
p, we

obtain further:

f � f2(σp)+f4(σp) =
1
4J

2
{
2Aξ−J (Q)+K(Q)

}
σ2+ 3

8J
4B σ4, (2.1.44)

assuming Jp parallel to Qp along the three b-axes making an angle of

120◦ with each other (Q̂p · Q̂p′ = −1/2 when p �= p′). Hence the free
energy, in this approximation, is independent of whether the ordering is
single-, double- or triple-Q. Instead of utilizing (2.1.22), we may appeal
to symmetry arguments, by which the fourth-order term may readily be
seen to have the general form

f4(σp) = u
∑
p

σ4
p +

1
2v

∑
p�=p′

σ2
pσ

2
p′ , (2.1.45a)

as long as the angles between the different σp vectors remain at 120◦

(Bak and Lebech 1978). Introducing the parameter w ≡ v− 2u, we may
write this:

f4(σp) = u
(∑

p

σ2
p

)2
+ 1

2w
∑
p�=p′

σ2
pσ

2
p′ = (u+ γw)σ4, (2.1.45b)
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where γ = 0, 1/4, or 1/3 respectively, in a single-, double-, or triple-
Q structure. If only an isotropic two-ion coupling and the crystal-field
terms are included, 2u = v or w = 0, and the different multiple-Q
structures are degenerate to the fourth power of the order parameter.
This situation is not changed by the anisotropic dipole coupling K(q)
introduced above (as long as σp is parallel to Qp). However, two-ion
quadrupole couplings may remove the degeneracy. For example, the
coupling K2(ij)J

2
i+J

2
j− makes a contribution proportional to

w ∼ 3K2(0) +K2(2Q)− 2K2(Q)− 2K2(Q1 −Q2). (2.1.46)

Depending on the detailed q-dependence of this coupling, it may lead
to a positive or a negative contribution to w. If w is positive, the single-
Q structure is stable, and conversely a negative w leads to a triple-Q
structure just below TN . The Landau expansion for this case has been
discussed by Forgan (1982), Walker and McEwen (1983) and McEwen
and Walker (1986), who all take the possible contributions to w as being
of magnetoelastic origin. In Pr, the dominating magnetoelastic interac-
tion is known to be due to the γ-strain coupling, and a rough estimate
(including both the uniform and modulated γ-strain) indicates that v
is unaffected, whereas the reduction of u proportional to B2

γ2/cγ , with
the parameters of (1.5.27), is about 10%, corresponding to a positive
contribution to w of about 0.2u, or to an energy difference between the
single- and double-Q structures of ∼ 0.05uσ4. If the other quadrupolar
contributions are unimportant, as is indicated by the behaviour of the
excitations in Pr (Houmann et al. 1979), we should expect the single-Q
structure to be favoured in Pr and Nd, at least close to TN .

If w is relatively small, the single- or triple-Q structures may only be
stable in a narrow temperature range below TN , because the sixth-order
contributions may assume a decisive influence. A number of new effects
appear in this order, but the most important stems from the possibility
that the moments and the wave-vectors may rotate away from the b-
directions, as first considered by Forgan (1982). The (σp ·σp′)2-term in
(2.1.43) may drive such a rotation, because it favours an orthogonal con-
figuration of the different σp vectors, since B is positive. This term does
not appear in the single-Q structure, whereas in the triple-Q case, f4(σp)
is reduced quadratically with θp, where θp is the angle between Jp and
the nearest b-direction. However, the much larger quadratic increase of
f2(σp), due to K(Q), will eliminate any tendency for θp to become non-
zero. In contrast, f4(σp) depends linearly on θp in the double-Q struc-
ture, and the free energy can always be reduced by allowing the two com-
ponents σ1 and σ2 (with σ3 = 0) to rotate towards each other. Defining
J6(Q) equivalently to K6(Q), i.e. J (Q) = J0(Q) + J6(Q) cos 6ψQ, and
using the constraint that the change of ψQ for the pth component must
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have the same sign as θp, we may write the angular-dependent part of
the free energy, to the fourth power of the magnetization, as

f(θ, ψ) = 1
4J

2
[ − J6(Q) +K6(Q) cos 2(θ − ψ)

]
× {σ2

1 cos(π + 6ψ) + σ2
2 cos(5π − 6ψ)}

+1
4J

2K0(Q)(σ2
1 + σ2

2) cos 2(θ − ψ) +BJ4σ2
1σ

2
2 cos

2(2π/3− 2θ).
(2.1.47a)

For definiteness, we have chosen the case where the angle between the
ξ-axis and σ1 or σ2 is respectively π/6 + θ and 5π/6− θ (by symmetry
θ = θ1 = −θ2). Analogously to θ, ψ is the angle between Qp and the
nearest b-axis. Introducing σ2 = 2σ2

1 = 2σ2
2 , and expanding f(θ, ψ) to

second order in the small angles, we obtain

f(θ, ψ) = f0 − 9
2 (Jσ)

2{J6(Q)−K6(Q)}ψ2 − 1
2 (Jσ)

2K(Q)(θ − ψ)2

− 1
4 (Jσ)

4B(
√
3θ − 2θ2). (2.1.47b)

We note that, with the chosen sign conventions, K(Q) = K0(Q)−K6(Q)
and J6(Q) − K6(Q) are both negative. The additional contribution to
the free energy of the double-Q structure is minimized when

θ =

√
3B(Jσ)2

4|K(Q)| + ψ ; ψ =

√
3B(Jσ)2

36|J6(Q)−K6(Q)| , (2.1.48a)

neglecting the small term proportional to Bθ2, in which case

∆f = − 3
32B

2(Jσ)6
(

− 1

K(Q)
− 1

9

1

J6(Q)−K6(Q)

)
. (2.1.48b)

Introducing A = Aξ(T = TN), i.e. J (Q) − K(Q) = 2A, then for Pr we
have: K(Q) � −0.24A, J6(Q) − K6(Q) � −0.05A, and BJ2 � 0.35A.
These values may also provide a reasonable estimate in the case of Nd.
Inserting them in (2.1.48), we find that θ � 3ψ � 1.0σ2, and ∆f �
−0.2BJ4σ6 � −0.5uσ6. So, even though ∆f is of sixth order in σ,
it outweighs the small fourth-order energy difference of wσ4/4 between
the single- and the double-Q structure when σ2 ≈ 0.1, if w � 0.2u as
estimated above. The temperature T ′

N at which this occurs is∼ 0.97 TN ,
i.e.∼ 0.9K below TN in Nd. Hence, if w is positive and has the estimated
small magnitude, the system will first undergo a second-order transition
from the paramagnetic phase to a single-Q structure, which will only
be stable as long as σ2 is small. At T ′

N , slightly below TN , the system
will make a first-order transition to a double-Q structure, in which the
moments J1 and J2 are rotated slightly towards each other and away
from the symmetry axes, as also are the ordering wave-vectors Q1 and
Q2. These rotations are proportional to σ2.
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The explicitly sixth-order contribution to the free energy, propor-
tional to (1/N)

∑
i(〈Ji〉·〈Ji〉)3, is somewhat smaller than the estimated

value of ∆f , and it leads to energy differences between the different
multiple-Q structures which are a further order of magnitude smaller.
The hexagonal-anisotropy term, which also appears in this order, is
minute compared to the anisotropy introduced by K(Q) in Pr and Nd,
and its influence on the turn angles ψ and θ should be negligible. The
only other new effect in this order is the appearance of higher harmon-
ics. The mechanism is identical to that discussed in Section 2.1.4 for
the longitudinally-polarized phase, but in addition to the occurrence of
third harmonics at the wave-vectors 3Qp, equivalently to (2.1.35a), they
also appear at all possible combinations of 2Qp ± Qp′ (p �= p′) in the
multiple-Q structures. In the triple-Q structure, one might expect third
harmonics also at Q1±Q2±Q3, but the new wave-vectors derived from
this condition are either 0, which changes the symmetry class of the
system, or twice one of the fundamental wave-vectors, which are ener-
getically unfavourable because they do not contribute to the ‘squaring
up’. These extra possibilities in the triple-Q case are not therefore real-
ized. The appearance of the higher ‘odd’ harmonics is not important for
the energy differences between the different multiple-Q structures, but
they may provide an experimental method for differentiating between
the various possibilities (Forgan et al. 1989). In a neutron-diffraction
experiment, the scattering intensity at the fundamental wave-vectors in
a multi-domain single-Q structure, with an equal distribution of the
domains, is the same as that produced by a triple-Q structure. These
structures may then be distinguished either by removing some of the
domains by applying an external field, or by using scattering peaks at,
for instance, 2Q1±Q2 to exclude the possibility of a single-Q structure.

The discussion of this section has been based exclusively on the MF
approximation, which neglects the important dynamical feature that a
system close to a second-order phase-transition will show strong corre-
lated fluctuations in the components which order at the transition. A
discussion of the effects of the critical fluctuations is beyond the scope
of this book, and we refer instead to the recent introduction to the field
by Collins (1989), in which references may be found to the copious lit-
erature on the subject. Although the MF approximation does not take
into account the contributions to the free energy from the critical fluctua-
tions, it gives a reasonable estimate of the transition temperatures in the
rare earth metals, which can all be characterized as three-dimensional
systems with long-range interactions. The fluctuations contribute to
the free energy on both sides of the transition, and they only suppress
the transition temperature by a few per cent in such systems. The
Landau expansion considered above does not predict the right critical
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exponents, but it is nevertheless decisive for which universality classes
the phase transitions belong to. The transitions which are predicted to
be continuous by the MF theory, i.e. all those considered above which
are not accompanied by a change of Q to a commensurable value, may
be driven into (weak) first-order behaviour by the fluctuations. An im-
portant parameter for determining the nature of the phase transition is
the product (n) of the number of components of the order parameter,
and of the star of the wave-vector (Mukamel and Krinsky 1976; Bak
and Mukamel 1976), the latter being two, corresponding to ±Q, for the
periodically-ordered heavy rare earths. If n ≤ 3, the transition is ex-
pected to remain continuous, which is in accord with the observation by
Habenschuss et al. (1974) of a second-order transition in Er, since n = 2
for the transition between the paramagnetic and the longitudinally or-
dered phase. The transition from the paramagnet to the helix is less
clear-cut, since it belongs to the class n = 4, and a theoretical analysis
by Barak and Walker (1982) suggested that it might be discontinuous.
The bulk of the experimental evidence points towards a continuous tran-
sition (Brits and du Plessis 1988) but some measurements, especially by
Zochowski et al. (1986) on pure Dy, indicate a very weak discontinuity.
In the case of the multiple-Q structures, the fluctuations may drive the
transition to the single-Q structure to be discontinuous, whereas that to
the triple-Q structure, if it is stable, should stay continuous (Bak and
Lebech 1978). In Nd, for example, a single-Q state is formed at TN
and the transition is found to be weakly discontinuous (Zochowski and
McEwen 1986). In accordance with the MF analysis above, a first-order
transition leads to a double-Q structure less than a degree below TN
(McEwen et al. 1985).

2.2 The magnetic anisotropy

In this section, we shall discuss the thermal expectation-values of the
Stevens operators of the single ions when their moments are non-zero,
so that |〈Ji〉| = σJ . We shall then consider the contribution which
the single-ion terms in the Hamiltonian make to the free energy, and
thereby derive the relationship between the microscopic parameters and
the macroscopic magnetic-anisotropy and magnetoelastic coefficients.

