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PREFACE

The study of the magnetic properties of the rare earth metals may be
said to have its origins in the 1930s, when the ferromagnetism of Gd
was discovered, and the paramagnetism of the other heavy elements was
investigated. The detailed exploration of these properties, and the con-
current development in our understanding of rare earth magnetism, oc-
curred however as a result of two decisive advances in experimental tech-
nique during the 1950s. F.H. Spedding and his colleagues at Iowa State
University began to produce large quantities of pure rare earth elements
and to fashion them into single crystals, and during the same period,
intense beams of thermal neutrons became available from research reac-
tors. The neutron is a uniquely useful tool for studying the microscopic
magnetic behaviour of materials, and neutron scattering has played the
leading role in the progressive elucidation of the magnetic structures and
excitations in the rare earths, and hence in understanding the magnetic
interactions and their consequences.

This progress has of course been fully documented in the scientific
literature and a number of compendia have served to consolidate the
achievements of the many scientists involved. In particular, the review
of the Magnetic Properties of Rare Earth Metals, edited by R.J. Elliott
(Plenum Press 1972), which was written at a time when the field had
recently become mature, set an exemplary standard of completeness,
authoritativeness and, despite the large number of authors, coherence.
More recently, a number of excellent surveys of different aspects of rare
earth magnetism have appeared in the multi-volume series Handbook on
the Physics and Chemistry of Rare Earths, edited by K.A. Gschneidner,
Jr. and L. Eyring (North-Holland 1978 –), while Sam Legvold presented
a largely experimental, but admirably balanced and complete review of
the whole field in his chapter in Vol. 1 of Ferromagnetic Materials, edited
by E.P. Wohlfarth (North-Holland 1980).

Our aim with this monograph has not been to produce a similarly
comprehensive review, but rather to present a unified and coherent ac-
count of a limited but important area of rare earth magnetism, the
magnetic structures and excitations, which both reflect the nature of the
fundamental magnetic interactions, and determine many of the charac-
teristic properties of the metals. We have tried to concentrate on the
essential principles and their application to typical examples, generally
restricting our discussion to the pure elements, and considering alloys
and compounds only when they are necessary to illuminate particular
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topics. We have been involved for some time in the effort which has
been made in Denmark to study, both theoretically and experimentally,
the magnetic structures and especially the excitations in the rare earths.
This account of the subject represents the results of our experience, and
we have written it in the hope that it will be useful not only to those who
have a special interest in rare earth magnetism, but also to a wider audi-
ence who wish to learn something about the methods and achievements
of modern research in magnetism. We have therefore attempted to make
the theoretical treatment reasonably complete and self-contained, start-
ing from first principles and developing the argument in some detail. On
the other hand, no pretence is made to completeness in our survey of
the experimental results. Rather, they are used for illustrative purposes,
and the specific properties of the individual elements may therefore have
to be found in one of the reviews to which we frequently refer. However,
we have tried to include the most important developments from recent
years, with the aim of incorporating in this book most of the available
information about rare earth magnetism, or directions as to where it can
be found.

With very few exceptions, the magnetic properties of the rare earth
metals can be understood in terms of what we will call the standard
model, according to which the magnetic 4f electrons in the metal have
the same angular-momentum quantum numbers as in the free ion. They
interact, however, with the surrounding electric field of the crystal, and
with each other through an indirect exchange mediated by the conduc-
tion electrons. Since the emergence of the standard model in the late
1950s, a primary aim of the rare earth-research community has been
to determine these interactions, by a combination of experiment and
first-principles calculations, and thereby to explain qualitatively and,
where possible, quantitatively all features of the magnetic behaviour. In
this way the limitations of the model can be explored, and appropriate
modifications and extensions formulated where necessary. In fact, the
standard model is remarkably successful; only in the relatively rare in-
stances where the number of 4f electrons per atom is non-integral does
it fail seriously. We discuss one such example, the electronic structure of
α–Ce, in some detail, but otherwise say rather little about the interesting
phenomena associated with itinerant f electrons that are called, depend-
ing on the circumstances, intermediate valence, valence fluctuations, or
heavy-fermion behaviour, and are manifested in both the lanthanides
and the actinides.

We begin with a lengthy introductory chapter in which, after a
brief historical survey, those elements of rare earth magnetism which
constitute the standard model, and are necessary for the comprehen-
sion of the rest of the book, are concisely summarized. Our approach is
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deliberately reductionist. The starting point is the electronic structure
of the atoms, and we show how the magnetic moments and their inter-
actions arise, and how they are expressed in the magnetic properties.
In order that this survey should be reasonably comprehensive, there is
some overlap with topics treated in more detail later in the book, but
we have judged that this degree of repetition does no harm; rather the
contrary. We then present the mean-field theory of magnetic structures,
and in order to illustrate its power and generality, apply it in a number
of typical but sometimes relatively complex situations, with emphasis
on the disparate structures of Ho. To prepare for our discussion of the
magnetic excitations, we give an account of linear response theory and
its application to the magnetic scattering of neutrons, thus covering the
principal theoretical and experimental techniques which are used in this
field. The excitations are treated in three chapters, in each of which the
theory, which is based on the use of the random-phase approximation, is
presented in parallel with a selection of the experimental results which
it purports to explain. The very extensive results which have been ob-
tained on the ferromagnetic heavy rare earths, especially Tb, are treated
in considerable detail, followed by a chapter on the spin waves in periodic
structures, which are still under active investigation. The crystal-field
excitations in the light rare earths, which have a somewhat different
character from the previously discussed spin waves, are considered sep-
arately, and illustrated by the example of Pr, which has been by far the
most comprehensively studied, and displays many interesting features.
We conclude with a summarizing discussion, in which the emphasis is
placed on those aspects of the subject which are not yet satisfactorily
understood.

In the writing of this monograph, and during the many years of
work which preceded it, we have benefitted inestimably from the advice
and collaboration of our colleagues and friends in the rare earth-research
community. To all of them, we express our sincere appreciation, while
absolving them from responsibility for the faults which, despite their
best efforts, remain. Two deserve special mention; Dr. Hans Skriver
provided us with many unpublished results of his calculations of elec-
tronic structures, which we have used liberally in Chapter 1, and Pro-
fessor Keith McEwen read the manuscript and made many constructive
comments. We produced the book ourselves, in a form ready for print-
ing, using TEX, which we found admirably suited for the purpose, and
enjoyed a harmonious and effective cooperation with Oxford University
Press throughout this process. The illustrations were prepared by the
drawing office of the H.C. Ørsted Institute, and we are grateful to them
for the care which they took in translating our sketches into elegant and
informative figures. At various stages during the writing of the book,
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A.R.M. was director of NORDITA, visiting scientist at the Institute of
Theoretical Physics and St. John’s College, University of Oxford, and
Miller Visiting Professor in the Physics Department of the University of
California, Berkeley. The hospitality of all of these institutions is grate-
fully acknowledged. Finally, we thank our families for their support and
forbearance with our mental abstraction during this lengthy enterprise.

Copenhagen J.J.
January 1991 A.R.M.

A number of misprints has been removed in this digital version of the
book compared to the printed one. Among these, the most disturbing
one was the missing Kronecker delta, δαβ, in the expressions (1.4.26) and
(5.5.2b) for the magnetic dipole–dipole interaction. The factor 1/2S has
been moved from (1.2.19) to (1.2.17). The right charge of the electron
−e has been introduced in (1.4.1) and (1.4.3). The signs in the argument
of the last δ-function in equation (4.2.9a) have been changed. The lattice
sum for the dipole–dipole interaction introduced by (5.5.6) is small but
not zero in the case of an hcp lattice with an ideal c/a ratio. This
circumstance has required some modifications in the text below (5.5.6).
The big left-bracket in (5.6.4a) has been moved to its right position. The
signs in front of h̄ω

2 have been changed in the Fermi function arguments
in the last line on page 267. The expression for the denominator at the
bottom of page 277 has been squared. The expression for χxy(q, ω) has
been added to equation (6.1.18). The AB indices in some of the functions
in (7.2.1b), (7.2.2a) and (7.2.3) now all read BA. A ∆ was missing in the
equations just before (7.2.8a). The fraction 1

5 in front of A2 in (7.3.25b)
has been changed to its right value 1

15 , and the quadrupolar contribution
makes a 1.5% correction to the susceptibility at TN as told now in the
sixth line on page 351. The intrinsic value of the quadrupole interaction
is P‖ = −0.128 mK (not meV) in the fourth line on page 351. The
phrase “magnetization density”, which appeared repeatedly in the text,
has been replaced by “magnetization” or “moment density”. In addition
to these corrections, a few number of trivial typographic errors has been
removed. – I want to thank M. Rotter, H. M. Rønnow and M. S. S.
Brooks for their contributions to this list of corrections.

October 2011 J.J.

August 2023 A review is added to the book as an appendix. J.J.

November 2024 Aleksandra E. Szukiel has found a misplaced 1/N factor
in (1.4.13). The right placing of this factor has improved/simplified the
derivation of the indirect exchange interaction, (1.4.20). J.J.
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1

ELEMENTS OF RARE EARTH
MAGNETISM

The purpose of this introductory chapter is to describe in a synoptic way
those features of rare earth magnetism which provide the foundation for
the rest of the book. Since this material is presented in the form of a
survey, it does not claim to be as systematic and complete as the later
chapters. Consequently, it may be necessary for those who are unfamiliar
with the rare earths and their magnetism to find further details in the
original articles and reviews to which we shall refer, even though we have
attempted to present a reasonably self-contained account. We shall also
frequently refer forward to later sections for a more exhaustive treatment
of some of the topics which are cursorily introduced here. We hope
however that the information we have collected together will also provide
a useful summary for those who have some familiarity with the subject.

We set the scene with a brief history of the field, outlining what
we regard as the major advances. Even though we have striven to do
justice to at least the majority of the important contributions, our view-
point should not necessarily be considered as particularly objective. The
magnetism of the rare earths has its origin in the angular momenta of
the 4f electrons in the atoms and we therefore describe in Section 1.2
their electronic structure and magnetic characteristics, introducing such
essential ideas as density-functional theory, Russell–Saunders coupling
and Hund’s rules, and outlining how to calculate the magnetic moment
of an unfilled subshell. We condense these atoms into a metal in Section
1.3, which is concerned with the description of the conduction-electron
gas and its influence on the structural properties. A physically transpar-
ent method for determining the electronic structure is outlined, and the
way in which the band structure is built up from its constituent parts
is described and illustrated, using the concepts of canonical bands and
potential parameters. The nature of the 4f states in the metals, and the
occurrence of 4f bands in Ce and its compounds, are briefly discussed.
Our experimental knowledge of the electronic structure, and particularly
of the Fermi surface, is summarized. The way in which the conduction
electrons determine the atomic volume and crystal structure is explained,
and the individual contributions of the different l-states described. In
Section 1.4, the magnetic interactions are presented, both the single-
ion terms resulting from the crystal fields and the two-ion coupling via
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indirect exchange and other mechanisms. The magnetoelastic effects,
due to the coupling between the lattice strains and the magnetic mo-
ments, are also discussed. The manner in which these interactions and
the characteristics of the 4f electrons combine to determine the magnetic
properties of the metals is described in the last section. The observed
magnetic structures of the heavy rare earths are presented and their
occurrence under different circumstances discussed. Some features of
the structures and their temperature dependence are described in terms
of an elementary mean-field theory. The magnetism of the light rare
earths is then briefly treated and the importance of the crystal fields
emphasized. The effect of a magnetic field on the magnetic structures
is mentioned, and the factors which determine the magnetic anisotropy
discussed. Finally, the way in which magnetostriction can change the
crystal symmetry and influence the magnetic structure is illustrated.

1.1 A brief history

The quantum theory of magnetism was first placed on a sound foot-
ing in 1932 by J.H. Van Vleck in his classic monograph The Theory
of Electric and Magnetic Susceptibilities. In it, he extended the cal-
culations of the magnetic susceptibilities of isolated rare earth ions,
which had been performed by Hund (1925), to encompass the anoma-
lous cases of Eu and Sm, which have low-lying multiplets, giving rise to
Van Vleck paramagnetism. He was thus able to obtain good agreement
with experiment over the whole series from La to ‘Casseiopaium’ (now
Lu). The study of the metallic elements began in earnest when Urbain,
Weiss, and Trombe (1935) discovered the ferromagnetism of Gd. Klemm
and Bommer (1937) determined the paramagnetic Curie temperatures of
the heavy rare earths and Néel (1938) showed that, in the presence of
strong spin–orbit coupling on the ion and an interionic exchange inter-
action between the spins, these should be proportional, as observed, to
(g − 1)2J(J + 1). This later became known as the de Gennes factor.

Very little work was done on the rare earths during the war, but im-
mediately afterwards F.H. Spedding, at Iowa State University, resumed
his programme of producing the pure elements, and by the early 1950s
relatively large quantities had become available. One of the first fruits
of this programme was the extension of physical measurements to the
light rare earths, when Parkinson, Simon, and Spedding (1951) detected
a number of anomalies of magnetic origin in the heat capacity. Just
previously, Lawson and Tang (1949) had showed that the γ–α phase
transition in Ce, which can be induced either by pressure or cooling, re-
sulted in no change of the fcc symmetry, but a substantial reduction of
the lattice parameter. Zachariasen and Pauling independently ascribed
this shrinking to the transfer of the localized 4f electron to the conduc-



1.1 A BRIEF HISTORY 3

tion band, the so-called promotional model. Extensive measurements
were carried out on polycrystalline samples of all the stable lanthanides
through the 1950s, and summarized by Spedding, Legvold, Daane, and
Jennings (1957) at the close of this early period of rare earth research.
Of particular significance, in the light of later developments, was the ob-
servation of extra magnetic neutron-diffraction peaks in polycrystalline
Er by Koehler and Wollan (1955).

The disparate theoretical components which were later brought to-
gether to form the standard model of rare earth magnetism were also
formulated in the 1950s. Zener (1951) suggested that localized moments
could be coupled together by an indirect exchange through the medium
of the conduction electrons, and Ruderman and Kittel (1954) calcu-
lated this coupling quantitatively for nuclear moments embedded in a
free-electron gas. Kasuya (1956) and Yosida (1957) extended the treat-
ment of this RKKY interaction to localized electronic moments. Stevens
(1952) invented his method of operator equivalents, which was of deci-
sive importance for a satisfactory treatment of the crystal fields. Mason
(1954) formulated a theory of magnetoelastic effects, while Zener (1954)
showed how to calculate the temperature dependence of the magnetic
anisotropy.

The classical period of rare earth magnetism was heralded by the
publication of the magnetization measurements on monocrystalline Dy
by Behrendt, Legvold, and Spedding (1957). The fabrication of single
crystals of all the heavy rare earths followed successively, and their bulk
magnetic properties were studied at Iowa State by Legvold and his stu-
dents. They were also made available to Koehler and his colleagues at
Oak Ridge for neutron-diffraction measurements, which revealed what
he later described as ‘a panoply of exotic spin configurations’. By the
time of the First Rare Earth Conference at Lake Arrowhead, Califor-
nia in October 1960, both the magnetic susceptibilities and structures
had been extensively investigated. The papers of Legvold (1961) and
Koehler, Wollan, Wilkinson, and Cable (1961) summarized the remark-
able progress which had been made by that time.

Theoretical developments lagged little behind. Almost simultane-
ously with the observation of the helical structure in Dy, Enz (1960)
showed that the magnetization curves implied such a structure, and
pointed out the importance of magnetoelastic effects in inducing the
transition to the ferromagnetic phase. Niira (1960) successfully inter-
preted the magnetization of Dy in the ferromagnetic phase by calculating
the spin-wave spectrum of an anisotropic magnet, showing that a finite
energy is required to create a long-wavelength excitation. This energy
gap gives rise to an exponential decrease of the magnetization at low
temperatures. Elliott (1961) considered the magnetic structures of the
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heavy rare earths and their temperature dependences, utilizing a phe-
nomenological molecular-field model. A similar approach was taken by
Miwa and Yosida (1961), while Nagamiya, Nagata, and Kitano (1962)
calculated the effect of a magnetic field on some of these structures,
showing that a fan structure may exist between the helix and the ferro-
magnet. In these papers, the standard model first attained a coherent
formulation.

The transport properties, particularly the electrical resistivity, were
elucidated in the same period. De Gennes (1958) considered the mag-
netic disorder scattering, showing that it is proportional to the de Gennes
factor in the paramagnetic phase, while Kasuya (1959) gave a very com-
plete discussion of the same subject, including not only the paramag-
netic phase but also scattering by spin waves and rare earth impuri-
ties. The first resistivity measurements on single crystals were made
on Er by Green, Legvold, and Spedding (1961). The unusual temper-
ature dependence of the resistance in the c-direction was explained by
Mackintosh (1962) as a consequence of the incommensurable magnetic
ordering, leading to magnetic superzones. Miwa (1963) and Elliott and
Wedgwood (1963) made calculations of the magnitude of this effect, us-
ing the free electron model, which were in semi-quantitative agreement
with the experimental results. Mackintosh (1963) pointed out that the
spin-wave energy gap should also give rise to an exponential increase in
the magnetic scattering at low temperature and deduced that the gap in
Tb is about 20K, a value later substantiated by direct measurements.

Until this time, the conduction electrons in the rare earths had
been described by the free-electron model, but Dimmock and Freeman
(1964) demonstrated that this simplification was unjustified when they
calculated the band structure of Gd by the APW method. The con-
duction electrons were found to be largely d-like, as in the transition
metals, and the Fermi surface far from spherical. At that time, sin-
gle crystals of the purity required to allow conventional Fermi surface
experiments were unavailable, so Gustafson and Mackintosh (1964) em-
ployed positron annihilation, initially in polycrystalline samples. Their
most striking observation was that the number of 4f electrons in Ce does
not change greatly at the γ–α transition, in contradiction to the promo-
tional model, and hence to the standard model. Later measurements on
single crystals of the heavy rare earths showed that the conduction elec-
trons are indeed far from free electron-like, and the experimental results
could be well accounted for by relativistic APW calculations (Williams,
Loucks, and Mackintosh 1966).

As the ground-state properties of the rare earth metals became
progressively clarified, interest turned towards the magnetic excitations.
Niira’s pioneering theoretical work was followed by the calculation of
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the spin-wave dispersion relations in a variety of heavy-rare-earth mag-
netic structures by Cooper, Elliott, Nettel, and Suhl (1962). The first
observations of spin waves by inelastic neutron scattering were made
at Risø by Bjerrum Møller and Houmann (1966), who obtained rather
complete dispersion relations for Tb at 90K. During the following years,
Bjerrum Møller and his colleagues performed a series of experiments
which revealed many novel phenomena, including the temperature- and
field-dependence of the magnon energies, allowing the deduction of the
exchange and its anisotropy, and crystal-field and magnetoelastic param-
eters. Magnons in the incommensurable helical phase, including phason
excitations at long wavelengths, were also observed, as was the inter-
action of magnons with each other, with the conduction electrons, and
with phonons, including coupling through a new mechanism involving
the spin–orbit interaction of the conduction electrons, explained by Liu
(1972a).

Callen and Callen (1963) further developed the theory of magneto-
striction, putting it in the form used by Rhyne and Legvold (1965a) to
interpret their pioneering measurements on single crystals. Callen and
Callen (1965) also generalized the treatment of the temperature depen-
dence of crystal-field and magnetoelastic parameters. Cooper (1968a,b)
considered in detail the role of the magnetoelastic effects in the helical-
ferromagnetic transition, and included them in calculations of the spin-
wave energies. Turov and Shavrov (1965) had earlier proposed that,
since the magneto-strain cannot follow the precession of the moments
in a spin wave, the energy gap should not vanish when the hexagonal
anisotropy is cancelled by an external magnetic field. This frozen lattice
effect was observed by Nielsen, Bjerrum Møller, Lindg̊ard, and Mack-
intosh (1970). In the late 1960s, the availability of separated isotopes
allowed spin-wave measurements at Oak Ridge on a number of the heavy
rare earths which, because of neutron absorption in the natural state,
could otherwise only be studied with great difficulty. Of particular in-
terest were experiments on the isotropic ferromagnet Gd, in which the
magnetic form factor was studied by Moon and Koehler (1971) and the
spin waves by Koehler, Child, Nicklow, Smith, Moon, and Cable (1970),
and the clear evidence for a large exchange anisotropy in the conical
phase of Er (Nicklow, Wakabayashi, Wilkinson, and Reed 1971a).

With the increasing understanding of the magnetic behaviour of
the heavy rare earths, it was natural that attention began to turn to
the lighter metals. Moon, Cable, and Koehler (1964) began what was
destined to become a long-lasting study by a number of groups of the
magnetic structure of Nd, and Cable, Moon, Koehler, and Wollan (1964)
found indications of antiferromagnetic ordering in polycrystalline Pr.
Bleaney (1963) had earlier shown that the crystal-field ground states
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in Pr should be singlets, and in such singlet ground-state systems no
magnetic ordering should occur unless the exchange exceeds a critical
value. Johansson, Lebech, Nielsen, Bjerrum Møller, and Mackintosh
(1970) could indeed detect no signs of magnetic ordering at 4.2K in
monocrystalline Pr. Shortly afterwards, the crystal-field excitations, or
magnetic excitons, were observed by Rainford and Houmann (1971) and,
on the basis of these results, Rainford (1972) proposed a crystal-field
level scheme which is very close to that accepted today.

The achievements of the classical period were summarized in the
compendium on the Magnetic Properties of Rare Earth Metals, edited
by R.J. Elliott, which was published in 1972 and, in a sense, also signalled
the end of this period. In the modern era, the principles which had been
established by the early 1970s have been applied to attaining a deeper
and more complete understanding of the elements, even though the pri-
mary interest has increasingly turned towards rare earth compounds
and alloys. For example, the magnetic interactions in the exchange-
dominated system Tb were studied in exhaustive detail with inelastic
neutron scattering by Jensen, Houmann, and Bjerrum Møller (1975).
The crystal-field dominated system Pr was subjected to a similarly care-
ful investigation by Houmann, Rainford, Jensen, and Mackintosh (1979)
and, from his analysis of these results, Jensen (1976a) concluded that Pr
could be induced to order antiferromagnetically either by the application
of a modest stress or, through the hyperfine interaction, as first proposed
by Murao (1971), by cooling to about 40mK. The former effect was ob-
served by McEwen, Stirling, and Vettier (1978) while magnetic ordering
at very low temperatures had been inferred from heat-capacity measure-
ments by Lindelof, Miller, and Pickett (1975). However, the controversy
surrounding this phenomenon was only finally settled by the unambigu-
ous observation of magnetic ordering by neutron diffraction (Bjerrum
Møller, Jensen, Wulff, Mackintosh, McMasters, and Gschneidner 1982).
The effects of the crystal field alone were studied by Touborg and Høg
(1974), by dissolving small amounts of the magnetic rare earths in Sc, Y,
and Lu and determining the crystal-field level scheme through suscep-
tibility measurements, in conjunction with inelastic neutron scattering
(Rathmann and Touborg 1977).

Efforts to increase the purity of rare earth samples were rewarded
by the observation of the de Haas–van Alphen (dHvA) effect in Gd by
Young, Jordan, and Jones (1973) and the subsequent detailed elucida-
tion of its Fermi surface, which could be satisfactorily accounted for
by band structures calculated with the inclusion of the exchange split-
ting between up- and down-spin levels. More recently, the careful study
of the dHvA effect in paramagnetic Pr by Wulff, Lonzarich, Fort, and
Skriver (1988) has confirmed the success of the band model in describ-
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ing the conduction electrons, and given extensive information on their
interaction with the 4f electrons.

The electronic structure of Ce has been of continued interest. Jo-
hansson (1974) elaborated the suggestion of Gustafson, McNutt, and
Roellig (1969) that α–Ce is a 4f-band metal, and Glötzel (1978) and
others have further explored this model by band structure calculations.
Single crystals of α–Ce suitable for dHvA experiments are extremely
difficult to prepare, but Johanson, Crabtree, Edelstein, and McMasters
(1981) have studied the related compound CeSn3, observing the 4f char-
acter of the electrons at the Fermi surface. Photoemission experiments
by Wieliczka, Weaver, Lynch, and Olson (1982) and Mårtensson, Reihl,
and Parks (1982) proved highly informative in exploring the electronic
structure of Ce. This work reflects the intense interest in the 1980s in
the problem of non-integral 4f occupancy, which gives rise to a variety
of phenomena subsumed under the description mixed-valent behaviour,
the most striking of which is the huge electronic heat capacity and as-
sociated effective masses measured in heavy-fermion materials. The dis-
covery of superconductivity in CeCu2Si2 by Steglich, Aarts, Bredl, Lieke,
Meschede, Franz, and Schäfer (1979) stimulated a major effort in study-
ing lanthanide and actinide heavy-fermion systems, and underlined the
significance of the earlier observation of superconductivity in Ce under
pressure by Probst and Wittig (1975).

The properties of itinerant 4f electrons have predominantly been
studied through rare earth compounds. Indeed the main thrust of the
rare earth research programme has recently been towards understand-
ing compounds and alloys, which are generally beyond the scope of this
book, but which may nevertheless be largely understood in terms of the
principles which we shall present. However, as will be discussed in later
sections, there still remain a number of problems in the elements which
await and occasionally obtain a solution. For example, the essential fea-
tures of the classic puzzle of the magnetic structure of Nd have been
clarified by McEwen, Forgan, Stanley, Bouillot, and Fort (1985). Gibbs,
Moncton, D’Amico, Bohr, and Grier (1985) have re-examined the con-
figurations of the moments in Ho and other heavy rare earths, using
a combination of synchrotron radiation, which shows promise for very
high-resolution structural studies, and neutron diffraction. They utilized
the concept of spin slips to explain their results, and hence refocused
attention on commensurable magnetic structures, which had originally
been studied by Koehler, Cable, Wilkinson, and Wollan (1966). Initial
studies of the excitations of such structures were performed by Larsen,
Jensen, and Mackintosh (1987), who thereby explained the long-standing
mystery of the stability of the cone structure in Ho at low temperatures.
Other unexplained features of the neutron diffraction patterns from Ho
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were accounted for by Jensen and Mackintosh (1990), who showed that
intermediate structures, which they named helifans, could be stabilized
by a magnetic field.

A new field of endeavour has been opened by the fabrication of
multilayers of different species of rare earths and the study of their prop-
erties by Majkrzak, Cable, Kwo, Hong, McWhan, Yafet, Waszczak, and
Vettier (1986), and by Salamon, Sinha, Rhyne, Cunningham, Erwin,
Borchers, and Flynn (1986). The size of the teams working on a num-
ber of these modern projects in rare earth research reflects the technical
complexity of the problems now being tackled, and no doubt also the
collaborative spirit of the age.

1.2 Rare earth atoms
The starting point for the understanding of the magnetism of the rare
earths is the description of the electronic states, particularly of the 4f
electrons, in the atoms. The wavefunction Ψ(r1σ1, r2σ2, . . . , rZσZ) for
the electrons, which is a function of the space and spin coordinates r
and σ of the Z electrons which constitute the electronic charge cloud (Z
is the atomic number), is determined for the stationary state of energy
E from the Schrödinger equation

HΨ = EΨ, (1.2.1)

where the non-relativistic Hamiltonian operator is

H = − h̄2

2m

Z∑
i

∇2
i + 1

2

Z∑
ij

e2

|ri − rj |
+

Z∑
i

vext(ri) (1.2.2)

and, in the case of an atom, the ‘external’ potential vext(r) is just the
Coulomb potential −Ze2/ri due to the nuclear attraction. As is well
known, the difficulties in solving this problem reside in the second term,
the Coulomb interaction between the electrons. For heavy atoms, exact
solutions require a prohibitive amount of computation, while any possi-
bility of an exact solution for the electronic states in a metal is clearly
out of the question. It is therefore necessary to replace the Coulomb
interaction by a self-consistent field, which is most satisfactorily deter-
mined by means of the density-functional theory of Hohenberg and Kohn
(1964) and Kohn and Sham (1965).

The first step is to write the Hamiltonian (1.2.2) in the symbolic
form

H = T + U + V, (1.2.3)

incorporating the kinetic energy, the Coulomb repulsion between the
electrons, and the external potential, due to the nucleus in the atom or
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the periodic lattice potential in the solid. Hohenberg and Kohn (1964)
established two important results. Firstly, they showed that the external
potential is a unique functional of the electron density n(r), and hence
that the ground-state wavefunction Φ and the energy functional

<Φ |H |Φ> = <Φ | (T + U) |Φ> +
∫
vext(r)n(r)dr (1.2.4)

are unique functionals of n(r). Secondly, they proved that the energy
functional (1.2.4) attains its minimum value, the ground-state energy,
for the correct ground-state density. Hence, if the universal functional
<Φ | (T + U) |Φ> were known, it would be straightforward to use this
variational principle to determine the ground-state energy for any speci-
fied external potential. However, the functional is not known, and the
complexity of the many-electron problem is associated with its approx-
imate determination.

Guided by the successes of the one-electron model, Kohn and Sham
(1965) considered a system of non-interacting electrons with the same
density as that of the real system, satisfying the single-particle Schrö-
dinger equation [

− h̄2

2m
∇2 + veff(r)

]
ψi(r) = εiψi(r). (1.2.5)

The ground state ΦS of such a system is just the antisymmetrized prod-
uct, or Slater determinant, formed from the Z lowest-lying one-electron
orbitals, so that the electron density is the sum over these orbitals:

n(r) =
Z∑
i

|ψi(r)|2. (1.2.6)

The effective potential veff(r) must therefore be determined so that n(r)
is also the ground-state density of the real system. To accomplish this,
the energy functional (1.2.4) may be written in the form

<Φ |H |Φ> = <ΦS |T |ΦS>

+
∫ [

1

2

∫
e2n(r′)
|r − r′|dr

′ + vext(r)
]
n(r)dr + Exc{n(r)},

(1.2.7)

where the first contribution is the kinetic energy of the non-interacting
system, and the second is the Hartree energy of the charge cloud. The
last term is the difference between the true kinetic energy and that of the
non-interacting system, plus the difference between the true interaction
energy of the system and the Hartree energy. This exchange-correlation
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energy encompasses our ignorance of this problem, and is presumably
relatively small. In the local approximation, which is adopted to convert
the density-functional theory into a practical method, this energy is
written

Exc{n(r)} ≈
∫
εxc[n(r)]n(r)dr, (1.2.8)

and the effective potential is therefore

veff(r) =
∫

e2n(r′)
|r− r′|dr

′ + vext(r) + vxc[n(r)], (1.2.9)

where
vxc[n(r)] = d[nεxc(n)]/dn ≡ µxc[n(r)] (1.2.10)

is the local approximation to the exchange-correlation contribution to
the chemical potential of the electron gas. Useful estimates of this quan-
tity have been obtained from calculations for a homogeneous electron gas
of density n(r) by Hedin and Lundqvist (1971), von Barth and Hedin
(1972), and Gunnarsson and Lundqvist (1976), and these are frequently
used in calculations on both atoms and solids.

In order to determine the atomic structure, the Schrödinger equa-
tion (1.2.5) must be solved by the Hartree self-consistent procedure, in
which, through a process of iteration, the potential (1.2.9) generates
wavefunctions which, via (1.2.6), reproduce itself. Since this potential is
spherically symmetric in atoms, the single-particle wavefunctions may
be written as the product of a radial function, a spherical harmonic and
a spin function

ψnlmlms
(rσ) = ilRnl(r)Ylml

(r̂)χms
, (1.2.11)

where r̂ is a unit vector in the direction of r, the spin quantum number
ms can take the values ± 1

2 , and the phase factor il is included for later
convenience. The radial component satisfies the equation

− h̄2

2m
d2[rRnl(r)]

dr2
+
(
veff(r) +

l(l+ 1)h̄2

2mr2
− ε

)
[rRnl(r)] = 0. (1.2.12)

Some radial wavefunctions for rare earth atoms are shown in Fig. 1.1.
The 4f electrons are well embedded within the atom, and shielded by
the 5s and 5p states from the surroundings. The 5d and 6s electrons
form the conduction bands in the metals. The incomplete screening of
the increasing nuclear charge along the rare earth series causes the lan-
thanide contraction of the wavefunctions, which is reflected in the ionic
and atomic radii in the solid state. In particular, as illustrated in Fig.
1.1, the 4f wavefunction contracts significantly between Ce, which has
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one 4f electron, and Tm, which has one 4f hole in the atom, though
two in the metallic state. The angular dependences of the 4f wavefunc-
tions are depicted in Fig. 1.2. The charge clouds are highly anisotropic,
with pronounced multipoles whose magnitudes and signs change dra-
matically with ml. As we shall see, this anisotropy is clearly manifested
in the magnetic properties of the metals.

Since they are among the heavier elements, relativistic effects are of
substantial importance in the rare earths. These are most straightfor-
wardly taken into account by solving the Dirac equation in the central

Fig. 1.1. The radial components of atomic wavefunctions for Ce, which
has one 4f electron, and Tm, which has 13 4f electrons, or one 4f hole.
The Tm wavefunctions are contracted, relative to those of Ce, due to the
incomplete shielding of the greater nuclear charge. As a consequence, the
amplitude of the 4f wavefunction at the indicated Wigner–Seitz radius
is much greater in Ce than in Tm, which has important consequences

for the character of the 4f states in the metals.
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field, rather than the Schrödinger equation, but it may be more instruc-
tive to consider them as perturbations which, to order (p/mc)2, augment
the one-electron potential with

− p4

8m3c2
− h̄2

4m2c2
dv

dr

∂

∂r
+

1
2m2c2r

dv

dr
s · l. (1.2.13)

The first term, which is due to the increase of mass with velocity, reduces
the energy of all states by an amount which decreases with l, while the
second ‘Darwin’ term increases the energy of s states only. These effects
may both be incorporated into the central field, but the last term couples
together the spin and orbital motion in a way that has far-reaching
consequences for the magnetic properties.

Fig. 1.2. The angular variation of
the 4f wavefunctions. The interac-
tion of the highly anisotropic charge
clouds with the crystalline electric
fields gives rise to the large single-
ion anisotropies observed in the rare
earth metals.

In the Russell–Saunders coupling scheme, which is an accurate pro-
cedure for the 4f electrons, the spins si of the individual 4f electrons
are coupled by the exchange interaction, diagonal in the total spin S
of the incompletely filled subshell, while the Coulomb interaction simi-
larly combines the li into the total orbital momentum L. In terms of the
one-electron functions, the wavefunction for the subshell may be written

Ψ(LSMLMS) =
∑

mlms

C(LSMLMS ;mlms)ψ(mlms), (1.2.14)

where the C(LSMLMS ;mlms) are the Clebsch–Gordan or Wigner co-
efficients. It is convenient to write this expansion in a representation-
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independent form, in terms of the state vectors

|LSMLMS> =
∑

mlms

<mlms|LSMLMS> |mlms> . (1.2.15)

The exchange and Coulomb interactions are sufficiently large that the
magnetic properties at all accessible temperatures are determined by the
S and L states of lowest energy. These are found from Hund’s rules; S is
maximized and, subject to this maximum S value, L is also maximized.
This results in the values for the trivalent ions shown in Table 1.1.

Table 1.1. Properties of the tripositive rare earth ions.

4f n Ion+++ L S J g (g − 1)2J(J + 1) ∆(K)

0 La 0 0 0 —

1 Ce 3 1
2

5
2

6
7 0.18 3150

2 Pr 5 1 4 4
5 0.80 3100

3 Nd 6 3
2

9
2

8
11 1.84 2750

4 Pm 6 2 4 3
5 3.20 2300

5 Sm 5 5
2

5
2

2
7 4.46 1450

6 Eu 3 3 0 — 500

7 Gd 0 7
2

7
2 2 15.75

8 Tb 3 3 6 3
2 10.50 2900

9 Dy 5 5
2

15
2

4
3 7.08 4750

10 Ho 6 2 8 5
4 4.50 7500

11 Er 6 3
2

15
2

6
5 2.55 9350

12 Tm 5 1 6 7
6 1.17 11950a

13 Yb 3 1
2

7
2

8
7 0.32 14800

14 Lu 0 0 0 —

a The lowest excited state in Tm is 3F4 at 8490K.

It is a consequence of the Wigner–Eckart theorem that the spin–
orbit term in (1.2.13) can be written

Hso = ±ζ(LS)S · L, (1.2.16)

where
ζ(LS) =

π

m2c2S

∫
rR2

4f (r)
dv

dr
dr, (1.2.17)
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and the + and − signs refer respectively to a less or more than half-filled
subshell. The spin and orbital angular momenta are thus combined into
the total angular momentum J = L + S. These states may be written

|JMJLS> =
∑

MLMS

<LSMLMS |JMJLS> |LSMLMS> . (1.2.18)

Because of the sign of (1.2.16), the value of J in the ground state is
L∓ S, according as the subshell is less or more than half-full. Roughly
speaking, L is always parallel to J, but S is antiparallel in the first half
of the series and parallel in the second half. The energy separation to
the first excited multiplet may be determined from the matrix elements
of (1.2.16), and is given by

∆ = ζ(LS)
{

(J + 1)
J

(1.2.19)

again depending on whether the subshell is respectively less or more
than half-filled. The values of J in the ground state and of ∆, obtained
from spectroscopic measurements on rare earth salts (Dieke 1968), are
given in Table 1.1.

The magnetization of an assembly of N rare earth atoms or ions is
given by the derivative of the free energy with respect to magnetic field:

M = − 1
V

∂F

∂H
(1.2.20)

or, recalling that

F = −N

β
ln
∑

n

e−βEn(H), (1.2.21)

where En(H) are the atomic energy levels in the field, and β = 1/kBT ,

M =
N

V

∑
n

−∂En

∂H
e−βEn

/∑
n

e−βEn . (1.2.22)

Neglecting the small diamagnetic susceptibility, the magnetic contribu-
tion to the Hamiltonian is given by the Zeeman term

HZ = −µB(L + g0S) · H, (1.2.23)

where µB is the Bohr magneton. Because of the negative charge on the
electron, the angular momentum and the magnetic moment are antipar-
allel. This gives rise to certain difficulties, which are frequently ignored
in the literature. We shall circumvent them by taking L, S, and J as
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signifying the negative of the corresponding angular-momentum vector.
We shall furthermore from now on take the gyromagnetic ratio g0 as 2.
Second-order perturbation theory then gives the magnetic contribution
to the energy:

δEn(H) = −µBH·<n|L + 2S |n> +
∑
m �=n

|<n|µBH·(L + 2S)|m> |2
En − Em

.

