
8 1. ELEMENTS OF RARE EARTH MAGNETISM

1.2 Rare earth atoms

The starting point for the understanding of the magnetism of the rare
earths is the description of the electronic states, particularly of the 4f
electrons, in the atoms. The wavefunction Ψ(r1σ1, r2σ2, . . . , rZσZ) for
the electrons, which is a function of the space and spin coordinates r
and σ of the Z electrons which constitute the electronic charge cloud (Z
is the atomic number), is determined for the stationary state of energy
E from the Schrödinger equation

HΨ = EΨ, (1.2.1)

where the non-relativistic Hamiltonian operator is

H = − h̄2

2m

Z∑
i

∇2
i + 1

2

Z∑
ij

e2

|ri − rj |
+

Z∑
i

vext(ri) (1.2.2)

and, in the case of an atom, the ‘external’ potential vext(r) is just the
Coulomb potential −Ze2/ri due to the nuclear attraction. As is well
known, the difficulties in solving this problem reside in the second term,
the Coulomb interaction between the electrons. For heavy atoms, exact
solutions require a prohibitive amount of computation, while any possi-
bility of an exact solution for the electronic states in a metal is clearly
out of the question. It is therefore necessary to replace the Coulomb
interaction by a self-consistent field, which is most satisfactorily deter-
mined by means of the density-functional theory of Hohenberg and Kohn
(1964) and Kohn and Sham (1965).

The first step is to write the Hamiltonian (1.2.2) in the symbolic
form

H = T + U + V, (1.2.3)

incorporating the kinetic energy, the Coulomb repulsion between the
electrons, and the external potential, due to the nucleus in the atom or
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the periodic lattice potential in the solid. Hohenberg and Kohn (1964)
established two important results. Firstly, they showed that the external
potential is a unique functional of the electron density n(r), and hence
that the ground-state wavefunction Φ and the energy functional

<Φ |H |Φ> = <Φ | (T + U) |Φ> +
∫
vext(r)n(r)dr (1.2.4)

are unique functionals of n(r). Secondly, they proved that the energy
functional (1.2.4) attains its minimum value, the ground-state energy,
for the correct ground-state density. Hence, if the universal functional
<Φ | (T + U) |Φ> were known, it would be straightforward to use this
variational principle to determine the ground-state energy for any speci-
fied external potential. However, the functional is not known, and the
complexity of the many-electron problem is associated with its approx-
imate determination.

Guided by the successes of the one-electron model, Kohn and Sham
(1965) considered a system of non-interacting electrons with the same
density as that of the real system, satisfying the single-particle Schrö-
dinger equation

[
− h̄2

2m
∇2 + veff(r)

]
ψi(r) = εiψi(r). (1.2.5)

The ground state ΦS of such a system is just the antisymmetrized prod-
uct, or Slater determinant, formed from the Z lowest-lying one-electron
orbitals, so that the electron density is the sum over these orbitals:

n(r) =
Z∑
i

|ψi(r)|2. (1.2.6)

The effective potential veff(r) must therefore be determined so that n(r)
is also the ground-state density of the real system. To accomplish this,
the energy functional (1.2.4) may be written in the form

<Φ |H |Φ> = <ΦS |T |ΦS>

+
∫ [

1

2

∫
e2n(r′)
|r − r′|dr

′ + vext(r)
]
n(r)dr + Exc{n(r)},

(1.2.7)

where the first contribution is the kinetic energy of the non-interacting
system, and the second is the Hartree energy of the charge cloud. The
last term is the difference between the true kinetic energy and that of the
non-interacting system, plus the difference between the true interaction
energy of the system and the Hartree energy. This exchange-correlation



10 1. ELEMENTS OF RARE EARTH MAGNETISM

energy encompasses our ignorance of this problem, and is presumably
relatively small. In the local approximation, which is adopted to convert
the density-functional theory into a practical method, this energy is
written

Exc{n(r)} ≈
∫
εxc[n(r)]n(r)dr, (1.2.8)

and the effective potential is therefore

veff(r) =
∫

e2n(r′)
|r− r′|dr

′ + vext(r) + vxc[n(r)], (1.2.9)

where
vxc[n(r)] = d[nεxc(n)]/dn ≡ µxc[n(r)] (1.2.10)

is the local approximation to the exchange-correlation contribution to
the chemical potential of the electron gas. Useful estimates of this quan-
tity have been obtained from calculations for a homogeneous electron gas
of density n(r) by Hedin and Lundqvist (1971), von Barth and Hedin
(1972), and Gunnarsson and Lundqvist (1976), and these are frequently
used in calculations on both atoms and solids.