2.2.1 Temperature dependence of the Stevens operators

In a ferromagnet, the Zener power-law (1.5.15) for the expectation values
of the Stevens operators is valid only at the lowest temperatures. Callen
and Callen (1960, 1965) have derived 〈Om

l 〉 in exchange-dominated sys-
tems and obtained results which are useful over a much wider temper-
ature range than the Zener expression. They begin with the density
matrix for a single site in the MF approximation, including only the
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exchange and Zeeman energies,

ρMF(x) =
1

Z
exp(xJz/J) ; x = β{J (0)J2σ + gµBJH}, (2.2.1)

where σ = M/M0 is the relative magnetization, the direction of which
is assumed to be parallel to the field. In this case the nth moment of Jz
is determined as

σn = 〈(Jz/J)n〉 = 1

Z

J∑
p=−J

( p
J

)n
exp(xp/J). (2.2.2)

This equation offers the possibility of relating the higher moments σn to
the first moment, which is the relative magnetization σ1 = σ, without
referring explicitly to the MF value of x in eqn (2.2.1). According to the
analysis of Callen and Shtrikman (1965), the functional dependence of
σn on σ has a wider regime of validity than the MF approximation, be-
cause it only utilizes the exponential form of the density matrix, which
is still valid when correlation effects are included in the random-phase
approximation, where the excitations are collective spin-waves, as we
shall discuss in Section 3.5. Furthermore, they found that the functions
σn = σn(σ); n ≥ 2, derived from (2.2.2), only depend very weakly on the
actual value of J , and for increasing values these functions rapidly con-
verge towards the results obtained in the limit of infinite J (Callen and
Callen 1965). In this limit, the sums in (2.2.2) are replaced by integrals,
and the reduced diagonal matrix-elements of the Stevens operators are

(1/J (l)) <Jz = p |Om
l | Jz = p>

∣∣
J→∞ = δm0clPl(u = p/J), (2.2.3)

where the J (l) are defined by eqn (1.5.25), Pl(u) are the Legendre poly-
nomials, and cl are constants. Multiplying the terms in the sum in
(2.2.2) by ∆p = J∆u = 1, and then taking the limit J → ∞, we obtain

1

clJ
(l)

〈O0
l 〉 =

∫ 1

−1

Pl(u)e
xudu

/∫ 1

−1

exudu = Il+ 1
2
(x)

/
I 1

2
(x) = Îl+ 1

2
(x).

(2.2.4)
Îl+ 1

2
(x) is the usual shorthand notation for the ratio of Il+ 1

2
(x) to I 1

2
(x),

and the functions Il+ 1
2
(x) = (−i)l+ 1

2Jl+ 1
2
(ix) are the modified spherical

(or hyperbolic) Bessel functions. The relative magnetization

σ = Î 3
2
(x) = cothx− 1

x

is the familiar Langevin function L(x) and, eliminating x in (2.2.4) by
writing x = L−1(σ), we finally arrive at

〈Om
l (σ)〉 = δm0clJ

(l)Îl+ 1
2
[σ] with Îl+ 1

2
[σ] = Îl+ 1

2

(L−1(σ)
)
,

(2.2.5)
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for the thermal average of the Stevens operators as functions of σ =
σ(T,H), where c2 = 2, c4 = 8, and c6 = 16. This result has turned out
to be very useful for analysing the variation of the magnetic anisotropies
and the magnetoelastic strains with temperature and magnetic field. In
order to take full advantage of the theory, σ in eqn (2.2.5) is usually
taken as the experimental value. If this is not available, it is a bet-
ter approximation to use the correct MF value for it, rather than the
Langevin-function, i.e. σ = BJ (x) where BJ (x) is the Brillouin func-
tion (1.2.31), determined directly from (2.2.2), because the actual value
of J has some influence on the magnitude of σ. This is particularly
true for the change of σ with magnetic field. In the limit of infinite J ,
∂σ/∂(JH) � (1 − σ)gµB/(J

2J (0)) at low temperatures, which is just
a factor of three smaller than the MF value for J = 6, which agrees
reasonably well with experiments on Tb.

The functions Îl+ 1
2
(x), for l = 2, 3, · · · are most easily calculated

from the recurrence relation

Îl+ 3
2
(x) = Îl− 1

2
(x)− 2l + 1

x
Îl+ 1

2
(x). (2.2.6)

At low temperatures, where x� 1 and σ � 1− 1
x , it may easily be shown

from (2.2.6) that Îl+ 1
2
[σ] � σl(l+1)/2 (differences appear only in the third

order ofm = 1−σ). Hence the result (2.2.5) of the Callen–Callen theory
agrees with the Zener power-law in the low-temperature limit. With
increasing temperature, as x becomes comparable to 1, the exponential
terms in the expansion of σ � 1 − 1

x + 2exp(−2x) + · · ·, which have no
counterpart in the classical Zener power-law, start to be important. In
Chapter 5, we shall develop a detailed description of the excitations in
the ferromagnet, the spin-waves. The thermal population of the spin-
wave states is described by Bose statistics, assuming the availability of
an infinite number of states of the single angular-momentum operators.
The spin-wave theory reproduces the result of the Callen–Callen theory,
in an expansion in powers of m = 1 − σ, but only if the exponential
corrections above are negligible. The appearance of these terms at high
temperatures signals the breakdown of the Bose approximation for the
spin-wave excitations, which occurs because the actual number of states
is not unlimited. As would be anticipated, this limitation in the number
of states (or bandwidth if J is infinite) begins to be effective when the
population of the uppermost level, which in the MF approximation is
just proportional to exp(−2x), becomes significant. In the limit of a
small relative magnetization, where x� 1, the Zener power-law and the
spin-wave theory are both inadequate, whereas the Callen–Callen theory
may still be applicable. In this limit, we may use the approximation

Îl+ 1
2
[σ] =

3l

(2l+ 1)!!
σl ; σ � 1. (2.2.7)
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One of the advantages of the Callen–Callen theory is that the results
only depend on the one parameter σ, but not explicitly on the Hamil-
tonian. The relative magnetization may then be determined either by
experiment, or by MF or more accurate theories, which result in a σ
which depends on the actual Hamiltonian employed. The simplicity of
this result may be impaired if the magnetic anisotropy of the system is
substantial, so that the exchange interaction is no longer the dominant
term in the density matrix. We shall be mostly concerned with the ap-
plicability of the theory at low temperatures, and the introduction of an
axial-anisotropy term, such as B0

2O
0
2(Ji), is not inimical to the theory

in this regime, provided that the magnetization is along the anisotropy
c-axis, i.e. if B0

2 is negative. Since only the lowest states are important
at low temperatures and, in the MF approximation, these are still rea-
sonably well accounted for by the density matrix in eqn (2.2.1), only the
value of x is changed, with no direct consequences for the result. There
are however noticeable effects if the anisotropy destroys the rotational
symmetry about the magnetization axis. This is the case if B0

2 is positive
and forces the moments to lie in the basal plane, so that it requires a
magnetic field to pull them out of it, whereas they may rotate much more
freely within the plane, since B6

6 is unimportant compared to the axial
anisotropy. As we shall discuss in detail in Chapter 5, the ground state
in this situation is no longer the fully-polarized state, the expectation
value of Jz is slightly smaller than J at zero temperature, and the lower
symmetry of the anisotropy field has direct consequences for the nature
of the elementary spin-wave excitations, and thus for the form of the
density matrix. The necessary modification of the Callen–Callen theory
may be developed in two ways. One is to analyse the influence of the
anisotropy on the low-temperature elementary excitations, and thereby
derive the density matrix, as is done in Chapter 5. The other approach
is numerical and involves the construction of a Hamiltonian which has
the right transition temperature and the correct anisotropy fields, in the
MF approximation. ρMF may then be calculated as a function of tem-
perature, and results corresponding to (2.2.5), relating the expectation
values of the various Stevens operators to the relative magnetization,
may be obtained numerically. By the same argumentation as that used
by Callen and Shtrikman (1965), these results may be expected to be
insensitive to the actual model Hamiltonian used for describing the sys-
tem. In the low temperature limit, the spin-wave theory supports this
point of view, as its results are described in terms of only two param-
eters. One is the relative magnetization σ, as before, while the other,
b̃ or η± = (1 ± b̃)(1 − 1

2 b̃
2), measures the eccentricity of the anisotropic

potential about the axis of magnetization.

In our discussion of the Callen–Callen theory, we have assumed
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that the quantization axis (z-axis), defining the Stevens operators, co-
incides with the direction of magnetization. We shall continue to use
this convention, but must then take account of the difficulty that the
crystal-field Hamiltonian in the hcp metals only has the simple form
of eqn (1.4.6b) if the quantization axis is chosen to be along the c- or
ζ-direction. In order to distinguish between the two systems, we shall
denote the Stevens operators in the Hamiltonian defined with respect
to the crystallographic axes, i.e. in the (ξ, η, ζ)-coordinate system, by
Qm

l (J). The direction of magnetization, the z-axis, is specified by the
polar angles (θ, φ) in the (ξ, η, ζ)-coordinate system, and we must intro-
duce the following transformation of the angular momentum operators
in Qm

l (J):

Jξ = Jz sin θ cosφ− Jx cos θ cosφ+ Jy sinφ

Jη = Jz sin θ sinφ− Jx cos θ sinφ− Jy cosφ

Jζ = Jz cos θ + Jx sin θ,

(2.2.8)

choosing the y-axis to lie in the basal-plane. By this transformation,
Qm

l is expressed as a linear combination of the Stevens operators Om′
l ,

with the same l but various m′-values. For instance, we have

Q0
2 = 3J2

ζ − J(J + 1)

= 3J2
z cos

2 θ + 3J2
x sin

2 θ + 3
2 (JzJx + JxJz) sin 2θ − J(J + 1)

= 1
2O

0
2(3 cos

2 θ − 1) + 3
2O

2
2 sin

2 θ + 3O1
2 sin 2θ.

(2.2.9)
Carrying out the same transformation on Q2

2 we find the following rela-
tions:

Q0
2 = 1

2 (−O0
2 + 3O2

2)

Q2
2 = 1

2 (O
0
2 +O2

2) ; φ = pπ,
(2.2.10)

when the moment is in the basal-plane (θ = π/2). The expectation value
of Q2

2 is relevant for determining the γ-strain εγ1, as shown in (1.5.29).
According to the result (2.2.5) of Callen and Callen, 〈O2

2〉 should vanish,
but in a basal-plane ferromagnet this may not occur. The eccentricity
parameter mentioned above is just defined as

b̃ = 〈O2
2〉/〈O0

2〉, (2.2.11)

which is zero, by definition, only if the anisotropy is invariant with re-
spect to a rotation about the z-axis.

The numerical programme sketched above has been carried through
for a model corresponding to Tb. The effective basal-plane anisotropy
is about a factor of 10 smaller than the axial anisotropy, so that b̃ is
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about −0.03 at zero temperature. The negative sign of b̃ shows that the
fluctuations of the moments within the plane are larger than those out of
the plane, as measured respectively by 〈J2

y 〉 and 〈J2
x〉, since O2

2 = J2
x−J2

y .

In Fig. 2.2 the numerical results for 〈O0
2 ± O2

2〉/J (2) are compared with
the predictions of the Callen–Callen theory, and of the linear spin-wave
theory developed in Chapter 5, in which the MF values (5.3.23) of mo

and bo are used, instead of (5.3.18). The Callen–Callen theory predicts
that both thermal averages vary like Î5/2(σ), which is not consistent

with a b̃ different from zero. Furthermore, the effective power-laws in
the zero-temperature limit are changed from σ3 to 〈O0

2 − O2
2〉 ∝ σ2.65,

and 〈O0
2 +O2

2〉 ∝ σ3.3. The predictions of the spin-wave theory are con-
sistent with the numerical results at low temperatures, both with respect
to the absolute magnitude of the expectation values and to the effective
power-laws, and it appears to give a reasonably correct description of

Fig. 2.2. Calculations of the dependence of the expectation values
of the Stevens operators 〈O0

2 ±O2
2〉 on the relative magnetization in Tb.

The numerical calculations described in the text differ from the Callen–
Callen result Î5/2(σ), but agree at low temperatures with the predictions

of spin-wave theory.
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the system as long as σ is greater than about 0.8. The same picture holds
true for other combinations of Stevens operators, but the discrepancies
between the different theories are accentuated as the rank increases.
Figure 2.3 shows the example of 〈Q6

6〉. The absolute magnitude of this
quantity is reduced by nearly 40% in the zero-temperature limit, as
compared with the Callen–Callen theory, and the slope of the numerical
calculation, in the semi-logarithmic plot, changes with σ, leading to an
effective power-law depending on the interval over which it is measured.
In the zero-temperature limit, 〈Q6

6〉 is proportional to approximately
σ26, instead of the Callen–Callen result σ21.

Fig. 2.3. The dependence on the relative magnetization of the expec-
tation value of the Stevens operator 〈Q6

6〉, which determines the hexag-
onal magnetic anisotropy, in Tb. The numerical calculations and the
spin-wave theory both predict a large reduction in this quantity at low

temperatures, compared with the Callen–Callen theory.