(1.2.24)
Problems of degeneracy are taken care of by using the |JMJLS> basis,
whose degeneracy is completely lifted by the field. In this basis, and
within a particular JLS-multiplet, the Wigner–Eckart theorem implies
that the matrix elements of (L + 2S) are proportional to those of J, so
that

<JLSMJ |L + 2S |JLSM ′
J> = g(JLS) <JLSMJ |J |JLSM ′

J>,
(1.2.25)

and the proportionality constant, the Landé factor, is

g =
3
2

+
S(S + 1) − L(L+ 1)

2J(J + 1)
. (1.2.26)

Within this multiplet, we may write eqn (1.2.25) in the shorthand form
L + 2S = gJ, and consider the effective moment on the atom to be

µ = gµBJ. (1.2.27)

With the same proviso, we may similarly write

L = (2 − g)J, (1.2.28)

and
S = (g − 1)J. (1.2.29)

If J is non-zero, the first-order term in (1.2.24), combined with (1.2.22)
gives a magnetization for the ground-state multiplet:

M(H,T ) = N

V
gµBJBJ (βgµBJH), (1.2.30)

where the Brillouin function is

BJ(x) = 2J + 1

2J
coth 2J + 1

2J
x− 1

2J
coth 1

2J
x. (1.2.31)

If gµBJH is small compared with kBT , the susceptibility is constant
and given by Curie’s law:

χ =
M

H
=
g2µ2

BJ(J + 1)
3kBT

N

V
≡ C

T
, (1.2.32)
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where C is the Curie constant. The second-order non-diagonal term in
(1.2.24) gives a paramagnetic contribution to χ which is independent of
temperature, provided that the thermal population of the excited states
is negligible. This Van Vleck paramagnetism is very small in the heavy
rare earths, but in the first half of the series it is given by

χV =
2µ2

B(L + 1)S
3(J + 1)∆

N

V
, (1.2.33)

which may be significant, since

χV

χ
=

2(L+ 1)S
g2J(J + 1)2

kBT

∆
=
αkBT

∆
, (1.2.34)

where, from Table 1.1, α takes the modest value of 0.19 for Pr, but
is 12 for Sm. Since ∆ is only 1450K, the Van Vleck paramagnetism
in Sm is significant even at rather low temperatures. In trivalent Eu,
J = 0 in the ground state and the paramagnetic susceptibility is due
entirely to the mixing of the excited states into the ground state by the
field, and to the thermal excitation of these states. However, Eu metal
is divalent and the 8S7/2 ionic susceptibility follows Curie’s law very
closely. The Van Vleck paramagnetism arising from the mixing of states
of different J will not play a significant role in our later discussion, but
the analogous phenomenon of the mixing of states of different MJ , split
by the crystalline electric field in the metal, will be of central importance.

1.3 The metallic state
When a large number of rare earth atoms are assembled to form a solid,
the 4f electrons generally remain localized, in a sense which will be made
more precise later, so that their magnetic properties closely resemble
those in the free atoms. The external 5d and 6s electrons, on the other
hand, become delocalized into Bloch states, extending throughout the
metal and constituting the conduction-electron gas. The conduction
electrons themselves make only a modest contribution to the magnetic
moment, but by mediating the magnetic interactions they play a crucial
role in determining the characteristic magnetic properties in the solid
state. An understanding of the magnetism therefore requires a detailed
description of the conduction electron gas, and this section is concerned
with our theoretical and experimental knowledge of the Bloch states,
and their influence on the structural properties of the metals. Some of
these structural properties of the rare earth metals are collected in Table
1.2, from which it may be seen that the room-temperature structures are
all close-packed, with a coordination number of 12, with the exception
of Eu, which is bcc. The remaining elements all form hexagonal phases,
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Table 1.2. Structural properties of the lanthanides.

Element Structure Lattice const. Atomic rad. Density Melt.point
(300K) a (Å) c (Å) S (a.u.) (g/cm3) (K)

La dhcp 3.774 12.171 3.92 6.146 1191
Ce(β) dhcp 3.681 11.857 3.83 6.689 1071
Ce(γ) fcc 5.161 3.81 6.770
Ce(α) fcc 4.85 (77 K) 3.58 8.16
Pr dhcp 3.672 11.833 3.82 6.773 1204
Nd dhcp 3.658 11.797 3.80 7.008 1294
Pm dhcp 3.65 11.65 3.78 7.264 1315
Sm rhom 3.629 26.207 3.77 7.520 1347
Eu bcc 4.583 4.26 5.244 1095
Gd hcp 3.634 5.781 3.76 7.901 1586
Tb hcp 3.606 5.697 3.72 8.230 1629
Dy hcp 3.592 5.650 3.70 8.551 1687
Ho hcp 3.578 5.618 3.69 8.795 1747
Er hcp 3.559 5.585 3.67 9.066 1802
Tm hcp 3.538 5.554 3.65 9.321 1818
Yb fcc 5.485 4.05 6.966 1092
Lu hcp 3.505 5.549 3.62 9.841 1936

although the hcp allotrope of Yb is only stable at low temperatures, and
Ce has two separate fcc phases in addition to its dhcp form.

The heavy rare earths are all hcp, while the dhcp structure pre-
dominates among the lighter metals. These structures may be produced
by stacking close-packed layers in the sequences ABAB and ABAC re-
spectively, as shown in Fig. 1.3. The fcc structure corresponds to the
stacking sequence ABCABC, while the Sm structure is ABABCBCAC.
The latter has rhombohedral symmetry but it is frequently more conve-
nient to consider it as hexagonal. The crystallographic a-axis is taken
along the direction joining a pair of nearest neighbours in the hexagonal
plane, the c-axis is normal to the plane, and the b-axis is orthogonal to
the other two. The local, i.e. nearest-neighbour, symmetry in the fcc
and hcp structure is, of course, cubic and hexagonal respectively. The
dhcp structure, on the other hand, has two types of site and, for an
‘ideal’ c/2a ratio of 1.633, their local symmetry alternates between cubic
and hexagonal in the sequence chch, while the Sm structure corresponds
to chhchh. As may be seen from Table 1.2, however, the c/2a ratio is
consistently smaller than the ideal value, so the ‘cubic’ sites have only
approximate local cubic symmetry.
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Fig. 1.3. The hcp and dhcp crystal structures. In the latter, the
B and C sites have hexagonal symmetry, while the A sites have local

cubic symmetry, for an ideal c/a ratio.

To determine the eigenstates for the conduction electron gas, we
adopt the same procedure as that outlined for atoms in the previous
section. The external potential vext(r) in (1.2.2) is now the Coulomb
attraction of the nuclei situated on the crystal lattice, shielded by the
electrons of the ionic core, which are usually taken to have the same
charge distribution as in the atoms. The potential consequently has the
translational symmetry of the periodic lattice, and so therefore does the
effective potential veff(r), which arises when we make the single-particle
approximation (1.2.5) and the local-density approximation (1.2.9). In
the atom, the eigenfunctions are determined by the boundary condition
that their amplitude must vanish for large values of r and, when (1.2.12)
is integrated numerically, they are automatically continuous and differ-
entiable. The translational symmetry of the solid is expressed in Bloch’s
theorem:

ψ(r) = eik·R ψ(r − R), (1.3.1)

and this boundary condition gives rise to eigenfunctions ψj(k, ε, r) and
eigenvalues εj(k) which are functions of the wave-vector k in reciprocal
space. All the electron states may be characterized by values of k lying
within the Brillouin zone, illustrated for the hexagonal and fcc structures
in Fig. 1.4, and by the band index j defined such that εj(k) ≤ εj+1(k).

The determination of the eigenstates of the Schrödinger equation,
subject to the Bloch condition (1.3.1) is the central problem of energy-
band theory. It may be solved in a variety of ways, but by far the most
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Fig. 1.4. The Brillouin zones for the hexagonal and fcc lattices.

effective procedure for the rare earths is to adopt one of the linear meth-
ods of Andersen (1975). In the following, we will use the Atomic Sphere
Approximation (ASA) which will allow us to illustrate the construction
and characteristics of the energy bands in a transparent way. This ap-
proximation, and the closely-related Linear Muffin-Tin Orbitals Method
(LMTO), which allows computationally very efficient calculations of ar-
bitrarily precise energy bands, for a given potential, have been concisely
described by Mackintosh and Andersen (1980) and, in much more detail,
by Skriver (1984).

In a close-packed solid, the electrons may to a very good approxima-
tion be assumed to move in a muffin-tin potential, which is spherically
symmetric in a sphere surrounding each atomic site, and constant in the
interstitial regions. We recall that the atomic polyhedron, or Wigner–
Seitz cell, is bounded by the planes which perpendicularly bisect the
vectors joining an atom at the origin with its neighbours, and has the
same volume as the atomic sphere, whose radius S is chosen accordingly.
If we surround each site in the crystal with an atomic sphere, the po-
tential within each of these overlapping regions will, to a high degree of
accuracy, be spherically symmetric. Neglecting the spin, we may there-
fore write the solutions of the Schrödinger equation for a single atomic
sphere situated at the origin in the form

ψlm(ε, r) = ilRl(ε, r)Ylm(r̂), (1.3.2)

where the radial function Rl(ε, r) satisfies eqn (1.2.12) and is a function
of the continuous energy variable ε. Examples of such radial functions
are shown in Fig. 1.5.
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Fig. 1.5. Radial wavefunctions for α–Ce metal, calculated by Skriver
from the self-consistent atomic-sphere potential, at the energies Cnl of the
centres of the associated bands. Since these wavefunctions are normalized
within the unit cell, the effective masses µnl are inversely proportional
to the value of R2

l (Cnl, S) at the Wigner–Seitz radius, and this probabil-
ity, and the consequent overlap between wavefunctions on neighbouring

sites, therefore determines the corresponding band width.

Augmenting these partial waves by suitably-chosen regular solutions
of Laplace’s equation, we define the energy-dependent muffin-tin orbitals

χlm(ε, r) = ilYlm(r̂)

⎧⎨⎩Rl(ε, r) + pl(ε)(r/S)l ; r < S

(S/r)l+1 ; r > S,
(1.3.3)

which are continuous and differentiable if

pl(ε) =
Dl(ε) + l + 1
Dl(ε) − l

, (1.3.4)

where the logarithmic derivative is

Dl(ε) = S
R′

l(ε, S)
Rl(ε, S)

. (1.3.5)
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From muffin-tin orbitals located on the lattice sites of a solid, with
one atom per unit cell, we now construct a wavefunction which is con-
tinuous and differentiable, and manifestly satisfies the Bloch condition
(1.3.1):

ψj(k, ε, r) =
∑
lm

ajk
lm

∑
R

eik·Rχlm(ε, r − R). (1.3.6)

If we approximate the atomic polyhedra by spheres, and implicitly as-
sume that they fill space, the condition that (1.3.6) is a solution of the
Schrödinger equation is easily seen to be that the sum of the tails orig-
inating from terms of the form (S/|r − R|)l+1, from the surrounding
atoms, cancels the ‘extra’ contribution∑

lm

ajk
lmYlm(r̂)pl(ε)(r/S)l,

in the atomic sphere at the origin. To satisfy this condition, we expand
the tails of the muffin-tin orbitals centred at R about the origin, in the
form∑

R �=0

eik·R
( S

|r − R|

)l+1

ilYlm( ̂r − R)

=
∑
l′m′

−1
2(2l′ + 1)

( r
S

)l′
il

′
Yl′m′(r̂)Sk

l′m′,lm,

(1.3.7)

where the expansion coefficients, known as the canonical structure con-
stants, are

Sk
l′m′,lm =

∑
R �=0

eik·RSl′m′,lm(R), (1.3.8)

with
Sl′m′,lm(R) = gl′m′,lm

√
4π(−i)λY ∗

λµ(R̂)(R/S)−λ−1,

where

gl′m′,lm ≡ (−1)m+12
√

(2l′ + 1)(2l + 1)

2λ + 1

(λ + µ)!(λ − µ)!

(l′ + m′)!(l′ − m′)!(l + m)!(l − m)!

and
λ ≡ l + l′ ; µ ≡ m−m′.

From (1.3.3) and (1.3.7), the required tail-cancellation occurs if∑
lm

[Pl(ε)δl′lδm′m − Sk
l′m′,lm]ajk

lm = 0, (1.3.9)
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where the potential function Pl(ε) is defined by

Pl(ε) = 2(2l+ 1)pl(ε) = 2(2l+ 1)
Dl(ε) + l + 1
Dl(ε) − l

. (1.3.10)

The linear homogeneous equations (1.3.10) have solutions for the eigen-
vectors ajk

lm only for those values of k and ε for which

det
[
Pl(ε)δl′lδm′m − Sk

l′m′,lm
]

= 0. (1.3.11)

Fig. 1.6. The canonical bands for the fcc structure. The band structure
in the metal may be obtained by placing, scaling, and distorting the
canonical bands according to the values of the corresponding potential
parameters Cnl, µnl, and γnl, and finally hybridizing them. The extent of
the bands, according to the Wigner–Seitz rule, is indicated on the right.
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In this determinantal equation for the band structure εj(k), the infor-
mation about the structure is separated from that on the potential. The
structure constants Sk

l′m′,lm are canonical in the sense that they de-
pend only on the crystal structure and not, for example, on the lattice
constant, as may be seen from the definition (1.3.8), and the potential
function Pl(ε) is determined entirely by the potential within the atomic
sphere. We shall consider these two terms in turn.

If we include values of l up to 3, i.e. s, p, d, and f partial waves, the
structure constants form a square matrix with 16 rows and columns. The
terms with l = l′ fall into 4 blocks, and these submatrices may be diag-
onalized by a unitary transformation from the lm to an lj representation.
The (2l+1) diagonal elements Sk

lj of each sub-block are the unhybridized
canonical l bands. The canonical bands for the fcc structure are shown
in Fig. 1.6. If hybridization is neglected, which corresponds to setting
to zero the elements of Sk

l′m′,lm with l �= l′, eqn (1.3.11) takes the simple
form

Pl(ε) = Sk
lj . (1.3.12)

Since Pl(ε) is a monotonically increasing function of energy, as illustrated
in Fig. 1.7, the band energies εlj(k) for the pure l bands are obtained by
a monotonic scaling of the corresponding canonical bands. Pl(ε) does
not, furthermore, depart greatly from a straight line in the energy region
over which a band is formed, so the canonical bands resemble the energy
bands in the solid quite closely, whence the name.

The potential function Pl(ε) and the logarithmic-derivative function
Dl(ε) are related to each other through the definition (1.3.10), and this
relationship is shown schematically in Fig. 1.7. It is convenient and
illuminating to parametrize the potential function, when considering the
formation of the energy bands from the canonical bands. The poles of
Pl(ε), which occur when Dl(ε) = l, divide the energy into regions in
which lie the corresponding atomic energy-levels εnl. The energies Vnl

which separate these regions are defined by

Dl(Vnl) = l (1.3.13)

and, within a particular region, the energy Cnl of the centre of the band
is fixed by the condition that Pl(Cnl) = 0, or

Dl(Cnl) = −(l + 1). (1.3.14)

The allowed k-values corresponding to this energy are just those for
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Fig. 1.7. The nth period of the logarithmic derivative function Dl(ε),
and the corresponding potential function Pl(ε). The bottom, centre, and
top of the nl band are defined respectively by Pl(Bnl) = −2(2l+1)(l+1)/l

(Dl(Bnl) = 0), Pl(Cnl) = 0, and Pl(Anl) = l (Dl(Anl) = −∞).

which Sk
lj = 0 and, since the average over the Brillouin zone may be

shown to vanish, i.e.
2l+1∑
j=1

∫
BZ

Sk
lj dk = 0, (1.3.15)

the designation of Cnl as the centre of the band is appropriate. Equa-
tion (1.3.12) may be satisfied, and energy bands thereby formed, over
an energy range around Cnl which, to a good approximation, is defined
by the Wigner–Seitz rule, which states that, by analogy with molecular
binding, the top and bottom of the band occur where the radial wave-
function and its derivative respectively are zero on the atomic sphere.
The corresponding energies, defined by

Dl(Anl) = −∞ (1.3.16)
and

Dl(Bnl) = 0, (1.3.17)
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are then known respectively as the top and bottom of the nl band, even
though this designation is not precisely accurate.

Over the energy range Anl –Bnl, the potential function may be
parametrized with reasonable accuracy as

Pl(ε) 	
1
γnl

ε− Cnl

ε− Vnl

. (1.3.18)

It is convenient to define the related mass parameter µnl by

µnlS
2 =

dPl(ε)
dε

∣∣∣∣
C

nl

	 1
γnl(Cnl − Vnl)

. (1.3.19)

It is determined by the probability that an electron described by the par-
tial wave Rl(Cnl, r) reaches the atomic sphere and, if the wavefunction
is normalized within the sphere, it may be shown that

µnlS
2 =

[1
2SR

2
l (Cnl, S)

]−1
. (1.3.20)

For free electrons, µnl ≡ 1 for all values of n and l.
With this parametrization, we may write down an explicit expres-

sion for the unhybridized band energies. From eqns (1.3.12), (1.3.18)
and (1.3.19) these are given by

εlj(k) = Cnl +
1

µnlS
2

Sk
lj

1 − γnlSk
lj

. (1.3.21)

The pure l bands are thus obtained from the corresponding canonical
bands by fixing the position with Cnl, scaling the bandwidth by µnlS

2,
and distorting them with γnl.

Hybridization between bands of different l is taken into account
by including the structure constants with l �= l′ in (1.3.11), causing
a repulsion between energy levels with the same k and symmetry, as
specified by the labels in Fig. 1.6. Bands of the same symmetry are
thus not allowed to cross, and strong hybridization instead creates an
energy gap. In addition, weak hybridization gives rise to a mixing and
repulsion between bands which do not cross in the absence of hybridiza-
tion. In order to complete the calculation of the band structure, the
inaccuracies due to approximating the atomic polyhedron by a sphere,
and to neglecting higher partial waves, may be conveniently treated to-
gether by perturbation theory. In practice, the energy bands are not
of course calculated step-wise as described above, but all the steps are
performed simultaneously on a computer. Nevertheless, the conceptual
description of the procedure as a placing, scaling and distortion of the
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canonical bands, according to the values of the potential parameters,
with a final hybridization between bands of the same symmetry, allows
a clear visualization of the way in which the relatively complex band
structure is built up from simpler elements, and of the relation between
the eigenstates of the atom and those in the solid.

Table 1.3. Electronic parameters for α–Ce.

6s 6p 5d 4f

Al (Ry) 2.234 2.698 1.198 0.648
Cl (Ry) 0.620 1.452 0.792 0.628
Bl (Ry) 0.330 0.909 0.409 0.587
µl 0.61 0.70 2.18 45.36
nl 0.509 0.245 2.091 1.154
Nl(εF ) (Ry−1) 1.81 1.50 6.48 21.11
PlΩ (Ry) 0.195 0.152 −0.219 −0.163

This procedure may be illustrated by considering the construction
of the band structure of α–Ce from its component parts. Partial waves in
the atomic sphere at the energies of the band-centres, where Pl(ε) = 0,
are shown in Fig. 1.5, and the corresponding potential parameters are
given in Table 1.3. In this section, we express the energies in Rydbergs,
following our general principle of using throughout the book those units
which are favoured by practitioners of research in the subject currently
under discussion. The s and p effective masses are somewhat below 1,
and the relative positions of the band centres correspond quite closely to
those of the free-electron gas. Through the influence of the l-dependent
centrifugal-potential term in (1.2.12), the d and f states are in contrast
constrained to the inner regions of the atomic sphere, with the conse-
quence that the d mass is relatively large (though not as large as in a
typical transition metal) and the f mass is extremely large.

The energy bands of Fig. 1.8 were calculated by an iterative pro-
cedure, by Skriver (private communication). The electron density n(r)
is first estimated by, for example, overlapping atomic charge densities
situated on the lattice sites, and from it the periodic potential veff(r)
is constructed, using the local-density approximation (1.2.9). The band
structure is then determined for this potential and n(r) recalculated,
in analogy with (1.2.6), by summing over occupied states, those be-
neath the Fermi level. This procedure is repeated until the potential
self-consistently reproduces itself, and the energy bands have converged
to the desired accuracy. The band structure can be considered as being
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Fig. 1.8. The band structure of fcc α–Ce, calculated by Skriver.
The orbital angular momentum of some states at symmetry points in the
zone is indicated, including the top and bottom of the narrow bands. The

doubleheaded arrow indicates the spin–orbit splitting of a 4f state.

composed of a broad free-electron-like sp band, crossed by and hybridiz-
ing both strongly and weakly with the d and f bands. The occupation
numbers nl of the various states given in Table 1.3 make it clear that
α–Ce may be classified as both a d- and an f -band transition metal.

The above description of the f states in α–Ce as occupying the
bottom of an f band is now generally accepted as valid, but the cor-
rect treatment of the f electrons in the rare earth metals, and especially
Ce, was a matter of lengthy controversy. According to the standard
model, which is generally applicable to rare earth magnetism, an inte-
gral number of f electrons are localized on each ion, subject to the same
intra-ionic interactions as in the free atom. The Pauling–Zachariasen
promotional model for the γ–α phase transition in Ce, which associ-
ated the transition with the transfer of a single f electron on each ion
to a d state, with a concomitant decrease of about 6% in the fcc lattice
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constant, was therefore consistent with the standard model. However the
positron-annihilation experiments of Gustafson and Mackintosh (1964)
showed that the change in f occupancy, when the transition was induced
by a change in temperature, was much less than one, and indeed that
the results in both phases were consistent with about one f electron per
ion. Similar results were obtained by Gustafson et al. (1969) when the
transition was driven by pressure, and they concluded that it involves
not primarily a change in the f occupancy but rather a change in the f
state, from being localized in the γ-phase to being an itinerant band elec-
tron in the α-phase. This idea was taken up by Johansson (1974) who,
from a consideration of spectroscopic, cohesive and thermodynamic evi-
dence, proposed that the γ–α transition should be considered as a Mott
localized–delocalized transition among the f electrons. Glötzel (1978)
used density-functional theory to calculate the ground state properties
and showed that the equation of state in the α-phase can be accounted
for rather satisfactorily by including the f electrons in the band struc-
ture, and furthermore that a transition to a spin-polarized state should
occur at a lattice constant close to that of γ–Ce, though at a (nega-
tive) pressure considerably lower than that deduced from experiment.
Eriksson et al. (1990) have recently shown that this discrepancy may be
substantially reduced by including the l–l coupling, which is responsible
for the second of Hund’s rules, in the calculation of the 4f bands. This
leads to a ground state in γ–Ce in which the 4f electrons are almost
fully polarized, thus occupying the Hund’s-rule ground state on each
site. Despite the fact that they are described in the band picture, they
may thus be considered as localized, making very little contribution to
the cohesive properties. The calculated atomic volumes in both phases
are in good agreement with experiment. Podloucky and Glötzel (1983)
found a cohesive energy for α–Ce in accord with the measured value,
while that of a ‘promotional’ state with no f electrons is far too small.
They were also able to account for the Compton-scattering experiments
of Kornstädt et al. (1980), who had verified that the change in f occu-
pancy at the transition is small. Skriver (1985) calculated the crystal
structure and equation of state of α–Ce up to high pressures, finding
very good agreement with experiment (Staun Olsen et al. 1985), pro-
vided that the f bands are included, but very poor agreement if the
f electrons are promoted to the d bands, or are assumed to be local-
ized, and therefore to make a negligible contribution to the electronic
pressure. The relative stability at high pressures of low-symmetry con-
figurations such as the α–U structure, which is observed experimentally,
is a strong indicator that there are f electrons in the conduction bands,
as in the light actinides, where they play a decisive role in determining
the structure (Skriver 1985).
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The most powerful experimental technique available for studying
the details of the electronic structure in the vicinity of the Fermi level is
the de Haas–van Alphen (dHvA) effect (Shoenberg 1983), which allows
a precise determination not only of the shape of the Fermi surface, but
also of the effective masses of the electrons whose wave-vectors lie on it.
Unfortunately, the metallurgical difficulties encountered in attempting
to fabricate pure single crystals have so far precluded the observation of
the effect in α–Ce, but Johanson et al. (1981) studied the related com-
pound CeSn3, and demonstrated that it contains itinerant f electrons
of large mass at low temperatures. More recently, a number of exam-
ples of heavy-fermion Ce compounds have been investigated (Reinders
et al. 1986; Lonzarich 1988) in which the effective masses, as deduced
either from the dHvA effect or the low-temperature heat capacity, are
enhanced by up to an order of magnitude compared with those deduced
from band structure calculations.

There is thus very convincing evidence that the f electrons in Ce
and its compounds can form bands and extend in coherent Bloch states
throughout the crystal. Photoemission experiments in α–Ce (Wieliczca
et al. 1982; Mårtensson et al. 1982) revealed a structure with two peaks,
which may plausibly be associated respectively with an itinerant f hole
near the Fermi level, and one localized for a finite time at a particular
ionic site (Norman et al. 1984; Mackintosh 1985). There are very few
indications of itinerant f behaviour in the other rare earth elements, al-
though the above-mentioned double-peaked structure is also observed in
γ–Ce and Pr (Wieliczka et al. 1984), in both of which the f electrons are
normally considered as localized, and as we shall see, there is evidence of
an f contribution to the binding energy in some of the light rare earths.
After this brief interlude, we will therefore leave the question of f bands
and return to the standard model of f electrons localized on the ions,
interacting with the surroundings but only indirectly with each other.

Pr, the neighbouring element to Ce, undergoes a phase transition at
high pressures (Wittig 1980) which is probably associated with the for-
mation of a band by the f electrons (Skriver 1981; Eriksson et al. 1990),
but at ambient pressures they are localized and may be considered as
part of the ionic core. Indeed, intermultiplet transitions, corresponding
to those occurring on Pr ions in insulators, but shifted due to screening
by the conduction electrons in the metal, have been observed by Taylor
et al. (1988), using inelastic neutron-scattering at relatively high ener-
gies. The 4f states do not therefore appear in the energy bands of Fig.
1.9, which portrays broad sp bands hybridized with a much narrower d
band. As will be discussed later, Pr is paramagnetic above about 50mK,
and in zero field the Fermi surface, which is relatively complex, may be
deduced from the figure to be composed of 2 electron pockets and 4 open
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Fig. 1.9. The band structure of dhcp Pr, calculated by Skriver. The
energy bands in the vicinity of the Fermi level are predominantly d-like,
and the 4f states are assumed to be localized and therefore do not appear,

in contrast to Fig. 1.8.

hole sheets. However, the dHvA effect is measured in a relatively high
magnetic field, and the induced moment modifies the band structure in
a way which has been studied in detail by Wulff (1985). The exchange
coupling between a conduction-electron spin s and the 4f spins takes
the Heisenberg form

Hsf = −2Is ·
∑

i

Si. (1.3.22)

In the ground-state manifold, this interaction may from (1.2.29) be writ-
ten

Hsf = −2(g − 1)Is ·
∑

i

Ji. (1.3.23)

When a magnetic field is applied, the induced moment therefore gives
rise to a splitting between the up- and down-spin energy bands. Since
Pr is magnetically highly anisotropic, this splitting depends strongly
on the direction of the field, but it can readily attain values of sev-
eral mRy, and hence have drastic effect on the Fermi surface. In par-
ticular, the seventh-band minority-spin surface changes its topology
at a critical (internal) field of about 40kOe, as shown in Fig. 1.10,
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Fig. 1.10. The intersections of the Fermi surfaces, for the two spin
states of the seventh band in dhcp Pr, with the faces of the Brillouin zone
of Fig. 1.4. The surfaces are generated by a rigid splitting of the energy
bands of Fig. 1.9 by 10mRy. The unshaded majority-spin surface is a
single sheet, whereas the exchange splitting modifies the topology of the
shaded minority-spin surface, giving rise to a closed lens at M, a small

electron pocket, and an irregular tube along HK.

and clear evidence for this transition has been observed in the dHvA
effect. The changes of the Fermi surface in a magnetic field, and partic-
ularly the enhancement of the effective masses by the interaction with
the 4f moments (Wulff et al. 1988), which we will discuss further in Sec-
tion 7.3, give an average value of I of about 9mRy, with a variation of
some 30% over different bands and orbits. The agreement between the
measured and calculated electron orbits is such that shifts in the energy
bands of only a few mRy are required to bring the two into concordance,
and this is comparable to typical values for transition metals (Mackin-
tosh and Andersen 1980). The experimental study of the dHvA effect in
Pr, which is the most elaborate which has yet been undertaken for a rare
earth metal, has thus led to the important conclusion that energy-band
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theory gives a realistic description of the conduction electron states, and
may therefore be used as a basis for the calculation of properties which
depend on the electronic structure.

This conclusion could already be drawn, though with slightly less
confidence, from the pioneering measurements of Mattocks and Young
(1977) of the dHvA effect in ferromagnetic Gd. Because of the ferro-
magnetic moment, the exchange interaction (1.3.22) separates the energy
bands of different spin even in zero field, and the exchange splitting is
essentially independent of field. The results were interpreted in terms
of the paramagnetic energy bands, originally calculated by Dimmock
and Freeman (1964) and, with relativistic effects, by Keeton and Loucks
(1968), taking account of the ferromagnetic structure by a rigid split-
ting of the bands. The resulting two majority-spin hole surfaces and the
minority-spin electron surface could account for all of the observed large
orbits, with a value of I close to that later deduced for Pr, and with
a comparable variation through the zone. However, many small orbits
were observed which could not be explained with this model, nor have
subsequent band calculations, culminating in those of Temmerman and
Sterne (1990), in which the exchange splitting of the conduction bands
was included a priori, fully accounted for the small pieces of the Fermi
surface. Although the general features of the electronic structure of Gd
may therefore be considered as well understood, a further theoretical
effort, taking into account the effect on the band structure of the spin–
orbit coupling in the presence of both an exchange field and an external
field, would be necessary to explain the finer details.

The positron-annihilation experiments of Williams and Mackintosh
(1968), although at a much lower level of resolution, were also in gen-
eral accord with the calculations of Keeton and Loucks (1968). They
studied a number of heavy rare earths in their paramagnetic phases,
showing that their Fermi surfaces are highly anisotropic and rather sim-
ilar to each other. A calculation based upon energy-band theory gave
a good account of the experimental results for Y. The distributions of
the annihilation photons displayed a feature which is sensitive to the
form of the hole surface shown in Fig. 1.11, namely the shape of the
‘webbing’ which may join the ‘toes’ on the surface near L. This charac-
teristic is very dependent on the relative positions of the s and d bands,
and the calculations indicated that the webbing is absent in Gd, very
narrow in Tb, and fully developed, forming a kind of plateau, in the
other heavy rare earths. These conclusions were in accordance with the
positron-annihilation results, which further indicated that the webbing
is destroyed in the magnetically ordered phase of Ho. The relation of
these observations to the occurrence of periodic magnetic structures will
be discussed in the following section.
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Fig. 1.11. The calculated hole Fermi surface of paramagnetic Tb in
the Brillouin zone of Fig. 1.4. The extension of the ‘webbing’ between
the ‘toes’ near the zone boundary is believed to give rise to a peak in the
conduction-electron susceptibility χ(q), which determines the Q-vector

characterizing the helical structure.

The Fermi surface of paramagnetic Lu, in which the 4f states are all
filled, has also been studied by the dHvA effect (Johanson et al. 1982)
and found to be in semi-quantitative agreement with the calculations of
Tibbetts and Harmon (1982). Since the results of band structure calcu-
lations have been confirmed experimentally at the Fermi level in widely
separated elements in the rare earth series, it is reasonable to suppose
that they will also be successful in accounting for other ground-state
properties. Characteristic band energies for the trivalent lanthanides,
calculated by Skriver (1983) at a common atomic volume close to the
equilibrium value for Gd, are shown in Fig. 1.12. In this figure, the effect
of the change in potential is thus separated from that of the interatomic
spacing. The most notable feature is the fall in energy of the s band
relative to the d band with increasing atomic number, which results in a
decrease of the occupation of the latter, with consequences, as we shall
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Fig. 1.12. Characteristic band energies for the trivalent lanthanides,
for a common value of the atomic radius S, after Skriver (1983). The
values of the potential v(S) and the exchange-correlation energy εxc at
the atomic sphere are shown, together with the bottom, Bl, the centre,
Cl, and the top, Al, of the 6s, 6p, and 5d bands, and the Fermi level
εF . The relative lowering of the 6s band with increasing atomic number
reduces the 5d occupancy, which in turn changes the crystal structure.

see, for the crystal structure. The reason for the fall in the band en-
ergies is the increase of the nuclear charge with atomic number, which
is incompletely screened by the additional f electrons. The potential
veff(r) in (1.2.12) is therefore on average increasingly negative, and in
order to maintain an unchanged boundary condition, as expressed by
the logarithmic derivative, the band energies must decrease accordingly.
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This effect is relatively modest for the d bands, but much greater for
the s and p bands. The relative shift of the s and d bands is reduced by
the adjustment of the lattice to its equilibrium configuration, but only
by a small amount. As may be seen from Fig. 1.12, (Bd −Bs) increases
from 101mRy for La to 373mRy for Lu at constant S, whereas the cor-
responding values for the equilibrium atomic volumes are 136mRy and
380mRy. The band masses also change across the series; µd at constant
volume increases from 2.1 in La to 3.0 in Lu, so that the d bands narrow
as they fall, while µs increases slightly with atomic number, but remains
below 1 throughout (Skriver 1983).

The canonical-band theory may be used to calculate the electronic
pressure and its partitioning between the different angular momentum
components. According to the force theorem (see Mackintosh and Ander-
sen 1980) the change in the total energy, due to an infinitesimal change
in the lattice constant, may be determined as the difference in the band
energies, calculated while maintaining the potential unchanged. We may
thus write

dU = δ

∫ εF

εN(ε)dε, (1.3.24)

where N(ε) is the total electronic density of states, and δ indicates the
restricted variation with a frozen potential. The electronic pressure is
then given by

P = −dU
dΩ

, (1.3.25)

where Ω is the volume of the atomic polyhedron. The expression (1.3.21)
for the canonical-band energies then leads to the approximate result for
the l partial pressure:

3PlΩ = −nl

δCl

δ lnS
+ nl(εl − Cl)

δ lnµlS
2

δ lnS
, (1.3.26)

where nl is the occupation number of the l states and

εl =
1
nl

∫ εF

εNl(ε)dε (1.3.27)

is their mean energy. Equation (1.3.26) is useful for purposes of inter-
pretation, but the results which we shall present are based upon a more
accurate procedure, involving the fully hybridized self-consistent band
structure (Skriver 1983).

The partial occupation numbers, state-densities and electronic pres-
sures for α–Ce, at the equilibrium lattice constant, are given in Table
1.3. The s and p electrons make a positive, repulsive contribution to
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the pressure while the d and f states provide the binding, through their
negative, attractive partial pressure. This difference is essentially due to
the fact that the s and p wavefunctions have a positive curvature at the
atomic sphere, over the energy range of the corresponding bands, as illus-
trated in Fig. 1.5, while the d and f functions have a negative curvature.
Consequently, a decrease in volume causes an increase in the logarithmic
derivative for the former and a decrease for the latter, and since Dl(E)
is a decreasing function of energy, the s and p bands must rise and the d
and f bands fall in order to maintain the boundary condition. Equation
(1.3.25) then immediately accounts for the signs of the corresponding
partial pressures. The attractive f pressure for α–Ce is substantial; if
it is removed, the lattice expands to a volume greater than that of γ–
Ce. The partial pressures at a constant atomic volume for the trivalent
rare earths are shown in Fig. 1.13. As may be seen, it is primarily the
decrease in the s and p pressures, which has its origin in the incompletely

Fig. 1.13. The partial 6s, 6p, and 5d pressures for the trivalent rare
earths, calculated for a common atomic volume close to the equilibrium
value for Gd, after Skriver (1983). It is the decrease in the s and p

pressures which gives rise to the lanthanide contraction.
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Fig. 1.14. The equilibrium atomic radii for the rare earth metals, after
Skriver (1983). The full circles indicate the experimental values. The full
line is a calculation including the s, p, and d partial pressures, while the
broken line indicates that the f contribution is also taken into account.

screened increase in the nuclear charge, which leads to the lanthanide
contraction. This contraction is clearly apparent in the atomic radii
shown in Fig. 1.14. The values calculated from the condition that the
total pressure is zero agree very well with the experimental observations
for the heavy metals, but if the f contribution is neglected, the calcu-
lated electronic pressure is increasingly too high as the atomic number
decreases. As mentioned earlier, the partial pressure of the f band is es-
sential for understanding α–Ce, and it seems that the interaction of the
f electrons with their surroundings makes a contribution to the binding,
even in some metals in which the magnetic behaviour strongly indicates
that they are localized.

In Eu and Yb, the intra-atomic interactions make it favourable to
(half) fill the sub-band by transferring an electron from the conduction
bands to an f state, leading to the formation of the divalent cubic struc-
tures which strongly resemble the alkaline earth metals. This transfer
occurs predominantly at the expense of the d electrons, whose bind-
ing contribution to the electronic pressure is thereby reduced, causing
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a substantial increase in the atomic volume. The relatively weak bind-
ing of the 4f states in the divalent rare earths is clearly apparent in
the experiments of Lang et al. (1981), who used X-ray photoemission to
measure the energies required to transfer a 4f electron to the Fermi level,
throughout the whole series. By inverse photoemission (Bremsstrahlung
Isochromat Spectroscopy) they were similarly able to deduce the energies
required to move an electron from the Fermi level to the unoccupied 4f
states. Combining the two experiments, the Coulomb correlation energy
required to transfer an electron from an occupied level on another site
could be deduced. These energies were later calculated by Min et al.
(1986a) using a supercell method, in which rare earth ions with different
f occupancies are considered as distinct species, and the agreement with
experiment was generally very satisfactory.