In order to determine the atomic structure, the Schrödinger equa-
tion (1.2.5) must be solved by the Hartree self-consistent procedure, in
which, through a process of iteration, the potential (1.2.9) generates
wavefunctions which, via (1.2.6), reproduce itself. Since this potential is
spherically symmetric in atoms, the single-particle wavefunctions may
be written as the product of a radial function, a spherical harmonic and
a spin function

ψnlmlms
(rσ) = ilRnl(r)Ylml

(r̂)χms
, (1.2.11)

where r̂ is a unit vector in the direction of r, the spin quantum number
ms can take the values ± 1

2 , and the phase factor il is included for later
convenience. The radial component satisfies the equation

− h̄2

2m
d2[rRnl(r)]

dr2
+

(
veff(r) +

l(l+ 1)h̄2

2mr2
− ε

)
[rRnl(r)] = 0. (1.2.12)

Some radial wavefunctions for rare earth atoms are shown in Fig. 1.1.
The 4f electrons are well embedded within the atom, and shielded by
the 5s and 5p states from the surroundings. The 5d and 6s electrons
form the conduction bands in the metals. The incomplete screening of
the increasing nuclear charge along the rare earth series causes the lan-
thanide contraction of the wavefunctions, which is reflected in the ionic
and atomic radii in the solid state. In particular, as illustrated in Fig.
1.1, the 4f wavefunction contracts significantly between Ce, which has
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one 4f electron, and Tm, which has one 4f hole in the atom, though
two in the metallic state. The angular dependences of the 4f wavefunc-
tions are depicted in Fig. 1.2. The charge clouds are highly anisotropic,
with pronounced multipoles whose magnitudes and signs change dra-
matically with ml. As we shall see, this anisotropy is clearly manifested
in the magnetic properties of the metals.

Since they are among the heavier elements, relativistic effects are of
substantial importance in the rare earths. These are most straightfor-
wardly taken into account by solving the Dirac equation in the central

Fig. 1.1. The radial components of atomic wavefunctions for Ce, which
has one 4f electron, and Tm, which has 13 4f electrons, or one 4f hole.
The Tm wavefunctions are contracted, relative to those of Ce, due to the
incomplete shielding of the greater nuclear charge. As a consequence, the
amplitude of the 4f wavefunction at the indicated Wigner–Seitz radius
is much greater in Ce than in Tm, which has important consequences

for the character of the 4f states in the metals.
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field, rather than the Schrödinger equation, but it may be more instruc-
tive to consider them as perturbations which, to order (p/mc)2, augment
the one-electron potential with

− p4

8m3c2
− h̄2

4m2c2
dv

dr

∂

∂r
+

1
2m2c2r

dv

dr
s · l. (1.2.13)

The first term, which is due to the increase of mass with velocity, reduces
the energy of all states by an amount which decreases with l, while the
second ‘Darwin’ term increases the energy of s states only. These effects
may both be incorporated into the central field, but the last term couples
together the spin and orbital motion in a way that has far-reaching
consequences for the magnetic properties.

Fig. 1.2. The angular variation of
the 4f wavefunctions. The interac-
tion of the highly anisotropic charge
clouds with the crystalline electric
fields gives rise to the large single-
ion anisotropies observed in the rare
earth metals.

In the Russell–Saunders coupling scheme, which is an accurate pro-
cedure for the 4f electrons, the spins si of the individual 4f electrons
are coupled by the exchange interaction, diagonal in the total spin S
of the incompletely filled subshell, while the Coulomb interaction simi-
larly combines the li into the total orbital momentum L. In terms of the
one-electron functions, the wavefunction for the subshell may be written

Ψ(LSMLMS) =
∑

mlms

C(LSMLMS ;mlms)ψ(mlms), (1.2.14)

where the C(LSMLMS ;mlms) are the Clebsch–Gordan or Wigner co-
efficients. It is convenient to write this expansion in a representation-
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independent form, in terms of the state vectors

|LSMLMS> =
∑

mlms

<mlms|LSMLMS> |mlms> . (1.2.15)

The exchange and Coulomb interactions are sufficiently large that the
magnetic properties at all accessible temperatures are determined by the
S and L states of lowest energy. These are found from Hund’s rules; S is
maximized and, subject to this maximum S value, L is also maximized.
This results in the values for the trivalent ions shown in Table 1.1.

Table 1.1. Properties of the tripositive rare earth ions.

4f n Ion+++ L S J g (g − 1)2J(J + 1) ∆(K)

0 La 0 0 0 —

1 Ce 3 1
2

5
2

6
7 0.18 3150

2 Pr 5 1 4 4
5 0.80 3100

3 Nd 6 3
2

9
2

8
11 1.84 2750

4 Pm 6 2 4 3
5 3.20 2300

5 Sm 5 5
2

5
2

2
7 4.46 1450

6 Eu 3 3 0 — 500

7 Gd 0 7
2

7
2 2 15.75

8 Tb 3 3 6 3
2 10.50 2900

9 Dy 5 5
2

15
2

4
3 7.08 4750

10 Ho 6 2 8 5
4 4.50 7500

11 Er 6 3
2

15
2

6
5 2.55 9350

12 Tm 5 1 6 7
6 1.17 11950a

13 Yb 3 1
2

7
2

8
7 0.32 14800

14 Lu 0 0 0 —

a The lowest excited state in Tm is 3F4 at 8490K.