The numerical results are expected to be sensitive to the magnitude
of the anisotropy, rather than to the actual parameters which determine
the anisotropy, and the spin-wave theory indicates that this expectation
is fulfilled, at least at low temperatures. However, in order to obtain
the right variation of the anisotropy fields with temperature, i.e. of b̃
compared to σ, it is necessary to select appropriate linear combinations
of Stevens operators of various ranks for the modelling of the different
anisotropy terms. At high temperatures, for instance, b̃ is determined
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by the low-rank terms alone, i.e. by B0
2 if anisotropic dipole–dipole cou-

pling is neglected. Using β = (kBT )
−1 as an expansion parameter, and

assuming the magnetization to lie in the basal plane, we find, to leading
order in the crystal-field parameters introduced in eqn (1.4.6b),

〈Q2
2〉 = 3

5J
(2)σ2 J + 3

2

J + 1
� J (2)Î5/2[σ], (2.2.12a)

using (2.2.7) and neglecting the small 1/J corrections, whereas

〈Q0
2〉 = −〈Q2

2〉 − 4
5J

(2)(J + 1)(J + 3
2 )βB

0
2 , (2.2.12b)

which depends on the anisotropy, but only on the term of lowest rank.
Considering the field dependence of the two expectation values, as de-
termined by their dependence on σ, we observe that the Callen–Callen
theory leads to the right result in this high-temperature limit. The two
relations above explain the behaviour of 〈O0

2 ± O2
2〉 in Fig. 2.2, when σ

becomes small, as 〈O0
2+O

2
2〉/2J (2) should approach Î5/2(σ) at small val-

ues of σ, and go to zero at the transition temperature. 〈O0
2 −O2

2〉/2J (2),
on the other hand, should still be non-zero (about 0.23 as determined
by TN � 229K and the value B0

2 = 0.18meV used in the model) when
TN is approached from below and σ vanishes.

2.2.2 Anisotropic contributions to the free energy

The anisotropy of a magnetic system is determined by those contribu-
tions to the free energy which depend on the polar angles (θ, φ), which
specify locally the direction of the moments. Restricting ourselves to
the case of a ferromagnet in a uniform field, we may expand the free
energy in terms of functions proportional to the spherical harmonics, as
in eqn (1.5.22). To relate this expansion to the Hamiltonian (2.1.1), we
may use (2.1.5), which states that any change in the free energy due to a
change of the angles is given by δF̃ =

〈
δH〉

. The field is the independent

variable in F̃ but, as in (2.1.22), we wish the magnetization to be the in-
dependent variable. To obtain this free energy F (θ, φ), we subtract the
Zeeman energy, so that F (θ, φ) = F̃ − 〈HZ〉, where the field needed for
establishing the specified angles is determined from the equilibrium con-
dition δF̃ = 0. In the ferromagnet, the moments all point in the same
direction, and any contributions from the isotropic-exchange coupling
cancel out in δH. The free-energy function F (θ, φ) is thus determined
by

δF (θ, φ) =
〈
δ(Hcf +HZ)

〉− δ
〈HZ

〉
. (2.2.13)

Introducing the angle variables in the Hamiltonian by the transformation
(2.2.8), we find that the operators of rank l become angle-dependent
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linear combinations of the l-rank Stevens operators, which have their
polar axis along the z-axis defined by the direction of the moments. The
variational expression for the free energy then involves the calculation of
the expectation values of these Stevens operators. To leading order in the
crystal-field parameters, we may neglect the influence of the anisotropy
terms on the thermal averages in (2.2.13). This is the approximation
used by Callen and Callen, and we may utilize their result, eqn (2.2.5).
This has the consequence that, in the various linear combinations of
Stevens operators, only those terms in which m = 0 contribute to the
free energy, to leading order in the anisotropy parameters. From the
expansion (2.2.9) of Q0

2, we find the following result:〈
δ
(
Q0

2

)〉 � 〈O0
2〉δ

{ 1
2 (3 cos

2 θ − 1)
}

and, repeating this calculation for the other operators, we have in general〈
δ
(
Q0

l

)〉 � 〈O0
l 〉δPl(cos θ) ;

〈
δ
(
Q6

6

)〉 � 1
16 〈O0

6〉δ
{
sin6 θ cos 6φ

}
.

(2.2.14)
Because 〈Jx〉 = 〈Jy〉 = 0, the Zeeman terms in (2.2.13) cancel within
this approximation, and an integration of δF (θ, φ) leads to

F (θ, φ)/N � f0+
∑
l

B0
l 〈O0

l 〉Pl(cos θ)+
1
16B

6
6〈O0

6〉 sin6 θ cos 6φ. (2.2.15)

Comparing this result with the free energy expression (1.5.22), and in-
troducing the anisotropy parameters κml (T ), we obtain to a first approx-
imation

κ0l (T ) = clB
0
l J

(l)Îl+ 1
2
[σ] ; κ66(T ) = B6

6J
(6)Î13/2[σ], (2.2.16)

with σ = σ(T ), which leads to eqn (1.5.24) at zero temperature (σ = 1).
The equilibrium values of the angles in zero field are determined

by ∂F (θ, φ)/∂θ = ∂F (θ, φ)/∂φ = 0. In the above result for the free
energy, the φ-dependence is determined exclusively by B6

6 , the sign of
which then determines whether the a- or b-directions are the magneti-
cally easy or hard axes in the basal-plane (φ0 = pπ/3 or π/2 + pπ/3).
Because B6

6 is a sixth-rank coupling parameter, the importance of this
anisotropy decreases rapidly with the magnetization; Î13/2[σ] ∝ σ21 at

low temperatures, or σ6 when σ is small. The axial anisotropy derives
from all four parameters, and the equilibrium value θ0 is determined by
minimizing

f(u = cos θ) = F (θ, φ0)/N − f0

= 1
2κ

0
2(3u

2 − 1) + 1
8κ

0
4(35u

4 − 30u2 + 3)

+ 1
16κ

0
6(231u

6 − 315u4 + 105u2 − 5)− |κ66|(1− u2)3.
(2.2.17)
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Equation (2.2.16) shows that the various anisotropy parameters depend
differently on temperature. At high temperatures, κ02 dominates and
its sign determines whether the moments are parallel or perpendicu-
lar to the c-axis. As the temperature is decreased, the importance of
the higher-rank terms grows, putting increasing weight on the terms of
fourth and sixth power in cos θ. The equilibrium value θ0(T ) of θ may
therefore change as a function of temperature, as occurs in Ho and Er,
and also in Gd where, however, the theory of this section is not imme-
diately applicable.

The coefficients in the expansion for the free energy may be ob-
tained from experimental studies of the magnetization as a function of
the magnitude and direction of an applied magnetic field. The axial
part of the anisotropy is predominantly determined by the three κ0l -
parameters, and it is not usually easy to separate their contributions.
At low temperatures, where the higher-rank terms become relatively im-
portant, the axial anisotropy in the heavy rare earths is frequently so
strong that it is only possible to change θ by a few degrees from its equi-
librium value. Under these circumstances, it is only possible to measure
the components of the susceptibility, allowing a determination of the
second derivatives of F (θ, φ) in the equilibrium state (θ, φ) = (θ0, φ0).
The x-axis lies in the symmetry z–ζ plane and the transverse part of the
susceptibility tensor is diagonal with respect to the (x, y)-axes. With a
field hx applied in the x-direction, the moments rotate through an angle
δθ = θ − θ0, giving a component 〈Jx〉 = −〈Jz〉δθ = χxxhx. Introducing
the notation Fθθ ≡ ∂2F (θ, φ)/∂θ2 at (θ, φ) = (θ0, φ0), and similarly for
the other second derivatives, we may write

F = F (θ0, φ0) +
1
2Fθθ(δθ)

2 + 1
2Fφφ(δφ)

2 +N〈Jz〉δθhx,
in the limit where the field goes to zero. The term Fθφ = 0, because
sin 6φ0 = 0. At equilibrium, δθ = −N〈Jz〉hx/Fθθ, which determines the
susceptibility. When the field is applied in the y-direction, i.e. along the
direction (− sinφ0, cosφ0, 0), the Zeeman contribution to F is

N〈Jz〉hy sin θ sin (φ− φ0) = N〈Jz〉hy sin θ0δφ,
with 〈Jy〉 = −〈Jz〉 sin θ0δφ = χyyhy. Minimizing the free energy in the
presence of a field along the y-axis, we may derive the other susceptibility
component, obtaining

χxx = N〈Jz〉2/Fθθ ; χyy = N〈Jz〉2 sin2 θ0/Fφφ. (2.2.18)

In calculating χyy, we have assumed that θ0 �= 0; if θ0 = 0 then
χyy = χxx. Equation (2.2.18) is also valid in the presence of an ex-
ternal field, provided that the effects due to the Zeeman contribution,
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FZ = −NgµBH · 〈J〉, are included explicitly in F (θ0, φ0) and its deriva-
tives. Introducing the expression (2.2.17) for the free energy, in the
two cases where the moments are either parallel or perpendicular to the
c-axis, we find

1/χxx = 1/χyy = −(3κ02+10κ04+21κ06)/(σJ)
2 ; θ0 = 0, (2.2.19a)

or

1/χxx = (3κ02 − 15
2 κ

0
4 +

105
8 κ06 + 6|κ66|)/(σJ)2

1/χyy = 36|κ66|/(σJ)2
; θ0 =

π

2
,

(2.2.19b)
which must be positive if the structure is to be stable. In order to deter-
mine the higher derivatives of the free energy, a transverse field greater
than that corresponding to the linear regime described by the (zero-field)
susceptibility must be applied. The application of a large magnetic field
perpendicular to the magnetization axis, in a strongly anisotropic sys-
tem, creates a large mechanical torque, which may cause practical prob-
lems with maintaining the orientation of the crystal. If the experimental
facilities do not allow the determination of the higher derivatives, the
different temperature dependences of the various anisotropy parameters
may yield a rough separation of their contributions to the total axial
anisotropy. However the Callen–Callen theory is an approximation, the
corrections to which are important if the anisotropy is large, and there
are other contributions to the free energy than those which we have
considered above.

The results derived above are only valid if the anisotropy energies
are small compared to the exchange energy. In order to demonstrate the
kind of modifications which may appear in higher order, we shall consider
the simplest possible case, where only B0

2 is non-zero, and we shall only
calculate the free energy at zero temperature in the MF approximation,
i.e. the ground-state energy of a single site subjected to the exchange
field hex = 〈Jz〉J (0), with 〈Jz〉 = σJ . In this case, the MF Hamiltonian
(2.1.16) is

H = −(Jz − 1
2σJ)σJJ (0)− h(Jz cos θ + Jx sin θ)

+B0
2

[
3J2

z cos
2 θ + 3J2

x sin
2 θ + 3

2 (JzJx + JxJz) sin 2θ − J(J + 1)
]
,

(2.2.20)
in an applied field h along the ζ-axis. With the Jz-eigenstates as the
basis, the leading-order ground-state energy is

E0
0 =<J | H | J >= −(1− 1

2σ)σJ
2J (0)−hJ cos θ+B0

2J
(2)(3 cos2 θ−1).
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The off-diagonal matrix elements involving the ground state are

<J − 1 | H | J > =
{
6(J − 1

2 )B
0
2 cos θ − h

}
(J/2)1/2 sin θ

<J − 2 | H | J > = 3
2{2J (2)}1/2B0

2 sin
2 θ.