For close-packed structures, the atomic volume is almost indepen-
dent of the structure, but there are small differences in the electronic
contribution to the cohesive energy, which manifest themselves in the
common structural sequence hcp → dhcp → Sm-structure → fcc in the
rare earths, as the atomic number is reduced or the pressure is increased.
Duthie and Pettifor (1977) proposed that the d-electron occupancy,

Fig. 1.15. The occupation numbers of the 5d states for the trivalent
lanthanides, at the observed equilibrium atomic volumes, after Skriver
(1983). For Ce, the 4f electrons are included in the energy bands. The
experimentally observed crystal structures are labelled by h, s, d, and
f, for hcp, Sm-structure, dhcp, and fcc, respectively. The empirical d-
occupation numbers which separate the different structures are indicated

by the lines on the right.
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which increases through these structural sequences, is the essential de-
terminant of the structure, and made an approximate calculation of the
energy differences using canonical-band theory. The results of Skriver
(1983) in Fig. 1.15 show how well the d occupancy indeed correlates
with the structure. To complete the picture, Min et al. (1986b) demon-
strated that increasing the pressure on Lu should produce a series of
phase transitions following the above sequence, the first of which has
been observed experimentally.

1.4 Magnetic interactions
In the metallic state, the 4f electrons on a rare earth ion are subjected
to a variety of interactions with their surroundings. These forces may
be broadly classified into two categories. The single-ion interactions act
independently at each ionic site, so that their influence on the state of
the 4f electrons at a particular site is unaffected by the magnetic state
of its neighbours. The corresponding contribution to the Hamiltonian
therefore contains sums over terms located at the ionic sites i of the
crystal, but without any coupling between different ions. On the other
hand, the two-ion interactions couple the 4f -electron clouds at pairs of
ions, giving terms which involve two sites i and j.

The charge distribution around an ion produces an electric field,
with the local point-symmetry, which acts on the 4f electrons and gives
rise to the large magnetic anisotropies which are characteristic of the rare
earth metals. This crystal field makes a contribution to the potential
energy of a 4f electron with charge −e

vcf(r) = −
∫

eρ(R)

|r−R| dR, (1.4.1)

where ρ(R) is the charge density of the surrounding electrons and nuclei.
If these do not penetrate the 4f charge cloud, vcf(r) is a solution of
Laplace’s equation, and may be expanded in spherical harmonics as

vcf(r) =
∑
lm

Am
l r

lYlm(r̂), (1.4.2)

where

Am
l = −(−1)m

4π

2l + 1

∫
eρ(R)

Rl+1
Yl−m(R̂) dR, (1.4.3)

which is a special case of the multipole expansion (1.3.7). We can
thus look upon (1.4.2) as arising from the interaction of the multipoles
rlYlm(r̂) of the 4f electrons with the appropriate components of the
electric field. If part of the charge which is responsible for the crystal
field lies within the 4f cloud, vcf(r) can still be expanded in spherical



40 1. ELEMENTS OF RARE EARTH MAGNETISM

harmonics with the appropriate symmetry, but the coefficients are not
generally proportional to rl, nor to (1.4.3).

As the crystal-field energy is small compared to the spin–orbit split-
ting, its effects on the eigenstates of the system are adequately accounted
for by first-order perturbation theory. Since f electrons cannot have
multipole distributions with l > 6, the properties of the spherical har-
monics ensure that the corresponding matrix elements of (1.4.2) vanish.
Even so, the calculation of those that remain from the electronic wave-
functions would be a formidable task, even if the surrounding charge
distribution were known, if the ubiquitous Wigner–Eckart theorem did
not once again come to the rescue. As first pointed out by Stevens
(1952), provided that we remain within a manifold of constant J , in
this case the ground-state multiplet, the matrix elements of vcf(r) are
proportional to those of operator equivalents, written in terms of the J
operators. We may thus replace (1.4.2) by

Hcf =
∑

i

∑
lm

Am
l αl〈rl〉

(
2l+ 1

4π

)1/2

Õlm(Ji), (1.4.4)

where we have also summed over the ions. The Stevens factors αl de-
pend on the form of the electronic charge cloud through L, S and J , and
on l, but not on m. They are frequently denoted α, β, and γ when l is 2,
4, and 6 respectively, and their values for the magnetic rare earth ions
are given in Table 1.4. The expectation value 〈rl〉 is an average over the
4f states. The Racah operators Õlm(J) are obtained from the spherical
harmonics, multiplied by (4π/2l + 1)1/2 , by writing them in terms of

Table 1.4. Stevens factors for rare earth ions.

Ion+++ α×102 β×104 γ×106

Ce −5.714 63.49 0
Pr −2.101 −7.346 60.99
Nd −0.6428 −2.911 −37.99
Pm 0.7714 4.076 60.78
Sm 4.127 25.01 0
Tb −1.0101 1.224 −1.121
Dy −0.6349 −0.5920 1.035
Ho −0.2222 −0.3330 −1.294
Er 0.2540 0.4440 2.070
Tm 1.0101 1.632 −5.606
Yb 3.175 −17.32 148.0
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Cartesian coordinates and replacing (x, y, z) by (Jx, Jy, Jz), with an ap-
propriate symmetrization to take account of the non-commutation of the
J operators. They have been tabulated for l-values up to 8 by Lindg̊ard
and Danielsen (1974).

Following the customary practice, we shall generally use not the
Racah operators, which are tensor operators transforming under rota-
tions like spherical harmonics, but the Stevens operators Om

l (J), which
transform like the real tesseral harmonics Tlm. If we define correspond-
ing operators for m zero or positive as:

Tl0 = Õl0

T c
lm = 1√

2

[
Õl−m + (−1)mÕlm

]
T s

lm = i√
2

[
Õl−m − (−1)mÕlm

]
,

(1.4.5)

the Stevens operators for positive and negative m are proportional re-
spectively to T c

lm and T s
l|m|. There is some ambiguity in the literature

about the proportionality constants, but we have used the standard def-
initions of the Stevens operators in Table 1.5, see also Hutchings (1964).
In terms of these operators, we may write the crystal-field Hamiltonian

Hcf =
∑

i

∑
lm

Bm
l O

m
l (Ji). (1.4.6a)

The crystal-field parameters Bm
l can in principle be calculated from the

charge distribution in the metal, but in practice attempts to do so have
met with limited success. The difficulties are two-fold. The charge den-
sity on the surroundings of an ion is not easy to determine with the
necessary accuracy, and the approximations normally used in the calcu-
lation of the electronic structure of a metal, in particular the assumption
that the charge distribution in the atomic polyhedron is spherically sym-
metric, are inadequate for the purpose. Furthermore, a redistribution
of the charge within the cell can modify the electric fields experienced
by the 4f electrons, and such shielding effects are again very difficult
to estimate. It is therefore necessary to appeal to relatively crude mod-
els, such as the instructive but quite unjustified point-charge model, in
which an adjustable charge is placed on each lattice site, or alternatively
to regard the Bm

l as parameters to be determined from experiment.
Fortunately, the number of such parameters is strongly restricted by

symmetry. We shall be concerned almost exclusively with the hexagonal
structures of Fig. 1.3, and in defining the Stevens operators, we have
used a Cartesian system in which the (x, y, z)-directions are along the
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Table 1.5. Stevens operators. X ≡ J(J + 1) and J± ≡ Jx ± iJy.

O2
2 = 1

2
(J2

+ + J2
−)

O1
2 = 1

2
(JzJx + JxJz)

O0
2 = 3J2

z −X

O−1
2 = 1

2
(JzJy + JyJz)

O−2
2 = 1

2i
(J2

+ − J2
−)

O4
4 = 1

2
(J4

+ + J4−)

O2
4 = 1

4

[
(7J2

z −X − 5)(J2
+ + J2

−) + (J2
+ + J2

−)(7J2
z −X − 5)

]
O0

4 = 35J4
z − (30X − 25)J2

z + 3X2 − 6X

O−2
4 = 1

4i

[
(7J2

z −X − 5)(J2
+ − J2

−) + (J2
+ − J2

−)(7J2
z −X − 5)

]
O−4

4 = 1

2i
(J4

+ − J4
−)

O0
6 = 231J6

z − (315X − 735)J4
z + (105X2 − 525X + 294)J2

z

−5X3 + 40X2 − 60X

O6
6 = 1

2
(J6

+ + J6
−)

crystallographic (a, b, c)-axes specified in the previous section. How-
ever, it will later be convenient to rotate the z-axis into the magne-
tization direction, and instead orient the crystallographic (a, b, c)-axes
along the (ξ, η, ζ)-Cartesian directions. For an ion with hexagonal point-
symmetry, as in the hcp structure or on the hexagonal sites of the dhcp
structure, the crystal field is specified by 4 parameters:

Hcf =
∑

i

[ ∑
l=2,4,6

B0
l O

0
l (Ji) +B6

6O
6
6(Ji)

]
. (1.4.6b)

The Hamiltonian (1.4.6) lifts the degeneracy of the ionic |JMJ> states
and, since it is expressed in terms of J operators, whose matrix elements
between these states may be determined by straightforward calculation,
it may readily be diagonalized to yield the crystal-field energies and
eigenfunctions. The Bm

l may then be used as adjustable parameters to
reproduce the available experimental information on these eigenstates.
As an example, we show in Fig. 1.16 the splitting of the nine |4MJ>
states in Pr by the crystal fields acting on the hexagonal sites. This level
scheme was derived from values of the crystal-field parameters adjusted
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Fig. 1.16. The crystal-field split-
ting of the nine |4MJ > states on
the hexagonal sites in dhcp Pr. The
wavefunctions are written in terms
of a basis |MJ > corresponding to
quantization along the c-direction.

to account for a variety of experimental phenomena (Houmann et al.
1979).

If the lattice is strained, the crystal fields, and indeed all the other
magnetic interactions which we shall discuss, are modified. In conse-
quence, there is a magnetoelastic coupling between the moments and
the strain, which can have profound consequences for rare earth mag-
netism. Magnetoelastic effects are manifested in both single-ion and
two-ion terms in the Hamiltonian, though we shall mostly be concerned
with the former. The elastic energy is quadratic in the strain, measured
relative to the equilibrium configuration in the absence of magnetic in-
teractions. The magnetoelastic energy is linear in the strain and the
competition between the two effects may lead to some equilibrium strain
or magnetostriction. Because of their moderate elastic constants and the
large orbital component in their moments, the lanthanide metals display
the largest known magnetostrictions.

Following Callen and Callen (1965), it is convenient to develop the
theory in terms of the irreducible strains for hexagonal point-symmetry,
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which are related to the Cartesian strains as follows:
εα1 = ε11 + ε22 + ε33

εα2 = 1
3 (2ε33 − ε11 − ε22)

εγ1 = 1
2 (ε11 − ε22)

εγ2 = ε12

εε1 = ε13

εε2 = ε23,

(1.4.7)

where we have adopted the conventional notation of designating the
Cartesian axes (ξ, η, ζ) by (1, 2, 3). The α-strains are thus symmetry-
conserving dilatations, the γ-strains distort the hexagonal symmetry of
the basal plane, and the ε-strains shear the c-axis. The elastic energy
may then be written

Hel = N
[ 1

2cα1ε
2
α1 + cα3εα1εα2 + 1

2cα2ε
2
α2

+ 1
2cγ(ε2γ1 + ε2γ2) + 1

2cε(ε
2
ε1 + ε2ε2)

]
,

(1.4.8)

where we have defined irreducible elastic stiffness constants per ion, re-
lated to the five independent Cartesian constants by

cα1 = 1
9 (2c11 + 2c12 + 4c13 + c33)V/N

cα2 = 1
2 (c11 + c12 − 4c13 + 2c33)V/N

cα3 = 1
3 (−c11 − c12 + c13 + c33)V/N

cγ = 2(c11 − c12)V/N

cε = 4c44V/N.

(1.4.9)

The contributions to the single-ion magnetoelastic Hamiltonian,
corresponding to the different irreducible strains, are

Hα
me = −

∑
i

[ ∑
l=2,4,6

{
Bl

α1εα1 +Bl
α2εα2

}
O0

l (Ji)

+
{
B66

α1εα1 +B66
α2εα2

}
O6

6(Ji)
]

(1.4.10)

Hγ
me = −

∑
i

[ ∑
l=2,4,6

Bl
γ2

{
O2

l (Ji)εγ1 +O−2
l (Ji)εγ2

}
+
∑
l=4,6

Bl
γ4

{
O4

l (Ji)εγ1 −O−4
l (Ji)εγ2

}]
(1.4.11)

Hε
me = −

∑
i

[ ∑
l=2,4,6

Bl
ε1

{
O1

l (Ji)εε1 +O−1
l (Ji)εε2

}
+Bε5

{
O5

6(Ji)εε1 −O−5
6 (Ji)εε2

}]
. (1.4.12)
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The operators in the α-strain term are the same as those in the crystal-
field Hamiltonian (1.4.6b), and the associated magnetoelastic effects may
thus be considered as a strain-dependent renormalization of the crystal-
field parameters, except that these interactions may mediate a dynamical
coupling between the magnetic excitations and the phonons. The other
two terms may have the same effect, but they also modify the symme-
try and, as we shall see, can therefore qualitatively influence both the
magnetic structures and excitations.

It is the two-ion couplings which are primarily responsible for co-
operative effects and magnetic ordering in the rare earths, and of these
the most important is the indirect exchange, by which the moments
on pairs of ions are coupled through the intermediary of the conduction
electrons. The form of this coupling can be calculated straightforwardly,
provided that we generalize (1.3.22) slightly to

Hsf(i) = −2

∫
I(r−Ri)Si · s(r)dr = −

∫
Hi(r) · µ(r)dr, (1.4.13)

s(r) is the conduction-electron spin density, and the exchange integral
I(r−Ri) is determined by the overlap of the 4f and conduction-electron
charge clouds. This expression, whose justification and limitations will
be discussed in Section 5.7, can be viewed as arising from the action of
the effective inhomogeneous magnetic field

Hi(r) =
1

µ
B

I(r−Ri)Si =
1

µ
B
N

∑
q

I(q) eiq·(r−Ri)Si (1.4.14)

on the conduction-electron moment density µ(r) = 2µBs(r). The spin
at Ri generates a moment at r, whose Cartesian components are given
by

µiα(r) =
1

V

∑
β

∫
χαβ(r− r′)Hiβ(r

′)dr′, (1.4.15)

where χ is the nonlocal susceptibility tensor for the conduction electrons
and V the volume. This induced moment interacts through Hsf(j) with
the spin Sj , leading to a coupling

H(ij) = − 1

V

∑
αβ

∫ ∫
Hjα(r)χαβ(r− r′)Hiβ(r

′)drdr′. (1.4.16)

If we neglect, for the moment, the spin–orbit coupling of the conduction
electrons, and the crystal is unmagnetized, χαβ becomes a scalar. The
Fourier transform is:

χ(q) =
1

V

∫
χ(r) e−iq·rdr (1.4.17)
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in terms of which the integrations with respect to r and r′ in eqn (1.4.16)
are calculated straightforwardly. Summing the result over the N lattice
sites, counting each interaction once only, we find that the indirect-
exchange interaction takes the familiar isotropic Heisenberg form:

Hff = −1

2

V

N2µ2
B

∑
ij

∑
q

χ(q)I(q)I(−q) eiq·(Ri−Rj) Si ·Sj

= − 1

2N

∑
q

∑
ij

JS(q) e
iq·(Ri−Rj) Si ·Sj

= −1

2

∑
ij

JS(ij)Si ·Sj , (1.4.18)

where

JS(ij) =
1

N

∑
q

JS(q) e
iq·(Ri−Rj) (1.4.19)

and

JS(q) =
∑
j

JS(ij) e
−iq·(Ri−Rj) =

V

Nµ2
B

|I(q)|2χ(q). (1.4.20)

In the presence of an orbital moment, it is convenient to express
(1.4.18) in terms of J rather than S, which we may do within the ground-
state multiplet by using (1.2.29) to project S on to J, obtaining

Hff = −1

2

∑
ij

J (ij)Ji ·Jj , (1.4.21)

with
J (q) = (g − 1)2

[
JS(q)−

1

N

∑
q′

JS(q
′)
]
, (1.4.22)

where we have also subtracted the interaction of the ith moment with
itself, as this term only leads to the constant contribution to the Hamil-
tonian; − 1

2 (g − 1)2NJS(ii)J(J + 1). The origin of the indirect ex-
change in the polarization of the conduction-electron gas by the spin
on one ion, and the influence of this polarization on the spin of a
second ion, is apparent in the expression (1.4.20) for JS(q). As we
shall see, it is the Fourier transform [J (q) − J (0)] which may be di-
rectly deduced from measurements of the dispersion relations for the
magnetic excitations, and its experimentally determined variation with
q in the c-direction for the heavy rare earths is shown in Fig. 1.17.
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Fig. 1.17. The exchange interaction JS(q) − JS(0), determined ex-
perimentally in the magnetic heavy rare earth metals. The magnitude
of the peak, which stabilizes the observed periodic magnetic structures,

increases monotonically with atomic number.

A notable feature is the maximum which, except in Gd, occurs at non-
zero q and, as discussed in the following section, is responsible for stabi-
lizing the periodic magnetic structures in the metals. In the approxima-
tion which we have used, the conduction-electron susceptibility is given
by

χ(q) =
2µ2

B

V

∑
nn′k

fnk − fn′k−q

εn′(k − q) − εn(k)
, (1.4.23)
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where fnk is the Fermi–Dirac function. It is clear that a large contri-
bution to the sum is made by pairs of electronic states, separated by q,
one of which is occupied and the other empty, and both of which have
energies very close to the Fermi level. Consequently, parallel or nest-
ing regions of the Fermi surface tend to produce peaks, known as Kohn
anomalies, at the wave-vector Q which separates them, and it is believed
that the parallel sections of the webbing in the hole surface of Fig. 1.11
give rise to the maxima shown in Fig. 1.17. As we have mentioned, this
conjecture is supported by both positron-annihilation experiments and
band structure calculations but, despite extensive efforts, first-principles
estimates of J (q) have not proved particularly successful. χ(q) may be
calculated quite readily from the energy bands (Liu 1978), and exhibits
the expected peaks, but the exchange matrix elements which determine
I(q) are much less tractable. Lindg̊ard et al. (1975) obtained the correct
general variation with q for Gd, but the matrix elements were, not sur-
prisingly, far too large when the screening of the Coulomb interaction
was neglected.

The Kohn anomalies in J (q) Fourier transform into Friedel oscilla-
tions in J (R), and such oscillations, and the extremely long range of the
indirect exchange, are illustrated in the results of Houmann et al. (1979)
for Pr in Fig. 1.18. As is also shown in this figure, they found that the
anisotropic component of the coupling is a substantial proportion of the
Heisenberg exchange. The anisotropic coupling between the moments
on two ions can be written in the general form

HJJ = −1

2

∑
ij

∑
ll′mm′

Kmm′
ll′ (ij)Om

l (Ji)Om′
l′ (Jj), (1.4.24)

where the terms which appear in the sum are restricted by symmetry,
but otherwise may exhibit a large variety, depending on their origin. The
many possible causes of anisotropy have been summarized by Jensen et
al. (1975). They are usually associated with the orbital component of
the moment and are therefore expected to be relatively large when L
is large. In addition to contributions due to the influence of the local-
ized 4f orbital moment on the conduction electrons (Kaplan and Lyons
1963), and to the magnetization and spin–orbit coupling of the latter
(Levy 1969), direct multipolar interactions and two-ion magnetoelas-
tic couplings, for which the coefficients Kmm′

ll′ depend explicitly on the
strain, may be important. A general two-ion coupling which depends
only on the dipolar moments of the 4f electrons is

Hdd = −1

2

∑
ij

Jαβ(ij)JiαJjβ . (1.4.25)
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Fig. 1.18. The indirect-exchange interaction between ions on the
hexagonal sites in Pr, deduced from measurements of the magnetic exci-
tations at 6K. The circles represent the isotropic interaction J (R) be-
tween an ion at the origin and those at different sites. The filled sym-
bols are for pairs of ions in the same hexagonal plane, and the open
symbols for pairs in different planes. The former are reasonably well
described by the simple free-electron model of Section 5.7.1, with an ef-
fective value of 1.1 Å−1 for 2kF , as shown by the full curve. In addition,
the exchange incorporates an anisotropic component K(R), discussed in
Section 2.1.6, which is smaller, but of comparable magnitude. Its values
between pairs of ions in the plane are indicated by the squares. The calcu-
lated uncertainties in the exchange interactions are, at the most, the size

of the points.

The dispersion relations for the magnetic excitations provide extensive
evidence for anisotropy of this form. A special case is the classical dipole–
dipole interaction for which

Jαβ(ij) = (gµB)2
3(Riα −Rjα)(Riβ −Rjβ) − δαβ |Ri − Rj|2

|Ri − Rj |5
.

(1.4.26)
Although it is very weak, being typically one or two orders of magnitude
less than the exchange between nearest neighbours, the dipole–dipole
coupling is both highly anisotropic and extremely long-ranged, and may
therefore have important effects on both magnetic structures and exci-
tations. Apart from this example, the anisotropic two-ion couplings are
even more difficult to calculate than are the isotropic components, so
the strategy which has generally been adopted to investigate them is to
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assume that all terms in (1.4.24) which are not forbidden by symmetry
are present, to calculate their influence on the magnetic properties, and
to determine their magnitude by judicious experiments.

The hyperfine interaction between the 4f moment and the nuclear
spin I may be written

Hhf = A
∑

i

Ii · Ji. (1.4.27)

Since A is typically of the order of micro-electron-volts, the coupling to
the nuclei normally has a negligible effect on the electronic magnetism
in the rare earth metals, but we shall see in Sections 7.3 and 7.4 that it
has a decisive influence on the low-temperature ordering in Pr.

1.5 Rare earth magnetism

The interactions discussed in the preceding section are the origin of the
characteristic magnetic properties of the rare earth metals. The long-
range and oscillatory indirect exchange gives rise to incommensurable
periodic structures, the crystal fields and anisotropic two-ion coupling
induce a magnetic anisotropy which may require fields up to hundreds
of tesla to overcome, and the magnetoelastic interactions cause magneto-
strictive strains which may approach one per cent. In the following, we
shall give a brief description of some features of rare earth magnetism, as
a prelude to a more detailed discussion of selected structures in the next
chapter, and as a necessary basis for our later treatment of magnetic
excitations. We have emphasized general principles, with appropriate
illustrations, and have not attempted an exhaustive description of the
magnetic properties of each element. This task has been accomplished by
McEwen (1978), following earlier surveys by Rhyne (1972) and Coqblin
(1977), and we shall refer to his comprehensive review article for further
details, while quoting more recent investigations where appropriate.

Below the critical temperatures, listed in Table 1.6 on page 57, the
rare earth metals form magnetically ordered phases. In the heavy ele-
ments, the maximum moment of gµBJ per ion is approached in moderate
fields at low temperatures. As is also apparent from Table 1.6, there is an
additional contribution from the conduction electrons, which is almost
10% of the total moment in Gd, and appears to fall with S, as expected
from (1.3.23). In their ordered phases, all the moments in a particular
plane normal to the c-axis are aligned but, as illustrated in Fig. 1.19,
their relative orientations may change from plane to plane. The mag-
netic structures of the heavy rare earths, which have been thoroughly
reviewed by Koehler (1972) and Sinha (1978), derive basically from two
different configurations of moments. In the helix, the expectation values



1.5 RARE EARTH MAGNETISM 51

of the moments take the form:

〈Jiξ〉 = 〈J⊥〉 cos(Q·Ri + ϕ)
〈Jiη〉 = 〈J⊥〉 sin(Q·Ri + ϕ)
〈Jiζ〉 = 0,

(1.5.1)

while the longitudinal wave, sometimes known in the heavy rare earths
as the c-axis modulated structure or CAM, is described by

〈Jiζ〉 = 〈J‖〉 cos(Q·Ri + ϕ), (1.5.2)

with the two other components being zero. The wave-vectors Q are along
the c-axis, and the associated wavelength 2π/Q does not necessarily bear
any simple relationship to the lattice spacing.

Fig. 1.19. Magnetic structures of the heavy rare earths. The moments
in a particular hexagonal layer are parallel, and the relative alignments
of different planes are illustrated. From left to right; the basal-plane

ferromagnet, the helix, the cone, and the longitudinal-wave structure.
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A helix is formed at the Néel temperature in Tb, Dy, and Ho, while
the longitudinal-wave structure is preferred in Er and Tm. If the Q-
vectors are zero, a ferromagnetic structure results, with the ordered mo-
ment along some specified direction. In Tb and Dy at low temperatures,
the easy direction of magnetization lies in the plane, while in Gd, which
has a very small magnetic anisotropy, it is along the c-axis just below
the Curie temperature, but is tilted about 30◦ towards the b-axis at low
temperatures. If a ferromagnetic component in the c-direction is added
to the helix, the moments rotate on the surface of a cone with its axis
in the c-direction. This conical structure is stable in both Ho and Er
at the lowest temperatures, but the cone angle between the c-axis and
the moments at 4K is large (about 80◦) in the former, and small (about
30◦) in the latter. If the plane of the moments in the helix is rotated
about an axis in the hexagonal plane, so that its normal makes a non-
zero angle with Q, the structure becomes the tilted helix, which may be
regarded as a combination of a helix and a longitudinal wave, with the
same Q-vectors. This structure has not been definitively identified in
the elements in zero field. The moments in the hexagonal plane of Er
do order below 52K, with the same period as the c-axis modulation, but
they are most probably confined to the a–c plane, in an elliptically polar-
ized cycloidal structure (Miwa and Yosida 1961; Nagamiya 1967) in the
whole temperature interval between 52K and the transition to the cone
(Jensen 1976b). As the temperature is reduced, in the modulated c-axis
phases, the moments on the individual sites approach their saturation
values, resulting in a squaring of the longitudinal wave which manifests
itself in higher odd harmonics. This phenomenon is observed in both Er
and Tm and, in the latter, results in a low-temperature ferrimagnetic
square-wave structure in which alternately four layers of moments point
up and three layers point down.

The hexagonal anisotropy B6
6 tends to distort the helical structure,

by deflecting the moments towards the nearest easy axis. In a helix
which is incommensurable with the lattice periodicity, this effect may be
treated by perturbation theory, which predicts a change of the energy
in second order. However, in Ho at low temperatures, B6

6 is so large
that the magnetic structure is forced to be commensurable with the lat-
tice, so that Q has the magnitude π/3c, and the turn angle between the
moments in successive planes averages 30◦. It was verified experimen-
tally by Koehler et al. (1966) that, under these circumstances, the large
hexagonal anisotropy causes the helix to distort so that the moments in
the plane bunch about the b-directions, as illustrated in Fig. 1.20. This
bunched helix is described by

〈Jiξ〉 = 〈J⊥〉(u sinQ·Ri − v sin 5Q·Ri)

〈Jiη〉 = 〈J⊥〉(u cosQ·Ri + v cos 5Q·Ri),
(1.5.3a)
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where

u = cos(π/12 − φ) ; v = sin(π/12 − φ), (1.5.3b)

and any moment deviates from the nearest b-axis by the bunching angle
φ. At 4K, φ in Ho is 5.8◦, and it increases monotonically with temper-
ature towards the value 15◦ which characterizes the uniform commen-
surable helix. An increase in temperature also causes an increase in Q,
but it was shown by Gibbs et al. (1985) that this change does not oc-
cur smoothly and continuously. Instead, the magnetic periodicity tends
to lock in to values commensurable with the lattice, and they proposed
that this is a manifestation of spin-slip structures, in which the moments
are arranged in a pattern in which one of the planes in regularly spaced
members of the bunched doublets of Fig. 1.20 is omitted, while the re-
maining plane of the pair orients its moments along the adjacent easy
axis. We shall discuss such structures in more detail in the next chapter.

Fig. 1.20. The 4f contribution to the magnetization of Ho at 4K,
calculated by a self-consistent mean-field theory and compared with ex-
perimental values. The zero-field structure is a bunched cone, comprising
the illustrated bunched helix in the plane, and a small moment in the
c-direction. The value of the c-axis moment, deduced from neutron-

diffraction measurements, is indicated by the arrow.
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The aforementioned magnetic structures may readily be understood
as the result of the co-operation and competition between the oscillatory
indirect exchange, which is relatively strong in the heavy rare earths, be-
cause (g−1)J is generally large, and the crystal-field and magnetoelastic
anisotropy forces. The origin of the periodic structures can be explained
by writing (1.4.21) in the form

Hff = −N

2

∑
q

J (q)J(q)·J(−q), (1.5.4)

where the Fourier transform of the magnetic structure is

J(q) = 1

N

∑
i

Jie
−iq·Ri . (1.5.5)

In order to minimize the energy of the magnetic system, this term will
favour a Q vector which corresponds to the maximum in J (q). The
maxima shown in Fig. 1.17 thus reflect the observed Q values in the
heavy rare earths through their position, and the relative stability of the
periodic structures through their magnitude. The isotropic exchange
does not in itself specify any orientation of the moments relative to
the crystal axes. The normal to a planar helix can, for example, be
rotated into an arbitrary direction without altering the exchange energy.
This flexibility is realized in Eu, where the crystal-field anisotropy is
very small because, like Gd, it has no ionic orbital moment. Neutron-
diffraction studies of a single crystal by Millhouse and McEwen (1973)
showed a first-order transition to a helical structure, and magnetization
measurements indicate that the plane of the helical structure is always
normal to the direction of a moderate applied field, even though Q
remains along a four-fold axis of the bcc structure.

It is the magnetic anisotropy which fixes the magnetic structure rel-
ative to the crystal axes. As may be seen from eqn (1.4.4), the two-fold
axial anisotropy (proportional to J2

ζ ) is also proportional to the Stevens
factor α. If A0

2 is negative throughout the heavy rare earths, as we shall
see is the case, the values in Table 1.4 immediately explain why Tb and
Dy have easy axes in the hexagonal plane, while the moments in Tm
are strongly bound to the c-axis. In Ho and Er the higher-order axial
anisotropy is important, but the values of α are consistent with the re-
spectively large and small cone angles. Similarly, the alternation in the
sign of γ in the series of the heavy elements is reflected in the easy direc-
tions of magnetization in the hexagonal plane. The competition between
the exchange and the anisotropy is manifested in the low-temperature
magnetic structures. In the ferromagnetic phases of Tb and Dy, the
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anisotropy and magnetoelastic forces, which are averaged out or ineffec-
tive in the helical structure, are strong enough to overcome the relatively
weak tendency to periodic ordering. In Tm, on the other hand, a com-
promise obtains, by which the moments take their maximum value along
the c-axis, but alternate in direction so as to take advantage of the large
peak in J (q). In Ho, the balance is so delicate that the weak classical
dipolar interaction plays a crucial role, as we shall discuss in Section 2.3.

In order to explain the temperature dependence of the structures,
it is necessary to determine the configuration of the moments which
minimizes the free energy, taking into account the influence of increasing
temperature and magnetic disorder on the interactions. Provided that
the magnitude |〈Ji〉| of the ordered moment is the same on all sites, the
entropy term is independent of the details of the ordering (Elliott 1961),
so the stable structure has the minimum energy. In exchange-dominated
systems, like the heavy rare earths, the ordered moment approaches its
saturation value at low temperature. As the temperature is increased,
the structure which has the lowest energy may change as the effective
interactions renormalize. This may occur either through a second-order
transition, in which some order-parameter goes continuously to zero or,
more commonly, discontinuously through a first-order transition. At
elevated temperatures, the entropy may favour a structure, such as the
longitudinal wave, in which the degree of order varies from site to site.

A conceptually simple but powerful means of calculating magnetic
properties, and their dependence on the temperature, is provided by the
molecular-field approximation or mean-field theory. We shall describe
this method in some detail in the next chapter, but it is convenient to
introduce it here in order to establish a few elementary results. The
essential feature of the theory is the approximation of the two-ion in-
teractions by effective single-ion terms, by replacing the instantaneous
values of the J operators on the surroundings of any particular ion by
their thermal averages. The effect of the exchange interaction (1.4.21)
with the surrounding ions on the moment at Ri may then be written

Hff(i) 	 −(Ji − 1
2 〈Ji〉) ·

∑
j

J (ij)〈Jj〉, (1.5.6)

which in turn may be written in terms of an effective magnetic field

Heff(i) = (gµB)−1
∑

j

J (ij)〈Jj〉, (1.5.7)

plus a constant contribution to the energy. If the sum of the applied and
effective fields is small, which will generally be true in the paramagnetic
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phase (but not if spontaneous ordering occurs), the magnetic moment
of the system per unit volume, neglecting the anisotropy, is given by
Curie’s law (1.2.32):

M =
g2µ2

BJ(J + 1)
3kBT

N

V
(H + Heff). (1.5.8)

For a uniform system, we may write

Heff =
1

g2µ2
B

V

N

∑
j

J (ij)M =
J (0)
g2µ2

B

V

N
M, (1.5.9)

recalling that

J (q) =
∑

j

J (ij) e−iq·(Ri−Rj), (1.5.10)

and the susceptibility is therefore

χMF =
g2µ2

BJ(J + 1)
3kBT

N

V

[
1 − J (0)J(J + 1)

3kBT

]−1

≡ C

T − θ
, (1.5.11)

where C is the Curie constant (1.2.32), and the paramagnetic Curie
temperature is

θ =
J (0)J(J + 1)

3kB

. (1.5.12)

From the Curie–Weiss law (1.5.11) it is apparent that, if nothing else
happens, the susceptibility diverges at θ, which is therefore also the
Curie temperature TC at which spontaneous ferromagnetism occurs in
this model.

The bulk magnetic properties of the rare earths are summarized
in Table 1.6, where the moments are given in units of µB/ion, and the
temperatures in K. The theoretical paramagnetic moments per ion are
µ = g{J(J + 1)}1/2µB, and are compared with values deduced from
the linear magnetic susceptibilities in the paramagnetic phases, using
(1.5.11). The theoretical saturation moments per ion are gµBJ , from
(1.2.30), and are compared with low-temperature values, in fields high
enough essentially to saturate the magnetization, or in the highest fields
in which measurements have been made (McEwen et al. 1973). θ‖ and θ⊥
are the paramagnetic Curie temperatures, deduced from measurements
with a field applied respectively parallel and perpendicular to the c-
axis, and using (1.5.11). As we shall see in Section 2.1.1, there are
corrections to this expression at finite temperatures, which give rise to a
non-linearity in the inverse susceptibility. A simple linear extrapolation



1.5 RARE EARTH MAGNETISM 57

therefore gives values for the paramagnetic Curie temperatures which
depend on the highest temperature of the measurements. The fit to
the experimental results for Tm illustrated in Fig. 2.1, for example, in
which the mean-field corrections are taken into account, gives θ‖ and
θ⊥ as respectively 52K and −3K, which differ significantly from the
values deduced from a linear extrapolation of the same results, given in
Table 1.6. A similar analysis for Er yields 69K and 46K. The ordering
temperatures are determined either from bulk measurements or neutron
diffraction. TN and TC denote transition temperatures to magnetically-
ordered states without and with a net moment respectively, and values
are given for sites of both kinds of symmetry, in the light rare earths.

Table 1.6. Magnetic properties of rare earth metals.

Metal Para.moment Sat.moment θ‖ θ⊥ TN TC

µ Obs. gJ Obs. hex. cub.

Ce 2.54 2.51 2.14 0.6 13.7 12.5
Pr 3.58 2.56 3.20 2.7a 0.05
Nd 3.62 3.4 3.27 2.2a 19.9 8.2
Pm 2.68 2.40
Sm 0.85 1.74 0.71 0.13a 106 14.0
Eu 7.94 8.48 7.0 5.1a 90.4
Gd 7.94 7.98 7.0 7.63 317 317 293
Tb 9.72 9.77 9.0 9.34 195 239 230 220
Dy 10.65 10.83 10.0 10.33 121 169 179 89
Ho 10.61 11.2 10.0 10.34 73 88 132 20
Er 9.58 9.9 9.0 9.1 62 33 85 20
Tm 7.56 7.61 7.0 7.14 41 −17 58 32

a Values measured at 38 tesla.

A straightforward generalization of the above argument (see Sec-
tion 2.1) gives the response of the ions in the paramagnetic phase to a
spatially varying magnetic field with wave-vector q. The corresponding
susceptibility tensor (not to be confused with that for the conduction-
electron gas) is

χMF(q) =
g2µ2

BJ(J + 1)
3kBT

N

V

[
1 − J (q)J(J + 1)

3kBT

]−1

=
C

T − TN

.

(1.5.13)
Spontaneous ordering is therefore predicted to occur at the wave-vector
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Q for which J (q) has its maximum value, and the Néel temperature is

TN =
J (Q)J(J + 1)

3kB

. (1.5.14)

Since, from (1.4.22), J (q) varies as (g − 1)2, the critical temperature is
expected to be proportional to the de Gennes factor (g − 1)2J(J + 1),
provided that the susceptibility of the conduction-electron gas is con-
stant. As may be seen from Tables 1.1 and 1.6, this relationship is
rather accurately obeyed for the heavy rare earths, though not so well
in the light elements. The crystal-field interactions influence the criti-
cal temperatures significantly, especially in the light end of the series,
and both the electronic susceptibility and the matrix elements of the
sf -exchange coupling, which together determine the indirect spin–spin
interaction JS(q), change through the series. The scaling of the critical
temperature with the de Gennes factor is therefore more precise than
would have been anticipated. The mean-field theory is known to be in-
adequate in the vicinity of the critical temperature, but as the rare earth
metals are three-dimensional systems with long-range interactions, the
transition temperature itself is rather well determined by this approxi-
mation. The theory is valid at high temperatures, and should describe
the static magnetic structures adequately in the low-temperature limit.
The discussion of the dynamical behaviour requires a time-dependent
generalization of the mean-field, accomplished by the random-phase ap-
proximation. We shall later describe how low-temperature corrections to
the mean-field properties may be derived from the magnetic-excitation
spectrum, determined within the random-phase approximation. The
discussion of the detailed behaviour close to the critical temperature,
i.e. the critical phenomena, is however beyond the scope of this book,
and we refer instead to the recent introduction to the subject by Collins
(1989), and to the specialist literature on the application of statistical
mechanics to phase transitions.