It is a consequence of the Wigner–Eckart theorem that the spin–
orbit term in (1.2.13) can be written

Hso = ±ζ(LS)S · L, (1.2.16)

where
ζ(LS) =

π

m2c2S

∫
rR2

4f (r)
dv

dr
dr, (1.2.17)
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and the + and − signs refer respectively to a less or more than half-filled
subshell. The spin and orbital angular momenta are thus combined into
the total angular momentum J = L + S. These states may be written

|JMJLS> =
∑

MLMS

<LSMLMS |JMJLS> |LSMLMS> . (1.2.18)

Because of the sign of (1.2.16), the value of J in the ground state is
L∓ S, according as the subshell is less or more than half-full. Roughly
speaking, L is always parallel to J, but S is antiparallel in the first half
of the series and parallel in the second half. The energy separation to
the first excited multiplet may be determined from the matrix elements
of (1.2.16), and is given by

∆ = ζ(LS)
{

(J + 1)
J

(1.2.19)

again depending on whether the subshell is respectively less or more
than half-filled. The values of J in the ground state and of ∆, obtained
from spectroscopic measurements on rare earth salts (Dieke 1968), are
given in Table 1.1.

The magnetization of an assembly of N rare earth atoms or ions is
given by the derivative of the free energy with respect to magnetic field:

M = − 1
V

∂F

∂H
(1.2.20)

or, recalling that

F = −N

β
ln

∑
n

e−βEn(H), (1.2.21)

where En(H) are the atomic energy levels in the field, and β = 1/kBT ,

M =
N

V

∑
n

−∂En

∂H
e−βEn

/ ∑
n

e−βEn . (1.2.22)

Neglecting the small diamagnetic susceptibility, the magnetic contribu-
tion to the Hamiltonian is given by the Zeeman term

HZ = −µB(L + g0S) · H, (1.2.23)

where µB is the Bohr magneton. Because of the negative charge on the
electron, the angular momentum and the magnetic moment are antipar-
allel. This gives rise to certain difficulties, which are frequently ignored
in the literature. We shall circumvent them by taking L, S, and J as
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signifying the negative of the corresponding angular-momentum vector.
We shall furthermore from now on take the gyromagnetic ratio g0 as 2.
Second-order perturbation theory then gives the magnetic contribution
to the energy:

δEn(H) = −µBH·<n|L + 2S |n> +
∑
m �=n

|<n|µBH·(L + 2S)|m> |2
En − Em

.

(1.2.24)
Problems of degeneracy are taken care of by using the |JMJLS> basis,
whose degeneracy is completely lifted by the field. In this basis, and
within a particular JLS-multiplet, the Wigner–Eckart theorem implies
that the matrix elements of (L + 2S) are proportional to those of J, so
that

<JLSMJ |L + 2S |JLSM ′
J> = g(JLS) <JLSMJ |J |JLSM ′

J>,
(1.2.25)

and the proportionality constant, the Landé factor, is

g =
3
2

+
S(S + 1) − L(L+ 1)

2J(J + 1)
. (1.2.26)

Within this multiplet, we may write eqn (1.2.25) in the shorthand form
L + 2S = gJ, and consider the effective moment on the atom to be

µ = gµBJ. (1.2.27)

With the same proviso, we may similarly write

L = (2 − g)J, (1.2.28)

and
S = (g − 1)J. (1.2.29)

If J is non-zero, the first-order term in (1.2.24), combined with (1.2.22)
gives a magnetization for the ground-state multiplet:

M(H,T ) = N

V
gµBJBJ (βgµBJH), (1.2.30)

where the Brillouin function is

BJ(x) = 2J + 1

2J
coth 2J + 1

2J
x− 1

2J
coth 1

2J
x. (1.2.31)

If gµBJH is small compared with kBT , the susceptibility is constant
and given by Curie’s law:

χ =
M

H
=
g2µ2

BJ(J + 1)
3kBT

N

V
≡ C

T
, (1.2.32)
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where C is the Curie constant. The second-order non-diagonal term in
(1.2.24) gives a paramagnetic contribution to χ which is independent of
temperature, provided that the thermal population of the excited states
is negligible. This Van Vleck paramagnetism is very small in the heavy
rare earths, but in the first half of the series it is given by

χV =
2µ2

B(L + 1)S
3(J + 1)∆

N

V
, (1.2.33)

which may be significant, since

χV

χ
=

2(L+ 1)S
g2J(J + 1)2

kBT

∆
=
αkBT

∆
, (1.2.34)

where, from Table 1.1, α takes the modest value of 0.19 for Pr, but
is 12 for Sm. Since ∆ is only 1450K, the Van Vleck paramagnetism
in Sm is significant even at rather low temperatures. In trivalent Eu,
J = 0 in the ground state and the paramagnetic susceptibility is due
entirely to the mixing of the excited states into the ground state by the
field, and to the thermal excitation of these states. However, Eu metal
is divalent and the 8S7/2 ionic susceptibility follows Curie’s law very
closely. The Van Vleck paramagnetism arising from the mixing of states
of different J will not play a significant role in our later discussion, but
the analogous phenomenon of the mixing of states of different MJ , split
by the crystalline electric field in the metal, will be of central importance.