We shall only be concerned with terms up to second order in B0
2 and h, so

that we may use second-order perturbation theory, and it is sufficiently
accurate to approximate the energy differences between the ground state
and the first and second excited-states by respectively ∆1 = JJ (0) and
∆2 = 2JJ (0). Because of the mixing of the states, σ = 〈Jz〉/J =
1−m becomes slightly smaller than 1, but this only affects the exchange
contribution quadratic inm, as (1− 1

2σ)σ = 1
2 (1−m2). To second order,

the ground-state energy is found to be

E0(h) = −1
2J

2J (0)− hJ cos θ +B0
2J

(2)(3 cos2 θ − 1)

− 1
2

{
6(J − 1

2 )B
0
2 cos θ − h

}2
sin2 θ/J (0)− 9

4 (J − 1
2 )(B

0
2)

2 sin4 θ/J (0).
(2.2.21)

The minimum condition ∂E0/∂θ = 0 leads to

h = h0 = 6(J − 1
2 )B

0
2

[
1 + 3B0

2 sin
2 θ/{2JJ (0)}] cos θ or sin θ = 0,

to second order in B0
2 . The free energy F (θ, φ) at zero temperature is

then, in both cases,

F (θ, φ)/N = E0(h0) + h0Jσ cos θ

= −1
2J

2J (0) + 1
2 κ̃

0
2(3 cos

2 θ − 1) + 3
4bκ̃

0
2 sin

4 θ,

with
κ̃02 = 2B0

2J
(2) ; b = −3B0

2/{2JJ (0)}, (2.2.22a)

and the relative magnetization is σ = 1 − (J − 1
2 )b

2 sin4 θ. The b-

parameter introduced here is the leading order contribution to b̃, de-
fined in (2.2.11), when θ = π/2. One important feature illustrated by
this calculation is that the Om

2 -term in Q0
2, with m odd, is cancelled

by the Zeeman contribution, to second order in B0
2 . This is a conse-

quence of the freedom to replace the equilibrium condition ∂F/∂θ = 0
by the requirement that 〈Jx〉 (and 〈Jy〉) should vanish, by definition,
with the implication that the matrix-element <J − 1 | H | J > must be
zero within the present approximation. Bowden (1977) did not take the
Zeeman effect into account, and therefore obtained an erroneously strong
renormalization of the anisotropy. The second derivatives of F (θ, φ) are
Fφφ = 0, and

Fθθ/N = −3κ̃02(1− b sin2 θ) cos 2θ + 3
2 κ̃

0
2b sin

2 2θ. (2.2.22b)



106 2. MAGNETIC STRUCTURES

There is no change in the axial susceptibility in the axial ferromag-
net, for which θ = 0, but the higher derivatives are affected by the
modifications κ02(0) = κ̃02(1 − 4

7b) and κ04(0) = 6
35bκ̃

0
2. The correction

to the Callen–Callen theory is proportional to b, which is of the order
1/J times the ratio between the anisotropy and the exchange energy
(∝ B0

2J
(2)/J2J (0)), and hence becomes smaller for larger values of J .

This calculation may be extended to higher order and to non-zero tem-
peratures, but the complications are much reduced by the application of
the Holstein–Primakoff transformation which utilizes directly the factor
1/J in the expansion, as we shall see in the discussion of the spin-wave
theory in Chapter 5.

In the ferromagnetic phase, the ordered moments may distort the
lattice, due to the magnetoelastic couplings, and this gives rise to addi-
tional contributions to F (θ, φ). We shall first consider the effects of the
γ-strains by including the magnetoelastic Hamiltonian, incorporating
(1.4.8) and (1.4.11),

Hγ =
∑
i

[1
2cγ(ε

2
γ1 + ε2γ2)−Bγ2

{
Q2

2(Ji)εγ1 +Q−2
2 (Ji)εγ2

}
−Bγ4

{
Q4

4(Ji)εγ1 −Q−4
4 (Ji)εγ2

}]
,

(2.2.23)

retaining only the lowest-rank couplings (l = 2 and 4 of respectively the
γ2 and γ4 terms). The equilibrium condition

∂F/∂εγ1 =
〈
∂Hγ/∂εγ1

〉
= 0, (2.2.24)

and similarly for εγ2, leads to the equilibrium strains

εγ1 =
(
Bγ2〈Q2

2〉+Bγ4〈Q4
4〉
)
/cγ

εγ2 =
(
Bγ2〈Q−2

2 〉 −Bγ4〈Q−4
4 〉)/cγ . (2.2.25)

The conventional magnetostriction parameters C and A are introduced
via the equations

εγ1 = C sin2 θ cos 2φ− 1
2A sin4 θ cos 4φ

εγ2 = C sin2 θ sin 2φ+ 1
2A sin4 θ sin 4φ

(2.2.26a)

(Mason 1954). Expressing Qm
l in terms of Om

l , and retaining only the
terms with m = 0, we may derive these parameters from (2.2.25), ob-
taining

C =
1

cγ
Bγ2J

(2)Î5/2[σ]

A = − 2

cγ
Bγ4J

(4)Î9/2[σ].
(2.2.26b)
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Within this approximation, the γ-strain contribution Fγ(θ, φ) to the free
energy is

Fγ(θ, φ) =
〈Hγ

〉
= −1

2cγ
(
ε2γ1 + ε2γ2

)
N

= −1
2cγ

(
C2 sin4 θ + 1

4A
2 sin8 θ − CA sin6 θ cos 6φ

)
N,
(2.2.27)

showing that these strains affect the axial-anisotropy parameters κ0l (T ),
introducing effects of higher rank than l = 6, and that the six-fold
anisotropy in the basal plane is now

κ66(T ) = B6
6J

(6)Î15/2[σ] +
1
2cγCA. (2.2.28)

When both C and A are non-zero, the maximum area-conserving elon-
gation of the hexagonal planes varies between |C + 1

2A| and |C − 1
2A|,

which results in a φ-dependent magnetoelastic energy, and thus a contri-
bution to κ66. The γ-strain hexagonal anisotropy decreases more slowly
(like σ13 at low temperatures) than the B6

6 term, as σ decreases, and
therefore dominates at sufficiently high temperatures.

The ε-strains may be included in a similar way. Retaining only the

lowest-rank coupling Bε1 ≡ B
(l=2)
ε1 in eqn (1.4.12), we have

Hε =
∑
i

[1
2cε(ε

2
ε1 + ε2ε2)−Bε1

{
Q1

2(Ji)εε1 +Q−1
2 (Ji)εε2

}]
. (2.2.29)

Introducing the magnetostriction parameter Hε of Mason (1954) (the
index ε should prevent any confusion with the magnetic field) by

εε1 = 1
4Hε sin 2θ cosφ ; εε2 = 1

4Hε sin 2θ sinφ, (2.2.30a)

we obtain within the Callen–Callen theory

Hε =
2

cε
Bε1J

(2)Î5/2[σ], (2.2.30b)

and the ε-strain contribution to the free energy

Fε(θ, φ) = − 1
32NcεH

2
ε sin

2 2θ. (2.2.31)

The α-strains (1.4.10) do not influence the symmetry of the system, but
they do make a contribution, essentially proportional to 〈Q0

2〉, to the
anisotropy, the effects of which may be derived in the same way as those
of the γ- and ε-strains. The magnetoelastic contributions to the free en-
ergy can be estimated experimentally if the elastic constants are known,
by a determination of the strains as a function of the magnetization. The
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knowledge of the equilibrium strains may also be used for a reasonable
estimate of the magnetoelastic modifications of the second derivatives,
provided that the additional assumption is made that the couplings of
lowest rank are dominant. For example, the higher-rank γ-strains in the
basal-plane magnet make contributions to the axial anisotropy which
cannot be written in terms of C and A in eqn (2.2.27). A more direct
estimate of the contributions to the second derivatives requires an exper-
imental determination of how the strains behave when the direction of
the magnetization is changed. In basal-plane ferromagnets, such as Tb
and Dy, it may be possible to observe the φ-dependence of the strains
(Rhyne and Legvold 1965a), whereas if the axial anisotropy is large, it
may be very difficult to determine the variation of the strains with θ.
In the case of the α-strains, the argument that the (l = 2) couplings are
dominant is not sufficient for a determination of their effect on the axial
anisotropy. The reason is that the two-ion magnetoelastic couplings of
lowest rank, i.e. the dipolar interactions

∆Hα
me = −

∑
ij

[{
D10(ij)εα1 +D20(ij)εα2

}
Ji ·Jj

+
{
D13(ij)εα1 +D23(ij)εα2

}
JiζJjζ

]
,

(2.2.32)

may be important. This is the case in Tb and Dy, as shown by the
analysis of the stress-dependence of the Néel temperatures (Bartholin et
al. 1971). These interactions affect the α-strains, but they contribute
differently to the axial anisotropy from the (l = 2)-terms in the single-ion
magnetoelastic Hamiltonian (1.4.10).

The simplifications introduced in the above discussion of the ferro-
magnet may also be utilized in non-uniform systems, because the MF
approximation allows the individual ions to be treated separately. How-
ever, the isotropic two-ion contributions no longer cancel in δF (θ, φ) in
(2.2.13), since the direction of the exchange field depends on the site
considered. We consider as an example the helically ordered phase. If
we neglect the bunching effect due to the hexagonal anisotropy, the axial
anisotropy is independent of the site considered. Treating the ions as
isolated, but subject to a constant exchange-field, we may calculate F o

θθ,
corresponding to 1/χ o

xx, and then use (2.1.19) to account for the induced
exchange-field due to an applied field in the x- or c-direction, modulated
with a wave-vector q along the c-axis. If the two-ion coupling between
the moments is allowed to be anisotropic, the leading order result is

1/χxx(q) = J⊥(Q)− J‖(q) +
(
3κ02 − 15

2 κ
0
4 +

105
8 κ06

)
/(σJ)2. (2.2.33)

This is the anisotropy parameter which determines the plane in which
the moments spiral, and it vanishes at the temperature T ′

N at which
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the c-axis moments begin to order. Just below T ′
N , the c-component is

modulated with the wave-vector Q′ at which J‖(q) has its maximum,
and only ifQ′ = Q is the structure the tilted helix. IfQ′ = 0, so that the
c-axis moments are ferromagnetically ordered, the resulting structure is
the cone.

The magnetoelastic contributions require special treatment when
the structures are modulated, because of the limited ability of the lattice
to adapt to various strain configurations, when the strains are spatially
modulated. The magnetoelastic Hamiltonians considered above are only
strictly valid in the uniform case, but they may be generalized to non-
uniform structures by replacing the strains by their local values εαβ(i), at
least in the limit where the wavelength of the modulation is much longer
than the range of the interactions. At shorter wavelengths, the form
of the magnetoelastic-interaction Hamiltonian may still be applicable,
but the effective coupling parameters may depend on the wave-vector.
This suggests that the above discussion may be largely unchanged if
the magnetic structure is modulated, provided that we take account of
the new constraints which we shall now examine. The displacement of
the ith ion, u(Ri) = R̃i − Ri, from its equilibrium position Ri may
be divided into a uniform and a non-uniform component, and the non-
uniform part may be written as a linear combination of contributions
from the normal phonon modes at various wave-vectors. It follows from
this that a displacement of the ions which varies with a certain wave-
vector should be describable in terms of the normal phonon modes at
that particular wave-vector, in order to ensure that such a displacement
is compatible with the lattice.

To be more specific, we shall consider the wave-vector to be along
the c-axis in the hcp lattice. In the double-zone representation, which
neglects the two different displacements of the hexagonal layers, there
are only three normal modes; one longitudinal and two energetically-
degenerate transverse modes. All three modes correspond to rigid dis-
placements of the hexagonal layers. The γ-strains describe an elongation
of these layers along a certain direction in the plane. If the γ-strains are
uniform within each hexagonal layer, the magnitude or the direction of
the elongation cannot be allowed to vary from one layer to the next,
as this would destroy the crystal. Hence, even though 〈Q2

2(Ji)〉 in the
equilibrium equation for εγ1(i), corresponding to eqn (2.2.25), varies in
a well-defined way in a helical structure with Q along the c-axis, εγ1(i)
is forced to stay constant. The site-dependent version of (2.2.25) is only
valid when the right-hand sides are replaced by their averages with re-
spect to any variation along the c-axis, and these averages vanish in
the helix. This phenomenon was named the lattice clamping effect by
Cooper (1967), and further discussed by Evenson and Liu (1969). One
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of its consequences is that the γ-strain contributions (2.2.27) to the free
energy cancel out in the helical phase. This behaviour of the γ-strains
therefore enhances the tendency of the wave-vector of the helix to jump
to one of the two commensurable values Q = 0 or 2π/c, or may in-
crease the stability of other commensurable structures which have a net
moment in the basal-plane.