In mean-field theory, the exchange energy varies like σ2, where the
relative magnetization σ(T ) is |〈J〉|/J . However, the anisotropy energy
generally changes more rapidly with magnetization. The crystal-field
parameters Bm

l in (1.4.6) are generally assumed to vary only slightly
with temperature, but the thermal average 〈Om

l (J)〉 is very dependent
on the degree of ordering. By treating the deviation in the direction of
the moment on a particular site from the perfectly ordered state as a
random walk on a sphere, Zener (1954) showed that〈

Om
l (J)

〉
T

=
〈
Om

l (J)
〉

T=0
σl(l+1)/2. (1.5.15)

We shall discuss the derivation of this thermal average by mean-field
theory in Section 2.2, and show that Zener’s result is indeed correct at
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low temperatures. Since the anisotropy energy is very small just below
the critical temperature, the exchange dominates and gives rise to peri-
odic magnetic structures in the heavy rare earths, except in Gd where
the peak in J (q) occurs at q = 0. As the temperature is lowered, the
anisotropy forces become relatively more important, and phase transi-
tions occur to structures in which their influence is apparent. A less
obvious but nevertheless important effect is that J (q) itself changes
substantially with temperature. As was mentioned in the last section,
the peak reflects a maximum in the conduction-electron χ(q), which is
determined by the form of the Fermi surface. Because of the interaction
(1.3.23) between the local moments and the spins of the conduction elec-
trons, the latter experience a potential with a period which is generally
different from that of the lattice, and therefore generates extra energy
gaps in the band structure. These magnetic superzone gaps, which we
shall discuss in more detail in Section 5.7, may be of the order of 10mRy
and therefore perturb the energy spectrum of the conduction electrons
significantly. In particular, the regions of the Fermi surface responsible
for the peak in J (q) are severely modified, as has been verified through
calculations on Tm by Watson et al. (1968). The result is that both
the position of the peak is changed and its magnitude is reduced. As a
consequence, periodic magnetic structures tend to be self-destructive; as
they become established they try to eliminate the characteristic of the
exchange which ensures their stability. These effects were studied by
Elliott and Wedgwood (1964), who used a free-electron model to ex-
plain the variation of Q in the heavy metals. Although their model is
greatly over-simplified, it illustrates the essential features of the prob-
lem. We shall see in Chapters 2 and 5 that this variation in J (q) is
necessary to explain the change in both the magnetic structures and
excitations with temperature.

Whereas the magnetic structures of the heavy rare earths can be
accounted for by recognizing the dominant role of the exchange, and
considering the crystal fields and magnetoelastic effects as perturbations,
whose essential role is to establish favoured directions for the moments
in the lattice, the balance in the light elements is not so clear-cut. Since
g is generally close to 1, the exchange is relatively weak, and the larger
values of 〈rl〉 towards the beginning of the series are expected to make
crystal-field effects relatively important. As a result, the latter are able
to hinder the moments from attaining their saturation values of gµBJ ,
even in high fields at low temperatures, as illustrated in Table 1.6.

The most remarkable manifestation of the influence of the crystal
fields is found in Pr, where they are able effectively to frustrate the efforts
of the exchange to produce a magnetically ordered state. As illustrated
in Fig. 1.16, the ground state on the hexagonal sites is the |Jζ = 0 >
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singlet which, in common with all singlet states, carries no moment. The
first term in (1.2.24) therefore gives no contribution to the susceptibility,
but the mixing of the | ± 1> excited doublet into the ground state by
the field gives a Van Vleck susceptibility at low temperatures which, if
we neglect the exchange, has the form

χ =
2g2µ2

BM
2
α

∆
N

V
, (1.5.16)

where M2
α = |<±1| Jα|0> |2 is the square of the matrix element of the

component of J in the field direction, and ∆ is the energy separation
between the ground state and the first excited state. Since Mα is zero
when the field is applied along the c-axis, no moment is initially gen-
erated on the hexagonal sites, as confirmed by the neutron diffraction
measurements of Lebech and Rainford (1971), whereas the susceptibility
in the basal plane is large. An applied field in the c-direction changes
the relative energies of the crystal-field levels however, and at 4.2K a
field of 32 tesla induces a first-order metamagnetic transition to a phase
with a large moment (McEwen et al. 1973), as shown in Fig. 7.13. This
is believed to be due to the crossing of the ground state by the second
excited state, as illustrated in Fig. 7.12.

If the exchange is included in the mean-field approximation, the
q-dependent susceptibility becomes, in analogy with (1.5.13),

χMF(q) = g2µ2
B

N

V

[
∆

2M2
α

− J (q)
]−1

. (1.5.17)

From this expression, it is apparent that the susceptibility diverges, cor-
responding to spontaneous ordering, if

2J (q)M2
α

∆
≥ 1. (1.5.18)

The magnetic behaviour of such a singlet ground-state system is there-
fore determined by the balance between the exchange and the crystal
field. If the exchange is strong enough, magnetic ordering results; oth-
erwise paramagnetism persists down to the absolute zero. In Pr, the
crystal-field splitting is strong enough to preclude magnetic order, but
the exchange is over 90% of that required for antiferromagnetism. We
shall return to the consequences of this fine balance in Chapter 7.

The remaining close-packed light rare earths Ce, Nd, and Sm, which
are amenable to experimental study (radioactive Pm is very intractable),
all have an odd number of 4f electrons and thus, according to Kramers’
theorem, crystal-field levels with even degeneracy and a magnetic mo-
ment. The crystal fields cannot therefore suppress magnetic ordering,
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but they reduce the ordered moment and contribute to the complex-
ity of the magnetic structures (Sinha 1978), which is exacerbated by
the two different site-symmetries in each of the metals. The magnetic
structure of Ce has not been fully determined, but it now seems (Gib-
bons et al. 1987) that commensurable transverse waves are formed on
both the hexagonal and cubic sites, with Q in a b-direction and the mo-
ments pointing along an a-axis in the plane. The magnetic periodicity is
twice that of the lattice. This relatively straightforward structure is in
marked contrast to that of Nd, which displays an extraordinary complex-
ity. An incommensurable longitudinal wave in a b-direction is formed on
the hexagonal sites through a first-order transition at TN , with a sim-
ple antiferromagnetic arrangement of successive hexagonal layers. As
the temperature is lowered, a further first-order transition takes place
within a degree to a double-Q structure (McEwen et al. 1985). At a
still lower temperature, an incommensurable periodic structure in the b-
direction is also formed on the cubic sites. At the lowest temperatures,
the moments assume an elaborate quadruple-Q pattern (Forgan et al.
1989), which we shall discuss in more detail in Chapter 2. The magnetic
structure on the hexagonal sites of Sm comprises pairs of planes with
the moments arranged ferromagnetically in the c-direction (Koehler and
Moon 1972). Adjacent pairs are coupled antiferromagnetically and sep-
arated by the cubic sites. The latter also order antiferromagnetically,
with the moments along the c-axis, at low temperatures, but the nor-
mal to the ferromagnetic sheets is now in the b–c plane. Although the
magnetic structures of the light rare earths are phenomenologically rea-
sonably well described, the explanation of their origin in terms of the
crystal-field and exchange interactions is still at a rudimentary stage.

The application of a magnetic field adds to the Hamiltonian a term

HZ = −gµB

∑
i

Ji · H. (1.5.19)

In a sufficiently large field, the stable configuration is thus an array
of moments gµBJ pointing along the field direction. The intermediate
states between the zero-field structure and the high-field limit may how-
ever be very complex. In Fig. 1.20 on page 53 is shown a relatively simple
example of the magnetization curves which result when a cone structure
undergoes first-order transitions to the almost fully-aligned ferromag-
netic state. We will discuss the effect of a magnetic field on periodic
magnetic structures in some detail in Section 2.3, and therefore restrict
ourselves for the moment to outlining the results of the mean-field treat-
ment of Nagamiya et al. (1962) of the helical structure without planar
anisotropy, to which a field is applied in the plane. The ferromagnetic
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structure is reached at a field

Hc =
J [J (Q) − J (0)]

gµB

, (1.5.20)

but there is an intermediate transition, occurring at approximatelyHc/2,
at which the helix transforms abruptly through a first-order transition
to a fan structure, in which the moments make an angle θ with the field
direction, given by

sin
θi

2
=
{

2gµB(Hc −H)
J [3J (Q) − 2J (0) − J (2Q)]

}1/2

sinQ·Ri. (1.5.21)

The opening angle of the fan thus goes continuously to zero at the
second-order transition to the ferromagnetic phase.

The crystal fields manifest themselves in both microscopic and ma-
croscopic magnetic properties. The macroscopic anisotropy parameters
κm

l are defined as the coefficients in an expansion of the free energy in
spherical harmonics, whose polar coordinates (θ, φ) specify the magne-
tization direction relative to the crystallographic axes. For hexagonal
symmetry,

F (θ, φ) = N
[
κ0(T ) + κ0

2(T )P2(cos θ) + κ0
4(T )P4(cos θ)

+ κ0
6(T )P6(cos θ) + κ6

6(T ) sin6 θ cos 6φ
]
,

(1.5.22)

where Pl(cos θ) = (4π/2l+ 1)1/2Yl0(θ, φ) are the Legendre polynomials.
Anisotropic two-ion coupling and magnetoelastic strains may introduce
additional higher-rank terms of the appropriate symmetry. If the Hamil-
tonian is written in a representation H(θ, φ) in which the quantization
axis is along the magnetization, the macroscopic and microscopic pa-
rameters are related by

F (θ, φ) = − 1

β
ln Tr

{
e−βH(θ,φ)

}
. (1.5.23)

Transforming the Stevens operators to a coordinate system with the z-
axis along the magnetization direction, and assuming that the isotropic
exchange is the dominant interaction, we find at absolute zero

κ0
2(0) = 2B0

2J
(2) κ0

4(0) = 8B0
4J

(4)

κ0
6(0) = 16B0

6J
(6) κ6

6(0) = B6
6J

(6)
(1.5.24)

where
J (n) ≡ J(J − 1

2 )(J − 1) · · · (J − n−1
2 ). (1.5.25)
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There are a number of different experimental methods for obtain-
ing values for the microscopic and macroscopic anisotropy parameters.
The susceptibility in different directions, or equivalently the torque on
a crystal in a field, can be measured either in the paramagnetic or mag-
netically ordered phases and, as we shall discuss in detail later, much
information may be obtained from the excitation spectrum and its field
dependence. The values of κm

l (0) obtained from these various sources
for the different elements have been reviewed and tabulated by McEwen
(1978).

In order to deduce the crystal-field parameters Bm
l in the absence

of exchange and magnetoelastic effects, Touborg and his collaborators
studied the crystal-field states of dilute alloys of the magnetic rare earths
in the non-magnetic hosts Sc, Y, and Lu, utilizing magnetization mea-
surements and, to a limited extent, neutron spectroscopy. Their results
for heavy rare earth solutes have been reviewed by Touborg (1977) and,
for the light elements, by Touborg et al. (1978). Within the uncertainty
of the measurements and of the interpretation, and with the exception
of Ce in Y, which behaves anomalously, they found that a common set of
parameters Bm

l /αl accounts for the behaviour of all solutes in a particu-
lar host. B0

4/β and B0
6/γ are roughly 10K/ion and 15K/ion respectively

in all cases, while B6
6 is close to the value − 77

8 B
0
6 which the point-charge

model would predict. B0
2/α increases from about 30K/ion in Sc, to 45

K/ion in Lu, to 100K/ion in Y, which correlates with the deviation of
the c/a ratio of the host metal (1.592 for Sc, 1.584 for Lu, and 1.573 for
Y) from the ideal value of 1.633 (Orlov and Jensen 1988). It is note-
worthy that the parameters Bm

l /αl show no obvious correlation with
〈rl〉, as would be anticipated from (1.4.4).

The values of Bm
l from these studies of dilute alloys may be com-

pared with those from other sources. In particular, B0
2 may be estimated

for the pure metals by interpolating between the c/a ratios of the non-
magnetic hosts. These values may then be compared with those deduced
from the difference between the paramagnetic Curie temperatures par-
allel and perpendicular to the c-axis, which is shown in Section 2.1 to
be given by

B0
2 =

5kB(θ⊥ − θ‖)
6(J − 1

2 )(J + 3
2 )
. (1.5.26)

The agreement for the heavy rare earths is in all cases good (McEwen
1978), indicating that the crystal fields measured in dilute alloys are re-
lated to those acting in the pure metals. On the other hand, the values
deduced from torque and magnetization measurements at low tempera-
tures in the ferromagnetic state show large discrepancies with those in
the paramagnetic phase. For Tb and Dy, the former are roughly three
times the latter. Despite this discrepancy, which is probably primarily
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due to the anisotropic two-ion coupling in the magnetically ordered
phases, the axial anisotropy parameter κ0

2(T )− 5
2κ

0
4(T )+ 35

8 κ
0
6(T ), where

κ0
2(T ) is the dominating term, depends on temperature approximately

as predicted by (1.5.15), varying roughly as σ3 in Dy and σ4 in Tb.
We shall return to the question of the anisotropy parameters in the rare
earths when we discuss the structures and excitations.

The large magnetoelastic effects have a profound effect on the mag-
netic properties of the rare earths, making a significant contribution to
the anisotropy, playing a decisive role in some instances in determining
the structures, and modifying the excitation spectrum. We here consider
for illustrative purposes a special example, the basal-plane ferromagnet,
exemplified by Tb and Dy. As mentioned previously, the α-strains main-
tain the symmetry and therefore only have the effect of renormalizing the
Bm

l , and if the moments are confined to the plane, the ε-strains vanish.
However, the γ-strains are large and symmetry-breaking, and thereby
cause qualitative modifications in the magnetic behaviour. From (1.4.8)
and (1.4.11), their contribution to the magnetoelastic Hamiltonian may
be written

Hγ =
∑

i

[1
2cγ(ε2γ1 + ε2γ2) −Bγ2{O2

2(Ji)εγ1 +O−2
2 (Ji)εγ2}

−Bγ4{O4
4(Ji)εγ1 −O−4

4 (Ji)εγ2}
]
,

(1.5.27)

where we have included only the lowest ranks (l = 2 and 4 respectively)
of the γ2 and γ4 terms. As shown in Section 2.2, the condition

∂F/∂εγ = 0 (1.5.28)

leads to the equilibrium strains

εγ1 = 1

cγ

(
Bγ2〈O2

2〉 +Bγ4〈O4
4〉
)

εγ2 = 1

cγ

(
Bγ2〈O−2

2 〉 −Bγ4〈O−4
4 〉

)
.

(1.5.29)

Transforming the Stevens operators as before, and using (1.5.15) to esti-
mate the magnetization dependence of the thermal averages, we obtain

εγ1 = C cos 2φ− 1
2A cos 4φ

εγ2 = C sin 2φ+ 1
2A sin 4φ,

(1.5.30)

where
C = 1

cγ
Bγ2J

(2)σ3

A = − 2

cγ
Bγ4J

(4)σ10
(1.5.31)

are the conventional magnetostriction parameters (Mason 1954), and φ
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is the angle between the a-axis and the magnetization in the plane.
The dominant contribution to the magnetoelastic energy is

〈Hγ〉 = −1
2Ncγ(ε2γ1 + ε2γ2) = −1

2Ncγ(C2 + 1
4A

2 −CA cos 6φ). (1.5.32)

The cos 6φ term makes a contribution to the hexagonal anisotropy, which
is in total, from (1.5.24), (1.5.15), and (1.5.31),

κ6
6(T ) = B6

6J
(6)σ21 + 1

2cγCA

= B6
6J

(6)σ21 − 1

cγ
Bγ2J

(2)Bγ4J
(4)σ13.

(1.5.33)

The hexagonal anisotropy can readily be deduced from the critical field
Hc necessary to rotate the moments from an easy direction to a neigh-
bouring hard direction in the plane (respectively a b-axis and an a-axis
in Tb), which is given by

gµBJσHc = 36|κ6
6(T )|. (1.5.34)

Values of the critical field for Tb are given as a function of σ in Fig. 1.21.

Fig. 1.21. The critical field Hc necessary to rotate the moments from
an easy direction to a neighbouring hard direction in the plane in Tb, as
a function of the reduced magnetization. The closed circles denote the
results of neutron-scattering experiments, and the other signatures are

deduced from macroscopic measurements.
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The observed σ15 dependence on the magnetization indicates that the
magnetoelastic term dominates. As illustrated in Fig. 1.22, C and A
have been accurately determined by Rhyne and Legvold (1965a) from
macroscopic strain-gauge measurements and, since the elastic constant
is known (Jensen and Palmer 1979), the relative magnetoelastic and
crystal-field contributions to (1.5.33) may readily be determined. At
absolute zero, the former is 1.14K/ion and the latter is −0.60K/ion,
rapidly becoming negligible as the temperature is increased. On account
of the sign of the Stevens factor γ for Tb, the crystal-field contribution
is expected to be positive, and this may be another indication of the
importance of anisotropic two-ion coupling in the magnetically ordered
phases.

Fig. 1.22. The temperature dependence of the magnetostriction pa-
rameters C and A in Tb, after Rhyne and Legvold (1965a). The full lines

show the results of the Callen-Callen theory presented in Section 2.2.

The magnetoelastic energy (1.5.32) is substantial in the ferromag-
netic phase. In particular the term − 1

2cγC
2, which results from a magne-

toelastic strain of cylindrical symmetry, is relatively important at high
temperatures, because it renormalizes roughly as σ4, and is therefore
still about 0.3K/ion in Dy at 85K, the temperature at which a first-
order transition occurs from the helical to the ferromagnetic phase. The
hexagonally symmetric contribution proportional to CA is small at all
temperatures in Dy, since A ≈ 0 (Martin and Rhyne 1977). In the
helical phase, the lattice is clamped (Evenson and Liu 1969), so that
the γ-strains are zero, and the magnetoelastic contribution to the sta-
bilization energy is therefore absent. At TC , this energy, plus a minor
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contribution from the crystal-field anisotropy, just balances the differ-
ence in exchange energy between the helical and ferromagnetic phases:

∆Uff = −1
2NJ

2σ2{Jh(Q) − Jf (0)}. (1.5.35)

There has been some discussion about the relative importance of the
two terms in stabilizing the ferromagnetic phase. From an analysis of
the field required to induce the transition above TC , Cooper (1968a)
concluded that the magnetoelastic energy plays the dominant role. This
conclusion was, however, based on the implicit assumption that the ex-
change energy changes little between the phases, and later measurements
of the spin waves by Nicklow et al. (1971b) demonstrated that this is
not the case. The energy difference − 1

2J
2σ2{Jh(Q) − Jh(0)} is about

2K/ion in the helical phase, but the corresponding quantity is substan-
tially smaller in the ferromagnetic phase. Del Moral and Lee (1975)
reanalysed the data and concluded that the change (1.5.35) in the ex-
change energy makes the major contribution to driving the transition.
Any statement about what drives a first-order, as distinct from a second-
order transition must necessarily be imprecise, since all contributions to
the energy change discontinuously at the transition. Immediately below
TN , the exchange dominates and the anisotropy forces are small. As
the temperature is lowered, the peak in J (Q) decreases and moves, as
was shown explicitly for the analogous case of Tb by the spin-wave mea-
surements of Bjerrum Møller et al. (1967), illustrated in Fig. 6.1. The
magnetoelastic forces therefore increase in relative importance, until a
balance is reached and the transition to the ferromagnetic phase takes
place. At the transition, a large change occurs in the exchange. With-
out the magnetoelastic term, TC would be determined by the hexagonal
crystal-field anisotropy, and would therefore be much lower. In this
sense, the cylindrically-symmetric magnetoelastic forces drive the tran-
sition.



2

MAGNETIC STRUCTURES

The mean-field theory introduced in the previous section is used in this
chapter as a basis for examining some of the magnetic structures as-
sumed by the rare earth metals. The theory is presented at length in
the first section. Beginning with the expression for the free energy, some
general results are established for the magnetization, and applied ana-
lytically to the calculation of the susceptibility in the high-temperature
limit. The mean-field approximation is then developed, and a numerical
method for solving the resulting equations self-consistently, for magnetic
structures which are commensurable with the lattice, is described. The
Landau expansion of the free energy in terms of the order parameters
of the magnetic system provides the starting point for a discussion of
a number of the periodic magnetic structures which arise as a result
of the long range of the indirect-exchange interaction. The ordering
temperatures are calculated by analytical means, and the relative sta-
bility of different structures compared. In the following section, the
important extension by Callen and Callen of the Zener power-law for
the temperature dependence of the magnetic anisotropy is derived. The
thermal expectation values 〈Om

l 〉 of the Stevens operators are calcu-
lated and their dependence on the magnetization determined. From the
free energy, the magnetic anisotropy and the magnetoelastic coefficients
are deduced. We conclude with a detailed discussion of some magnetic
structures, using the aforementioned analytical methods, supplemented
by numerical calculations, to help identify those characteristics of the
magnetic interactions which lead to the stability of different moment-
configurations under various conditions. This account is illustrated by
various examples, with emphasis on the the diverse magnetic phases of
Ho. Among other structures, we consider the ferromagnet, the cone, the
helix, the longitudinal wave, the cycloid, and commensurable spin slips.
The effect of a magnetic field in stabilizing fan and helifan structures,
and the ordering of thin films and superlattices, are also discussed.

2.1 Mean-field theory of magnetic ordering

The simplest form of Hamiltonian which is adequate to explain the oc-
currence of most of the observed magnetic structures is

H =
∑

i

Hcf(i) −
1

2

∑
ij

J (ij)Ji ·Jj + HZ, (2.1.1a)
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where the first sum is the single-ion crystal-field Hamiltonian

Hcf(i) =
∑

l=2,4,6

B0
l O

0
l (Ji) +B6

6O
6
6(Ji), (2.1.1b)

the two-ion term is assumed to be isotropic, and the Zeeman term is

HZ = −
∑

i

µi ·Hi. (2.1.1c)

The field may vary spatially, so that we must specify its value on each
site, writing Hi ≡ H(Ri), and the magnetic moment on the ith ion is
µi = gµBJi.

The static-susceptibility tensor may be derived as the second deriva-
tive of the free energy, and we shall therefore begin by recapitulating a
few basic thermodynamic results. The free energy is

F = U − TS = − 1

β
lnZ, (2.1.2)

where U is the internal energy, S the entropy, and β = (kBT )−1. The
partition function is

Z = Tr
{
e−βH} =

∑
p

e−βEp . (2.1.3)

Tr indicates the trace over a complete set of states, and the final sum-
mation may be performed if the eigenvalues Ep of the Hamiltonian are
known. The expectation value of an operator A is

〈A〉 = 1

Z
Tr
{
Ae−βH}. (2.1.4)

The derivative of the free energy with respect to a variable x is

∂F

∂x
= − 1

βZ

∂Z

∂x
=

1
Z

Tr
{
∂H
∂x

e−βH
}

=
〈∂H
∂x

〉
. (2.1.5)

This expression is obtained by utilizing the invariance of the trace to the
basis used, assuming it to be independent of x and a cyclic permutation
of the operators, thus allowing a conventional differentiation of the ex-
ponential operator, as may be seen by a Taylor expansion. This result is
general, but the exponential operator can only be treated in this simple
way in second derivatives if ∂H/∂x commutes with the Hamiltonian,
which is usually not the case. However, we may be interested only in
the leading-order contributions in the limit where β is small, i.e. at high
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temperatures. Expanding in powers of β, we may use the approximation
exp{−βH} 	 1 − βH + 1

2β
2H2. In this case, we may proceed as above,

and the result is

∂2F

∂x∂y
=
〈 ∂2H
∂x∂y

〉
+ β

(〈∂H
∂x

〉〈∂H
∂y

〉
−
〈∂H
∂x

∂H
∂y

〉)
−β

2

2
〈[∂H
∂x

,
∂H
∂y

]
H
〉

+ O(β3),
(2.1.6)

where the second- and higher-order terms vanish if one of the derivatives
of H commutes with H itself.

In many instances, it is more convenient to consider the angular
momentum rather than the magnetic moment, with a corresponding
field variable hi = gµBHi, so that the Zeeman term (2.1.1c) becomes

HZ = −
∑

i

µi ·Hi = −
∑

i

Ji · hi. (2.1.7)

Since the exchange and anisotropy terms in H do not depend explicitly
on the field, ∂H/∂Hiα = −µiα and, using eqn (2.1.5), we have

〈µiα〉 = −∂F/∂Hiα or 〈Jiα〉 = −∂F/∂hiα. (2.1.8)

Next, we define the non-local susceptibilities

χµ
αβ(ij) = ∂〈µi〉/∂Hjβ = −∂2F/∂Hiα∂Hjβ , (2.1.9a)

and similarly

χJ
αβ(ij) = (gµB)−2χµ

αβ(ij) = −∂2F/∂hiα∂hjβ , (2.1.9b)

and the corresponding Fourier transforms, e.g.

χJ
αβ(q) = 1

N

∑
ij

χJ
αβ(ij)e−iq·(Ri−Rj) =

∑
j

χJ
αβ(ij)e−iq·(Ri−Rj).

(2.1.9c)
The final equality only applies in a uniform system. If the field is in-
creased by an infinitesimal amount δH(q)exp(iq ·Ri), the individual
moments are changed by

δ〈µiα〉 =
∑

j

∑
β

χµ
αβ(ij)δHβ(q)eiq·Rj , (2.1.10a)

according to (2.1.9). Hence the added harmonically-varying field intro-
duces one Fourier component in the magnetization:

δMα(q) = 1

V

∑
i

δ〈µiα〉e−iq·Ri = N

V

∑
β

χµ
αβ(q)δHβ(q), (2.1.10b)
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proportional to the susceptibility at the wave-vector considered. The
usual definition of the susceptibility components (per unit volume),
as used in Chapter 1, is δMα(q)/δHβ(q). The susceptibility used in
(2.1.10b) differs from this by the factor V/N , i.e. we are here considering
the susceptibility per atom instead of per unit volume. Furthermore,
since we shall not make any further use of χµ

αβ(q), we shall reserve the
notation χαβ(q) for the q-dependent susceptibility χJ

αβ(q), introduced
in eqn (2.1.9b), throughout the rest of the book. So in terms of the
susceptibility per atom, ‘in units of (gµB)2’, the above equation may be
written

δ〈Jα(q)〉 = 1

N

∑
i

δ〈Jiα〉e−iq·Ri =
∑

β

χαβ(q)δhβ(q), (2.1.10c)

with the upper index J in χJ
αβ(q) being suppressed from now on.

2.1.1 The high-temperature susceptibility
In order to calculate χ(q) in zero field, we shall first use the approxi-
mation (2.1.6) to the derivative of the free energy, valid at high temper-
atures. In this limit 〈Ji〉 = 0, and only one term in the expansion is
non-zero:

χαβ(ij) = βTr
{
JiαJjβ(1 − βH)

}/
Tr
{
1 − βH

}
, (2.1.11)

to second order in β. The commutator in the third term on the right-
hand side of (2.1.6) is either zero or purely imaginary (if i = j and
α �= β), showing immediately that the expectation value of this term
must vanish in all cases. To first order in β, we obtain from (2.1.11)

χαβ(ij) 	 βTr
{
JiαJjβ

}/
Tr
{
1
}

= 1
3J(J + 1)βδαβδij ,

using the product of the eigenvectors of Jiα as the basis, and recalling
that ∑

m2 = 1
3J(J + 1)(2J + 1),

when m runs from −J to J . In order to calculate the second-order
contribution, we shall utilize the general tensor properties of the Stevens
operators, which satisfy the orthogonality condition:

Tr
{
Om

l (Ji)Om′
l′ (Jj)

}
= δijδll′δmm′Tr

{
[Om

l (Ji)]2
}

and Tr
{
Om

l (Ji)
}

= 0,
(2.1.12)

when l and l′ are both non-zero. O0
0 is just the identity operator. Jiα is

a linear combination of Om
1 (Ji), m = −1, 0, 1, and (2.1.12) then implies



72 2. MAGNETIC STRUCTURES

that the trace of the Hamiltonian (2.1.1) vanishes, and hence that the
denominator in (2.1.11) is Tr{1} = (2J + 1)N . For the second-order
term in the numerator, we find

Tr
{
JiαJjβH

}
= δijB

0
2Tr

{
JiαJiβO

0
2(Ji)

}
− J (ij)Tr

{
JiαJjβJi ·Jj

}
= δijδαβB

0
2 Tr

{
J2

iα[3J2
iz − J(J + 1)]

}
− δαβJ (ij)Tr

{
J2

iαJ
2
jα

}
,

utilizing that JiαJjβ is a linear combination of second- and lower-rank
tensors for i = j, and a product of first-rank tensors for i �= j. When
α = z (or ζ), we may readily calculate the first trace, using∑

m4 = 1
15J(J + 1)(2J + 1)(3J2 + 3J − 1).

The traces with α = x or α = y must be equal, and using this equality
in the case α = x, for instance, we may replace J2

x in the trace by
1
2 (J2

x + J2
y ) → 1

2J(J + 1) − 1
2J

2
z . As the constant term multiplied by

3J2
z − J(J + 1) does not contribute (as Tr{3J2

z − J(J + 1)} = 0), the
trace with α = x or y is equal to −1/2 times that with α = z. Only the
single-ion terms contribute to the trace when i = j (J (ii) is assumed to
be zero), and of these only the lowest-rank term B0

2 appears, to leading
order. The two-ion coupling only occurs in the trace, and hence in
χαβ(ij), when i �= j, and this contribution may be straightforwardly
calculated. To second order in β, the off-diagonal terms are zero, whereas

χαα(ij) = δij
1
3J(J + 1)β

[
1 − 2

5 (3δαζ − 1)B0
2(J − 1

2 )(J + 3
2 )β

]
+
[1
3J(J + 1)β

]2J (ij).

Introducing the Fourier transform of the two-ion coupling,

J (q) =
∑

j

J (ij)e−iq·(Ri−Rj), (2.1.13)

we find that, to the order considered, the inverse of the q-dependent
susceptibility may be written

1/χαα(q) =
3kBT

J(J + 1)
+(3δαζ −1)

6(J − 1
2 )(J + 3

2 )
5J(J + 1)

B0
2 −J (q)+O(1/T ).

(2.1.14)
The inverse susceptibility in the high-temperature limit thus increases
linearly with the temperature, with a slope inversely proportional to the
square of the effective paramagnetic moment (∝ {J(J + 1)}1/2). The
susceptibilities determined experimentally by magnetization measure-
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Fig. 2.1. The inverse susceptibility, in atomic units, in Tm above TN .
The full lines depict the results of a mean-field calculation and the dashed
lines are extrapolations of the high-temperature limit. Experimental val-
ues are also shown. The MF theory predicts a deviation from the high-
temperature expression as the ordering temperature is approached from

above, because of crystal-field anisotropy effects.

ments are the bulk values at zero wave-vector. The straight lines found
at high temperatures for the inverse-susceptibility components 1/χαα(0)
versus temperature may be extrapolated to lower values, as illustrated in
Fig. 2.1. The values at which these lines cross the temperature axis are
the paramagnetic Curie temperatures θ‖ and θ⊥, determined respectively
when the field is parallel and perpendicular to the c-axis (ζ-axis). The
high-temperature expansion then predicts these temperatures to be

kBθ‖ = 1
3J(J + 1)J (0) − 4

5 (J − 1
2 )(J + 3

2 )B0
2 , (2.1.15a)

and

kBθ⊥ = 1
3J(J + 1)J (0) + 2

5 (J − 1
2 )(J + 3

2 )B0
2 . (2.1.15b)

Hence the paramagnetic Curie temperatures are determined by the
lowest-rank interactions in the Hamiltonian, i.e. those terms for which
l+ l′ = 2. The difference between the two temperatures depends only on
B0

2 , because of the assumption that the two-ion coupling is an isotropic
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Heisenberg exchange. The mean temperature (θ‖+2θ⊥)/3 is determined
by J (0) which, from (2.1.13), is the algebraic sum of the isotropic two-
ion interactions, and this temperature may be measured directly with a
polycrystalline sample. The two basal-plane components are found to
be equal. This is not just due to the assumption of high temperatures,
but is generally valid as long as there is no ordered moment in the basal-
plane. In this case, the c-axis is a three-fold symmetry axis, or effectively
a six-fold axis, due to the symmetry of the basal-plane anisotropy B6

6 in
the Hamiltonian. The susceptibility is a second-rank tensor, according
to (2.1.9), and it cannot therefore vary under rotation about a three- or
six-fold axis.

2.1.2 The mean-field approximation
The high-temperature expansion may be extended to higher order in β,
but the calculations rapidly become more complex, so we shall instead
adopt another approach, the mean-field approximation. In this method,
the correlated fluctuations of the moments around their equilibrium val-
ues are neglected. In order to introduce 〈Ji〉 into the Hamiltonian, we
utilize the identity

Ji · Jj = (Ji − 〈Ji〉) · (Jj − 〈Jj〉) + Ji · 〈Jj〉 + Jj · 〈Ji〉 − 〈Ji〉 · 〈Jj〉.

The MF approximation then consists in neglecting the first term on
the right-hand side, which is associated with two-site fluctuations, since
i �= j. The Hamiltonian (2.1.1) is then effectively decoupled into a sum
of N independent terms for the single sites; H 	

∑
i HMF(i), where

HMF(i) = Hcf(i) − Ji · hi −
(
Ji − 1

2 〈Ji〉
)
·
∑

j

J (ij)〈Jj〉, (2.1.16)

in the presence of an external magnetic field hi = gµBHi. Introducing
the effective field

heff
i = hi +

∑
j

J (ij)〈Jj〉, (2.1.17a)

we may write the MF Hamiltonian

HMF(i) = Hcf(i) − Ji · heff
i + 1

2 〈Ji〉 · (heff
i − hi). (2.1.17b)

Self-consistent solutions of the MF equations may sometimes be obtained
analytically, but numerical methods may be used more generally, pro-
vided that the periodicity of the magnetic structure is commensurable
with that of the lattice. For an assumed distribution of 〈Jj〉, the effec-
tive field and hence the MF Hamiltonian for the ith site is calculated.
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Diagonalizing this Hamiltonian, we may derive the partition function
Zi, the free energy Fi, and the expectation value 〈Ji〉 for this site. The
last term in (2.1.17b) just adds a constant contribution to Fi, without
affecting 〈Ji〉. Performing this calculation for all the different ions, we
determine the various values of 〈Jj〉, and the total free energy is the
sum of the Fi. The derived values of 〈Jj〉 are used as the input for
a new MF Hamiltonian, and this iterative procedure is repeated un-
til self-consistency is attained. The self-consistent solution of the MF
Hamiltonian may be one in which 〈Ji〉 is non-zero even in zero field, thus
describing the occurrence of a spontaneous ordering of the moments.

Having found the self-consistent solution for the angular momenta,
we may proceed to calculate the susceptibility. The MF Hamiltonian for
the ith site has been diagonalized, and we shall denote the (2J+1) eigen-
states by | p >, with corresponding energy eigenvalues Ep. If the effec-
tive field is changed by a small amount δheff

β , the Zeeman term −Jiβδh
eff
β

must be added to the Hamiltonian, and E(1)
p = Ep− <p | Jiβ | p> δheff

β ,
to first order in the perturbation, provided that | p > is a set which di-
agonalizes the perturbation within the possibly degenerate subspaces of
the zero-field Hamiltonian. The new eigenstates are

| p(1) > = | p> −δheff
β

∑
p′

′
| p′><p′ | Jiβ | p> /(Ep − Ep′),

where the terms for which Ep = Ep′ vanish. Using (2.1.3) and (2.1.4),
we then have, to first order in δheff

β ,

〈J (1)
iα 〉 =

∑
p

<p(1) | Jiα | p(1) > n(1)
p =

∑
p

<p | Jiα | p> n(1)
p

− δheff
β

∑
pp′

′
<p | Jiα | p′><p′ | Jiβ | p> np/(Ep − Ep′)

− δheff
β

∑
pp′

′
<p | Jiβ | p′><p′ | Jiα | p> np/(Ep − Ep′),

where the last two sums extend over states for which Ep �= Ep′ . The
population factor of the pth level at δheff

β = 0 is np = exp(−βEp)/Zi,

and n(1)
p is the corresponding factor at the field δheff

β . By differentiation,
we find

∂n(1)
p /∂(δheff

β ) =
{
<p | Jiβ | p> −

∑
p′

<p′ | Jiβ | p′> np′
}
βnp

=
{
<p | Jiβ | p> − 〈Jiβ〉

}
βnp.

Introducing this result in the equation above, and interchanging p and
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p′ in the last sum, we obtain finally:

χ o
αβ(i) = ∂〈Jiα〉/∂heff

β =
Ep �=Ep′∑

pp′

<p | Jiα | p′><p′ | Jiβ | p>
Ep′ − Ep

(np − np′)

+ β

Ep=Ep′∑
pp′

<p | Jiα | p′><p′ | Jiβ | p> np − β〈Jiα〉〈Jiβ〉. (2.1.18)

The second summation is transformed in such a way that it is no longer
necessary for Jiβ to be diagonal within the degenerate subspaces, as re-
quired initially. The first term in the susceptibility is the Van Vleck con-
tribution, which becomes constant at zero temperature, whereas the sec-
ond term, the Curie contribution, diverges as 1/T in the low-temperature
limit. The susceptibility deduced above is that determining the response
due to a change of the effective field, δ〈Ji〉 = χ

o(i)δheff
i , whereas we wish

to know the response due to a small change of the external field. If a
small harmonically-varying field δhqexp(iq ·Ri) is applied, the effective
field, according to (2.1.17a), is

δheff
i = δhqe

iq·Ri +
∑

j

J (ij)χ o(j)δheff
j .