The only strain modes which are allowed to vary along the c-axis
are those deriving from the transverse modes, which are εε1(i) and
εε2(i), and the longitudinal component ε33(i). Like the γ-strains, the
α-strains ε11(i) and ε22(i) must remain constant. In the longitudinally
polarized phase, the ε-strains are not affected by the ordered moment.
The uniform α-strains are determined by the average of Q0

l (Ji) and, in
addition, the c-axis moments induce a non-uniform longitudinal-strain
mode ε33(i) ∝ 〈Jiζ〉2 at the wave-vector 2Q, twice the ordering wave-
vector. The amplitude ε2Q, in ε33(i) = ε2Q cos (2QRiζ), may be de-
termined by the equilibrium conditions for the single sites, with the
magnetoelastic-coupling parameters replaced by those corresponding to
2Q. The longitudinal strain at site i is directly related to the displace-
ment of the ion along the ζ-axis; ε33(i) = ∂uζ/∂Riζ and hence uζ(Ri) =

(2Q)−1ε2Q sin (2Q ·Ri). Below T ′
N , where 〈Jiξ〉 becomes non-zero, the

cycloidal ordering induces an εε1-strain, modulated with the wave-vector
2Q. The presence of a (static) transverse phonon mode polarized along
the ξ-direction corresponds to ∂uξ/∂Riζ = ε13(i) + ω13(i) �= 0, whereas
∂uζ/∂Riξ = ε13(i) − ω13(i) = 0. Hence it is εε1(i) + ω13(i), with
ω13(i) = εε1(i), which becomes non-zero, and not just ε13(i) = εε1(i).
In these expressions, ω13(i) is the antisymmetric part of the strain ten-
sor, which in the long-wavelength limit describes a rigid rotation of the
system around the η-axis. Because such a rotation, in the absence of ex-
ternal fields, does not change the energy in this limit, the magnetoelastic
Hamiltonian may still be used for determining εε(i). Only when the rela-
tion between the strains and the transverse displacements is considered,
is it important to include the antisymmetric part. In helically-ordered
systems, the γ-strains are zero, due to the clamping effect, as are the
ε-strains, because the moments are perpendicular to the c-axis. Only
the α-strains may be non-zero, and because 〈Q0

l (Ji)〉 are independent of
the direction of the basal-plane moments, the α-strains are the same as
in the ferromagnet (we neglect the possible six-fold modification due to
B66

α in (1.4.10)). Their contributions to the axial anisotropy (2.2.33), to
be included in κ0l , are also the same as in the ferromagnetic case. In the
basal-plane ferromagnet, the ε strains contribute to the axial anisotropy
1/χxx in eqn (2.2.19b):

∆(1/χxx) =
1

N(σJ)2
∂2Fε/∂θ

2 = −1
4cεH

2
ε /(σJ)

2 ; θ0 =
π

2
, (2.2.34)
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as derived from (2.2.31). It is straightforward to see that we get the
equivalent contribution in the helix at q = 0 in eqn (2.2.33), except that
the coupling parameters in (2.2.34) should have the effective values at
the wave-vector Q. In the conical phase, both εε1(i) and εε2(i) become
non-zero, 90◦ out of phase with each other, corresponding to a transverse
displacement of the planes, in a direction which follows the orientation
of the moments in the basal plane.

2.3 Magnetic structures of the elements

As we have seen, the ‘exotic spin configurations’ first observed by Koeh-
ler and his colleagues in the heavy rare earths may be understood as the
result of a compromise between the competing magnetic interactions to
which the moments are subjected. The complex changes which occur
as the temperature is varied stem primarily from the temperature de-
pendence of the expectation values of the terms in the MF Hamiltonian
(2.1.16). The crystal-field parameters Bm

l are expected to change little
with temperature but, as shown in the previous section, the variation
of the expectation values 〈Om

l 〉 of the Stevens operators may give rise
to a very pronounced temperature dependence of the anisotropy forces,
including the magnetoelastic effects. The contribution from the two-ion
coupling generally varies more slowly, since the exchange field is pro-
portional to 〈Jj〉 or σ, but changes in the magnitude and orientation of
the ordered moments alter the band structure of the conduction elec-
trons, which in turn modifies the indirect exchange J (ij). Hence the
Fourier transform J (q), and in particular the value Q at which it at-
tains its maximum, may change with temperature in the ordered phase.
In addition, the possibility that anisotropic two-ion coupling may be
of importance implies that the effective parameters of the simple MF
Hamiltonian (2.1.16) may all depend on the magnitude and orientation
of the moments.

The anisotropy forces favour a set of crystallographic directions,
related by a rotational symmetry operator, along which the moments
tend to align themselves. In particular, the low-order crystal-field term
B0

2〈O0
2(J)〉 gives rise to an axial anisotropy, which strives to confine

the magnetization either to the basal plane or along the c-axis, and de-
clines relatively slowly with temperature. Except for Gd, the rare earth
elements all have a J (q) with a maximum at Q �= 0, reflecting the com-
plexities of the Fermi surface and corresponding to a periodicity which is
not generally commensurable with the lattice. Transverse and longitu-
dinal magnetic structures can accomodate both the anisotropy and the
periodicity constraints at high temperatures, with respectively uniform
helical or longitudinal-wave configurations of the moments, character-
ized by a single wave-vector. As the temperature is lowered, however,
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conditions develop which favour commensurable structures, including
the ferromagnet. The hexagonal anisotropy distorts the helical struc-
ture, while the development of higher harmonics, assisted by the axial-
anisotropy forces, favours commensurability in the longitudinal struc-
ture. The higher-order axial-anisotropy terms may also tend to pull the
moments away from their planar or axial orientations. The application
of a magnetic field requires further compromises, until it is so great that
it coerces all the moments into alignment.

The variation of temperature and field thus reveals a rich variety
of intermediate phase transitions to different structures. Most of these
transitions are discontinuous, but occasionally a second-order transition
is observed. In the following, we will discuss the relation between the
interactions, and their variation, and the magnetic structures in the rare
earths. We shall give a summary of the rather complete understand-
ing which has been attained of the heavy elements, followed by a brief
discussion of the complex structures of Nd, which is the only light rare
earth which has been studied in comparable detail. The effect of a mag-
netic field will be exemplified by a description of the magnetization of
Ho. Finally we will consider the new features which emerge when one
dimension of the magnetic lattice is bounded, illustrated by some of the
results from the rapidly developing study of thin films and superlattices.

2.3.1 Bulk magnetic structures

The manner in which the competing interactions express themselves is
very well illustrated by the heavy hcp rare earths. In their magnetically
ordered phases, all the moments in a particular plane normal to the c-
axis are aligned, but their relative orientations may change from plane to
plane. Fig. 1.19 illustrates some of the simpler of these structures, while
the transition temperatures TN and TC to ordered states, respectively
without and with a net moment, are given in Table 1.6.

Gd is magnetically by far the simplest of the rare earths. The ex-
change favours ferromagnetism and the 4f charge-cloud is spherically
symmetric, so that the crystal-field interactions (1.4.4) are zero. How-
ever there is a residual magnetic anisotropy, which causes the moments
to point preferentially along the c-axis just below TC . At lower temper-
atures, the easy axis begins to deviate towards the basal plane, reaching
a maximum tilt angle of 60◦ at 180K before decreasing to just below 30◦

at 4.2K (Corner and Tanner 1976). The anisotropy parameters are typ-
ically two or three orders of magnitude smaller than those of the other
heavy rare earths (Mishima et al. 1976). Since the c/a ratio of Table 1.2
is less than the ideal value, the dipolar coupling induces an anisotropy,
discussed in Section 5.5.1, which tends to hold the moments along the
c-direction and has roughly the observed magnitude (Brooks and Good-
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ings 1968). There is in addition a competing anisotropy, which has its
origin in the spin–orbit coupling (1.2.13) of the conduction electron gas,
which restricts the free rotation of the spins relative to the lattice. The
indirect-exchange interaction then ensures that the localized spins are
correspondingly constrained. The magnitude of this effect could in prin-
ciple be calculated from the electronic structure, at least at absolute
zero, but no serious attempts have yet been made to do so.

The small anisotropy of Gd leads to an unusual sequence of struc-
tures when it is diluted with Y. The latter has a very strong tendency to
impose a periodic magnetic structure on dissolved rare earth moments
(Rainford et al. 1988a; Caudron et al. 1990) and, in a concentration
above about 30% in Gd, induces a helical structure below TN . The
magnetic behaviour of these alloys is completely dominated by the ex-
change, and the transition to the ferromagnetic structure, both with
increasing Gd concentration and, as occurs if the Y concentration is not
too high, with decreasing temperature, takes place by a continuous re-
duction of the turn angle of the helix (Palmer et al. 1986), as the peak
in J (q) moves smoothly to the origin. At higher Y concentrations, a
longitudinal wave is also formed along the c-axis, over a temperature
range and with a wave-vector which are different from those of the he-
lix. As discussed in Section 2.1.5, this behaviour shows explicitly that
the exchange must be anisotropic. Furthermore, at Y concentrations
just above the critical value for the formation of a helix, a ferromagnetic
structure, with the easy direction along the c-axis, forms at TC , is trans-
formed into a basal-plane helix through a first-order transition at a lower
temperature TN , and at an even lower temperature transforms back into
the aforementioned ferromagnetic structure, with the moments canted
away from the c-direction.

Tb and Dy both have large axial anisotropies which confine the mo-
ments to their basal planes, and the peaks in J (q), illustrated in Fig.
1.17, induce helical structures at the respective Néel temperatures. In
Tb, this peak is very small, and the spin-wave measurements illustrated
in Fig. 6.1 indicate that it becomes even smaller as the helical phase
is established and the superzone energy-gaps grow. Simultaneously, the
(negative) anisotropy energy in the ferromagnetic phase increases, par-
ticularly the cylindrically-symmetric magnetoelastic term proportional
to C2 in (2.2.27), which makes no contribution in the helical phase be-
cause of lattice clamping. Consequently, this anisotropy energy over-
whelms the exchange-energy difference (1.5.35) only ten degrees below
TN , and a first-order transition occurs to a ferromagnetic structure. The
peak in the exchange function in Dy is more robust, and the helical phase
correspondingly more stable but, as we have discussed in Section 1.5, a
ferromagnetic transition ultimately takes place at 85K.
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An instructive example of competing anisotropy forces has been
observed in a Tb0.5Dy0.5 crystal (Spano et al. 1988). This alloy, as would
be anticipated, forms a helical structure at 206K, and transforms into a
ferromagnet at 152K. At this temperature, the predominant anisotropy
is due to the Tb magnetoelastic forces in (2.2.28), since the coefficient
A is almost zero for Dy (Martin and Rhyne 1977), and the hexagonal
crystal-field anisotropy for both types of ion has renormalized to a very
small value. Consequently, the easy axis of magnetization is the b-axis,
as in pure Tb. As the temperature is further reduced, however, the
crystal-field contribution grows, roughly as σ21, and since it is much
greater for Dy than Tb, the easy axis switches at about 100K to the
a-direction, as in pure Dy.

Table 2.1. Crystal-field parameters (meV).

B0
2 B0

4 B0
6 B6

6

Ho 0.024 0.0 −9.6·10−7 9.2·10−6

Er −0.027 −0.3·10−4 1.3·10−6 −9.0·10−6

Tm −0.096 0.0 −9.2·10−6 8.9·10−5

Compared with these relatively straightforward systems, the be-
haviour of the remainder of the magnetic heavy rare earth series, Ho,
Er, and Tm, is more intriguing. As illustrated in Fig. 1.17, the peaks
in J (q) are large, so that periodic structures are stabilized down to low
temperatures. The crystal-field anisotropy also allows the moments to
move out of the plane. In Table 2.1 are given the anisotropy parameters
deduced from studies of the magnetic structures and excitations. Al-
though these must to some extent be considered as effective values, sub-
suming for example the effects of two-ion and magnetoelastic anisotropy,
they are among the best estimates which we have for the crystal fields
in the rare earths, and they correlate well with the Stevens factors of
Table 1.4.

Ho demonstrates the interplay of the various interactions in an ex-
emplary manner. The positive value of B0

2 and the peak in the exchange
function again stabilize the helix at TN . The peak value J (Q) is now so
large, however, that the cylindrically-symmetric magnetoelastic energy,
which is substantially smaller than that of Dy, is unable to induce a
ferromagnetic transition. On the other hand, the hexagonal crystal-field
anisotropy is nearly three times as big as in Dy, and distorts the helix
drastically when the temperature is reduced, as revealed by the appear-
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ance of higher harmonics in neutron diffraction (Koehler et al. 1966). As
illustrated in Fig. 2.4, the peak in J (q) simultaneously moves to smaller
values of q, and the Q of the magnetic structure decreases correspond-
ingly. However this change does not occur uniformly with temperature,
but rather a series of commensurable wave-vectors is traversed, with ap-
parently discontinuous jumps between them (Gibbs et al. 1985). At 20
K, a second-order transition to a shallow cone structure, with an opening
angle which decreases continuously towards 80◦ as the temperature is
lowered, is observed. The helical component is commensurable with the
lattice, with an average turn angle of 30◦, but the moments are strongly
bunched around the easy b-axes, as shown in Fig. 1.20.

To interpret this rich variety of phenomena, we will use the model
of Larsen et al. (1987). The Hamiltonian which they constructed has

Fig. 2.4. The Fourier transform, for wave-vectors in the c-direction,
of the indirect-exchange interaction in Ho at different temperatures, de-
duced from the magnetic excitations and used in the calculation of the
structures. The maximum in J⊥(q) increases in magnitude and moves to
larger wave-vectors as the temperature is increased, leading to a decrease

in the repeat distance of the periodic structures.
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the form of (2.1.1), augmented by the magnetic dipole–dipole interaction
(1.4.26) which, as we shall see, is of crucial importance. The crystal-field
parameters Bm

l were determined primarily from a fit to the magnetic
structures and magnetization curves at low temperatures, shown in Fig.
1.20, and the temperature dependence of these parameters was assumed
to be negligible. The initial values for the isotropic Heisenberg exchange
were taken from an analysis of the spin waves in Ho (Jensen 1988a),
and depend explicitly on the temperature, as shown in Fig. 2.4. They
were adjusted slightly (Mackintosh and Jensen 1990) to reproduce cor-
rectly the transition fields from the helical phase, but remain consistent
with the spin-wave data, within the experimental error. The magnetic
properties are calculated by means of the method described in Section
2.1.2, assuming an initial distribution 〈Ji〉 of the moments at a given
temperature. The structure is taken to be commensurable, with a re-
peat distance, deduced from experimental data, which may be as high as
50–100 atomic layers for the more complex configurations. The assumed
values of 〈Ji〉 are inserted into the Hamiltonian and a new set of moments
calculated, using the mean-field method to reduce the two-ion term to
the single-ion form. This procedure is repeated until self-consistency is
attained. The free energy and the moments on the different sites can
then readily be calculated for the self-consistent structure.

The results of such self-consistent calculations for different temper-
atures and commensurable periodicities are shown in Fig. 2.5. The data
indicate that B0

4 is zero, to within the experimental error, whereas B0
6

has the opposite sign to B0
2 . As the temperature is reduced in the helical

phase and B0
6〈O0

6〉 increases, this term tends to pull the moments out
of the plane. If the only two-ion coupling were the isotropic exchange,
this would give rise to a continuous transition to a tilted helix, which re-
duces the exchange energy more effectively than the cone (Elliott 1971,
Sherrington 1972). However, the dipolar interaction strongly favours
a ferromagnetic orientation of the c-axis moments, because the dipolar
energy associated with a longitudinal wave is very high, as we discuss in
detail in Section 5.5.1. Consequently, the dipolar contribution shifts the
position of the maximum in J‖(q) from q = Q to zero wave-vector, as

illustrated in Fig. 5.7, and the vanishing of the axial anisotropy (2.2.33)
at q = 0 leads to a second-order transition at T ′

N to the cone phase. In
this special case, we can therefore conclude that it is the temperature
dependence of B0

6〈O0
6〉 which drives the helix into instability, and that

the dipolar interaction chooses the cone, rather than the tilted helix, as
the stable low-temperature phase.

At 4K, in the cone phase, the large hexagonal anisotropy causes the
helical component of the moments to bunch around the easy directions
of magnetization, in the twelve-layer structure described by eqn (1.5.3),
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so that the constant angle φ in the plane between any moment and the

nearest b-axis is only 5.8◦, as shown in Fig. 2.5(a), compared with the 15◦

which corresponds to a uniform helix. As the temperature is increased,

the expectation value 〈O6
6〉 decreases with the relative magnetization,

roughly like σ21, and φ increases correspondingly. Simultaneously Q

tends to increase, reflecting the change in the position of the maximum

Fig. 2.5. The self-consistent periodic structures in Ho, calculated at
different temperatures. Each circle represents the magnitude and direc-
tion of the ordered moment in a specific plane, relative to the size of the
moment at absolute zero (10µB), indicated by the length of the horizon-
tal lines. The orientation of moments in adjacent planes is depicted by
the positions of neighbouring circles.

(a) The 12-layer zero-spin-slip structure at 4K. The open circle in the
centre indicates the ferromagnetic component in the cone structure.
(b) The 11-layer one-spin-slip structure at 25K. The bunched pairs of
moments are disposed unsymmetrically with respect to the easy axis in
the vicinity of the spin slip.
(c) The 19-layer structure at 50K. The orientation of the moments in
successive layers is determined by following first the filled circles in an
anticlockwise direction, as indicated, and then the open circles.
(d) The 9-layer trigonal structure at 75K. This may be looked upon as
a three-spin-slip structure, but the bunching is so slight that it is more
useful to regard it as an almost regular helix, in which every third plane
aligns its moments close to an easy axis, in order to reduce the anisotropy
energy.
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in J (q), so that the structure at 25K has reduced its periodicity to 11
layers by introducing a regularly-spaced series of spin slips, at which one
plane of a bunched doublet is omitted while the remaining member ori-
ents its moments along the adjacent easy axis. The configuration of Fig.
2.5(b), in which one spin slip is introduced for each repeat distance of
the perfect commensurable structure, is the primordial spin-slip struc-
ture and has a number of interesting features. It is particularly stable,
existing over a range of temperature (Gibbs et al. 1985), possesses a
net moment, and the bunching angle is still rather small. Although the
angle 2φ between two bunched planes is almost constant, the exchange
interaction distorts the structure near the spin slips so that the moments
are not symmetrically disposed around the easy axis. As the tempera-
ture is increased further, the bunching decreases and the concept of spin
slips becomes less useful. Thus the configuration of Fig. 2.5(d) can be
considered as a distorted three spin-slip structure, but it is simpler to
regard it as a commensurable, almost regular helix in which every third
plane aligns its moments close to an easy axis in order to reduce the
anisotropy energy.

The spin-slip structures of Ho have been subjected to a careful and
extensive neutron-diffraction study by Cowley and Bates (1988). They
interpreted their results in terms of three parameters:

b - the number of lattice planes between spin slips,

2α - the average angle between the moments in a bunched pair,

σG - a Gaussian-broadening parameter for α.

In a perfect, undistorted structure, α = φ and σG = 0. The parameter
σG takes into account two effects; the distortions which occur in perfect
periodic structures such as that illustrated in Fig. 2.5(b), and possible
irregularities in the positions of the spin-slip planes. The former is in
principle included in the calculations, whereas the latter is not. From
the calculated magnetic structures, such as those illustrated in Fig. 2.5,
it is possible to deduce the corresponding neutron-diffraction patterns
and hence, by fitting the peak intensities, determine the values for α
and σG (Mackintosh and Jensen 1990). The parametrization suggested
by Cowley and Bates is in practice rather satisfactory; it allows a fit of
all the calculated neutron-diffraction intensities, which vary over about
five orders of magnitude, with a relative error of in all cases of less than
20%. Furthermore, the parameter α is close to the average values of
the angle φ determined directly from the calculated structures. The
measured and calculated values of α are in good agreement, taking into
account the experimental uncertainties, but there are some discrepan-
cies in σG. It is noteworthy that the agreement between the predicted
and observed neutron-diffraction intensities is very good for the b = 11,
one-spin-slip structure, but that the experimental values of σG otherwise
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lie consistently above the theoretical. This may indicate that the per-
fect periodicity of the less stable spin-slip structures is more effectively
disturbed by imperfections.

As may be seen from Table 2.1, the easy direction in Er is the c-
axis at high temperature, so the moments order in a longitudinal-wave
structure at TN . As the temperature is reduced, the structure squares
up, as discussed in Section 2.1.4. The basic wave-vector Q describ-
ing the magnetic ordering increases approximately linearly just below
TN (Atoji 1974; Habenschuss et al. 1974). This is not in accord with
the quadratic dependence predicted by (2.1.35b) and furthermore, since
J ′(3Q) is probably negative, the predicted change in Q also has the
opposite sign to that observed. This behaviour can only be accounted
for if J (q) is temperature dependent, as is indicated even more clearly
at lower temperatures, where Q starts to decrease quite rapidly. At
T ′
N � 52K, a basal-plane component begins to order, through the mech-

anism described in Section 2.1.5. When the temperature is lowered fur-
ther, Q continues to decrease, exhibiting a number of plateaux, and a
rich harmonic structure is observed (Atoji 1974; Habenschuss et al. 1974;
Gibbs et al. 1986). Very detailed neutron-diffraction measurements by
Cowley (1991) have revealed a whole sequence of commensurable struc-
tures with decreasing temperature, with Q = 2/7, 3/11, 7/26, 4/15,
5/19, 6/23, and 1/4, in units of 2π/c. At 18K, a first-order transition to
a steep cone, with an opening angle of 30◦ and a wave-vector of ∼ 5/21,
is observed.

To explain these results, we may employ a modified version of the
model of Jensen (1976b), in which crystal fields, isotropic exchange, and
dipolar interactions are included. In addition, the anisotropic two-ion
coupling, which is required by the observed excitation spectrum and dis-
cussed in Section 6.1, is also taken into account. Mean-field calculations
then predict that the structure in the intermediate temperature range is
an elliptic cycloid, the hodograph of which at 48K, just below the transi-
tion temperature, is shown in Fig. 2.6. As discussed in Section 2.1.5, an
additional second-order transition may occur below T ′

N , to a phase with
a non-collinear, elliptical ordering of the basal-plane moments. In the
presence of random domains, the neutron-diffraction patterns from the
two structures are essentially indistinguishable, and if this transition oc-
curs in Er, the fluctuations expected near a second-order transition may
also be suppressed, because it is then likely that it coincides with one
of the first-order commensurable transitions. The model calculations
indicate that the non-collinear component in the basal plane is close
to becoming stable when the cycloidal phase is disrupted by the first-
order transition to the cone phase. Hence it is most probable that the
moments in Er are ordered in a planar elliptic-cycloidal structure in the
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whole interval between TC and T ′
N , but it is possible that a non-collinear

basal-plane component is present in some of the commensurable struc-
tures just above TC .

Fig. 2.6. The calculated mag-
netic structure in Er at 48K. Each
arrow represents the magnitude and
orientation, in the a-c plane, of the
ordered moment in a specific plane
normal to the c-axis, relative to the
magnitude of the moment at abso-
lute zero (9µB), indicated by the
length of the line along the a-axis.
The hodograph is very close to an
ellipse, with semi-axes of length 6.5
and 2.2µB , and this structure can be
considered as comprising four planes
of moments with a positive compo-
nent along the c-axis, followed by
three with a negative moment, with
the designation (43).

The structure shown in Fig. 2.6 comprises four planes of moments
with a positive component along the c-axis, followed by three with a neg-
ative moment. The basic wave-vector is therefore 2/7, and we may de-
scribe the structure as (43). The other commensurable structures listed
above are then respectively 2×(443), 2×(4434443), (4443), 2×(44443),
(444443), and (44) where, in each case, blocks of n moments with a
positive component along the c-axis alternate with negative blocks, and
the doubling is necessary to ensure periodicity if the number of blocks is
odd. These calculations give a good account of the neutron-diffraction
results of Cowley (1991). The lattice strains associated with a number
of these structures have been studied with synchrotron X-rays by Gibbs
et al. (1986). The fundamental wave-vector for the oscillating c-axis
strain in a structure like (44), which has inversion symmetry, is twice
that of the magnetic structure. However, the other examples above do
not have inversion symmetry, so charge-scattering of X-rays may occur
at the fundamental magnetic wave-vector. In the cone phase, the X-ray
scattering at the fundamental wave-vector of the helical component is
anomalously large, even though the longitudinal lattice-strain must be
very small. There is however also a contribution from charge scattering
associated with a transverse strain, discussed at the end of the previ-
ous section, which may arise when the mirror symmetry normal to the
c-axis is broken, as it is in this structure. The hexagonal symmetry of a
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particular plane is then maintained, but it suffers a lateral displacement
which follows the direction of the helical component of the moment.