This equation may be solved by a Fourier transformation if χ o(i) = χ
o

is site-independent, which it is so long as 〈Ji〉 is independent of i, as
in the high-temperature paramagnetic phase, for example, where 〈Ji〉 =
0. Neglecting any site-dependence of χ o, and introducing the notation
δheff

i = δheff
q exp(iq ·ri), we get

δheff
q =

{
1 − χ

oJ (q)
}−1

δhq,

or, by the definition of the susceptibility,

χ(q) =
{
1 − χ

oJ (q)
}−1

χ
o
. (2.1.19a)

In the following, we shall assume that the external magnetic field is
zero. With this restriction, χ(q) is diagonal in the (ξηζ)-coordinate
system, and the reciprocal susceptibility, in the MF approximation, may
be written

1/χαα(q) = 1/χ o
αα − J (q). (2.1.19b)

In the degenerate case, (2.1.18) implies that χ o
αα = βJ(J + 1)/3. How-

ever, if Hcf is non-zero, the expression (2.1.18) for the susceptibility be-
comes quite complex. A drastic simplification is achieved by assuming a
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small value of β. In this high temperature limit, χ o may be calculated
by a procedure equivalent to that used in deriving (2.1.14), except that
J (ij) = 0. Hence, to second order in β, we have

χ o
αα 	 1

3J(J + 1)β
[
1 − 2

5 (3δαζ − 1)(J − 1
2 )(J + 3

2 )B0
2β
]
. (2.1.20)

Introducing (2.1.20) in (2.1.19), we obtain the same result as previously
derived in (2.1.14), demonstrating that the MF approximation is cor-
rect in the high-temperature limit. Although the thermal fluctuations
increase when the temperature is raised, they also become increasingly
uncorrelated. It is the latter effect which is the most pronounced, and
the correction to the MF value of the free energy, proportional to the cor-
relation energy of the two-site fluctuations J (ij){〈Ji ·Jj〉 − 〈Ji〉 · 〈Jj〉},
decreases with temperature at high temperatures. In the other limit
of zero temperature, the correlation effects are much stronger, but the
fluctuations themselves are small. We may therefore also expect the
MF approximation to be accurate in this limit, and to provide a useful
interpolation at intermediate temperatures.

χ
o increases steadily with decreasing temperature. If the crystal-

field ground state is degenerate, the second sum in (2.1.18) is non-zero
and χ o diverges in the zero-temperature limit. Because of the Kramers
degeneracy, the ground state is always at least doubly degenerate if 2J is
odd. When J is an integer, the ground state may be a singlet, in which
case χ o saturates at a constant value at zero temperature. Except in this
special case, it is always possible to find a temperature where 1/χαα(q)
is zero, corresponding to an infinite χαα(q). The largest value of the
q-dependent susceptibility is found at the wave-vector Q at which J (q)
has its maximum. Of the three non-zero components of χ(Q), the cc-
component is the largest if B0

2 is negative. If B0
2 is positive, on the

other hand, the two equal basal-plane components are the largest. It
is the maximum component of the susceptibility at q = Q which first
diverges when the system is cooled. This divergence signals that the
paramagnetic ground-state becomes unstable against the formation of
an ordered state in which the moments are modulated with the wave-
vector Q, and point along or perpendicular to the c-direction, depending
on whether B0

2 is respectively negative or positive. Hence, a second-order
phase transition takes place at this critical temperature, called the Curie
temperature, TC , or the Néel temperature, TN , depending on whether
Q = 0 or Q �= 0. Just below TN , the ordered moment 〈Ji〉 is small, and
the free energy of the ith ion may be expanded in powers of this moment.
In order to establish this expansion, we first consider the Hamiltonian
H′(i) = Hcf(i) − Ji · h. The corresponding free energy may be written

F ′
i = F0/N − 〈Ji〉 · h +

∑
α

Aα〈Jiα〉2 +
∑
αβ

Bαβ〈Jiα〉2〈Jiβ〉2 + · · · .
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Except for the field term, this expansion only includes products of com-
ponents in which the sum of the exponents is even, because of time-
reversal symmetry. Using the equilibrium condition ∂F ′

i/∂〈Jiα〉 = 0,
and recalling that 〈Jiα〉 = χ o

αα(σ = 0)hα to leading order, in the zero-
field limit, we obtain

Aα =
{
2χ o

αα(σ = 0)
}−1

, (2.1.21a)

where χ o
αα(σ = 0) is the MF susceptibility (2.1.18), in the limit of zero

magnetization (field). The susceptibility decreases with increasing mag-
netization (or field), as described by the fourth-order terms. An order-
of-magnitude estimate of Bαβ may be obtained by neglecting Hcf(i). In
this case, the magnetization as a function of the field is given by the
Brillouin function (1.2.31):

〈Jiα〉 = JBJ (βJhα) 	 1
3J(J + 1)βhα

{
1 − 1

15 (J2 + J + 1
2 )β2h2

α

}
,

which, in combination with the equilibrium condition for the free energy,
determines Bαα. The off-diagonal terms may be obtained straightfor-
wardly by utilizing the condition that, when Hcf(i) is neglected, the free
energy should be invariant with respect to any rotation of the magneti-
zation vector, implying that all the coefficients Bαβ are equal, or

Bαβ ≈ 9
20
J2 + J + 1

2

J3(J + 1)3
kBT. (2.1.21b)

The introduction of the crystal-field terms of course modifies this result,
but rather little in the high-temperature limit. Under all circumstances,
the effective six-fold symmetry around the c-axis implies that Bαβ is
symmetric, Bξξ = Bηη = Bξη, and Bξζ = Bηζ , and it also eliminates
the possibility that any other fourth-order terms may contribute. The
expansion of the free energy of the total system, when the external
field is zero, is obtained from the expansion of F ′

i , summed over i, by
substituting the exchange field heff

i =
∑

j J (ij)〈Jj〉 for h, and adding
the ‘constant’ 1

2 〈Ji〉 · heff
i , so that

F = F0−
1

2

∑
ij

J (ij)〈Ji〉·〈Jj〉+
∑

i

[∑
α

Aα〈Jiα〉2+
∑
αβ

Bαβ〈Jiα〉2〈Jiβ〉2
]

(2.1.22)
to fourth order in the magnetization. This expansion of the free energy
in terms of the order parameter(s) is called the Landau expansion.

Assuming the ordered phase to be described by a single wave-vector,
we may write

〈Jiα〉 = Jσα cos(q ·Ri + ϕα), (2.1.23)
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where σα = σα(q) is the relative magnetization at the wave-vector q.
Introducing this into the free-energy expression, and utilizing the condi-
tion that

∑
i cos(q′ ·Ri + ϕ) = 0, if q′ is not a reciprocal lattice vector,

we find

f = (F−F0)/N = 1
4J

2
∑
α

{2Aα − J (q)}σ2
α

+ 1
8J

4
∑
αβ

Bαβ{2 + cos 2(ϕα − ϕβ)}σ2
ασ

2
β , (2.1.24)

if 4q is different from a reciprocal lattice vector. The coefficients of
the second power are thus ∝ {2Aα − J (q)} = 1/χαα(q, σ = 0), where
the susceptibility is evaluated at zero magnetization. As long as all the
second-order coefficients are positive, at any value of q, the free energy
is at its minimum when σα = 0, i.e. the system is paramagnetic. The
smallest of these coefficients are those at q = Q, where J (q) has its
maximum. In the heavy rare earths, with the exception of Gd, Q is
non-zero and is directed along the c-axis. Depending on the sign of
B0

2 , the magnetic structures occurring in the heavy rare earths may be
divided into two classes, which we will discuss in turn.

2.1.3 Transversely ordered phases
When B0

2 > 0, as in Tb, Dy, and Ho, the two basal-plane components
of χ(Q) both diverge at the same critical temperature TN . Using the
approximate high-temperature value (2.1.20) for the susceptibility, we
find that 1/χξξ(Q, σ = 0) = 1/χηη(Q, 0) = 2Aξ − J (Q) vanishes at the
temperature determined by

kBTN 	 1
3J(J + 1)J (Q)

[
1 + 2

5 (J − 1
2 )(J + 3

2 )B0
2/kBTN

]
. (2.1.25)

Below TN , both σξ and ση are generally non-zero at the wave-vector Q,
and the free energy f , given by (2.1.24) with σζ = 0, is minimized when
σξ(Q) = ση(Q) = σQ, and

σQ =
(
J (Q) − 2Aξ

4J2Bξξ

)1/2

; ϕξ − ϕη = ±π
2
, (2.1.26a)

corresponding to the helical ordering:

〈Jiξ〉 = JσQ cos (Q ·Ri + ϕ)

〈Jiη〉 = ±JσQ sin (Q ·Ri + ϕ).
(2.1.26b)

The length of the angular-momentum vector is JσQ, independent of the
site considered. There are two energetically-degenerate configurations,
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a right- or a left-handed screw, depending on the choice of sign. From
the condition 1/χξξ(Q, 0) ∝ (T − TN), sufficiently close to TN , we get
the usual MF result that the order parameter σQ ∝ (TN − T )1/2. Al-
though 1/χξξ(Q, 0) becomes negative below TN , the inverse of the actual
susceptibility, 1/χξξ(Q) = 1/χξξ(Q, σQ), does not. Analogously to the
derivation of Aα in (2.1.21a), it may be seen that 1/χξξ(Q) is a second
derivative of the free energy, i.e.

1/χξξ(Q) = ∂2f/∂(JσQ)2

	 1/χξξ(Q, σ = 0) + 12J2Bξξσ
2
Q = −2/χξξ(Q, σ = 0).

Hence, 1/χξξ(Q) is non-negative, as it must be to ensure that the system
is stable, as is also the case for any other component of the susceptibility.

Because |〈Ji〉| is constant, the umklapp contributions to the free
energy in (2.1.24), for which 4Q is a multiple of the reciprocal-lattice
parameter 4π/c, cancel. The free energy of the helix is therefore inde-
pendent of the lattice, at least to the fourth power in the magnetization.
If the anisotropy terms in Hcf can be neglected, the helix is the most
stable configuration satisfying the condition that |〈Ji〉| = Jσ is constant.
With this constraint, only the two-ion interaction term in the free en-
ergy (2.1.22) may vary, and this may be minimized by the method of
Lagrange multipliers (Nagamiya 1967). We will begin with the weaker
constraint;

∑
i〈Ji〉2 = N(Jσ)2 is constant, which means that we have

to minimize the energy expression

U = −1

2

∑
ij

J (ij)〈Ji〉 · 〈Jj〉 + λ
∑

i

(
〈Ji〉2 − (Jσ)2

)
= N

∑
q

{
− 1

2J (q) + λ
}
〈J(q)〉 · 〈J(−q)〉 −Nλ(Jσ)2,

(2.1.27a)

where the introduction of 〈Ji〉 =
∑

q〈J(q)〉exp(iq ·Ri), as in (2.1.10c),
yields the second form. Minimizing this expression with respect to
〈J(−q)〉, we obtain the following equation:

∂U/∂〈J(−q)〉 = N
{
− J (q) + 2λ

}
〈J(q)〉 = 0,

assuming J (−q) = J (q). For a given value of λ, this condition is only
satisfied if either 〈J(q)〉 = 0, or if q = qλ, where J (qλ) = 2λ, which
implies that only 〈J(qλ)〉 may be non-zero. Introducing this condition
in U , we find

U = −Nλ(Jσ)2 = −1
2NJ (qλ)(Jσ)2, (2.1.27b)



2.1 MEAN-FIELD THEORY OF MAGNETIC ORDERING 81

which is then minimized with respect to q when qλ = Q, at which
wave-vectorJ (q) has its maximum. Hence the two-ion energy attains its
minimum when only the two Fourier components 〈Ji(±Q)〉 are non-zero.
The stronger constraint that |〈Ji〉| should be constant is then met only by
the helix (2.1.26). In the zero-temperature limit, this constraint derives
from the fact that the moments attain their saturation value, |〈Ji〉| = J ,
immediately the exchange field is not identically zero, since χ o

αα(σ = 0)
diverges in this limit when Hcf = 0. At elevated temperatures, it is
clear that the sum of the single-ion terms in the free energy (the A-
and B-terms in (2.1.22)) is most effectively minimized if the minimum
condition is the same for all the ions. When Hcf = 0, there are no
restrictions on the plane in which the moments spiral; it may be rotated
freely, without change in energy, as long as |Ji| is constant and all the
components vary with the wave-vector Q. This behaviour is analogous
to that of the Heisenberg ferromagnet, which may be considered as a
helically ordered system with Q = 0. If Q is not perpendicular to the
plane in which the moments lie, the structure is called the tilted helix
(Elliott 1971; Sherrington 1972) and the extreme case, with Q in the
plane of the moments, is the cycloidal structure. When B0

2 > 0, the
orientation of the plane is stabilized to be perpendicular to the c-axis,
and with Q along this axis we obtain the true helical structure.

If B0
2 > 0 is the only crystal-field parameter of importance, the

regular helix is the stable structure in the whole temperature interval
between zero and TN . If the Landau expansion (2.1.22) is continued to
the sixth power in the magnetization, a term appears proportional to
B6

6 , distinguishing between the a- and b-directions in the basal-plane.
Instead of using this expansion, we shall consider the alternative expres-
sion for the free energy, to leading order in B6

6 ,

F 	 F1 −
1

2

∑
ij

J (ij)〈Ji〉 · 〈Jj〉 +
∑

i

B6
6〈O6

6(Ji)〉

= F1 −
1

2

∑
ij

(Jσ)2J (ij) cos (φi − φj) +
∑

i

κ6
6 cos 6φi,

(2.1.28)

where Ji = Jσ(cosφi, sinφi, 0) and F1 is the part independent of φi.
The expectation values are those obtained in the limit B6

6 = 0, i.e. σ
and κ6

6 are assumed to be independent of the angle φi. The presence
of the six-fold anisotropy term distorts the helix. In order to solve the
equilibrium equation

∂F/∂φi = (Jσ)2
∑

j

J (ij) sin (φi − φj) − 6κ6
6 sin 6φi = 0,

we introduce the expansion

φi = ui + γ sin 6ui + · · · ; ui = Q ·Ri, (2.1.29a)
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using the series

exp[i(u+ γ sin 6u)]
= J0(γ)eiu + J1(γ)

(
ei7u − e−i5u

)
+ J2(γ)

(
ei13u + e−i11u

)
+ · · ·

	 eiu +
γ

2
(
ei7u − e−i5u

)
, (2.1.29b)

where Jn(x) are the Bessel functions. To leading order in γ, the equi-
librium equation then gives

γ =
12κ6

6

(Jσ)2
{
2J (Q) − J (5Q) − J (7Q)

} , (2.1.30a)

and the free energy is reduced proportionally to γ2:

F/N = F1/N − 1
2 (Jσ)2J (Q) − 1

8 (Jσ)2
{
2J (Q) − J (5Q) − J (7Q)

}
γ2.

(2.1.30b)
The hexagonal anisotropy introduces harmonics, of equal magnitude,
in the basal-plane moments at the wave-vectors 6Q± Q and, in higher
order, at the wave-vectors 6mQ±Q. If κ6

6, and thus also γ, are negative,
the easy directions in the plane are the a-axes. In the special case
where the angle ui = π/12, i.e. the unperturbed ith moment is half-way
between an easy and a hard direction, the largest change φi − ui = γ
occurs in the orientation of the moments, and the angle to the nearest
easy direction is reduced, since ui lies between 0 and π/6, and κ6

6 is
negative. The moments in the helix are therefore distorted so that they
bunch around the easy axes.

The above calculation is not valid if Q is 0 or 2π/c, when the hexag-
onal anisotropy may be minimized without increasing the exchange en-
ergy, as it may also if the (average) turn angle ω of the moments from
one hexagonal plane to the next is a multiple of 60◦, so that 6Q is an
integer times 4π/c. The products of the fifth and seventh harmonics
introduce additional umklapp contributions to the free energy if 12Q is
a multiple of the effective reciprocal-lattice spacing 4π/c, implying that
the cases where ω is p30◦ and p = 1, 3, 5 are also special. In higher
order, corrections appear whenever m12Q = p4π/c, where m and p are
integers and 0 ≤ p ≤ 6m, i.e. at any commensurable value of Q, but
the corrections decrease rapidly with m, excluding cases where m and p
have common factors. In contrast to the result found above, the com-
mensurable contributions depend on the absolute phase ϕ in (2.1.26b),
and an adjustment of this phase will quite generally allow the system to
reduce the anisotropy energy through the umklapp terms. This change
in energy may compensate for the increase in the exchange energy when
the ordering wave-vector Q is changed from its value Q = Q0, at which
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J (q) has its maximum, to a nearby commensurable value Qc. Hence
the hexagonal anisotropy couples the helical magnetic structure to the
lattice, and it may induce continuous or abrupt changes of the ordering
wave-vector as a function of temperature, as discussed, for instance, by
Bak (1982). In Ho, 12Q0 is close to 4π/c, and the hexagonal anisotropy
is large at low temperatures. Experimental investigations have shown
that a number of commensurable values of Q are stabilized in this sys-
tem, as we shall discuss in more detail in the last section of this chapter.

2.1.4 Longitudinally ordered phases
When B0

2 is negative, as in Er and Tm, χζζ(Q) is the component of the
susceptibility which diverges at the highest temperature, and the high-
temperature expansion predicts that 2Aζ − J (Q) vanishes at a critical
temperature determined by

kBTN 	 1
3J(J + 1)J (Q)

[
1 − 4

5 (J − 1
2 )(J + 3

2 )B0
2/kBTN

]
. (2.1.31)

Just below this temperature, only the component σζ at the wave-vector
Q is non-zero and, from the free energy expansion (2.1.24), ∂f/∂σζ = 0
determines the relative magnetization as

σζ(Q) = σQ =
(
J (Q) − 2Aζ

3J2Bζζ

)1/2

. (2.1.32)

The free energy is independent of the phase ϕ = ϕζ , so we set ϕ = 0. If
we add another Fourier component with q �= ±Q:

〈Jiζ〉 = JσQ cos (Q ·Ri) + Jσq cos (q ·Ri + ϕ′) (2.1.33)

then, if mQ ± nq is different from a reciprocal lattice vector, where m
and n are integers and m+ n = ±4, the free energy is

f = 1
4J

2
[
{2Aζ − J (Q)}σ2

Q + {2Aζ − J (q)}σ2
q

]
+ 1

8J
4Bζζ

[
3σ4

Q + 3σ4
q

+ 12σ2
Qσ

2
q + 4σ3

Qσqδq,±3Q cosϕ′ + 4σQσ
3
qδ3q,±Q cos 3ϕ′].

(2.1.34)
This result shows that, if q = 3Q or q = 1

3Q, there is an extra fourth-
order contribution to the free energy (q → −q represents the same
structure with ϕ′ → −ϕ′). Of these two special cases, the one where
q = 3Q is the most interesting, because the extra term is linear in σ3Q.
This means that the third harmonic appears simultaneously with the
basic Fourier component at Q. Minimizing the free energy given by
(2.1.34), we find

σ3Q =
J2Bζζ

J (Q) − J (3Q)
σ3
Q ; ϕ′ = ϕ+ π, (2.1.35a)
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neglecting a term proportional to σ2
Q in the denominator. The 3Q-

component is thus proportional to σ3
Q, and hence to (TN − T )3/2. De-

noting the wave-vector at which J (q) has its maximum by Q0, we con-
clude that the appearance of the third harmonic implies that f has its
minimum at a value of Q slightly different from Q0. Minimizing the free
energy with respect to Q along the c-axis, by requiring ∂f/∂Q = 0, we
obtain to leading order

Q = Q0 − 3
J ′(3Q0)
J ′′(Q0)

(
σ3Q

σQ

)2

. (2.1.35b)

J ′′(Q0) is negative, so the shift Q− Q0 has the same sign as J ′(3Q0)
and is proportional to (TN − T )2. The other special case, 3q = Q, re-
flects the possibility that, if J (Q0/3) is close to J (Q0), the system may
reduce its energy by making a first order transition to a state where
Q 	 Q0/3 is the fundamental wave-vector, with the third harmonic be-
ing close to Q0. The presence of a term in the free energy cubic in the
order parameter, σQ/3 in this case, implies that the transition becomes
of first order, so that the order parameter changes discontinuously from
zero to a finite value. The Q0/3-transition appears to be of no impor-
tance in real systems, so we shall return to the discussion of the other
case. If the free energy is expanded to higher (even) powers in the rel-
ative magnetization, it is clear that the (2n+ 2)-power term leads to a
contribution proportional to σ(2n+1)Qσ

2n+1
Q which, in combination with

the term quadratic in σ(2n+1)Q, implies that the ordering at the fun-
damental wave-vector Q induces a (2n + 1)-harmonic proportional to
σ2n+1
Q ∝ (TN − T )(2n+1)/2. Starting as a pure sinusoidally modulated

wave at TN , the moments approach the square wave

〈Jiζ〉 =
4J
π

(
cosx− 1

3 cos 3x+ 1
5 cos 5x− 1

7 cos 7x+ · · ·
)
x=Q·Ri+ϕ

,

(2.1.36a)
in the limit of zero temperature where 〈Jiζ〉 = ±J , neglecting strong
anisotropy effects. Although the behaviour of the angular momentum
is simple, the dependence of the free energy on the wave-vector is com-
plicated. It is only when the ordering is incommensurable, i.e. mQ is
different from any multiple of the length 4π/c of the reciprocal-lattice
vector along the c-axis, that the energy of the square-wave structure at
T = 0 is

f(0) = 〈Hcf〉 −
4J2

π2

{
J (Q) + 1

9J (3Q) + 1
25J (5Q) + · · ·

}
. (2.1.36b)

An infinitesimal change of the ordering wave-vector from Q, which min-
imizes f(0), to Qc may make it commensurable with the lattice, so that
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mQc = p(4π/c) and additional umklapp terms contribute to the free
energy. Again these contributions depend on the absolute phase ϕ, and
there will always be values of Qc close to Q leading to a lower free energy
than that obtained in the incommensurable case. In the low-temperature
limit, the modulation of the c-axis moment is therefore locked to the
lattice periodicity. This tendency is already apparent close to TN . In
the expansion of the free energy considered above for m = 4, umklapp
terms modify the fourth-power coefficient, and analogous effects occur in
higher powers of the magnetization. This indicates that the system may
stay commensurable even near TN although, in the close neighbourhood
of TN , the critical fluctuations neglected here may oppose this tendency.
The optimal value of Qc may change as a function of temperature, in
which case the system will exhibit a number of first-order, or possibly
continuous, transitions from one commensurable structure to another.
Of these structures, those for which Qc = 3Qc = 5Qc = · · ·, i.e. Qc = 0
or 2π/c, are particularly stable, as they only involve one wave-vector,
so that f(0) = 〈Hcf〉 − 1

2J
2J (Qc) (in this connection, we note that

1 + 1
9 + 1

25 + · · · = π2/8). The anisotropic Ising-model with competing
interactions, the so-called ANNNI model, is a simplified version of the
above, and it shows a rich variety of different incommensurable, com-
mensurable, and chaotic ordered structures as a function of temperature
and the coupling parameters (Bak 1982).

2.1.5 Competing interactions and structures
The complex behaviour of the longitudinally ordered phase is a conse-
quence of the competition between the single-ion part of the free energy,
which favours a structure in which the magnitude of the moments varies
as little as possible, particularly at low temperature, and the two-ion
contributions, which prefer a single-Q ordering. When B0

2 is positive,
helical ordering satisfies both tendencies without conflict. This points
to another alternative which the longitudinal system may choose. Al-
though χζζ(Q) decreases below TN , the two perpendicular components
continue to increase, and they may therefore diverge at a lower temper-
ature T ′

N . Assuming the expansion (2.1.24) of the free energy still to be
valid at T ′

N , and neglecting the third and higher harmonics of 〈Jiζ〉, we
may write it:

f = f(σQ)+1
4J

2
∑

α=ξ,η

[
2Aξ − J (Q) +Bξζ(JσQ)2{2 + cos 2(ϕα − ϕ)}

]
σ2

α

+1
8J

4Bξξ

[
3σ4

ξ + 3σ4
η + 2{2 + cos 2(ϕξ − ϕη)}σ2

ξσ
2
η

]
. (2.1.37)

The effective coefficient of σ2
α (α = ξ or η) is smallest when ϕα = ϕ± π

2 ,
meaning that the basal-plane moments appearing just below T ′

N , where
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this coefficient vanishes, are locked to be out of phase by 90◦ with the
c-axis component. This phase difference arises because the transverse
MF susceptibility χ o

ξξ for the single sites increases as the c-axis exchange
field falls. Using the estimate (2.1.21b) for the B-tensor, and the high-
temperature value for Aξ, we find the transition temperature to be

kBT
′
N 	 1

3J(J + 1)J (Q)
[
1 + 2

5 (J − 1
2 )(J + 3

2 )B0
2/kBT

′
N

− 3
20{1 + 1

2 (J + 1)−2}σ2
Q

]
.

(2.1.38)

A slightly better estimate may be obtained by calculating the MF value
of the transverse susceptibility directly, in the presence of a non-zero
exchange field, which just causes the replacement of σQ in (2.1.38) by
3σQJ (Q)/[J(J + 1)kBT

′
N ] (Miwa and Yosida 1961). However, both re-

sults are based on the high-temperature expansion, which ceases to be
valid at low temperatures. In the zero-temperature limit, χ o

ξξ of the ith
site remains finite, being of the order J/heff

iζ . This saturation implies
that the transition does not necessarily occur. If the c-axis is favoured
too strongly by the anisotropy terms, the basal-plane components re-
main disordered at low temperatures, as is observed in Tm. When the
basal-plane moments order, as in Er, eqn (2.1.38) may give a reasonable
estimate of the transition temperature. As mentioned previously, the
modulation of the basal-plane moments, just below T ′

N , is locked at 90◦

out of phase with that of the c-axis component. Since this applies to
both components, only a linearly-polarized moment can develop at the
transition temperature, with a relative magnitude σ⊥ = (σ2

ξ + σ2
η)1/2,

in a specified but arbitrary direction in the plane. If the sixth-power
terms are included in the free energy, B6

6 favours either the a- or the
b-directions, but there are still six equivalent but different directions of
the moments in the basal plane with equal energies. To be specific, we
may assume that B6

6 is negative and that the ordered moments in the
basal plane establish themselves along the ξ-axis. In this case, the mo-
ments all lie in the ξ–ζ plane in an elliptic cycloidal structure. Displaced
to a common origin, the hodograph of the moments is an ellipse, with
its principal axes along the ξ- and ζ-axes, as is illustrated, in connection
with our discussion of Er, in Fig. 2.6 on page 120. The c-axis moments
will still show a strong tendency towards squaring up with decreasing
temperature, as long as they are large compared with the basal-plane
moments. Because of the phase-locking between the components, the
higher odd-harmonics in the modulation of the c-axis moments will also
be reflected in the basal-plane.

At high temperatures, B0
2 is the dominant anisotropy parameter,

and its sign determines whether the system orders in a helically or lon-
gitudinally polarized structure, when Q0 is along the c-axis. If B0

2 is still
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the most important axial-anisotropy parameter in the low-temperature
limit, the helix is still a stable structure at T = 0 whereas, in the lon-
gitudinally polarized case, the tendency to minimize the variation of
the lengths of the moments may result in two different paths. Either
the system stays in the longitudinally polarized phase, ending up as a
(commensurable) square-wave structure at T = 0, or it goes through
a transition to an elliptic cycloidal structure. The path which is cho-
sen depends on the magnitude of B0

2 ; if the effective axial anisotropy
−B0

2〈O0
2〉 is sufficiently large, the ordering of the basal-plane moments

is quenched. It has already been mentioned in Section 1.5 that this
anisotropy depends on the magnetization, being proportional approxi-
mately to σ3. We shall discuss this renormalization in more detail in
the next section, but it is worth mentioning here that this behaviour
of the effective anisotropy-parameter means that there is an intermedi-
ate range of B0

2 for which the system makes a transition to the elliptic
cycloidal structure, but leaves it again at a lower temperature, by re-
turning to the longitudinally polarized phase when −B0

2〈O0
2〉 becomes

large enough. When B0
4 and B0

6 are included, a more realistic situation
may occur, in which the low-temperature anisotropy favours an orienta-
tion of the moments making an angle θ with the c-axis, which is neither
0 or π/2 but some, temperature-dependent, intermediate value. In the
case of the helix, this means that there will be a critical temperature
T ′

N (below TN) where the effective axial anisotropy parameter vanishes,
and below which the c-axis moments are ordered. If the ordering wave-
vector for the c-axis component is the same as the helical wave-vector,
the structure adopted is the tilted helix. However the two-ion coupling
between the c-axis moments, J‖(q) with q ‖ c-axis, is not restricted
by any symmetry argument to be equal to the coupling between the
basal-plane moments, J⊥(q) = J (q) with its maximum at q = Q0.
If the maximum of J‖(q) lies at a q �= Q0, the c-component will or-
der at this wave-vector and not at Q0, as the extra energy gained by
the c-component by locking to the basal-plane moments is very small,
being proportional to {B6

6〈O6
6〉/(Jσ)2J (Q)}2. When B0

2 is negative, a
non-zero value of θ favours the elliptic cycloidal structure, compared to
the longitudinally polarized phase. If the system is already in the cy-
cloidal phase, it may undergo a new second-order transition, in which
the plane of the ellipse starts to tilt away from the ξ–ζ plane, in close
correspondence with the behaviour of the helix. Referring back to eqn
(2.1.37), we observe that this transition occurs when the coefficient of
σ2

η, with ϕη = ϕ (+π) = ϕξ ± π/2, becomes zero. The phase-locking en-
ergy, comprising the terms in (2.1.37) involving ϕη, is more important in
this case than in the helix, but it is nevertheless possible that the third
component may order at a wave-vector different from that of the other
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two. If the η-component is locked at the same wave-vector as the two
other components, and if the ellipse is tilted just such an amount that
ση = σξ, the structure is a helix superimposed on a modulated c-axis
moment. If a transition to the tilted cycloidal structure has occurred,
and the hexagonal anisotropy is small, it might be favourable for the
system at a lower temperature to pass directly, via a first-order transi-
tion, to this helical structure in which the c-axis component is no longer
phase-locked to the basal-plane moments.

Instead of basing our analysis on the Hamiltonian (2.1.1), we may
use symmetry arguments for deriving the most general behaviour of the
magnetic ordering in hcp crystals. We have already indicated that J‖(q)
may differ from J⊥(q) and mentioned some of the consequences. The
assumption that the c-axis is effectively a six-fold axis of the lattice leads
to the strong restriction that the expansion of the free energy, (2.1.22) or
(2.1.24), only involves even powers of each of the Cartesian components,
when q is along this axis. This has the consequence, for example, that
all the main transitions, at TN or T ′

N , are predicted to be of second
order, excluding those involving changes of the same component, i.e.
transitions between different commensurable structures. However, there
are two-ion terms which reflect the fact that the c-axis is only a three-fold
axis. The term of lowest rank has the form

H3(i ∈ s’th plane) = (−1)sK3

[
(Jiζ − 1

2 〈Jiζ〉)
〈
O−3

3 (Js+1) −O−3
3 (Js−1)

〉
+(O−3

3 (Ji) − 1
2 〈O

−3
3 (Ji)〉)

〈
Js+1,ζ − Js−1,ζ

〉]
, (2.1.39)

in the MF approximation, where only interactions between neighbouring
planes are included. O−3

3 = (J3
+ − J3

−)/2i, and Js±1 denotes a moment
in the (s±1)th plane. The contribution of this coupling to the expansion
(2.1.22) of the free energy to the fourth power is found by adding

∑
i〈H3〉

to F , using the approximation 〈O−3
3 (Ji)〉 ∝ 〈Jiη〉(3〈Jiξ〉2 − 〈Jiη〉2) =

〈J⊥〉3 sin 3φi. One remarkable effect is that this coupling introduces a
term linear in 〈Jiζ〉 in the helix. If the basal-plane moments are ordered
with the wave-vector Q, they induce a c-axis moment modulated with
a wave-vector along the c-axis of length 2π/c − 3Q, provided that 6Q
is not a reciprocal lattice vector. In the elliptic cycloidal structure, this
coupling induces an ordering of the η-component at the two wave-vectors
of length 2π/c−Q and 2π/c− 3Q, when the ellipse is assumed to lie in
the ξ–ζ plane and only the fundamental at Q is considered. Although
this additional coupling may not change the nature of the transitions at
TN or T ′

N , it has qualitative consequences for the magnetic structures,
and it may introduce new effects associated with commensurability. For
instance, the three-fold symmetrical interaction will favour the commen-
surable structure with Q = π/2c (an average turn angle of 45◦). In the



2.1 MEAN-FIELD THEORY OF MAGNETIC ORDERING 89

case of a helix with this particular period, the coupling induces a modu-
lation of the c-axis moments with the same wave-vector, 2π/c−3Q = Q,
causing a tilting of the plane of the helix.

2.1.6 Multiply periodic structures
We have so far only considered order parameters which are specified by
two Q-vectors (±Q), or one Q plus a phase. This is a consequence of
the assumption that Q is along the c-axis. If Q is in the basal-plane,
as in the light rare earths Pr and Nd, there are six equivalent ordering
wave-vectors, ±Q1, ±Q2, and ±Q3, where the three vectors make an
angle of 120◦ with each other. This leads to the possibility that the
ordered structure is a multiple-Q structure, where

〈Ji〉 = J1 cos (Q1 ·Ri + ϕ1)+J2 cos (Q2 ·Ri + ϕ2)+J3 cos (Q3 ·Ri + ϕ3)
(2.1.40)

referred to as single-, double-, or triple-Q ordering, depending on the
number of vectors Jp which are non-zero. The transition at TN will
generally involve only a single real vector Jp for each Qp, as implic-
itly assumed in (2.1.40). We will not therefore consider multiple-Q cy-
cloidal/helical structures, but restrict the discussion to configurations
which correspond to the type observed in Pr or Nd. We furthermore
neglect the complications due to the occurrence of different sublattices
in the dhcp crystals, by assuming the lattice to be primitive hexagonal.
This simplification does not affect the description of the main features
of the magnetic structures. On the hexagonal sites of Pr and Nd, the
ordered moments below TN lie in the basal plane. This confinement is
not primarily determined by the sign of B0

2 , but is decisively influenced
by the anisotropic two-ion coupling

Han = 1

2

∑
ij

K(ij)
[
(JiξJjξ −JiηJjη) cos 2φij +(JiξJjη +JiηJjξ) sin 2φij

]
,

(2.1.41)
where φij is the angle between the ξ-axis and the projection of Ri −Rj

on the basal plane. This anisotropic coupling, which includes a minor
contribution from the classical dipole–dipole interaction, is known from
the excitation spectrum to be of the same order of magnitude as the
isotropic coupling in Pr, as we shall discuss in Chapter 7, and must
be of comparable importance in Nd. We define the coupling parameter
K(q) = K0(q) + K6(q) cos 6ψq, where ψq is the angle between q (in the
basal plane) and the ξ-axis, and K0(q)±K6(q) is the Fourier transform
of ±K(ij) cos 2φij when q is respectively parallel or perpendicular to
the ξ-axis. Introducing Jp = Jσp, and assuming the moments to be
perpendicular to the c-axis, we find the mean-field free energy of second
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order in σp to be

f2(σp) = 1
4J

2
∑

p

[
{2Aξ − J (Qp)}σ2

p + K(Qp){2(σp ·Q̂p)2 − σ2
p}
]
,

(2.1.42)
where Q̂p = Qp/Qp. In Pr and Nd, the maximum of J (q) ± K(q) is
found at q = Q along the η-axis, or the other equivalent b-axes, with Q
being about one fourth of the distance to the Brillouin-zone boundary,
and K(Q) is negative. The transition between the paramagnetic phase
and a phase described by (2.1.40), with Jp lying in the hexagonal plane,
then occurs when the coefficient 2Aξ −J (Q)+K(Q) vanishes, at which
temperature the corresponding factor for the c-component of the mo-
ments, 2Aζ −J (Q), is still positive in Pr and Nd. Besides confining the
moments to the hexagonal planes, K(Q) also removes the degeneracy
between the two states in which Jp is parallel or perpendicular to Qp.
With a negative K(Q), the anisotropic coupling favours a longitudinal
ordering of the moments at TN , with Jp parallel to Qp. Just below TN ,
the magnitude of the ordered moments is determined by f2(σp), together
with the fourth-order contributions. When the moments lie in the basal
plane (B = Bξξ = Bηη = Bξη), we obtain, from eqn (2.1.22),

f4(σp) = B
1

N

∑
i

(
〈Ji〉 · 〈Ji〉

)2
= BJ4

[
3
8

∑
p

σ4
p + 1

4

∑
p�=p′

{
σ2

pσ
2
p′ + 2(σp ·σp′)2

}]
.

(2.1.43)

Introducing the effective order parameter σ, defined by σ2 =
∑

p σ
2
p, we

obtain further:

f 	 f2(σp)+f4(σp) = 1
4J

2
{
2Aξ−J (Q)+K(Q)

}
σ2+ 3

8J
4B σ4, (2.1.44)

assuming Jp parallel to Qp along the three b-axes making an angle of
120◦ with each other (Q̂p · Q̂p′ = −1/2 when p �= p′). Hence the free
energy, in this approximation, is independent of whether the ordering is
single-, double- or triple-Q. Instead of utilizing (2.1.22), we may appeal
to symmetry arguments, by which the fourth-order term may readily be
seen to have the general form

f4(σp) = u
∑

p

σ4
p + 1

2v
∑
p�=p′

σ2
pσ

2
p′ , (2.1.45a)

as long as the angles between the different σp vectors remain at 120◦

(Bak and Lebech 1978). Introducing the parameter w ≡ v−2u, we may
write this:

f4(σp) = u
(∑

p

σ2
p

)2 + 1
2w

∑
p�=p′

σ2
pσ

2
p′ = (u+ γw)σ4, (2.1.45b)
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where γ = 0, 1/4, or 1/3 respectively, in a single-, double-, or triple-
Q structure. If only an isotropic two-ion coupling and the crystal-field
terms are included, 2u = v or w = 0, and the different multiple-Q
structures are degenerate to the fourth power of the order parameter.
This situation is not changed by the anisotropic dipole coupling K(q)
introduced above (as long as σp is parallel to Qp). However, two-ion
quadrupole couplings may remove the degeneracy. For example, the
coupling K2(ij)J2

i+J
2
j− makes a contribution proportional to

w ∼ 3K2(0) + K2(2Q) − 2K2(Q) − 2K2(Q1 − Q2). (2.1.46)

Depending on the detailed q-dependence of this coupling, it may lead
to a positive or a negative contribution to w. If w is positive, the single-
Q structure is stable, and conversely a negative w leads to a triple-Q
structure just below TN . The Landau expansion for this case has been
discussed by Forgan (1982), Walker and McEwen (1983) and McEwen
and Walker (1986), who all take the possible contributions to w as being
of magnetoelastic origin. In Pr, the dominating magnetoelastic interac-
tion is known to be due to the γ-strain coupling, and a rough estimate
(including both the uniform and modulated γ-strain) indicates that v
is unaffected, whereas the reduction of u proportional to B2

γ2/cγ , with
the parameters of (1.5.27), is about 10%, corresponding to a positive
contribution to w of about 0.2u, or to an energy difference between the
single- and double-Q structures of ∼ 0.05uσ4. If the other quadrupolar
contributions are unimportant, as is indicated by the behaviour of the
excitations in Pr (Houmann et al. 1979), we should expect the single-Q
structure to be favoured in Pr and Nd, at least close to TN .