The transition from the cycloidal to the cone structure in Er at 18
K reflects a shift in the balance between a number of competing effects.
At this low temperature, the entropy is not important, since most of the
moments are close to their saturation value near TC , nor does the dif-
ference between the single-ion crystal-field anisotropy energy in the two
phases play a significant role. Because of cancellation among the three
contributions, the axial anisotropy is relatively insensitive to the angle
between the c-axis and the moments, the average value of which does
not, in any case, change much at the transition. The small amplitude of
the basal-plane components ensures that the hexagonal-anisotropy en-
ergy also has only a minor influence. Hence the choice between the two
phases is dominated by the two-ion contributions to the energy. From
the spin-wave dispersion relation, discussed in Section 6.1, the difference
J⊥(Q)−J⊥(0) is estimated to be about 0.07–0.1meV, strongly favour-
ing a modulated structure. The tendency towards a modulation of the
c-axis component is opposed by three effects. Firstly, the anisotropy of
the classical dipole–dipole contribution reduces J‖(Q) − J‖(0) by 0.03
meV to about 0.04–0.07meV. Secondly, the modulated ordering of the
c-axis component cannot take full advantage of the large value of J‖(Q),
because of the squaring up which occurs as the temperature is decreased.
The energy due to the coupling of the longitudinal component of the mo-
ments is

Uζζ = −1
4N

∑
n odd

J‖(nQ)〈Jζ(nQ)〉2 = −1
2NJ ‖(Q)〈|Jζ |〉2, (2.3.1a)

introducing the effective coupling parameter J ‖(Q). At high tempera-

tures, close to TN , the two coupling parameters J ‖(Q) and J‖(Q) are

equal, but as the higher odd harmonics gradually develop, J ‖(Q) de-
creases, and when the structure is close to the square wave, we find from
(2.1.36) that

J ‖(Q) � 8

π2

{J‖(Q) + 1
9J‖(3Q) + · · ·}. (2.3.1b)

Just above the cone transition, the model calculations indicate that
J ‖(Q) is reduced by 0.02–0.03meV, compared to J‖(Q), which in com-
bination with the dipolar term removes most of the energy difference
between the modulated and ferromagnetic ordering of the c-axis compo-
nent. The final contribution, which tips the balance into the cone phase
below TC , is the magnetoelastic energy associated with the α-strains

Uα
me = −1

2 (c11 − c66)(ε11 + ε22)
2 − 1

2c33ε
2
33 − c13(ε11 + ε22)ε33. (2.3.2)
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The abrupt change in the uniform α-strains (Rhyne and Legvold 1965b)
at the transition to the cone phase reduces this energy by 0.19meV/ion
(Rosen et al. 1973), corresponding to an increase of J (0) by about 0.01
meV. In the cycloidal phase, there is also a longitudinal-strain mode
at wave-vector 2Q, which disappears in the cone phase, but the energy
gained by this distortion is estimated to be very small. Since the c-axis
moment is substantially squared up in the cycloidal phase just above
the transition, the change of the α-strains cannot have its origin in the
single-ion magnetoelastic coupling, which does not distinguish between
positive and negative moments. It must rather be caused by the strain-
dependence of the two-ion interaction

∆Hme = −
∑
ij

[
I1(ij){ε11(i) + ε22(i)}+ I3(ij)ε33(i)

]
JiζJjζ , (2.3.3)

which is that part of eqn (2.2.32) which changes at the transition. If
the basal-plane moments and the single-ion magnetoelastic terms are
assumed to be the same immediately above and below TC , ∆Hme gives
rise to the following changes at the transition:

(c11 − c66)∆(ε11 + ε22) + c13∆ε33 = N{I1(0)− I1(Q)}〈|Jζ |〉2

c13∆(ε11 + ε22) + c33∆ε33 = N{I3(0)− I3(Q)}〈|Jζ |〉2,
(2.3.4)

where the bars denote effective coupling parameters, as in (2.3.1), and
∆εαα = εαα(cone)−εαα(cycloid). Since the elastic constants are known,
and the strains are ∆ε33 = 3.1 · 10−3 and ∆(ε11+ ε22) = −2.4 · 10−3, the
two-ion magnetoelastic-coupling parameters may be determined from
this equation. The nature of this magnetoelastic contribution implies
that it should be possible to suppress the cone phase in Er by apply-
ing hydrostatic pressure. In the zero-temperature limit, the energy dif-
ference between the two phases is estimated to be only about 0.033
meV/ion, so a hydrostatic pressure of about 2.5 kbar, or alternatively a
uniaxial pressure along the c-axis of only about half this amount, should
be sufficient to quench the cone. The application of this modest pres-
sure should then allow experimental studies of the cycloidal phase in
Er below 18K, to ascertain, for example, whether the transition to the
phase with an elliptical ordering of the basal-plane moments occurs. We
shall return to this two-ion magnetoelastic interaction when we discuss
Er films and superlattices.

The negative value of B0
2 in Tm is large and B0

6 is also negative, as
may be seen in Table 2.1, so that the moments are firmly anchored to
the c-direction, and no ordered basal-plane component appears at any
temperature. A longitudinal-wave structure forms at 56K, and starts
to square up at about 40K, as the amplitude approaches the free-ion
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moment of 7.0µB. At 32K, there is a first-order transition to a com-
mensurable state, with a seven-layer repeat distance, which has a fer-
romagnetic component (Brun et al. 1970). At the lowest temperatures,
this has developed into a ferrimagnetic square-wave structure, compris-
ing a repeating pattern of four layers of positive moments followed by
three of negative moments. These structures, the susceptibility curves
of Fig. 2.1, and the excitation spectrum have been used to determine
the parameters of a model for Tm with the usual basic ingredients of
isotropic exchange, crystal fields, and dipolar interactions (McEwen et
al. 1991). As shown in Fig. 2.7, the observed squaring-up process is very
well accounted for by mean-field calculations based on this model. The
principal discrepancy with experiment is in the magnitude of the field
along the c-axis which is required to form a ferromagnetic structure,
where the calculation gives a value about 50% above the observed 28
kOe. This may indicate that the form of J (q) in Tm which, as illus-
trated in Fig. 1.17, has the largest peak in the whole heavy rare earth
series, changes substantially at this first-order transition.

The magnetic structures of the light rare earths have not generally
been described in the same detail as those of the hcp metals, with the
exception of Nd, which has been intensively studied for several decades.

Fig. 2.7. The calculated harmonics of the c-axis moment in Tm as a
function of temperature, compared with the results of neutron diffraction

measurements, and the ferromagnetic moment (7Q).
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Such is the complexity of the observed neutron diffraction patterns, how-
ever, that it is only recently that a reasonably complete delineation of
the ordered moments has been attained (Zochowski et al. 1991). At the
Néel temperature of 19.9K, a weakly first-order transition leads to a
longitudinal-wave structure propagating in a b-direction on the hexag-
onal sites of the dhcp structure, with an incommensurable periodicity
given by Qh = 0.13b1. The moments on neighbouring hexagonal lay-
ers are ordered antiferromagnetically. Simultaneously, a c-axis moment
(plus a small component in the basal plane) with the same Q is induced
on the cubic sites by the anisotropic two-ion coupling. The moments on
neighbouring cubic layers are also ordered antiferromagnetically. As the
temperature is further lowered, another first-order transition at 19.2K
establishes a double-Q structure, with wave-vectors Q1 and Q2 aligned
approximately along a pair of b-axes but canted slightly, so that the
angle between them is somewhat less than 120◦. The polarization vec-
tors of the moments in the two waves are also canted away from the
corresponding b-axes and towards each other, but by a different amount
from the wave-vectors, so that the waves are no longer purely longitudi-
nal. Compared with the single-Q structure, this arrangement increases
the average ordered moment, which is further augmented, as the tem-
perature is lowered, by a squaring-up of the structure, which generates
harmonics in the neutron-diffraction pattern. Simultaneously, the period
gradually increases. At 8.2K, the planar components of the moments on
the cubic sites begin to order, and after undergoing a number of phase
transitions, the structure at low temperatures is characterized by the
four Q-vectors illustrated in Fig. 2.8. Although all four periodicities are
present on each type of site, Q1 and Q2, which are now aligned pre-
cisely along b-axes, but have different magnitudes 0.106b1 and 0.116b1,
generate the dominant structures on the hexagonal sites, while Q3 and
Q4, which have lengths 0.181b1 and 0.184b1 and are canted towards each
other, predominate on the cubic sites. The different types of Q-vector
are interrelated; within the experimental uncertainty Q3 + Q4 = 2Q1,
and the canting of Q3 and Q4 is related to the difference in length
between Q1 and Q2.

The explanation of these structures from first principles in terms
of the elementary magnetic interactions is clearly a formidable task
but, as we have seen in Section 2.1.6, the ordering on the hexagonal
sites at high temperatures can be satisfactorily accounted for by a phe-
nomenological Landau expansion of the free energy in terms of the or-
der parameters, and the role of the different interactions thereby clar-
ified. The anisotropic two-ion coupling between the dipoles confines
the moments to the basal plane and tends to favour the longitudinal-
wave structure. Two-ion coupling between the quadrupoles, proba-
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Fig. 2.8. The relative orienta-
tions and magnitudes of the funda-
mental wave-vectors which describe
the quadruple-Q magnetic structure
of Nd at low temperatures. All four
periodicities are present on each type
of site, but Q1 and Q2 generate the
dominant structures on the hexago-
nal sites, while Q3 and Q4 predom-
inate on the cubic sites.

bly of magnetoelastic origin, lifts the degeneracy between the different
multiple-Q structures and stabilizes the single-Q state just below TN .
The Landau expansion can also explain the rotation of the wave-vectors
and moments away from the b-axes, with the consequent stabilization of
the double-Q configuration, and account for the observed harmonics in
this structure. A similar analysis for the quadruple-Q structure in the
low-temperature region would provide the basis for understanding the
even more complicated phenomena which are observed when a magnetic
field is applied to Nd (Zochowski et al. 1991).

2.3.2 The magnetization of Holmium

The analytical mean-field treatment by Nagamiya et al. (1962) of the
effect of a magnetic field applied in the plane of a helical structure was
mentioned in Section 1.5. As the field is increased, the helix first distorts,
giving rise to a moment along H, and then undergoes a first-order tran-
sition to a fan structure, in which the moments oscillate about the field
direction. A further increase in the field reduces the opening angle of
the fan which, in the absence of magnetic anisotropy, goes continuously
to zero, establishing a ferromagnetic phase at a second-order transition.
Hexagonal anisotropy may modify this process by inducing a first-order
transition or, if it is large enough, eliminate the fan phase entirely.

The magnetization curves measured by Strandburg et al. (1962) and
Féron (1969) behaved in accordance with this description at low tem-
peratures, but above about 40K when the fan phase was first observed,
a further phase also appeared, manifested by a plateau corresponding to
a moment about one half of that attained in the fan phase. This extra
phase was clearly apparent in the magnetoresistance measurements of
Mackintosh and Spanel (1964), and later experiments by Akhavan and
Blackstead (1976), in which the field was changed continuously, revealed
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as many as five different phases at some temperatures. The structures
in a magnetic field were investigated with neutron diffraction by Koehler
et al. (1967), who identified two intermediate phases which they called
fans and characterized by the intensity distribution of the Bragg peaks.

These phenomena have been elucidated by means of calculations of
the effect of a magnetic field on the commensurable structures of Fig.
2.5 (Jensen and Mackintosh 1990). At low temperatures, the hexagonal
anisotropy has a decisive influence on the magnetic structures, ensuring
that a first-order transition occurs from the helix or cone to the ferro-
magnet, without any intermediate phases. Below about 20K, where the
cone is the stable structure in zero field, the cone angle is almost indepen-
dent of the applied field in the basal plane, but at the transition to the
ferromagnet, the c-axis moment disappears. When the field is applied
in the hard direction at these temperatures, the moments just above the
ferromagnetic transition do not point along the field direction, but are
aligned very closely with the nearest easy axis, so that 〈J‖〉 � 8 · √3/2,
as illustrated in Fig. 1.20. As the field is further increased, they turn
towards it, becoming fully aligned through a second-order phase transi-
tion at a critical field which is estimated from B6

6 to be about 460kOe
at absolute zero. At low temperatures, the hexagonal anisotropy also
hinders the smooth distortion of the helix in a field. The moments jump
discontinuously past the hard directions as the field is increased, giving
first-order transitions which may have been observed, for example, as
low-field phase boundaries below 20K in the measurements of Akhavan
and Blackstead (1976).