If w is relatively small, the single- or triple-Q structures may only be
stable in a narrow temperature range below TN , because the sixth-order
contributions may assume a decisive influence. A number of new effects
appear in this order, but the most important stems from the possibility
that the moments and the wave-vectors may rotate away from the b-
directions, as first considered by Forgan (1982). The (σp ·σp′)2-term in
(2.1.43) may drive such a rotation, because it favours an orthogonal con-
figuration of the different σp vectors, since B is positive. This term does
not appear in the single-Q structure, whereas in the triple-Q case, f4(σp)
is reduced quadratically with θp, where θp is the angle between Jp and
the nearest b-direction. However, the much larger quadratic increase of
f2(σp), due to K(Q), will eliminate any tendency for θp to become non-
zero. In contrast, f4(σp) depends linearly on θp in the double-Q struc-
ture, and the free energy can always be reduced by allowing the two com-
ponents σ1 and σ2 (with σ3 = 0) to rotate towards each other. Defining
J6(Q) equivalently to K6(Q), i.e. J (Q) = J0(Q) + J6(Q) cos 6ψQ, and
using the constraint that the change of ψQ for the pth component must
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have the same sign as θp, we may write the angular-dependent part of
the free energy, to the fourth power of the magnetization, as

f(θ, ψ) = 1
4J

2
[
− J6(Q) + K6(Q) cos 2(θ − ψ)

]
× {σ2

1 cos(π + 6ψ) + σ2
2 cos(5π − 6ψ)}

+1
4J

2K0(Q)(σ2
1 + σ2

2) cos 2(θ − ψ) +BJ4σ2
1σ

2
2 cos2(2π/3 − 2θ).

(2.1.47a)
For definiteness, we have chosen the case where the angle between the
ξ-axis and σ1 or σ2 is respectively π/6 + θ and 5π/6− θ (by symmetry
θ = θ1 = −θ2). Analogously to θ, ψ is the angle between Qp and the
nearest b-axis. Introducing σ2 = 2σ2

1 = 2σ2
2 , and expanding f(θ, ψ) to

second order in the small angles, we obtain

f(θ, ψ) = f0 − 9
2 (Jσ)2{J6(Q) −K6(Q)}ψ2 − 1

2 (Jσ)2K(Q)(θ − ψ)2

− 1
4 (Jσ)4B(

√
3θ − 2θ2). (2.1.47b)

We note that, with the chosen sign conventions, K(Q) = K0(Q)−K6(Q)
and J6(Q) − K6(Q) are both negative. The additional contribution to
the free energy of the double-Q structure is minimized when

θ =
√

3B(Jσ)2

4|K(Q)| + ψ ; ψ =
√

3B(Jσ)2

36|J6(Q) −K6(Q)| , (2.1.48a)

neglecting the small term proportional to Bθ2, in which case

∆f = − 3
32B

2(Jσ)6
(

− 1

K(Q)
− 1

9

1

J6(Q) −K6(Q)

)
. (2.1.48b)

Introducing A = Aξ(T = TN), i.e. J (Q) − K(Q) = 2A, then for Pr we
have: K(Q) 	 −0.24A, J6(Q) − K6(Q) 	 −0.05A, and BJ2 	 0.35A.
These values may also provide a reasonable estimate in the case of Nd.
Inserting them in (2.1.48), we find that θ 	 3ψ 	 1.0σ2, and ∆f 	
−0.2BJ4σ6 	 −0.5uσ6. So, even though ∆f is of sixth order in σ,
it outweighs the small fourth-order energy difference of wσ4/4 between
the single- and the double-Q structure when σ2 ≈ 0.1, if w 	 0.2u as
estimated above. The temperature T ′

N at which this occurs is ∼ 0.97 TN ,
i.e. ∼ 0.9K below TN in Nd. Hence, if w is positive and has the estimated
small magnitude, the system will first undergo a second-order transition
from the paramagnetic phase to a single-Q structure, which will only
be stable as long as σ2 is small. At T ′

N , slightly below TN , the system
will make a first-order transition to a double-Q structure, in which the
moments J1 and J2 are rotated slightly towards each other and away
from the symmetry axes, as also are the ordering wave-vectors Q1 and
Q2. These rotations are proportional to σ2.
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The explicitly sixth-order contribution to the free energy, propor-
tional to (1/N)

∑
i(〈Ji〉·〈Ji〉)3, is somewhat smaller than the estimated

value of ∆f , and it leads to energy differences between the different
multiple-Q structures which are a further order of magnitude smaller.
The hexagonal-anisotropy term, which also appears in this order, is
minute compared to the anisotropy introduced by K(Q) in Pr and Nd,
and its influence on the turn angles ψ and θ should be negligible. The
only other new effect in this order is the appearance of higher harmon-
ics. The mechanism is identical to that discussed in Section 2.1.4 for
the longitudinally-polarized phase, but in addition to the occurrence of
third harmonics at the wave-vectors 3Qp, equivalently to (2.1.35a), they
also appear at all possible combinations of 2Qp ± Qp′ (p �= p′) in the
multiple-Q structures. In the triple-Q structure, one might expect third
harmonics also at Q1±Q2±Q3, but the new wave-vectors derived from
this condition are either 0, which changes the symmetry class of the
system, or twice one of the fundamental wave-vectors, which are ener-
getically unfavourable because they do not contribute to the ‘squaring
up’. These extra possibilities in the triple-Q case are not therefore real-
ized. The appearance of the higher ‘odd’ harmonics is not important for
the energy differences between the different multiple-Q structures, but
they may provide an experimental method for differentiating between
the various possibilities (Forgan et al. 1989). In a neutron-diffraction
experiment, the scattering intensity at the fundamental wave-vectors in
a multi-domain single-Q structure, with an equal distribution of the
domains, is the same as that produced by a triple-Q structure. These
structures may then be distinguished either by removing some of the
domains by applying an external field, or by using scattering peaks at,
for instance, 2Q1±Q2 to exclude the possibility of a single-Q structure.

The discussion of this section has been based exclusively on the MF
approximation, which neglects the important dynamical feature that a
system close to a second-order phase-transition will show strong corre-
lated fluctuations in the components which order at the transition. A
discussion of the effects of the critical fluctuations is beyond the scope
of this book, and we refer instead to the recent introduction to the field
by Collins (1989), in which references may be found to the copious lit-
erature on the subject. Although the MF approximation does not take
into account the contributions to the free energy from the critical fluctua-
tions, it gives a reasonable estimate of the transition temperatures in the
rare earth metals, which can all be characterized as three-dimensional
systems with long-range interactions. The fluctuations contribute to
the free energy on both sides of the transition, and they only suppress
the transition temperature by a few per cent in such systems. The
Landau expansion considered above does not predict the right critical
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exponents, but it is nevertheless decisive for which universality classes
the phase transitions belong to. The transitions which are predicted to
be continuous by the MF theory, i.e. all those considered above which
are not accompanied by a change of Q to a commensurable value, may
be driven into (weak) first-order behaviour by the fluctuations. An im-
portant parameter for determining the nature of the phase transition is
the product (n) of the number of components of the order parameter,
and of the star of the wave-vector (Mukamel and Krinsky 1976; Bak
and Mukamel 1976), the latter being two, corresponding to ±Q, for the
periodically-ordered heavy rare earths. If n ≤ 3, the transition is ex-
pected to remain continuous, which is in accord with the observation by
Habenschuss et al. (1974) of a second-order transition in Er, since n = 2
for the transition between the paramagnetic and the longitudinally or-
dered phase. The transition from the paramagnet to the helix is less
clear-cut, since it belongs to the class n = 4, and a theoretical analysis
by Barak and Walker (1982) suggested that it might be discontinuous.
The bulk of the experimental evidence points towards a continuous tran-
sition (Brits and du Plessis 1988) but some measurements, especially by
Zochowski et al. (1986) on pure Dy, indicate a very weak discontinuity.
In the case of the multiple-Q structures, the fluctuations may drive the
transition to the single-Q structure to be discontinuous, whereas that to
the triple-Q structure, if it is stable, should stay continuous (Bak and
Lebech 1978). In Nd, for example, a single-Q state is formed at TN

and the transition is found to be weakly discontinuous (Zochowski and
McEwen 1986). In accordance with the MF analysis above, a first-order
transition leads to a double-Q structure less than a degree below TN

(McEwen et al. 1985).

2.2 The magnetic anisotropy

In this section, we shall discuss the thermal expectation-values of the
Stevens operators of the single ions when their moments are non-zero,
so that |〈Ji〉| = σJ . We shall then consider the contribution which
the single-ion terms in the Hamiltonian make to the free energy, and
thereby derive the relationship between the microscopic parameters and
the macroscopic magnetic-anisotropy and magnetoelastic coefficients.

2.2.1 Temperature dependence of the Stevens operators
In a ferromagnet, the Zener power-law (1.5.15) for the expectation values
of the Stevens operators is valid only at the lowest temperatures. Callen
and Callen (1960, 1965) have derived 〈Om

l 〉 in exchange-dominated sys-
tems and obtained results which are useful over a much wider temper-
ature range than the Zener expression. They begin with the density
matrix for a single site in the MF approximation, including only the
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exchange and Zeeman energies,

ρMF(x) = 1

Z
exp(xJz/J) ; x = β{J (0)J2σ + gµBJH}, (2.2.1)

where σ = M/M0 is the relative magnetization, the direction of which
is assumed to be parallel to the field. In this case the nth moment of Jz

is determined as

σn = 〈(Jz/J)n〉 = 1

Z

J∑
p=−J

( p
J

)nexp(xp/J). (2.2.2)

This equation offers the possibility of relating the higher moments σn to
the first moment, which is the relative magnetization σ1 = σ, without
referring explicitly to the MF value of x in eqn (2.2.1). According to the
analysis of Callen and Shtrikman (1965), the functional dependence of
σn on σ has a wider regime of validity than the MF approximation, be-
cause it only utilizes the exponential form of the density matrix, which
is still valid when correlation effects are included in the random-phase
approximation, where the excitations are collective spin-waves, as we
shall discuss in Section 3.5. Furthermore, they found that the functions
σn = σn(σ); n ≥ 2, derived from (2.2.2), only depend very weakly on the
actual value of J , and for increasing values these functions rapidly con-
verge towards the results obtained in the limit of infinite J (Callen and
Callen 1965). In this limit, the sums in (2.2.2) are replaced by integrals,
and the reduced diagonal matrix-elements of the Stevens operators are

(1/J (l)) <Jz = p |Om
l | Jz = p>

∣∣
J→∞ = δm0clPl(u = p/J), (2.2.3)

where the J (l) are defined by eqn (1.5.25), Pl(u) are the Legendre poly-
nomials, and cl are constants. Multiplying the terms in the sum in
(2.2.2) by ∆p = J∆u = 1, and then taking the limit J → ∞, we obtain

1
clJ

(l)
〈O0

l 〉 =
∫ 1

−1

Pl(u)exudu

/∫ 1

−1

exudu = Il+ 1
2
(x)

/
I 1

2
(x) = Îl+ 1

2
(x).

(2.2.4)
Îl+ 1

2
(x) is the usual shorthand notation for the ratio of Il+ 1

2
(x) to I 1

2
(x),

and the functions Il+ 1
2
(x) = (−i)l+ 1

2Jl+ 1
2
(ix) are the modified spherical

(or hyperbolic) Bessel functions. The relative magnetization

σ = Î 3
2
(x) = cothx− 1

x

is the familiar Langevin function L(x) and, eliminating x in (2.2.4) by
writing x = L−1(σ), we finally arrive at

〈Om
l (σ)〉 = δm0clJ

(l)Îl+ 1
2
[σ] with Îl+ 1

2
[σ] = Îl+ 1

2

(
L−1(σ)

)
,

(2.2.5)
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for the thermal average of the Stevens operators as functions of σ =
σ(T,H), where c2 = 2, c4 = 8, and c6 = 16. This result has turned out
to be very useful for analysing the variation of the magnetic anisotropies
and the magnetoelastic strains with temperature and magnetic field. In
order to take full advantage of the theory, σ in eqn (2.2.5) is usually
taken as the experimental value. If this is not available, it is a bet-
ter approximation to use the correct MF value for it, rather than the
Langevin-function, i.e. σ = BJ (x) where BJ (x) is the Brillouin func-
tion (1.2.31), determined directly from (2.2.2), because the actual value
of J has some influence on the magnitude of σ. This is particularly
true for the change of σ with magnetic field. In the limit of infinite J ,
∂σ/∂(JH) 	 (1 − σ)gµB/(J

2J (0)) at low temperatures, which is just
a factor of three smaller than the MF value for J = 6, which agrees
reasonably well with experiments on Tb.

The functions Îl+ 1
2
(x), for l = 2, 3, · · · are most easily calculated

from the recurrence relation

Îl+ 3
2
(x) = Îl− 1

2
(x) − 2l + 1

x
Îl+ 1

2
(x). (2.2.6)

At low temperatures, where x� 1 and σ 	 1− 1
x , it may easily be shown

from (2.2.6) that Îl+ 1
2
[σ] 	 σl(l+1)/2 (differences appear only in the third

order of m = 1−σ). Hence the result (2.2.5) of the Callen–Callen theory
agrees with the Zener power-law in the low-temperature limit. With
increasing temperature, as x becomes comparable to 1, the exponential
terms in the expansion of σ 	 1 − 1

x + 2exp(−2x) + · · ·, which have no
counterpart in the classical Zener power-law, start to be important. In
Chapter 5, we shall develop a detailed description of the excitations in
the ferromagnet, the spin-waves. The thermal population of the spin-
wave states is described by Bose statistics, assuming the availability of
an infinite number of states of the single angular-momentum operators.
The spin-wave theory reproduces the result of the Callen–Callen theory,
in an expansion in powers of m = 1 − σ, but only if the exponential
corrections above are negligible. The appearance of these terms at high
temperatures signals the breakdown of the Bose approximation for the
spin-wave excitations, which occurs because the actual number of states
is not unlimited. As would be anticipated, this limitation in the number
of states (or bandwidth if J is infinite) begins to be effective when the
population of the uppermost level, which in the MF approximation is
just proportional to exp(−2x), becomes significant. In the limit of a
small relative magnetization, where x� 1, the Zener power-law and the
spin-wave theory are both inadequate, whereas the Callen–Callen theory
may still be applicable. In this limit, we may use the approximation

Îl+ 1
2
[σ] =

3l

(2l+ 1)!!
σl ; σ � 1. (2.2.7)
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One of the advantages of the Callen–Callen theory is that the results
only depend on the one parameter σ, but not explicitly on the Hamil-
tonian. The relative magnetization may then be determined either by
experiment, or by MF or more accurate theories, which result in a σ
which depends on the actual Hamiltonian employed. The simplicity of
this result may be impaired if the magnetic anisotropy of the system is
substantial, so that the exchange interaction is no longer the dominant
term in the density matrix. We shall be mostly concerned with the ap-
plicability of the theory at low temperatures, and the introduction of an
axial-anisotropy term, such as B0

2O
0
2(Ji), is not inimical to the theory

in this regime, provided that the magnetization is along the anisotropy
c-axis, i.e. if B0

2 is negative. Since only the lowest states are important
at low temperatures and, in the MF approximation, these are still rea-
sonably well accounted for by the density matrix in eqn (2.2.1), only the
value of x is changed, with no direct consequences for the result. There
are however noticeable effects if the anisotropy destroys the rotational
symmetry about the magnetization axis. This is the case if B0

2 is positive
and forces the moments to lie in the basal plane, so that it requires a
magnetic field to pull them out of it, whereas they may rotate much more
freely within the plane, since B6

6 is unimportant compared to the axial
anisotropy. As we shall discuss in detail in Chapter 5, the ground state
in this situation is no longer the fully-polarized state, the expectation
value of Jz is slightly smaller than J at zero temperature, and the lower
symmetry of the anisotropy field has direct consequences for the nature
of the elementary spin-wave excitations, and thus for the form of the
density matrix. The necessary modification of the Callen–Callen theory
may be developed in two ways. One is to analyse the influence of the
anisotropy on the low-temperature elementary excitations, and thereby
derive the density matrix, as is done in Chapter 5. The other approach
is numerical and involves the construction of a Hamiltonian which has
the right transition temperature and the correct anisotropy fields, in the
MF approximation. ρMF may then be calculated as a function of tem-
perature, and results corresponding to (2.2.5), relating the expectation
values of the various Stevens operators to the relative magnetization,
may be obtained numerically. By the same argumentation as that used
by Callen and Shtrikman (1965), these results may be expected to be
insensitive to the actual model Hamiltonian used for describing the sys-
tem. In the low temperature limit, the spin-wave theory supports this
point of view, as its results are described in terms of only two param-
eters. One is the relative magnetization σ, as before, while the other,
b̃ or η± = (1 ± b̃)(1 − 1

2 b̃
2), measures the eccentricity of the anisotropic

potential about the axis of magnetization.
In our discussion of the Callen–Callen theory, we have assumed
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that the quantization axis (z-axis), defining the Stevens operators, co-
incides with the direction of magnetization. We shall continue to use
this convention, but must then take account of the difficulty that the
crystal-field Hamiltonian in the hcp metals only has the simple form
of eqn (1.4.6b) if the quantization axis is chosen to be along the c- or
ζ-direction. In order to distinguish between the two systems, we shall
denote the Stevens operators in the Hamiltonian defined with respect
to the crystallographic axes, i.e. in the (ξ, η, ζ)-coordinate system, by
Qm

l (J). The direction of magnetization, the z-axis, is specified by the
polar angles (θ, φ) in the (ξ, η, ζ)-coordinate system, and we must intro-
duce the following transformation of the angular momentum operators
in Qm

l (J):

Jξ = Jz sin θ cosφ− Jx cos θ cosφ+ Jy sinφ
Jη = Jz sin θ sinφ− Jx cos θ sinφ− Jy cosφ
Jζ = Jz cos θ + Jx sin θ,

(2.2.8)

choosing the y-axis to lie in the basal-plane. By this transformation,
Qm

l is expressed as a linear combination of the Stevens operators Om′
l ,

with the same l but various m′-values. For instance, we have

Q0
2 = 3J2

ζ − J(J + 1)

= 3J2
z cos2 θ + 3J2

x sin2 θ + 3
2 (JzJx + JxJz) sin 2θ − J(J + 1)

= 1
2O

0
2(3 cos2 θ − 1) + 3

2O
2
2 sin2 θ + 3O1

2 sin 2θ.
(2.2.9)

Carrying out the same transformation on Q2
2 we find the following rela-

tions:
Q0

2 = 1
2 (−O0

2 + 3O2
2)

Q2
2 = 1

2 (O0
2 +O2

2) ; φ = pπ,
(2.2.10)

when the moment is in the basal-plane (θ = π/2). The expectation value
of Q2

2 is relevant for determining the γ-strain εγ1, as shown in (1.5.29).
According to the result (2.2.5) of Callen and Callen, 〈O2

2〉 should vanish,
but in a basal-plane ferromagnet this may not occur. The eccentricity
parameter mentioned above is just defined as

b̃ = 〈O2
2〉/〈O0

2〉, (2.2.11)

which is zero, by definition, only if the anisotropy is invariant with re-
spect to a rotation about the z-axis.

The numerical programme sketched above has been carried through
for a model corresponding to Tb. The effective basal-plane anisotropy
is about a factor of 10 smaller than the axial anisotropy, so that b̃ is
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about −0.03 at zero temperature. The negative sign of b̃ shows that the
fluctuations of the moments within the plane are larger than those out of
the plane, as measured respectively by 〈J2

y 〉 and 〈J2
x〉, since O2

2 = J2
x−J2

y .
In Fig. 2.2 the numerical results for 〈O0

2 ± O2
2〉/J (2) are compared with

the predictions of the Callen–Callen theory, and of the linear spin-wave
theory developed in Chapter 5, in which the MF values (5.3.23) of mo

and bo are used, instead of (5.3.18). The Callen–Callen theory predicts
that both thermal averages vary like Î5/2(σ), which is not consistent
with a b̃ different from zero. Furthermore, the effective power-laws in
the zero-temperature limit are changed from σ3 to 〈O0

2 − O2
2〉 ∝ σ2.65,

and 〈O0
2 +O2

2〉 ∝ σ3.3. The predictions of the spin-wave theory are con-
sistent with the numerical results at low temperatures, both with respect
to the absolute magnitude of the expectation values and to the effective
power-laws, and it appears to give a reasonably correct description of

Fig. 2.2. Calculations of the dependence of the expectation values
of the Stevens operators 〈O0

2 ± O2
2〉 on the relative magnetization in Tb.

The numerical calculations described in the text differ from the Callen–
Callen result Î5/2(σ), but agree at low temperatures with the predictions

of spin-wave theory.
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the system as long as σ is greater than about 0.8. The same picture holds
true for other combinations of Stevens operators, but the discrepancies
between the different theories are accentuated as the rank increases.
Figure 2.3 shows the example of 〈Q6

6〉. The absolute magnitude of this
quantity is reduced by nearly 40% in the zero-temperature limit, as
compared with the Callen–Callen theory, and the slope of the numerical
calculation, in the semi-logarithmic plot, changes with σ, leading to an
effective power-law depending on the interval over which it is measured.
In the zero-temperature limit, 〈Q6

6〉 is proportional to approximately
σ26, instead of the Callen–Callen result σ21.

Fig. 2.3. The dependence on the relative magnetization of the expec-
tation value of the Stevens operator 〈Q6

6〉, which determines the hexag-
onal magnetic anisotropy, in Tb. The numerical calculations and the
spin-wave theory both predict a large reduction in this quantity at low

temperatures, compared with the Callen–Callen theory.

The numerical results are expected to be sensitive to the magnitude
of the anisotropy, rather than to the actual parameters which determine
the anisotropy, and the spin-wave theory indicates that this expectation
is fulfilled, at least at low temperatures. However, in order to obtain
the right variation of the anisotropy fields with temperature, i.e. of b̃
compared to σ, it is necessary to select appropriate linear combinations
of Stevens operators of various ranks for the modelling of the different
anisotropy terms. At high temperatures, for instance, b̃ is determined
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by the low-rank terms alone, i.e. by B0
2 if anisotropic dipole–dipole cou-

pling is neglected. Using β = (kBT )−1 as an expansion parameter, and
assuming the magnetization to lie in the basal plane, we find, to leading
order in the crystal-field parameters introduced in eqn (1.4.6b),

〈Q2
2〉 = 3

5J
(2)σ2 J + 3

2

J + 1
	 J (2)Î5/2[σ], (2.2.12a)

using (2.2.7) and neglecting the small 1/J corrections, whereas

〈Q0
2〉 = −〈Q2

2〉 − 4
5J

(2)(J + 1)(J + 3
2 )βB0

2 , (2.2.12b)

which depends on the anisotropy, but only on the term of lowest rank.
Considering the field dependence of the two expectation values, as de-
termined by their dependence on σ, we observe that the Callen–Callen
theory leads to the right result in this high-temperature limit. The two
relations above explain the behaviour of 〈O0

2 ± O2
2〉 in Fig. 2.2, when σ

becomes small, as 〈O0
2 +O2

2〉/2J (2) should approach Î5/2(σ) at small val-
ues of σ, and go to zero at the transition temperature. 〈O0

2 −O2
2〉/2J (2),

on the other hand, should still be non-zero (about 0.23 as determined
by TN 	 229K and the value B0

2 = 0.18meV used in the model) when
TN is approached from below and σ vanishes.

2.2.2 Anisotropic contributions to the free energy
The anisotropy of a magnetic system is determined by those contribu-
tions to the free energy which depend on the polar angles (θ, φ), which
specify locally the direction of the moments. Restricting ourselves to
the case of a ferromagnet in a uniform field, we may expand the free
energy in terms of functions proportional to the spherical harmonics, as
in eqn (1.5.22). To relate this expansion to the Hamiltonian (2.1.1), we
may use (2.1.5), which states that any change in the free energy due to a
change of the angles is given by δF̃ =

〈
δH

〉
. The field is the independent

variable in F̃ but, as in (2.1.22), we wish the magnetization to be the in-
dependent variable. To obtain this free energy F (θ, φ), we subtract the
Zeeman energy, so that F (θ, φ) = F̃ − 〈HZ〉, where the field needed for
establishing the specified angles is determined from the equilibrium con-
dition δF̃ = 0. In the ferromagnet, the moments all point in the same
direction, and any contributions from the isotropic-exchange coupling
cancel out in δH. The free-energy function F (θ, φ) is thus determined
by

δF (θ, φ) =
〈
δ(Hcf + HZ)

〉
− δ

〈
HZ

〉
. (2.2.13)

Introducing the angle variables in the Hamiltonian by the transformation
(2.2.8), we find that the operators of rank l become angle-dependent
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linear combinations of the l-rank Stevens operators, which have their
polar axis along the z-axis defined by the direction of the moments. The
variational expression for the free energy then involves the calculation of
the expectation values of these Stevens operators. To leading order in the
crystal-field parameters, we may neglect the influence of the anisotropy
terms on the thermal averages in (2.2.13). This is the approximation
used by Callen and Callen, and we may utilize their result, eqn (2.2.5).
This has the consequence that, in the various linear combinations of
Stevens operators, only those terms in which m = 0 contribute to the
free energy, to leading order in the anisotropy parameters. From the
expansion (2.2.9) of Q0

2, we find the following result:〈
δ
(
Q0

2

)〉
	 〈O0

2〉δ
{ 1

2 (3 cos2 θ − 1)
}

and, repeating this calculation for the other operators, we have in general〈
δ
(
Q0

l

)〉
	 〈O0

l 〉δPl(cos θ) ;
〈
δ
(
Q6

6

)〉
	 1

16 〈O
0
6〉δ

{
sin6 θ cos 6φ

}
.

(2.2.14)
Because 〈Jx〉 = 〈Jy〉 = 0, the Zeeman terms in (2.2.13) cancel within
this approximation, and an integration of δF (θ, φ) leads to

F (θ, φ)/N 	 f0+
∑

l

B0
l 〈O0

l 〉Pl(cos θ)+ 1
16B

6
6〈O0

6〉 sin6 θ cos 6φ. (2.2.15)

Comparing this result with the free energy expression (1.5.22), and in-
troducing the anisotropy parameters κm

l (T ), we obtain to a first approx-
imation

κ0
l (T ) = clB

0
l J

(l)Îl+ 1
2
[σ] ; κ6

6(T ) = B6
6J

(6)Î13/2[σ], (2.2.16)

with σ = σ(T ), which leads to eqn (1.5.24) at zero temperature (σ = 1).
The equilibrium values of the angles in zero field are determined

by ∂F (θ, φ)/∂θ = ∂F (θ, φ)/∂φ = 0. In the above result for the free
energy, the φ-dependence is determined exclusively by B6

6 , the sign of
which then determines whether the a- or b-directions are the magneti-
cally easy or hard axes in the basal-plane (φ0 = pπ/3 or π/2 + pπ/3).
Because B6

6 is a sixth-rank coupling parameter, the importance of this
anisotropy decreases rapidly with the magnetization; Î13/2[σ] ∝ σ21 at
low temperatures, or σ6 when σ is small. The axial anisotropy derives
from all four parameters, and the equilibrium value θ0 is determined by
minimizing

f(u = cos θ) = F (θ, φ0)/N − f0

= 1
2κ

0
2(3u

2 − 1) + 1
8κ

0
4(35u4 − 30u2 + 3)

+ 1
16κ

0
6(231u6 − 315u4 + 105u2 − 5) − |κ6

6|(1 − u2)3.
(2.2.17)
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Equation (2.2.16) shows that the various anisotropy parameters depend
differently on temperature. At high temperatures, κ0

2 dominates and
its sign determines whether the moments are parallel or perpendicu-
lar to the c-axis. As the temperature is decreased, the importance of
the higher-rank terms grows, putting increasing weight on the terms of
fourth and sixth power in cos θ. The equilibrium value θ0(T ) of θ may
therefore change as a function of temperature, as occurs in Ho and Er,
and also in Gd where, however, the theory of this section is not imme-
diately applicable.

The coefficients in the expansion for the free energy may be ob-
tained from experimental studies of the magnetization as a function of
the magnitude and direction of an applied magnetic field. The axial
part of the anisotropy is predominantly determined by the three κ0

l -
parameters, and it is not usually easy to separate their contributions.
At low temperatures, where the higher-rank terms become relatively im-
portant, the axial anisotropy in the heavy rare earths is frequently so
strong that it is only possible to change θ by a few degrees from its equi-
librium value. Under these circumstances, it is only possible to measure
the components of the susceptibility, allowing a determination of the
second derivatives of F (θ, φ) in the equilibrium state (θ, φ) = (θ0, φ0).
The x-axis lies in the symmetry z–ζ plane and the transverse part of the
susceptibility tensor is diagonal with respect to the (x, y)-axes. With a
field hx applied in the x-direction, the moments rotate through an angle
δθ = θ − θ0, giving a component 〈Jx〉 = −〈Jz〉δθ = χxxhx. Introducing
the notation Fθθ ≡ ∂2F (θ, φ)/∂θ2 at (θ, φ) = (θ0, φ0), and similarly for
the other second derivatives, we may write

F = F (θ0, φ0) + 1
2Fθθ(δθ)

2 + 1
2Fφφ(δφ)2 +N〈Jz〉δθhx,

in the limit where the field goes to zero. The term Fθφ = 0, because
sin 6φ0 = 0. At equilibrium, δθ = −N〈Jz〉hx/Fθθ, which determines the
susceptibility. When the field is applied in the y-direction, i.e. along the
direction (− sinφ0, cosφ0, 0), the Zeeman contribution to F is

N〈Jz〉hy sin θ sin (φ− φ0) = N〈Jz〉hy sin θ0δφ,

with 〈Jy〉 = −〈Jz〉 sin θ0δφ = χyyhy. Minimizing the free energy in the
presence of a field along the y-axis, we may derive the other susceptibility
component, obtaining

χxx = N〈Jz〉2/Fθθ ; χyy = N〈Jz〉2 sin2 θ0/Fφφ. (2.2.18)

In calculating χyy, we have assumed that θ0 �= 0; if θ0 = 0 then
χyy = χxx. Equation (2.2.18) is also valid in the presence of an ex-
ternal field, provided that the effects due to the Zeeman contribution,
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FZ = −NgµBH · 〈J〉, are included explicitly in F (θ0, φ0) and its deriva-
tives. Introducing the expression (2.2.17) for the free energy, in the
two cases where the moments are either parallel or perpendicular to the
c-axis, we find

1/χxx = 1/χyy = −(3κ0
2+10κ0

4+21κ0
6)/(σJ)2 ; θ0 = 0, (2.2.19a)

or

1/χxx = (3κ0
2 − 15

2 κ
0
4 + 105

8 κ0
6 + 6|κ6

6|)/(σJ)2

1/χyy = 36|κ6
6|/(σJ)2

; θ0 =
π

2
,

(2.2.19b)
which must be positive if the structure is to be stable. In order to deter-
mine the higher derivatives of the free energy, a transverse field greater
than that corresponding to the linear regime described by the (zero-field)
susceptibility must be applied. The application of a large magnetic field
perpendicular to the magnetization axis, in a strongly anisotropic sys-
tem, creates a large mechanical torque, which may cause practical prob-
lems with maintaining the orientation of the crystal. If the experimental
facilities do not allow the determination of the higher derivatives, the
different temperature dependences of the various anisotropy parameters
may yield a rough separation of their contributions to the total axial
anisotropy. However the Callen–Callen theory is an approximation, the
corrections to which are important if the anisotropy is large, and there
are other contributions to the free energy than those which we have
considered above.

The results derived above are only valid if the anisotropy energies
are small compared to the exchange energy. In order to demonstrate the
kind of modifications which may appear in higher order, we shall consider
the simplest possible case, where only B0

2 is non-zero, and we shall only
calculate the free energy at zero temperature in the MF approximation,
i.e. the ground-state energy of a single site subjected to the exchange
field hex = 〈Jz〉J (0), with 〈Jz〉 = σJ . In this case, the MF Hamiltonian
(2.1.16) is

H = −(Jz − 1
2σJ)σJJ (0) − h(Jz cos θ + Jx sin θ)

+B0
2

[
3J2

z cos2 θ + 3J2
x sin2 θ + 3

2 (JzJx + JxJz) sin 2θ − J(J + 1)
]
,

(2.2.20)
in an applied field h along the ζ-axis. With the Jz-eigenstates as the
basis, the leading-order ground-state energy is

E0
0 =<J |H | J >= −(1− 1

2σ)σJ2J (0)−hJ cos θ+B0
2J

(2)(3 cos2 θ−1).
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The off-diagonal matrix elements involving the ground state are

<J − 1 |H | J > =
{
6(J − 1

2 )B0
2 cos θ − h

}
(J/2)1/2 sin θ

<J − 2 |H | J > = 3
2{2J

(2)}1/2B0
2 sin2 θ.

We shall only be concerned with terms up to second order in B0
2 and h, so

that we may use second-order perturbation theory, and it is sufficiently
accurate to approximate the energy differences between the ground state
and the first and second excited-states by respectively ∆1 = JJ (0) and
∆2 = 2JJ (0). Because of the mixing of the states, σ = 〈Jz〉/J =
1−m becomes slightly smaller than 1, but this only affects the exchange
contribution quadratic in m, as (1− 1

2σ)σ = 1
2 (1−m2). To second order,

the ground-state energy is found to be

E0(h) = −1
2J

2J (0) − hJ cos θ +B0
2J

(2)(3 cos2 θ − 1)

− 1
2

{
6(J − 1

2 )B0
2 cos θ − h

}2 sin2 θ/J (0) − 9
4 (J − 1

2 )(B0
2)2 sin4 θ/J (0).

(2.2.21)
The minimum condition ∂E0/∂θ = 0 leads to

h = h0 = 6(J − 1
2 )B0

2

[
1 + 3B0

2 sin2 θ/{2JJ (0)}
]
cos θ or sin θ = 0,

to second order in B0
2 . The free energy F (θ, φ) at zero temperature is

then, in both cases,

F (θ, φ)/N = E0(h0) + h0Jσ cos θ

= −1
2J

2J (0) + 1
2 κ̃

0
2(3 cos2 θ − 1) + 3

4bκ̃
0
2 sin4 θ,

with
κ̃0

2 = 2B0
2J

(2) ; b = −3B0
2/{2JJ (0)}, (2.2.22a)

and the relative magnetization is σ = 1 − (J − 1
2 )b2 sin4 θ. The b-

parameter introduced here is the leading order contribution to b̃, de-
fined in (2.2.11), when θ = π/2. One important feature illustrated by
this calculation is that the Om

2 -term in Q0
2, with m odd, is cancelled

by the Zeeman contribution, to second order in B0
2 . This is a conse-

quence of the freedom to replace the equilibrium condition ∂F/∂θ = 0
by the requirement that 〈Jx〉 (and 〈Jy〉) should vanish, by definition,
with the implication that the matrix-element <J − 1 |H | J > must be
zero within the present approximation. Bowden (1977) did not take the
Zeeman effect into account, and therefore obtained an erroneously strong
renormalization of the anisotropy. The second derivatives of F (θ, φ) are
Fφφ = 0, and

Fθθ/N = −3κ̃0
2(1 − b sin2 θ) cos 2θ + 3

2 κ̃
0
2b sin2 2θ. (2.2.22b)
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There is no change in the axial susceptibility in the axial ferromag-
net, for which θ = 0, but the higher derivatives are affected by the
modifications κ0

2(0) = κ̃0
2(1 − 4

7b) and κ0
4(0) = 6

35bκ̃
0
2. The correction

to the Callen–Callen theory is proportional to b, which is of the order
1/J times the ratio between the anisotropy and the exchange energy
(∝ B0

2J
(2)/J2J (0)), and hence becomes smaller for larger values of J .

This calculation may be extended to higher order and to non-zero tem-
peratures, but the complications are much reduced by the application of
the Holstein–Primakoff transformation which utilizes directly the factor
1/J in the expansion, as we shall see in the discussion of the spin-wave
theory in Chapter 5.

In the ferromagnetic phase, the ordered moments may distort the
lattice, due to the magnetoelastic couplings, and this gives rise to addi-
tional contributions to F (θ, φ). We shall first consider the effects of the
γ-strains by including the magnetoelastic Hamiltonian, incorporating
(1.4.8) and (1.4.11),

Hγ =
∑

i

[1
2cγ(ε2γ1 + ε2γ2) −Bγ2

{
Q2

2(Ji)εγ1 +Q−2
2 (Ji)εγ2

}
−Bγ4

{
Q4

4(Ji)εγ1 −Q−4
4 (Ji)εγ2

}]
,

(2.2.23)

retaining only the lowest-rank couplings (l = 2 and 4 of respectively the
γ2 and γ4 terms). The equilibrium condition

∂F/∂εγ1 =
〈
∂Hγ/∂εγ1

〉
= 0, (2.2.24)

and similarly for εγ2, leads to the equilibrium strains

εγ1 =
(
Bγ2〈Q2

2〉 +Bγ4〈Q4
4〉
)
/cγ

εγ2 =
(
Bγ2〈Q−2

2 〉 −Bγ4〈Q−4
4 〉

)
/cγ .