Above about 40K, when the hexagonal anisotropy is not so domi-
nant, intermediate stable phases appear between the helix and the fer-
romagnet. The nature of these phases may be appreciated by noting
that the helix can be considered as blocks of moments with components
alternately parallel and antiparallel to the field, as is apparent from the
structures illustrated in Fig. 2.5. If we write this pattern schematically
as (+ − + −), then the fan structure may be described as (+ + + +).
The intermediate structures, the helifans, then correspond to patterns
of the type specified in Table 2.2. The notation helifan(p) is used to
designate a structure whose fundamental period is p times that of the
helix (the single number p is not generally adequate for discriminating
between the different helifans). It is clear that these structures repre-
sent compromises between the demands of the exchange for a periodic
structure, and the field for a complete alignment of the moments. They
are not due to the hexagonal anisotropy which, on the contrary, tends
to suppress them, and occur both when the field is applied along the
easy and hard directions in the plane. The free energies of the various
magnetic phases as a function of magnetic field in the easy direction at
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Table 2.2. The arrangement of blocks of spins in the helifan
structures. The first row shows the relative number of (−)

blocks in the different structures.

Helifan

Helix (4) (3) (3/2) (2) Fan

1/2 3/8 1/3 1/3 1/4 0

+ + + + + +
− + + + + +
+ + + − + +
− − − + − +
+ + + + + +
− − − − + +
+ + + + + +
− − + + − +
+ + + − + +
− + − + + +
+ + + + + +
− − − − − +

50K are shown in Fig. 2.9. In these calculations, the wave-vector Q
was allowed to vary in small, discrete steps, by changing the repeat dis-
tance, and the absolute minimum in the free energy for the structure
thereby determined, as illustrated in the insert to Fig. 2.9, leading to
the prediction that the stable magnetic structures follow the sequence
helix → helifan(3/2) → fan → ferromagnet as the field is increased. The
helifan(3/2) is depicted in Fig. 2.10. In a narrow interval between the he-
lix and the helifan(3/2), other stable phases appear, e.g. the helifan(4′)
(+ + − + + − + −), and similarly a sequence of helifans with m (+)
blocks followed by a (−) (m ≥ 3) occurs in the close neighbourhood of
the fan phase. The various structures are associated with characteristic
neutron-diffraction patterns. An examination of the neutron-diffraction
intensities which Koehler et al. (1967) associate with the phase which
they designate as ‘Fan I’ reveals a striking correspondence with the heli-
fan(3/2) pattern, with a very weak fundamental at Q0/3, where Q0

is approximately the wave-vector of the helix, strong second and third
harmonics, and a weak fourth harmonic. The basic periodicities of this
structure are 2Q0/3 for the component of the moments parallel to the
field, and Q0 for the perpendicular component; the weak Q0/3 peak
arises as the result of interference between them. Similar but more de-
tailed neutron-diffraction results have more recently been obtained by
Axe et al. (1991). The changes in the basic wave-vector are substantial,
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Fig. 2.9. Mean-field calculation of the free energy per ion for different
magnetic structures in Ho at 50K, as a function of the magnetic field
along an easy b-axis. The free energy is in each case minimized with re-
spect to the wave-vector which characterizes the structure, as illustrated

for the fan phase in the insert.

even though the underlying exchange function is constant, and they

agree very well with those observed by neutron diffraction. For the helix,

fan and helifan(3/2) structures, the experimental (theoretical) values of

Q are respectively 0.208 (0.211), 0.170 (0.168), and 0.063 (0.066), times

2π/c. The period of the fan phase increases relative to that of the he-

lix because of the resulting increase in the opening angle of the fan,

expressed by the relation (1.5.21). This allows a decrease in the ex-

change energy which is greater than the concomitant increase of the

Zeeman energy. The change in Q in the various helifan phases is there-

fore to a very good approximation proportional to their magnetization.
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Fig. 2.10. The helifan(3/2) struc-
ture in Ho at 50K. The moments lie
in planes normal to the c-axis and
their relative orientations are indi-
cated by arrows. A magnetic field of
11 kOe is applied in the basal plane,
and moments with components re-
spectively parallel and antiparallel
to the field are designated by filled
and open arrow-heads. This compo-
nent of the moments has a period-
icity which is 3/2 that of the corre-
sponding helix, and the helicity of
the structure changes regularly.

A detailed consideration (Mackintosh and Jensen 1990) of the mag-
netization curves measured in Ho indicates that the metastable heli-
fan(2) may replace or co-exist with the stable (3/2)-structure, if the
measurements are made so rapidly that complete thermodynamic equi-
librium is not attained. Other stable or metastable helifans may be
involved in the five phases observed by Akhavan and Blackstead (1976).
In addition, the very pronounced hysteresis which they observed is con-
sistent with the existence of a large number of phases which have almost
the same energy, but are not easily transformed into each other.

The stability of the various periodic structures is determined by the
form of the two-ion coupling, especially the long-range component. If
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the exchange is sufficiently short-range, the helix, helifans and fan are
almost degenerate at the critical field; it is the interaction between the
blocks which differentiates between these structures. One of the most
remarkable features of the helifans is the large number of hexagonal
layers involved in a single period, a characteristic which they share with
the commensurable structures observed in zero field in Ho and Er, which
were discussed in the preceding sub-section.

Helifans, or analogous structures, may also occur in other rare
earth systems where periodic ordering is observed. For example, the
modulated structures in Nd discussed previously may be described as
(+ − + − + − + −), indicating blocks of moments with a component
parallel or antiparallel to a magnetic field applied in the basal plane. A
periodic reversal of (−) blocks will then generate subharmonics of the
basic Q-vector. Thus the sequence (+ + + − + − + −) generates Q/4,
and (+ + + − + + + −) gives Q/2, both of which have been observed
by neutron diffraction in a magnetic field (Zochowski et al. 1991).

2.3.3 Films and superlattices

The development of the technique of molecular-beam epitaxy has allowed
the fabrication on a substrate of films of rare earth metals, with thick-
nesses ranging from a few to thousands of atomic planes. In addition,
superlattices, or multilayers, of the form [Al|Bm]n may be produced, in
which blocks comprising l planes of element A, followed by m planes of
element B, are replicated n times. It is clear that an endless variety of
such systems may be constructed, and the field is in a stage of rapid de-
velopment. We will restrict ourselves to a discussion of some of the new
physical principles involved in understanding the magnetic properties of
such structures, illustrated by a few specific examples.

The essential difference between these structures and a bulk crystal
lies, of course, in the boundary conditions. Films and superlattices are
finite in one dimension, whereas a bulk crystal is assumed to be essen-
tially unbounded, and the magnetic layers are terminated by a medium
which may have very different magnetic properties, be it a vacuum, a
rare earth with quite different moments and interactions, or a nominally
non-magnetic metal such as Y, which is a very popular choice for the
intermediate layers in superlattices.

The influence of the finite size on the orientation of the ordered mo-
ments is illustrated in Fig. 2.11, which depicts the results of a mean-field
calculation, based on the model of Larsen et al. (1987), for a 15-plane
slab of Ho at 4K. The bunched commensurable helix encompassing the
inner 12 planes is enclosed by a single and a double plane, aligned almost
ferromagnetically with the respective outer planes. These ferromagnetic
clusters distort the adjacent bunched pairs in a manner reminiscent of
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spin slips. Such ferromagnetic terminations at the surfaces of slabs con-
taining planes of rotating moments are a general feature, reflecting the
predominantly ferromagnetic interaction between closely neighbouring
planes in the magnetic rare earths. This coupling normally gives rise to
a net moment in the slab, and is calculated to stabilize ferromagnetic
ordering at 4K in samples thinner than about nine atomic planes (Bohr
et al. 1989).

Fig. 2.11. Mean-field calculation of the orientation of the magnetic
moments in a 15-plane slab of Ho at 4K. The inner planes are close
to a bunched commensurable helix, but there is a strong tendency to

ferromagnetism near the surfaces.

The effect of the epitaxial strain is strikingly illustrated by the be-
haviour of thin films and superlattices of Dy and Er grown on Y, in both
of which ferromagnetism is suppressed, by somewhat different mecha-
nisms, in favour of periodic magnetic ordering. In 16-plane Dy films
embedded in Y in a variety of [Dy16|Ym] multilayers, with the c-axis
normal to the plane of the slab, Rhyne et al. (1989) found that the helix
persists to the lowest temperatures, and the ferromagnetic state is only
induced if a field of the order of 10 kOe is applied in the easy direction.
An obvious mechanism for this quenching of ferromagnetism is the con-
straint which the Y slabs impose on the Dy layers, so that the γ-strains
which provide the principal driving force for the transition cannot be
fully developed.

The ferromagnetic ordering of the axial moment is also suppressed
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in c-axis films and superlattices of Er (Borchers et al. 1988), but the
explanation in this case is not quite so evident. The dipolar energies are
unchanged in the films, nor is it likely that the anisotropy and exchange
contributions are decisively different. The strain-dependence of the ex-
change energy, expressed in eqn (2.3.3), can however provide a mecha-
nism. Y has a planar lattice-constant a of 3.648 Å, which is over two per
cent greater than that of Er, and the Y substrate therefore imposes a
strain on the Er film, which is measured to be ε11 = ε22 � 6×10−3. If the
atomic volume is assumed to be unchanged in the film, ε33 � −12×10−3.
The difference in exchange energy between the solid and a thin film may
then be found from (2.3.4), and is equivalent to a field of 13 kOe acting
on the c-axis moment of about 8µB . The above estimate of ε33 is prob-
ably too great, so this calculation may be considered in reasonably good
agreement with the observation that Er films with thicknesses between
860 Å and 9500 Å require fields varying linearly between 8kOe and 3kOe
to establish a ferromagnetic state at 10K. It is noteworthy that, since
Lu has a significantly smaller basal-plane lattice-constant than Er, the
cone structure should be favoured in a c-axis epitaxial film grown on Lu.

Many of the characteristic features of rare earth superlattices are
demonstrated by the aforementioned [Dy|Y] systems, which are observed
to form helical structures over the whole temperature range of magnetic
ordering. When the c-axis is normal to the plane of the film, a coherent
magnetic structure may be formed, in which the phase and chirality of
the helix are maintained over many bilayers, provided that the slabs of
non-magnetic Y are not too thick. The coherence length may be esti-
mated from the widths of the neutron-diffraction peaks, and corresponds
to more than 10 bilayers if the Y layers are less than about 10 planes
thick. If the thickness is increased to about 35 planes, however, the
coherence length, which is inversely proportional to the width of the Y
layers, is less than the bilayer thickness, so that the helix in one Dy layer
is uncorrelated with that in the next. In the long-range coherent struc-
tures, the phase change of the helix across the Dy layers corresponds
to a turn angle which varies with temperature and shows a tendency to
lock in to 30◦, with associated bunching. The phase change across the
Y layers, on the other hand, is independent of temperature and the turn
angle takes the much larger value of about 50◦, which is characteristic of
the periodic structures formed by dilute alloys of magnetic rare earths
in bulk Y. It therefore appears that the magnetic order is propagated
through the Y layers by a spin-density wave, which is incipient in the
unperturbed metal, and is associated with the very large susceptibility
χ(Q) of the conduction electrons. The helical ordering in the Dy layers
of the c-axis superlattice is disturbed by edge effects of the type illus-
trated for the Ho film in Fig. 2.11. Consequently, the ordered helical
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moment falls below the saturation value of 10µB at low temperatures,
even though the total integrated magnetic scattering corresponds to the
fully saturated moment. At higher temperatures, the coupling of the net
ferromagnetic moment in a Dy layer to an applied magnetic field breaks
the coherence of the helical structure between the layers well before the
transition to the true ferromagnetic phase occurs. A b-axis superlattice,
on the other hand, fails to form a coherent magnetic structure even when
the Y layer is as thin as 9 planes, since the static susceptibility at q = 0,
which is required to propagate the ferromagnetic coupling between the
basal planes of the Dy layers through the Y, is not particularly high. The
Dy layers therefore form helical magnetic structures with wave-vectors
in the plane of the layers, but no coherence of phase or chirality between
the layers.