(2.2.25)

The conventional magnetostriction parameters C and A are introduced
via the equations

εγ1 = C sin2 θ cos 2φ− 1
2A sin4 θ cos 4φ

εγ2 = C sin2 θ sin 2φ+ 1
2A sin4 θ sin 4φ

(2.2.26a)

(Mason 1954). Expressing Qm
l in terms of Om

l , and retaining only the
terms with m = 0, we may derive these parameters from (2.2.25), ob-
taining

C = 1

cγ
Bγ2J

(2)Î5/2[σ]

A = − 2

cγ
Bγ4J

(4)Î9/2[σ].
(2.2.26b)
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Within this approximation, the γ-strain contribution Fγ(θ, φ) to the free
energy is

Fγ(θ, φ) =
〈
Hγ

〉
= −1

2cγ
(
ε2γ1 + ε2γ2

)
N

= −1
2cγ

(
C2 sin4 θ + 1

4A
2 sin8 θ − CA sin6 θ cos 6φ

)
N,
(2.2.27)

showing that these strains affect the axial-anisotropy parameters κ0
l (T ),

introducing effects of higher rank than l = 6, and that the six-fold
anisotropy in the basal plane is now

κ6
6(T ) = B6

6J
(6)Î15/2[σ] + 1

2cγCA. (2.2.28)

When both C and A are non-zero, the maximum area-conserving elon-
gation of the hexagonal planes varies between |C + 1

2A| and |C − 1
2A|,

which results in a φ-dependent magnetoelastic energy, and thus a contri-
bution to κ6

6. The γ-strain hexagonal anisotropy decreases more slowly
(like σ13 at low temperatures) than the B6

6 term, as σ decreases, and
therefore dominates at sufficiently high temperatures.

The ε-strains may be included in a similar way. Retaining only the
lowest-rank coupling Bε1 ≡ B

(l=2)
ε1 in eqn (1.4.12), we have

Hε =
∑

i

[1
2cε(ε

2
ε1 + ε2ε2) −Bε1

{
Q1

2(Ji)εε1 +Q−1
2 (Ji)εε2

}]
. (2.2.29)

Introducing the magnetostriction parameter Hε of Mason (1954) (the
index ε should prevent any confusion with the magnetic field) by

εε1 = 1
4Hε sin 2θ cosφ ; εε2 = 1

4Hε sin 2θ sinφ, (2.2.30a)

we obtain within the Callen–Callen theory

Hε = 2

cε
Bε1J

(2)Î5/2[σ], (2.2.30b)

and the ε-strain contribution to the free energy

Fε(θ, φ) = − 1
32NcεH

2
ε sin2 2θ. (2.2.31)

The α-strains (1.4.10) do not influence the symmetry of the system, but
they do make a contribution, essentially proportional to 〈Q0

2〉, to the
anisotropy, the effects of which may be derived in the same way as those
of the γ- and ε-strains. The magnetoelastic contributions to the free en-
ergy can be estimated experimentally if the elastic constants are known,
by a determination of the strains as a function of the magnetization. The
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knowledge of the equilibrium strains may also be used for a reasonable
estimate of the magnetoelastic modifications of the second derivatives,
provided that the additional assumption is made that the couplings of
lowest rank are dominant. For example, the higher-rank γ-strains in the
basal-plane magnet make contributions to the axial anisotropy which
cannot be written in terms of C and A in eqn (2.2.27). A more direct
estimate of the contributions to the second derivatives requires an exper-
imental determination of how the strains behave when the direction of
the magnetization is changed. In basal-plane ferromagnets, such as Tb
and Dy, it may be possible to observe the φ-dependence of the strains
(Rhyne and Legvold 1965a), whereas if the axial anisotropy is large, it
may be very difficult to determine the variation of the strains with θ.
In the case of the α-strains, the argument that the (l = 2) couplings are
dominant is not sufficient for a determination of their effect on the axial
anisotropy. The reason is that the two-ion magnetoelastic couplings of
lowest rank, i.e. the dipolar interactions

∆Hα
me = −

∑
ij

[{
D10(ij)εα1 +D20(ij)εα2

}
Ji ·Jj

+
{
D13(ij)εα1 +D23(ij)εα2

}
JiζJjζ

]
,

(2.2.32)

may be important. This is the case in Tb and Dy, as shown by the
analysis of the stress-dependence of the Néel temperatures (Bartholin et
al. 1971). These interactions affect the α-strains, but they contribute
differently to the axial anisotropy from the (l = 2)-terms in the single-ion
magnetoelastic Hamiltonian (1.4.10).

The simplifications introduced in the above discussion of the ferro-
magnet may also be utilized in non-uniform systems, because the MF
approximation allows the individual ions to be treated separately. How-
ever, the isotropic two-ion contributions no longer cancel in δF (θ, φ) in
(2.2.13), since the direction of the exchange field depends on the site
considered. We consider as an example the helically ordered phase. If
we neglect the bunching effect due to the hexagonal anisotropy, the axial
anisotropy is independent of the site considered. Treating the ions as
isolated, but subject to a constant exchange-field, we may calculate F o

θθ,
corresponding to 1/χ o

xx, and then use (2.1.19) to account for the induced
exchange-field due to an applied field in the x- or c-direction, modulated
with a wave-vector q along the c-axis. If the two-ion coupling between
the moments is allowed to be anisotropic, the leading order result is

1/χxx(q) = J⊥(Q) − J‖(q) +
(
3κ0

2 − 15
2 κ

0
4 + 105

8 κ0
6

)
/(σJ)2. (2.2.33)

This is the anisotropy parameter which determines the plane in which
the moments spiral, and it vanishes at the temperature T ′

N at which
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the c-axis moments begin to order. Just below T ′
N , the c-component is

modulated with the wave-vector Q′ at which J‖(q) has its maximum,
and only if Q′ = Q is the structure the tilted helix. If Q′ = 0, so that the
c-axis moments are ferromagnetically ordered, the resulting structure is
the cone.

The magnetoelastic contributions require special treatment when
the structures are modulated, because of the limited ability of the lattice
to adapt to various strain configurations, when the strains are spatially
modulated. The magnetoelastic Hamiltonians considered above are only
strictly valid in the uniform case, but they may be generalized to non-
uniform structures by replacing the strains by their local values εαβ(i), at
least in the limit where the wavelength of the modulation is much longer
than the range of the interactions. At shorter wavelengths, the form
of the magnetoelastic-interaction Hamiltonian may still be applicable,
but the effective coupling parameters may depend on the wave-vector.
This suggests that the above discussion may be largely unchanged if
the magnetic structure is modulated, provided that we take account of
the new constraints which we shall now examine. The displacement of
the ith ion, u(Ri) = R̃i − Ri, from its equilibrium position Ri may
be divided into a uniform and a non-uniform component, and the non-
uniform part may be written as a linear combination of contributions
from the normal phonon modes at various wave-vectors. It follows from
this that a displacement of the ions which varies with a certain wave-
vector should be describable in terms of the normal phonon modes at
that particular wave-vector, in order to ensure that such a displacement
is compatible with the lattice.

To be more specific, we shall consider the wave-vector to be along
the c-axis in the hcp lattice. In the double-zone representation, which
neglects the two different displacements of the hexagonal layers, there
are only three normal modes; one longitudinal and two energetically-
degenerate transverse modes. All three modes correspond to rigid dis-
placements of the hexagonal layers. The γ-strains describe an elongation
of these layers along a certain direction in the plane. If the γ-strains are
uniform within each hexagonal layer, the magnitude or the direction of
the elongation cannot be allowed to vary from one layer to the next,
as this would destroy the crystal. Hence, even though 〈Q2

2(Ji)〉 in the
equilibrium equation for εγ1(i), corresponding to eqn (2.2.25), varies in
a well-defined way in a helical structure with Q along the c-axis, εγ1(i)
is forced to stay constant. The site-dependent version of (2.2.25) is only
valid when the right-hand sides are replaced by their averages with re-
spect to any variation along the c-axis, and these averages vanish in
the helix. This phenomenon was named the lattice clamping effect by
Cooper (1967), and further discussed by Evenson and Liu (1969). One
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of its consequences is that the γ-strain contributions (2.2.27) to the free
energy cancel out in the helical phase. This behaviour of the γ-strains
therefore enhances the tendency of the wave-vector of the helix to jump
to one of the two commensurable values Q = 0 or 2π/c, or may in-
crease the stability of other commensurable structures which have a net
moment in the basal-plane.

The only strain modes which are allowed to vary along the c-axis
are those deriving from the transverse modes, which are εε1(i) and
εε2(i), and the longitudinal component ε33(i). Like the γ-strains, the
α-strains ε11(i) and ε22(i) must remain constant. In the longitudinally
polarized phase, the ε-strains are not affected by the ordered moment.
The uniform α-strains are determined by the average of Q0

l (Ji) and, in
addition, the c-axis moments induce a non-uniform longitudinal-strain
mode ε33(i) ∝ 〈Jiζ〉2 at the wave-vector 2Q, twice the ordering wave-
vector. The amplitude ε2Q, in ε33(i) = ε2Q cos (2QRiζ), may be de-
termined by the equilibrium conditions for the single sites, with the
magnetoelastic-coupling parameters replaced by those corresponding to
2Q. The longitudinal strain at site i is directly related to the displace-
ment of the ion along the ζ-axis; ε33(i) = ∂uζ/∂Riζ and hence uζ(Ri) =
(2Q)−1ε2Q sin (2Q ·Ri). Below T ′

N , where 〈Jiξ〉 becomes non-zero, the
cycloidal ordering induces an εε1-strain, modulated with the wave-vector
2Q. The presence of a (static) transverse phonon mode polarized along
the ξ-direction corresponds to ∂uξ/∂Riζ = ε13(i) + ω13(i) �= 0, whereas
∂uζ/∂Riξ = ε13(i) − ω13(i) = 0. Hence it is εε1(i) + ω13(i), with
ω13(i) = εε1(i), which becomes non-zero, and not just ε13(i) = εε1(i).
In these expressions, ω13(i) is the antisymmetric part of the strain ten-
sor, which in the long-wavelength limit describes a rigid rotation of the
system around the η-axis. Because such a rotation, in the absence of ex-
ternal fields, does not change the energy in this limit, the magnetoelastic
Hamiltonian may still be used for determining εε(i). Only when the rela-
tion between the strains and the transverse displacements is considered,
is it important to include the antisymmetric part. In helically-ordered
systems, the γ-strains are zero, due to the clamping effect, as are the
ε-strains, because the moments are perpendicular to the c-axis. Only
the α-strains may be non-zero, and because 〈Q0

l (Ji)〉 are independent of
the direction of the basal-plane moments, the α-strains are the same as
in the ferromagnet (we neglect the possible six-fold modification due to
B66

α in (1.4.10)). Their contributions to the axial anisotropy (2.2.33), to
be included in κ0

l , are also the same as in the ferromagnetic case. In the
basal-plane ferromagnet, the ε strains contribute to the axial anisotropy
1/χxx in eqn (2.2.19b):

∆(1/χxx) =
1

N(σJ)2
∂2Fε/∂θ

2 = −1
4cεH

2
ε /(σJ)2 ; θ0 =

π

2
, (2.2.34)
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as derived from (2.2.31). It is straightforward to see that we get the
equivalent contribution in the helix at q = 0 in eqn (2.2.33), except that
the coupling parameters in (2.2.34) should have the effective values at
the wave-vector Q. In the conical phase, both εε1(i) and εε2(i) become
non-zero, 90◦ out of phase with each other, corresponding to a transverse
displacement of the planes, in a direction which follows the orientation
of the moments in the basal plane.

2.3 Magnetic structures of the elements

As we have seen, the ‘exotic spin configurations’ first observed by Koeh-
ler and his colleagues in the heavy rare earths may be understood as the
result of a compromise between the competing magnetic interactions to
which the moments are subjected. The complex changes which occur
as the temperature is varied stem primarily from the temperature de-
pendence of the expectation values of the terms in the MF Hamiltonian
(2.1.16). The crystal-field parameters Bm

l are expected to change little
with temperature but, as shown in the previous section, the variation
of the expectation values 〈Om

l 〉 of the Stevens operators may give rise
to a very pronounced temperature dependence of the anisotropy forces,
including the magnetoelastic effects. The contribution from the two-ion
coupling generally varies more slowly, since the exchange field is pro-
portional to 〈Jj〉 or σ, but changes in the magnitude and orientation of
the ordered moments alter the band structure of the conduction elec-
trons, which in turn modifies the indirect exchange J (ij). Hence the
Fourier transform J (q), and in particular the value Q at which it at-
tains its maximum, may change with temperature in the ordered phase.
In addition, the possibility that anisotropic two-ion coupling may be
of importance implies that the effective parameters of the simple MF
Hamiltonian (2.1.16) may all depend on the magnitude and orientation
of the moments.

The anisotropy forces favour a set of crystallographic directions,
related by a rotational symmetry operator, along which the moments
tend to align themselves. In particular, the low-order crystal-field term
B0

2〈O0
2(J)〉 gives rise to an axial anisotropy, which strives to confine

the magnetization either to the basal plane or along the c-axis, and de-
clines relatively slowly with temperature. Except for Gd, the rare earth
elements all have a J (q) with a maximum at Q �= 0, reflecting the com-
plexities of the Fermi surface and corresponding to a periodicity which is
not generally commensurable with the lattice. Transverse and longitu-
dinal magnetic structures can accomodate both the anisotropy and the
periodicity constraints at high temperatures, with respectively uniform
helical or longitudinal-wave configurations of the moments, character-
ized by a single wave-vector. As the temperature is lowered, however,
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conditions develop which favour commensurable structures, including
the ferromagnet. The hexagonal anisotropy distorts the helical struc-
ture, while the development of higher harmonics, assisted by the axial-
anisotropy forces, favours commensurability in the longitudinal struc-
ture. The higher-order axial-anisotropy terms may also tend to pull the
moments away from their planar or axial orientations. The application
of a magnetic field requires further compromises, until it is so great that
it coerces all the moments into alignment.

The variation of temperature and field thus reveals a rich variety
of intermediate phase transitions to different structures. Most of these
transitions are discontinuous, but occasionally a second-order transition
is observed. In the following, we will discuss the relation between the
interactions, and their variation, and the magnetic structures in the rare
earths. We shall give a summary of the rather complete understand-
ing which has been attained of the heavy elements, followed by a brief
discussion of the complex structures of Nd, which is the only light rare
earth which has been studied in comparable detail. The effect of a mag-
netic field will be exemplified by a description of the magnetization of
Ho. Finally we will consider the new features which emerge when one
dimension of the magnetic lattice is bounded, illustrated by some of the
results from the rapidly developing study of thin films and superlattices.

2.3.1 Bulk magnetic structures
The manner in which the competing interactions express themselves is
very well illustrated by the heavy hcp rare earths. In their magnetically
ordered phases, all the moments in a particular plane normal to the c-
axis are aligned, but their relative orientations may change from plane to
plane. Fig. 1.19 illustrates some of the simpler of these structures, while
the transition temperatures TN and TC to ordered states, respectively
without and with a net moment, are given in Table 1.6.

Gd is magnetically by far the simplest of the rare earths. The ex-
change favours ferromagnetism and the 4f charge-cloud is spherically
symmetric, so that the crystal-field interactions (1.4.4) are zero. How-
ever there is a residual magnetic anisotropy, which causes the moments
to point preferentially along the c-axis just below TC . At lower temper-
atures, the easy axis begins to deviate towards the basal plane, reaching
a maximum tilt angle of 60◦ at 180K before decreasing to just below 30◦

at 4.2K (Corner and Tanner 1976). The anisotropy parameters are typ-
ically two or three orders of magnitude smaller than those of the other
heavy rare earths (Mishima et al. 1976). Since the c/a ratio of Table 1.2
is less than the ideal value, the dipolar coupling induces an anisotropy,
discussed in Section 5.5.1, which tends to hold the moments along the
c-direction and has roughly the observed magnitude (Brooks and Good-
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ings 1968). There is in addition a competing anisotropy, which has its
origin in the spin–orbit coupling (1.2.13) of the conduction electron gas,
which restricts the free rotation of the spins relative to the lattice. The
indirect-exchange interaction then ensures that the localized spins are
correspondingly constrained. The magnitude of this effect could in prin-
ciple be calculated from the electronic structure, at least at absolute
zero, but no serious attempts have yet been made to do so.

The small anisotropy of Gd leads to an unusual sequence of struc-
tures when it is diluted with Y. The latter has a very strong tendency to
impose a periodic magnetic structure on dissolved rare earth moments
(Rainford et al. 1988a; Caudron et al. 1990) and, in a concentration
above about 30% in Gd, induces a helical structure below TN . The
magnetic behaviour of these alloys is completely dominated by the ex-
change, and the transition to the ferromagnetic structure, both with
increasing Gd concentration and, as occurs if the Y concentration is not
too high, with decreasing temperature, takes place by a continuous re-
duction of the turn angle of the helix (Palmer et al. 1986), as the peak
in J (q) moves smoothly to the origin. At higher Y concentrations, a
longitudinal wave is also formed along the c-axis, over a temperature
range and with a wave-vector which are different from those of the he-
lix. As discussed in Section 2.1.5, this behaviour shows explicitly that
the exchange must be anisotropic. Furthermore, at Y concentrations
just above the critical value for the formation of a helix, a ferromagnetic
structure, with the easy direction along the c-axis, forms at TC , is trans-
formed into a basal-plane helix through a first-order transition at a lower
temperature TN , and at an even lower temperature transforms back into
the aforementioned ferromagnetic structure, with the moments canted
away from the c-direction.

Tb and Dy both have large axial anisotropies which confine the mo-
ments to their basal planes, and the peaks in J (q), illustrated in Fig.
1.17, induce helical structures at the respective Néel temperatures. In
Tb, this peak is very small, and the spin-wave measurements illustrated
in Fig. 6.1 indicate that it becomes even smaller as the helical phase
is established and the superzone energy-gaps grow. Simultaneously, the
(negative) anisotropy energy in the ferromagnetic phase increases, par-
ticularly the cylindrically-symmetric magnetoelastic term proportional
to C2 in (2.2.27), which makes no contribution in the helical phase be-
cause of lattice clamping. Consequently, this anisotropy energy over-
whelms the exchange-energy difference (1.5.35) only ten degrees below
TN , and a first-order transition occurs to a ferromagnetic structure. The
peak in the exchange function in Dy is more robust, and the helical phase
correspondingly more stable but, as we have discussed in Section 1.5, a
ferromagnetic transition ultimately takes place at 85K.
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An instructive example of competing anisotropy forces has been
observed in a Tb0.5Dy0.5 crystal (Spano et al. 1988). This alloy, as would
be anticipated, forms a helical structure at 206K, and transforms into a
ferromagnet at 152K. At this temperature, the predominant anisotropy
is due to the Tb magnetoelastic forces in (2.2.28), since the coefficient
A is almost zero for Dy (Martin and Rhyne 1977), and the hexagonal
crystal-field anisotropy for both types of ion has renormalized to a very
small value. Consequently, the easy axis of magnetization is the b-axis,
as in pure Tb. As the temperature is further reduced, however, the
crystal-field contribution grows, roughly as σ21, and since it is much
greater for Dy than Tb, the easy axis switches at about 100K to the
a-direction, as in pure Dy.

Table 2.1. Crystal-field parameters (meV).

B0
2 B0

4 B0
6 B6

6

Ho 0.024 0.0 −9.6·10−7 9.2·10−6

Er −0.027 −0.3·10−4 1.3·10−6 −9.0·10−6

Tm −0.096 0.0 −9.2·10−6 8.9·10−5

Compared with these relatively straightforward systems, the be-
haviour of the remainder of the magnetic heavy rare earth series, Ho,
Er, and Tm, is more intriguing. As illustrated in Fig. 1.17, the peaks
in J (q) are large, so that periodic structures are stabilized down to low
temperatures. The crystal-field anisotropy also allows the moments to
move out of the plane. In Table 2.1 are given the anisotropy parameters
deduced from studies of the magnetic structures and excitations. Al-
though these must to some extent be considered as effective values, sub-
suming for example the effects of two-ion and magnetoelastic anisotropy,
they are among the best estimates which we have for the crystal fields
in the rare earths, and they correlate well with the Stevens factors of
Table 1.4.

Ho demonstrates the interplay of the various interactions in an ex-
emplary manner. The positive value of B0

2 and the peak in the exchange
function again stabilize the helix at TN . The peak value J (Q) is now so
large, however, that the cylindrically-symmetric magnetoelastic energy,
which is substantially smaller than that of Dy, is unable to induce a
ferromagnetic transition. On the other hand, the hexagonal crystal-field
anisotropy is nearly three times as big as in Dy, and distorts the helix
drastically when the temperature is reduced, as revealed by the appear-
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ance of higher harmonics in neutron diffraction (Koehler et al. 1966). As
illustrated in Fig. 2.4, the peak in J (q) simultaneously moves to smaller
values of q, and the Q of the magnetic structure decreases correspond-
ingly. However this change does not occur uniformly with temperature,
but rather a series of commensurable wave-vectors is traversed, with ap-
parently discontinuous jumps between them (Gibbs et al. 1985). At 20
K, a second-order transition to a shallow cone structure, with an opening
angle which decreases continuously towards 80◦ as the temperature is
lowered, is observed. The helical component is commensurable with the
lattice, with an average turn angle of 30◦, but the moments are strongly
bunched around the easy b-axes, as shown in Fig. 1.20.

To interpret this rich variety of phenomena, we will use the model
of Larsen et al. (1987). The Hamiltonian which they constructed has

Fig. 2.4. The Fourier transform, for wave-vectors in the c-direction,
of the indirect-exchange interaction in Ho at different temperatures, de-
duced from the magnetic excitations and used in the calculation of the
structures. The maximum in J⊥(q) increases in magnitude and moves to
larger wave-vectors as the temperature is increased, leading to a decrease

in the repeat distance of the periodic structures.
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the form of (2.1.1), augmented by the magnetic dipole–dipole interaction
(1.4.26) which, as we shall see, is of crucial importance. The crystal-field
parameters Bm

l were determined primarily from a fit to the magnetic
structures and magnetization curves at low temperatures, shown in Fig.
1.20, and the temperature dependence of these parameters was assumed
to be negligible. The initial values for the isotropic Heisenberg exchange
were taken from an analysis of the spin waves in Ho (Jensen 1988a),
and depend explicitly on the temperature, as shown in Fig. 2.4. They
were adjusted slightly (Mackintosh and Jensen 1990) to reproduce cor-
rectly the transition fields from the helical phase, but remain consistent
with the spin-wave data, within the experimental error. The magnetic
properties are calculated by means of the method described in Section
2.1.2, assuming an initial distribution 〈Ji〉 of the moments at a given
temperature. The structure is taken to be commensurable, with a re-
peat distance, deduced from experimental data, which may be as high as
50–100 atomic layers for the more complex configurations. The assumed
values of 〈Ji〉 are inserted into the Hamiltonian and a new set of moments
calculated, using the mean-field method to reduce the two-ion term to
the single-ion form. This procedure is repeated until self-consistency is
attained. The free energy and the moments on the different sites can
then readily be calculated for the self-consistent structure.

The results of such self-consistent calculations for different temper-
atures and commensurable periodicities are shown in Fig. 2.5. The data
indicate that B0

4 is zero, to within the experimental error, whereas B0
6

has the opposite sign to B0
2 . As the temperature is reduced in the helical

phase and B0
6〈O0

6〉 increases, this term tends to pull the moments out
of the plane. If the only two-ion coupling were the isotropic exchange,
this would give rise to a continuous transition to a tilted helix, which re-
duces the exchange energy more effectively than the cone (Elliott 1971,
Sherrington 1972). However, the dipolar interaction strongly favours
a ferromagnetic orientation of the c-axis moments, because the dipolar
energy associated with a longitudinal wave is very high, as we discuss in
detail in Section 5.5.1. Consequently, the dipolar contribution shifts the
position of the maximum in J‖(q) from q = Q to zero wave-vector, as
illustrated in Fig. 5.7, and the vanishing of the axial anisotropy (2.2.33)
at q = 0 leads to a second-order transition at T ′

N to the cone phase. In
this special case, we can therefore conclude that it is the temperature
dependence of B0

6〈O0
6〉 which drives the helix into instability, and that

the dipolar interaction chooses the cone, rather than the tilted helix, as
the stable low-temperature phase.

At 4K, in the cone phase, the large hexagonal anisotropy causes the
helical component of the moments to bunch around the easy directions
of magnetization, in the twelve-layer structure described by eqn (1.5.3),
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so that the constant angle φ in the plane between any moment and the
nearest b-axis is only 5.8◦, as shown in Fig. 2.5(a), compared with the 15◦

which corresponds to a uniform helix. As the temperature is increased,
the expectation value 〈O6

6〉 decreases with the relative magnetization,
roughly like σ21, and φ increases correspondingly. Simultaneously Q
tends to increase, reflecting the change in the position of the maximum

Fig. 2.5. The self-consistent periodic structures in Ho, calculated at
different temperatures. Each circle represents the magnitude and direc-
tion of the ordered moment in a specific plane, relative to the size of the
moment at absolute zero (10 µB), indicated by the length of the horizon-
tal lines. The orientation of moments in adjacent planes is depicted by
the positions of neighbouring circles.

(a) The 12-layer zero-spin-slip structure at 4K. The open circle in the
centre indicates the ferromagnetic component in the cone structure.
(b) The 11-layer one-spin-slip structure at 25K. The bunched pairs of
moments are disposed unsymmetrically with respect to the easy axis in
the vicinity of the spin slip.
(c) The 19-layer structure at 50 K. The orientation of the moments in
successive layers is determined by following first the filled circles in an
anticlockwise direction, as indicated, and then the open circles.
(d) The 9-layer trigonal structure at 75K. This may be looked upon as
a three-spin-slip structure, but the bunching is so slight that it is more
useful to regard it as an almost regular helix, in which every third plane
aligns its moments close to an easy axis, in order to reduce the anisotropy
energy.
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in J (q), so that the structure at 25K has reduced its periodicity to 11
layers by introducing a regularly-spaced series of spin slips, at which one
plane of a bunched doublet is omitted while the remaining member ori-
ents its moments along the adjacent easy axis. The configuration of Fig.
2.5(b), in which one spin slip is introduced for each repeat distance of
the perfect commensurable structure, is the primordial spin-slip struc-
ture and has a number of interesting features. It is particularly stable,
existing over a range of temperature (Gibbs et al. 1985), possesses a
net moment, and the bunching angle is still rather small. Although the
angle 2φ between two bunched planes is almost constant, the exchange
interaction distorts the structure near the spin slips so that the moments
are not symmetrically disposed around the easy axis. As the tempera-
ture is increased further, the bunching decreases and the concept of spin
slips becomes less useful. Thus the configuration of Fig. 2.5(d) can be
considered as a distorted three spin-slip structure, but it is simpler to
regard it as a commensurable, almost regular helix in which every third
plane aligns its moments close to an easy axis in order to reduce the
anisotropy energy.

The spin-slip structures of Ho have been subjected to a careful and
extensive neutron-diffraction study by Cowley and Bates (1988). They
interpreted their results in terms of three parameters:

b - the number of lattice planes between spin slips,
2α - the average angle between the moments in a bunched pair,
σG - a Gaussian-broadening parameter for α.

In a perfect, undistorted structure, α = φ and σG = 0. The parameter
σG takes into account two effects; the distortions which occur in perfect
periodic structures such as that illustrated in Fig. 2.5(b), and possible
irregularities in the positions of the spin-slip planes. The former is in
principle included in the calculations, whereas the latter is not. From
the calculated magnetic structures, such as those illustrated in Fig. 2.5,
it is possible to deduce the corresponding neutron-diffraction patterns
and hence, by fitting the peak intensities, determine the values for α
and σG (Mackintosh and Jensen 1990). The parametrization suggested
by Cowley and Bates is in practice rather satisfactory; it allows a fit of
all the calculated neutron-diffraction intensities, which vary over about
five orders of magnitude, with a relative error of in all cases of less than
20%. Furthermore, the parameter α is close to the average values of
the angle φ determined directly from the calculated structures. The
measured and calculated values of α are in good agreement, taking into
account the experimental uncertainties, but there are some discrepan-
cies in σG. It is noteworthy that the agreement between the predicted
and observed neutron-diffraction intensities is very good for the b = 11,
one-spin-slip structure, but that the experimental values of σG otherwise
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lie consistently above the theoretical. This may indicate that the per-
fect periodicity of the less stable spin-slip structures is more effectively
disturbed by imperfections.

As may be seen from Table 2.1, the easy direction in Er is the c-
axis at high temperature, so the moments order in a longitudinal-wave
structure at TN . As the temperature is reduced, the structure squares
up, as discussed in Section 2.1.4. The basic wave-vector Q describ-
ing the magnetic ordering increases approximately linearly just below
TN (Atoji 1974; Habenschuss et al. 1974). This is not in accord with
the quadratic dependence predicted by (2.1.35b) and furthermore, since
J ′(3Q) is probably negative, the predicted change in Q also has the
opposite sign to that observed. This behaviour can only be accounted
for if J (q) is temperature dependent, as is indicated even more clearly
at lower temperatures, where Q starts to decrease quite rapidly. At
T ′

N 	 52K, a basal-plane component begins to order, through the mech-
anism described in Section 2.1.5. When the temperature is lowered fur-
ther, Q continues to decrease, exhibiting a number of plateaux, and a
rich harmonic structure is observed (Atoji 1974; Habenschuss et al. 1974;
Gibbs et al. 1986). Very detailed neutron-diffraction measurements by
Cowley (1991) have revealed a whole sequence of commensurable struc-
tures with decreasing temperature, with Q = 2/7, 3/11, 7/26, 4/15,
5/19, 6/23, and 1/4, in units of 2π/c. At 18K, a first-order transition to
a steep cone, with an opening angle of 30◦ and a wave-vector of ∼ 5/21,
is observed.

To explain these results, we may employ a modified version of the
model of Jensen (1976b), in which crystal fields, isotropic exchange, and
dipolar interactions are included. In addition, the anisotropic two-ion
coupling, which is required by the observed excitation spectrum and dis-
cussed in Section 6.1, is also taken into account. Mean-field calculations
then predict that the structure in the intermediate temperature range is
an elliptic cycloid, the hodograph of which at 48K, just below the transi-
tion temperature, is shown in Fig. 2.6. As discussed in Section 2.1.5, an
additional second-order transition may occur below T ′

N , to a phase with
a non-collinear, elliptical ordering of the basal-plane moments. In the
presence of random domains, the neutron-diffraction patterns from the
two structures are essentially indistinguishable, and if this transition oc-
curs in Er, the fluctuations expected near a second-order transition may
also be suppressed, because it is then likely that it coincides with one
of the first-order commensurable transitions. The model calculations
indicate that the non-collinear component in the basal plane is close
to becoming stable when the cycloidal phase is disrupted by the first-
order transition to the cone phase. Hence it is most probable that the
moments in Er are ordered in a planar elliptic-cycloidal structure in the
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whole interval between TC and T ′
N , but it is possible that a non-collinear

basal-plane component is present in some of the commensurable struc-
tures just above TC .

Fig. 2.6. The calculated mag-
netic structure in Er at 48 K. Each
arrow represents the magnitude and
orientation, in the a-c plane, of the
ordered moment in a specific plane
normal to the c-axis, relative to the
magnitude of the moment at abso-
lute zero (9µB), indicated by the
length of the line along the a-axis.
The hodograph is very close to an
ellipse, with semi-axes of length 6.5
and 2.2µB , and this structure can be
considered as comprising four planes
of moments with a positive compo-
nent along the c-axis, followed by
three with a negative moment, with
the designation (43).

The structure shown in Fig. 2.6 comprises four planes of moments
with a positive component along the c-axis, followed by three with a neg-
ative moment. The basic wave-vector is therefore 2/7, and we may de-
scribe the structure as (43). The other commensurable structures listed
above are then respectively 2×(443), 2×(4434443), (4443), 2×(44443),
(444443), and (44) where, in each case, blocks of n moments with a
positive component along the c-axis alternate with negative blocks, and
the doubling is necessary to ensure periodicity if the number of blocks is
odd. These calculations give a good account of the neutron-diffraction
results of Cowley (1991). The lattice strains associated with a number
of these structures have been studied with synchrotron X-rays by Gibbs
et al. (1986). The fundamental wave-vector for the oscillating c-axis
strain in a structure like (44), which has inversion symmetry, is twice
that of the magnetic structure. However, the other examples above do
not have inversion symmetry, so charge-scattering of X-rays may occur
at the fundamental magnetic wave-vector. In the cone phase, the X-ray
scattering at the fundamental wave-vector of the helical component is
anomalously large, even though the longitudinal lattice-strain must be
very small. There is however also a contribution from charge scattering
associated with a transverse strain, discussed at the end of the previ-
ous section, which may arise when the mirror symmetry normal to the
c-axis is broken, as it is in this structure. The hexagonal symmetry of a
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particular plane is then maintained, but it suffers a lateral displacement
which follows the direction of the helical component of the moment.

The transition from the cycloidal to the cone structure in Er at 18
K reflects a shift in the balance between a number of competing effects.
At this low temperature, the entropy is not important, since most of the
moments are close to their saturation value near TC , nor does the dif-
ference between the single-ion crystal-field anisotropy energy in the two
phases play a significant role. Because of cancellation among the three
contributions, the axial anisotropy is relatively insensitive to the angle
between the c-axis and the moments, the average value of which does
not, in any case, change much at the transition. The small amplitude of
the basal-plane components ensures that the hexagonal-anisotropy en-
ergy also has only a minor influence. Hence the choice between the two
phases is dominated by the two-ion contributions to the energy. From
the spin-wave dispersion relation, discussed in Section 6.1, the difference
J⊥(Q)−J⊥(0) is estimated to be about 0.07–0.1meV, strongly favour-
ing a modulated structure. The tendency towards a modulation of the
c-axis component is opposed by three effects. Firstly, the anisotropy of
the classical dipole–dipole contribution reduces J‖(Q) − J‖(0) by 0.03
meV to about 0.04–0.07meV. Secondly, the modulated ordering of the
c-axis component cannot take full advantage of the large value of J‖(Q),
because of the squaring up which occurs as the temperature is decreased.
The energy due to the coupling of the longitudinal component of the mo-
ments is

Uζζ = −1
4N

∑
n odd

J‖(nQ)〈Jζ(nQ)〉2 = −1
2NJ ‖(Q)〈|Jζ |〉2, (2.3.1a)

introducing the effective coupling parameter J ‖(Q). At high tempera-
tures, close to TN , the two coupling parameters J ‖(Q) and J‖(Q) are
equal, but as the higher odd harmonics gradually develop, J ‖(Q) de-
creases, and when the structure is close to the square wave, we find from
(2.1.36) that

J ‖(Q) 	 8
π2

{
J‖(Q) + 1

9J‖(3Q) + · · ·
}
. (2.3.1b)

Just above the cone transition, the model calculations indicate that
J ‖(Q) is reduced by 0.02–0.03meV, compared to J‖(Q), which in com-
bination with the dipolar term removes most of the energy difference
between the modulated and ferromagnetic ordering of the c-axis compo-
nent. The final contribution, which tips the balance into the cone phase
below TC , is the magnetoelastic energy associated with the α-strains

Uα
me = −1

2 (c11 − c66)(ε11 + ε22)
2 − 1

2c33ε
2
33 − c13(ε11 + ε22)ε33. (2.3.2)
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The abrupt change in the uniform α-strains (Rhyne and Legvold 1965b)
at the transition to the cone phase reduces this energy by 0.19meV/ion
(Rosen et al. 1973), corresponding to an increase of J (0) by about 0.01
meV. In the cycloidal phase, there is also a longitudinal-strain mode
at wave-vector 2Q, which disappears in the cone phase, but the energy
gained by this distortion is estimated to be very small. Since the c-axis
moment is substantially squared up in the cycloidal phase just above
the transition, the change of the α-strains cannot have its origin in the
single-ion magnetoelastic coupling, which does not distinguish between
positive and negative moments. It must rather be caused by the strain-
dependence of the two-ion interaction

∆Hme = −
∑
ij

[
I1(ij){ε11(i) + ε22(i)} + I3(ij)ε33(i)

]
JiζJjζ , (2.3.3)

which is that part of eqn (2.2.32) which changes at the transition. If
the basal-plane moments and the single-ion magnetoelastic terms are
assumed to be the same immediately above and below TC , ∆Hme gives
rise to the following changes at the transition:

(c11 − c66)∆(ε11 + ε22) + c13∆ε33 = N{I1(0) − I1(Q)}〈|Jζ |〉2

c13∆(ε11 + ε22) + c33∆ε33 = N{I3(0) − I3(Q)}〈|Jζ |〉2,
(2.3.4)

where the bars denote effective coupling parameters, as in (2.3.1), and
∆εαα = εαα(cone)−εαα(cycloid). Since the elastic constants are known,
and the strains are ∆ε33 = 3.1 · 10−3 and ∆(ε11 + ε22) = −2.4 · 10−3, the
two-ion magnetoelastic-coupling parameters may be determined from
this equation. The nature of this magnetoelastic contribution implies
that it should be possible to suppress the cone phase in Er by apply-
ing hydrostatic pressure. In the zero-temperature limit, the energy dif-
ference between the two phases is estimated to be only about 0.033
meV/ion, so a hydrostatic pressure of about 2.5 kbar, or alternatively a
uniaxial pressure along the c-axis of only about half this amount, should
be sufficient to quench the cone. The application of this modest pres-
sure should then allow experimental studies of the cycloidal phase in
Er below 18K, to ascertain, for example, whether the transition to the
phase with an elliptical ordering of the basal-plane moments occurs. We
shall return to this two-ion magnetoelastic interaction when we discuss
Er films and superlattices.

The negative value of B0
2 in Tm is large and B0

6 is also negative, as
may be seen in Table 2.1, so that the moments are firmly anchored to
the c-direction, and no ordered basal-plane component appears at any
temperature. A longitudinal-wave structure forms at 56K, and starts
to square up at about 40K, as the amplitude approaches the free-ion
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moment of 7.0µB. At 32K, there is a first-order transition to a com-
mensurable state, with a seven-layer repeat distance, which has a fer-
romagnetic component (Brun et al. 1970). At the lowest temperatures,
this has developed into a ferrimagnetic square-wave structure, compris-
ing a repeating pattern of four layers of positive moments followed by
three of negative moments. These structures, the susceptibility curves
of Fig. 2.1, and the excitation spectrum have been used to determine
the parameters of a model for Tm with the usual basic ingredients of
isotropic exchange, crystal fields, and dipolar interactions (McEwen et
al. 1991). As shown in Fig. 2.7, the observed squaring-up process is very
well accounted for by mean-field calculations based on this model. The
principal discrepancy with experiment is in the magnitude of the field
along the c-axis which is required to form a ferromagnetic structure,
where the calculation gives a value about 50% above the observed 28
kOe. This may indicate that the form of J (q) in Tm which, as illus-
trated in Fig. 1.17, has the largest peak in the whole heavy rare earth
series, changes substantially at this first-order transition.

The magnetic structures of the light rare earths have not generally
been described in the same detail as those of the hcp metals, with the
exception of Nd, which has been intensively studied for several decades.

Fig. 2.7. The calculated harmonics of the c-axis moment in Tm as a
function of temperature, compared with the results of neutron diffraction

measurements, and the ferromagnetic moment (7Q).
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Such is the complexity of the observed neutron diffraction patterns, how-
ever, that it is only recently that a reasonably complete delineation of
the ordered moments has been attained (Zochowski et al. 1991). At the
Néel temperature of 19.9K, a weakly first-order transition leads to a
longitudinal-wave structure propagating in a b-direction on the hexag-
onal sites of the dhcp structure, with an incommensurable periodicity
given by Qh = 0.13b1. The moments on neighbouring hexagonal lay-
ers are ordered antiferromagnetically. Simultaneously, a c-axis moment
(plus a small component in the basal plane) with the same Q is induced
on the cubic sites by the anisotropic two-ion coupling. The moments on
neighbouring cubic layers are also ordered antiferromagnetically. As the
temperature is further lowered, another first-order transition at 19.2K
establishes a double-Q structure, with wave-vectors Q1 and Q2 aligned
approximately along a pair of b-axes but canted slightly, so that the
angle between them is somewhat less than 120◦. The polarization vec-
tors of the moments in the two waves are also canted away from the
corresponding b-axes and towards each other, but by a different amount
from the wave-vectors, so that the waves are no longer purely longitudi-
nal. Compared with the single-Q structure, this arrangement increases
the average ordered moment, which is further augmented, as the tem-
perature is lowered, by a squaring-up of the structure, which generates
harmonics in the neutron-diffraction pattern. Simultaneously, the period
gradually increases. At 8.2K, the planar components of the moments on
the cubic sites begin to order, and after undergoing a number of phase
transitions, the structure at low temperatures is characterized by the
four Q-vectors illustrated in Fig. 2.8. Although all four periodicities are
present on each type of site, Q1 and Q2, which are now aligned pre-
cisely along b-axes, but have different magnitudes 0.106b1 and 0.116b1,
generate the dominant structures on the hexagonal sites, while Q3 and
Q4, which have lengths 0.181b1 and 0.184b1 and are canted towards each
other, predominate on the cubic sites. The different types of Q-vector
are interrelated; within the experimental uncertainty Q3 + Q4 = 2Q1,
and the canting of Q3 and Q4 is related to the difference in length
between Q1 and Q2.

The explanation of these structures from first principles in terms
of the elementary magnetic interactions is clearly a formidable task
but, as we have seen in Section 2.1.6, the ordering on the hexagonal
sites at high temperatures can be satisfactorily accounted for by a phe-
nomenological Landau expansion of the free energy in terms of the or-
der parameters, and the role of the different interactions thereby clar-
ified. The anisotropic two-ion coupling between the dipoles confines
the moments to the basal plane and tends to favour the longitudinal-
wave structure. Two-ion coupling between the quadrupoles, proba-
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Fig. 2.8. The relative orienta-
tions and magnitudes of the funda-
mental wave-vectors which describe
the quadruple-Q magnetic structure
of Nd at low temperatures. All four
periodicities are present on each type
of site, but Q1 and Q2 generate the
dominant structures on the hexago-
nal sites, while Q3 and Q4 predom-
inate on the cubic sites.

bly of magnetoelastic origin, lifts the degeneracy between the different
multiple-Q structures and stabilizes the single-Q state just below TN .
The Landau expansion can also explain the rotation of the wave-vectors
and moments away from the b-axes, with the consequent stabilization of
the double-Q configuration, and account for the observed harmonics in
this structure. A similar analysis for the quadruple-Q structure in the
low-temperature region would provide the basis for understanding the
even more complicated phenomena which are observed when a magnetic
field is applied to Nd (Zochowski et al. 1991).

2.3.2 The magnetization of Holmium
The analytical mean-field treatment by Nagamiya et al. (1962) of the
effect of a magnetic field applied in the plane of a helical structure was
mentioned in Section 1.5. As the field is increased, the helix first distorts,
giving rise to a moment along H, and then undergoes a first-order tran-
sition to a fan structure, in which the moments oscillate about the field
direction. A further increase in the field reduces the opening angle of
the fan which, in the absence of magnetic anisotropy, goes continuously
to zero, establishing a ferromagnetic phase at a second-order transition.
Hexagonal anisotropy may modify this process by inducing a first-order
transition or, if it is large enough, eliminate the fan phase entirely.

The magnetization curves measured by Strandburg et al. (1962) and
Féron (1969) behaved in accordance with this description at low tem-
peratures, but above about 40K when the fan phase was first observed,
a further phase also appeared, manifested by a plateau corresponding to
a moment about one half of that attained in the fan phase. This extra
phase was clearly apparent in the magnetoresistance measurements of
Mackintosh and Spanel (1964), and later experiments by Akhavan and
Blackstead (1976), in which the field was changed continuously, revealed
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as many as five different phases at some temperatures. The structures
in a magnetic field were investigated with neutron diffraction by Koehler
et al. (1967), who identified two intermediate phases which they called
fans and characterized by the intensity distribution of the Bragg peaks.

These phenomena have been elucidated by means of calculations of
the effect of a magnetic field on the commensurable structures of Fig.
2.5 (Jensen and Mackintosh 1990). At low temperatures, the hexagonal
anisotropy has a decisive influence on the magnetic structures, ensuring
that a first-order transition occurs from the helix or cone to the ferro-
magnet, without any intermediate phases. Below about 20K, where the
cone is the stable structure in zero field, the cone angle is almost indepen-
dent of the applied field in the basal plane, but at the transition to the
ferromagnet, the c-axis moment disappears. When the field is applied
in the hard direction at these temperatures, the moments just above the
ferromagnetic transition do not point along the field direction, but are
aligned very closely with the nearest easy axis, so that 〈J‖〉 	 8 ·

√
3/2,

as illustrated in Fig. 1.20. As the field is further increased, they turn
towards it, becoming fully aligned through a second-order phase transi-
tion at a critical field which is estimated from B6

6 to be about 460kOe
at absolute zero. At low temperatures, the hexagonal anisotropy also
hinders the smooth distortion of the helix in a field. The moments jump
discontinuously past the hard directions as the field is increased, giving
first-order transitions which may have been observed, for example, as
low-field phase boundaries below 20K in the measurements of Akhavan
and Blackstead (1976).

Above about 40K, when the hexagonal anisotropy is not so domi-
nant, intermediate stable phases appear between the helix and the fer-
romagnet. The nature of these phases may be appreciated by noting
that the helix can be considered as blocks of moments with components
alternately parallel and antiparallel to the field, as is apparent from the
structures illustrated in Fig. 2.5. If we write this pattern schematically
as (+ − + −), then the fan structure may be described as (+ + + +).
The intermediate structures, the helifans, then correspond to patterns
of the type specified in Table 2.2. The notation helifan(p) is used to
designate a structure whose fundamental period is p times that of the
helix (the single number p is not generally adequate for discriminating
between the different helifans). It is clear that these structures repre-
sent compromises between the demands of the exchange for a periodic
structure, and the field for a complete alignment of the moments. They
are not due to the hexagonal anisotropy which, on the contrary, tends
to suppress them, and occur both when the field is applied along the
easy and hard directions in the plane. The free energies of the various
magnetic phases as a function of magnetic field in the easy direction at
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Table 2.2. The arrangement of blocks of spins in the helifan
structures. The first row shows the relative number of (−)

blocks in the different structures.

Helifan

Helix (4) (3) (3/2) (2) Fan

1/2 3/8 1/3 1/3 1/4 0
+ + + + + +
− + + + + +
+ + + − + +
− − − + − +
+ + + + + +
− − − − + +
+ + + + + +
− − + + − +
+ + + − + +
− + − + + +
+ + + + + +
− − − − − +

50K are shown in Fig. 2.9. In these calculations, the wave-vector Q
was allowed to vary in small, discrete steps, by changing the repeat dis-
tance, and the absolute minimum in the free energy for the structure
thereby determined, as illustrated in the insert to Fig. 2.9, leading to
the prediction that the stable magnetic structures follow the sequence
helix → helifan(3/2) → fan → ferromagnet as the field is increased. The
helifan(3/2) is depicted in Fig. 2.10. In a narrow interval between the he-
lix and the helifan(3/2), other stable phases appear, e.g. the helifan(4′)
(+ + − + + − + −), and similarly a sequence of helifans with m (+)
blocks followed by a (−) (m ≥ 3) occurs in the close neighbourhood of
the fan phase. The various structures are associated with characteristic
neutron-diffraction patterns. An examination of the neutron-diffraction
intensities which Koehler et al. (1967) associate with the phase which
they designate as ‘Fan I’ reveals a striking correspondence with the heli-
fan(3/2) pattern, with a very weak fundamental at Q0/3, where Q0

is approximately the wave-vector of the helix, strong second and third
harmonics, and a weak fourth harmonic. The basic periodicities of this
structure are 2Q0/3 for the component of the moments parallel to the
field, and Q0 for the perpendicular component; the weak Q0/3 peak
arises as the result of interference between them. Similar but more de-
tailed neutron-diffraction results have more recently been obtained by
Axe et al. (1991). The changes in the basic wave-vector are substantial,
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Fig. 2.9. Mean-field calculation of the free energy per ion for different
magnetic structures in Ho at 50 K, as a function of the magnetic field
along an easy b-axis. The free energy is in each case minimized with re-
spect to the wave-vector which characterizes the structure, as illustrated

for the fan phase in the insert.

even though the underlying exchange function is constant, and they
agree very well with those observed by neutron diffraction. For the helix,
fan and helifan(3/2) structures, the experimental (theoretical) values of
Q are respectively 0.208 (0.211), 0.170 (0.168), and 0.063 (0.066), times
2π/c. The period of the fan phase increases relative to that of the he-
lix because of the resulting increase in the opening angle of the fan,
expressed by the relation (1.5.21). This allows a decrease in the ex-
change energy which is greater than the concomitant increase of the
Zeeman energy. The change in Q in the various helifan phases is there-
fore to a very good approximation proportional to their magnetization.
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Fig. 2.10. The helifan(3/2) struc-
ture in Ho at 50K. The moments lie
in planes normal to the c-axis and
their relative orientations are indi-
cated by arrows. A magnetic field of
11 kOe is applied in the basal plane,
and moments with components re-
spectively parallel and antiparallel
to the field are designated by filled
and open arrow-heads. This compo-
nent of the moments has a period-
icity which is 3/2 that of the corre-
sponding helix, and the helicity of
the structure changes regularly.

A detailed consideration (Mackintosh and Jensen 1990) of the mag-
netization curves measured in Ho indicates that the metastable heli-
fan(2) may replace or co-exist with the stable (3/2)-structure, if the
measurements are made so rapidly that complete thermodynamic equi-
librium is not attained. Other stable or metastable helifans may be
involved in the five phases observed by Akhavan and Blackstead (1976).
In addition, the very pronounced hysteresis which they observed is con-
sistent with the existence of a large number of phases which have almost
the same energy, but are not easily transformed into each other.

The stability of the various periodic structures is determined by the
form of the two-ion coupling, especially the long-range component. If
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the exchange is sufficiently short-range, the helix, helifans and fan are
almost degenerate at the critical field; it is the interaction between the
blocks which differentiates between these structures. One of the most
remarkable features of the helifans is the large number of hexagonal
layers involved in a single period, a characteristic which they share with
the commensurable structures observed in zero field in Ho and Er, which
were discussed in the preceding sub-section.

Helifans, or analogous structures, may also occur in other rare
earth systems where periodic ordering is observed. For example, the
modulated structures in Nd discussed previously may be described as
(+ − + − + − + −), indicating blocks of moments with a component
parallel or antiparallel to a magnetic field applied in the basal plane. A
periodic reversal of (−) blocks will then generate subharmonics of the
basic Q-vector. Thus the sequence (+ + + − + − + −) generates Q/4,
and (+ + + − + + + −) gives Q/2, both of which have been observed
by neutron diffraction in a magnetic field (Zochowski et al. 1991).

2.3.3 Films and superlattices
The development of the technique of molecular-beam epitaxy has allowed
the fabrication on a substrate of films of rare earth metals, with thick-
nesses ranging from a few to thousands of atomic planes. In addition,
superlattices, or multilayers, of the form [Al|Bm]n may be produced, in
which blocks comprising l planes of element A, followed by m planes of
element B, are replicated n times. It is clear that an endless variety of
such systems may be constructed, and the field is in a stage of rapid de-
velopment. We will restrict ourselves to a discussion of some of the new
physical principles involved in understanding the magnetic properties of
such structures, illustrated by a few specific examples.

The essential difference between these structures and a bulk crystal
lies, of course, in the boundary conditions. Films and superlattices are
finite in one dimension, whereas a bulk crystal is assumed to be essen-
tially unbounded, and the magnetic layers are terminated by a medium
which may have very different magnetic properties, be it a vacuum, a
rare earth with quite different moments and interactions, or a nominally
non-magnetic metal such as Y, which is a very popular choice for the
intermediate layers in superlattices.

The influence of the finite size on the orientation of the ordered mo-
ments is illustrated in Fig. 2.11, which depicts the results of a mean-field
calculation, based on the model of Larsen et al. (1987), for a 15-plane
slab of Ho at 4K. The bunched commensurable helix encompassing the
inner 12 planes is enclosed by a single and a double plane, aligned almost
ferromagnetically with the respective outer planes. These ferromagnetic
clusters distort the adjacent bunched pairs in a manner reminiscent of
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spin slips. Such ferromagnetic terminations at the surfaces of slabs con-
taining planes of rotating moments are a general feature, reflecting the
predominantly ferromagnetic interaction between closely neighbouring
planes in the magnetic rare earths. This coupling normally gives rise to
a net moment in the slab, and is calculated to stabilize ferromagnetic
ordering at 4K in samples thinner than about nine atomic planes (Bohr
et al. 1989).

Fig. 2.11. Mean-field calculation of the orientation of the magnetic
moments in a 15-plane slab of Ho at 4K. The inner planes are close
to a bunched commensurable helix, but there is a strong tendency to

ferromagnetism near the surfaces.

The effect of the epitaxial strain is strikingly illustrated by the be-
haviour of thin films and superlattices of Dy and Er grown on Y, in both
of which ferromagnetism is suppressed, by somewhat different mecha-
nisms, in favour of periodic magnetic ordering. In 16-plane Dy films
embedded in Y in a variety of [Dy16|Ym] multilayers, with the c-axis
normal to the plane of the slab, Rhyne et al. (1989) found that the helix
persists to the lowest temperatures, and the ferromagnetic state is only
induced if a field of the order of 10 kOe is applied in the easy direction.
An obvious mechanism for this quenching of ferromagnetism is the con-
straint which the Y slabs impose on the Dy layers, so that the γ-strains
which provide the principal driving force for the transition cannot be
fully developed.

The ferromagnetic ordering of the axial moment is also suppressed
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in c-axis films and superlattices of Er (Borchers et al. 1988), but the
explanation in this case is not quite so evident. The dipolar energies are
unchanged in the films, nor is it likely that the anisotropy and exchange
contributions are decisively different. The strain-dependence of the ex-
change energy, expressed in eqn (2.3.3), can however provide a mecha-
nism. Y has a planar lattice-constant a of 3.648 Å, which is over two per
cent greater than that of Er, and the Y substrate therefore imposes a
strain on the Er film, which is measured to be ε11 = ε22 	 6×10−3. If the
atomic volume is assumed to be unchanged in the film, ε33 	 −12×10−3.
The difference in exchange energy between the solid and a thin film may
then be found from (2.3.4), and is equivalent to a field of 13 kOe acting
on the c-axis moment of about 8µB . The above estimate of ε33 is prob-
ably too great, so this calculation may be considered in reasonably good
agreement with the observation that Er films with thicknesses between
860 Å and 9500 Å require fields varying linearly between 8kOe and 3kOe
to establish a ferromagnetic state at 10K. It is noteworthy that, since
Lu has a significantly smaller basal-plane lattice-constant than Er, the
cone structure should be favoured in a c-axis epitaxial film grown on Lu.

Many of the characteristic features of rare earth superlattices are
demonstrated by the aforementioned [Dy|Y] systems, which are observed
to form helical structures over the whole temperature range of magnetic
ordering. When the c-axis is normal to the plane of the film, a coherent
magnetic structure may be formed, in which the phase and chirality of
the helix are maintained over many bilayers, provided that the slabs of
non-magnetic Y are not too thick. The coherence length may be esti-
mated from the widths of the neutron-diffraction peaks, and corresponds
to more than 10 bilayers if the Y layers are less than about 10 planes
thick. If the thickness is increased to about 35 planes, however, the
coherence length, which is inversely proportional to the width of the Y
layers, is less than the bilayer thickness, so that the helix in one Dy layer
is uncorrelated with that in the next. In the long-range coherent struc-
tures, the phase change of the helix across the Dy layers corresponds
to a turn angle which varies with temperature and shows a tendency to
lock in to 30◦, with associated bunching. The phase change across the
Y layers, on the other hand, is independent of temperature and the turn
angle takes the much larger value of about 50◦, which is characteristic of
the periodic structures formed by dilute alloys of magnetic rare earths
in bulk Y. It therefore appears that the magnetic order is propagated
through the Y layers by a spin-density wave, which is incipient in the
unperturbed metal, and is associated with the very large susceptibility
χ(Q) of the conduction electrons. The helical ordering in the Dy layers
of the c-axis superlattice is disturbed by edge effects of the type illus-
trated for the Ho film in Fig. 2.11. Consequently, the ordered helical
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moment falls below the saturation value of 10µB at low temperatures,
even though the total integrated magnetic scattering corresponds to the
fully saturated moment. At higher temperatures, the coupling of the net
ferromagnetic moment in a Dy layer to an applied magnetic field breaks
the coherence of the helical structure between the layers well before the
transition to the true ferromagnetic phase occurs. A b-axis superlattice,
on the other hand, fails to form a coherent magnetic structure even when
the Y layer is as thin as 9 planes, since the static susceptibility at q = 0,
which is required to propagate the ferromagnetic coupling between the
basal planes of the Dy layers through the Y, is not particularly high. The
Dy layers therefore form helical magnetic structures with wave-vectors
in the plane of the layers, but no coherence of phase or chirality between
the layers.



3

LINEAR RESPONSE THEORY

This chapter is devoted to a concise presentation of linear response the-
ory, which provides a general framework for analysing the dynamical
properties of a condensed-matter system close to thermal equilibrium.
The dynamical processes may either be spontaneous fluctuations, or
due to external perturbations, and these two kinds of phenomena are
interrelated. Accounts of linear response theory may be found in many
books, for example, des Cloizeaux (1968), Marshall and Lovesey (1971),
and Lovesey (1986), but because of its importance in our treatment of
magnetic excitations in rare earth systems and their detection by inelas-
tic neutron scattering, the theory is presented below in adequate detail
to form a basis for our later discussion.

We begin by considering the dynamical or generalized susceptibility,
which determines the response of the system to a perturbation which
varies in space and time. The Kramers–Kronig relation between the
real and imaginary parts of this susceptibility is deduced. We derive
the Kubo formula for the response function and, through its connection
to the dynamic correlation function, which determines the results of a
scattering experiment, the fluctuation–dissipation theorem, which relates
the spontaneous fluctuations of the system to its response to an external
perturbation. The energy absorption by the perturbed system is deduced
from the susceptibility. The Green function is defined and its equation of
motion established. The theory is illustrated through its application to
the simple Heisenberg ferromagnet. We finally consider the calculation
of the susceptibility in the random-phase approximation, which is the
method generally used for the quantitative description of the magnetic
excitations in the rare earth metals in this book.

3.1 The generalized susceptibility

A response function for a macroscopic system relates the change of an
ensemble-averaged physical observable 〈B̂(t)〉 to an external force f(t).
For example, B̂(t) could be the angular momentum of an ion, or the mag-
netization, and f(t) a time-dependent applied magnetic field. As indi-
cated by its name, the applicability of linear response theory is restricted
to the regime where 〈B̂(t)〉 changes linearly with the force. Hence we
suppose that f(t) is sufficiently weak to ensure that the response is lin-
ear. We further assume that the system is in thermal equilibrium before
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the external force is applied.
When the system is in thermal equilibrium, it is characterized by

the density operator

ρ0 = 1

Z
e−βH0 ; Z = Tr e−βH0 , (3.1.1)

where H0 is the (effective) Hamiltonian, Z is the (grand) partition func-
tion, and β = 1/kBT . Since we are only interested in the linear part of
the response, we may assume that the weak external disturbance f(t)
gives rise to a linear time-dependent perturbation in the total Hamilto-
nian H:

H1 = −Â f(t) ; H = H0 + H1, (3.1.2)

where Â is a constant operator, as for example
∑

i Jzi, associated with
the Zeeman term when f(t) = gµBHz(t) (the circumflex over A or B
indicates that these quantities are quantum mechanical operators). As
a consequence of this perturbation, the density operator ρ(t) becomes
time-dependent, and so also does the ensemble average of the operator
B̂:

〈B̂(t)〉 = Tr{ρ(t) B̂}. (3.1.3)

The linear relation between this quantity and the external force has the
form

〈B̂(t)〉 − 〈B̂〉 =
∫ t

−∞
φBA(t− t′) f(t′)dt′, (3.1.4)

where 〈B̂〉 = 〈B̂(t = −∞)〉 = Tr{ρ0 B̂}; here f(t) is assumed to vanish
for t→ −∞. This equation expresses the condition that the differential
change of 〈B̂(t)〉 is proportional to the external disturbance f(t′) and
the duration of the perturbation δt′, and further that disturbances at
different times act independently of each other. The latter condition
implies that the response function φBA may only depend on the time
difference t−t′. In (3.1.4), the response is independent of any future per-
turbations. This causal behaviour may be incorporated in the response
function by the requirement

φBA(t− t′) = 0 for t′ > t, (3.1.5)

in which case the integration in eqn (3.1.4) can be extended from t to
+∞.

Because φBA depends only on the time difference, eqn (3.1.4) takes
a simple form if we introduce the Fourier transform

f(ω) =
∫ ∞

−∞
f(t) eiωtdt, (3.1.6a)
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and the reciprocal relation

f(t) =
1
2π

∫ ∞

−∞
f(ω) e−iωtdω. (3.1.6b)

In order to take advantage of the causality condition (3.1.5), we shall
consider the Laplace transform of φBA(t) (the usual s is replaced by
−iz):

χBA(z) =
∫ ∞

0

φBA(t) eiztdt. (3.1.7a)

z = z1 + iz2 is a complex variable and, if
∫∞
0

|φBA(t)|e−εtdt is assumed
to be finite in the limit ε→ 0+, the converse relation is

φBA(t) =
1
2π

∫ ∞+iε

−∞+iε

χBA(z) e−iztdz ; ε > 0. (3.1.7b)

When φBA(t) satisfies the above condition and eqn (3.1.5), it can readily
be shown that χBA(z) is an analytic function in the upper part of the
complex z-plane (z2 > 0).

In order to ensure that the evolution of the system is uniquely de-
termined by ρ0 = ρ(−∞) and f(t), it is necessary that the external
perturbation be turned on in a smooth, adiabatic way. This may be
accomplished by replacing f(t′) in (4) by f(t′) eεt′ , ε > 0. This force
vanishes in the limit t′ → −∞, and any unwanted secondary effects may
be removed by taking the limit ε→ 0+. Then, with the definition of the
‘generalized’ Fourier transform

〈B̂(ω)〉 = lim
ε→0+

∫ ∞

−∞

(
〈B̂(t)〉 − 〈B̂〉

)
eiωt e−εtdt, (3.1.8)

eqn (3.1.4) is transformed into

〈B̂(ω)〉 = χBA(ω) f(ω), (3.1.9a)

where χBA(ω) is the boundary value of the analytic function χBA(z) on
the real axis:

χBA(ω) = lim
ε→0+

χBA(z = ω + iε). (3.1.9b)

χBA(ω) is called the frequency-dependent or generalized susceptibility
and is the Fourier transform, as defined by (3.1.8), of the response func-
tion φBA(t).

The mathematical restrictions (3.1.5) and (3.1.7) on φBA(t) have
the direct physical significance that the system is respectively causal
and stable against a small perturbation. The two conditions ensure that
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χBA(z) has no poles in the upper half-plane. If this were not the case,
the response 〈B̂(t)〉 to a small disturbance would diverge exponentially
as a function of time.

The absence of poles in χBA(z), when z2 is positive, leads to a rela-
tion between the real and imaginary part of χBA(ω), called the Kramers–
Kronig dispersion relation. If χBA(z) has no poles within the contour
C, then it may be expressed in terms of the Cauchy integral along C by
the identity

χBA(z) =
1

2πi

∫
C

χBA(z′)
z′ − z

dz′.

The contour C is chosen to be the half-circle, in the upper half-plane,
centred at the origin and bounded below by the line parallel to the z1-
axis through z2 = ε′, and z is a point lying within this contour. Since
φBA(t) is a bounded function in the domain ε′ > 0, then χBA(z′) must
go to zero as |z′| → ∞, whenever z′2 > 0. This implies that the part
of the contour integral along the half-circle must vanish when its radius
goes to infinity, and hence

χBA(z) = lim
ε′→0+

1
2πi

∫ ∞+iε′

−∞+iε′

χBA(ω′ + iε′)
ω′ + iε′ − z

d(ω′ + iε′).

Introducing z = ω + iε and applying ‘Dirac’s formula’:

lim
ε→0+

1
ω′ − ω − iε

= P 1
ω′ − ω

+ iπδ(ω′ − ω),

in taking the limit ε → 0+, we finally obtain the Kramers–Kronig rela-
tion (P denotes the principal part of the integral):

χBA(ω) =
1
iπ

P
∫ ∞

−∞

χBA(ω′)
ω′ − ω

dω′, (3.1.10)

which relates the real and imaginary components of χ(ω).

3.2 Response functions

In this section, we shall deduce an expression for the response function
φBA(t), in terms of the operators B̂ and Â and the unperturbed Hamil-
tonian H0. In the preceding section, we assumed implicitly the use of
the Schrödinger picture. If instead we adopt the Heisenberg picture,
the wave functions are independent of time, while the operators become
time-dependent. In the Heisenberg picture, the operators are

B̂(t) = eiHt/h̄ B̂ e−iHt/h̄, (3.2.1)
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corresponding to the equation of motion

d

dt
B̂(t) =

i

h̄
[H , B̂(t) ] (3.2.2)

(assuming that B̂ does not depend explicitly on time). Because the
wave functions are independent of time, in the Heisenberg picture, the
corresponding density operator ρH must also be. Hence we may write
(3.1.3)

〈B̂(t)〉 = Tr
{
ρ(t) B̂

}
= Tr

{
ρH B̂(t)

}
. (3.2.3)

Introducing (3.2.1) into this expression, and recalling that the trace is
invariant under a cyclic permutation of the operators within it, we obtain

ρ(t) = e−iHt/h̄ ρH eiHt/h̄,

or
d

dt
ρ(t) = − i

h̄
[H , ρ(t) ]. (3.2.4)

The equation of motion derived for the density operator, in the Schrö-
dinger picture, is similar to the Heisenberg equation of motion above,
except for the change of sign in front of the commutator.

The density operator may be written as the sum of two terms:

ρ(t) = ρ0 + ρ1(t) with [H0 , ρ0] = 0, (3.2.5)

where ρ0 is the density operator (3.1.1) of the thermal-equilibrium state
which, by definition, must commute with H0, and the additional contri-
bution due to f(t) is assumed to vanish at t → −∞. In order to derive
ρ1(t) to leading order in f(t), we shall first consider the following density
operator, in the interaction picture,

ρI(t) ≡ eiH0t/h̄ ρ(t) e−iH0t/h̄, (3.2.6)

for which

d

dt
ρI(t) = eiH0t/h̄

{ i
h̄

[H0 , ρ(t) ] +
d

dt
ρ(t)

}
e−iH0t/h̄

= − i

h̄
eiH0t/h̄ [H1 , ρ(t) ] e−iH0t/h̄.

Because H1 is linear in f(t), we may replace ρ(t) by ρ0 in calculating
the linear response, giving

d

dt
ρI(t) 	 − i

h̄

[
eiH0t/h̄ H1 e

−iH0t/h̄ , ρ0

]
=
i

h̄
[ Â0(t) , ρ0 ]f(t),
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using (3.2.5) and defining

Â0(t) = eiH0t/h̄ Â e−iH0t/h̄.

According to (3.2.6), taking into account the boundary condition, the
time-dependent density operator is

ρ(t) = e−iH0t/h̄
( ∫ t

−∞

d

dt′
ρI(t

′)dt′ + ρ0

)
eiH0t/h̄

= ρ0 +
i

h̄

∫ t

−∞
[ Â0(t

′ − t) , ρ0 ] f(t′)dt′,
(3.2.7)

to first order in the external perturbations. This determines the time
dependence of, for example, B̂ as

〈B̂(t)〉 − 〈B̂〉 = Tr
{

(ρ(t) − ρ0) B̂
}

=
i

h̄
Tr
{∫ t

−∞
[ Â0(t

′ − t) , ρ0 ] B̂ f(t′)dt′
}

and, utilizing the invariance of the trace under cyclic permutations, we
obtain, to leading order,

〈B̂(t)〉 − 〈B̂〉 =
i

h̄

∫ t

−∞
Tr
{
ρ0 [ B̂ , Â0(t

′ − t) ]
}
f(t′)dt′

=
i

h̄

∫ t

−∞
〈 [ B̂0(t) , Â0(t

′) ] 〉0 f(t′)dt′.
(3.2.8)

A comparison of this result with the definition (3.1.4) of the response
function then gives

φBA(t− t′) = i

h̄
θ(t− t′)〈 [ B̂(t) , Â(t′) ] 〉, (3.2.9)

where the unit step function, θ(t) = 0 or 1 when t < 0 or t > 0 respec-
tively, is introduced in order to ensure that φBA satisfies the causality
principle (3.1.5). In this final result, and below, we suppress the index 0,
but we stress that both the variations with time and the ensemble aver-
age are thermal-equilibrium values determined by H0, and are unaffected
by the external disturbances. This expression in terms of microscopic
quantities, is called the Kubo formula for the response function (Kubo
1957, 1966).

The expression (3.2.9) is the starting point for introducing a number
of useful functions:

KBA(t) = i

h̄
〈 [B̂(t) , Â ] 〉 = i

h̄
〈 [B̂ , Â(−t) ] 〉 (3.2.10)
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is also called a response function. Â is a shorthand notation for Â(t = 0).
The inverse response function KAB(t), which determines 〈Â(t)〉 caused
by the perturbation H1 = −f(t)B̂, is

KAB(t) = i

h̄
〈 [Â(t) , B̂ ] 〉 = −KBA(−t),

and KBA(t) can be expressed in terms of the corresponding causal re-
sponse functions as

KBA(t) =

{
φBA(t) for t > 0

−φAB(−t) for t < 0.

The susceptibility is divided into two terms, the reactive part

χ′
BA(z) = χ′

AB(−z∗) ≡ 1

2

{
χBA(z) + χAB(−z∗)

}
, (3.2.11a)

and the absorptive part

χ′′
BA(z) = −χ′′

AB(−z∗) ≡ 1

2i

{
χBA(z) − χAB(−z∗)

}
, (3.2.11b)

so that
χBA(z) = χ′

BA(z) + iχ′′
BA(z) (3.2.11c)

and, according to the Kramers–Kronig relation (3.1.10),

χ′
BA(ω) =

1
π
P
∫ ∞

−∞

χ′′
BA(ω′)
ω′ − ω

dω′ ; χ′′
BA(ω) = − 1

π
P
∫ ∞

−∞

χ′
BA(ω′)
ω′ − ω

dω′.

(3.2.11d)
In these equations, χAB(−ω) is the boundary value obtained by taking
z = ω + iε, i.e. as limε→0+ χAB(−z∗ = −ω + iε), corresponding to the
condition that χAB(−z∗), like χAB(z), is analytic in the upper half-
plane. The appropriate Laplace transform of KBA(t) with this property
is

KBA(z) =
∫ ∞

−∞
KBA(t) ei(z1t+iz2|t|)dt

=
∫ ∞

0

φBA(t) eiztdt−
∫ ∞

0

φAB(t) e−iz∗tdt.

Hence
KBA(z) = 2i χ′′

BA(z). (3.2.12)

Next we introduce the dynamic correlation function, sometimes re-
ferred to as the scattering function. It is defined as follows:

SBA(t) ≡ 〈B̂(t) Â〉 − 〈B̂〉〈Â〉 = 〈B̂ Â(−t)〉 − 〈B̂〉〈Â〉, (3.2.13)
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and is related to the response function introduced earlier by

KBA(t) = i

h̄

{
SBA(t) − SAB(−t)

}
. (3.2.14)

The different response functions obey a number of symmetry rela-
tions, due to the invariance of the trace under a cyclic permutation of
the operators. To derive the first, we recall that the Hermitian conjugate
of an operator is defined by

(< α |B̂ |α′ >)∗ = < α′ |B̂† |α > .

If we assume that a certain set of state vectors |α > constitutes a diag-
onal representation, i.e. H0|α >= Eα|α >, then it is straightforward to
show that

〈B̂(t) Â〉∗ = 〈Â†(−t) B̂†〉,

leading to the symmetry relations

K∗
BA(t) = KB†A†(t)

and
χ∗

BA(z) = χB†A†(−z∗). (3.2.15)

Another important relation is derived as follows:

〈B̂(t) Â〉 = 1

Z
Tr
{
e−βH0 eiH0t/h̄ B̂ e−iH0t/h̄ Â

}
= 1

Z
Tr
{
eiH0(t+iβh̄)/h̄ B̂ e−iH0(t+iβh̄)/h̄ e−βH0 Â

}
= 1

Z
Tr
{
e−βH0 Â B̂(t+ iβh̄)

}
= 〈Â B̂(t+ iβh̄)〉,

implying that
SBA(t) = SAB(−t− iβh̄). (3.2.16)

In any realistic system which, rather than being isolated, is in con-
tact with a thermal bath at temperature T , the correlation function
SBA(t) vanishes in the limits t → ±∞ , corresponding to the condition
〈B̂(t = ±∞) Â〉 = 〈B̂〉〈Â〉. If we further assume that SBA(t) is an an-
alytic function in the interval |t2| ≤ β of the complex t-plane, then the
Fourier transform of (3.2.16) is

SBA(ω) = eβh̄ω SAB(−ω), (3.2.17)

which is usually referred to as being the condition of detailed balance.
Combining this condition with the expressions (3.2.12) and (3.2.14), we
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get the following important relation between the correlation function
and the susceptibility:

SBA(ω) = 2h̄
1

1 − e−βh̄ω
χ′′

BA(ω), (3.2.18)

which is called the fluctuation–dissipation theorem. This relation ex-
presses explicitly the close connection between the spontaneous fluctu-
ations in the system, as described by the correlation function, and the
response of the system to external perturbations, as determined by the
susceptibility.

The calculations above do not depend on the starting assumption
that B̂ (or Â) is a physical observable, i.e. that B̂ should be equal to
B̂†. This has the advantage that, if the Kubo formula (3.2.9) is taken to
be the starting point instead of eqn (3.1.4), the formalism applies more
generally.

3.3 Energy absorption and the Green function
In this section, we first present a calculation of the energy transferred
to the system by the external perturbation H1 = −Â f(t) in (3.1.2),
incidentally justifying the names of the two susceptibility components
in (3.2.11). The energy absorption can be expressed in terms of χAA(ω)
and, without loss of generality, Âmay here be assumed to be a Hermitian
operator, so that Â = Â†. In this case, f(t) is real, and considering a
harmonic variation

f(t) = f0 cos (ω0t) = 1
2f0

(
eiω0t + e−iω0t

)
with f∗

0 = f0,

then

f(ω) = πf0{δ(ω−ω0)+δ(ω+ω0)}, as
∫ ∞

−∞
ei(ω−ω0)tdt = 2πδ(ω−ω0),

and we have

〈Â(t)〉 − 〈Â〉 = 1
2f0

{
χAA(−ω0) e

iω0t + χAA(ω0) e
−iω0t

}
.

The introduction of Â = B̂ = Â† in (3.2.15), and in the definition
(3.2.11), yields

χ′
AA(ω)∗ = χ′

AA(ω) = χ′
AA(−ω)

χ′′
AA(ω)∗ = χ′′

AA(ω) = −χ′′
AA(−ω),

(3.3.1)
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and these symmetry relations allow us to write

〈Â(t)〉 − 〈Â〉 = f0 {χ′
AA(ω0) cos (ω0t) + χ′′

AA(ω0) sin (ω0t)} .

The part of the response which is in phase with the external force is pro-
portional to χ′

AA(ω0), which is therefore called the reactive component.
The rate of energy absorption due to the field is

Q =
d

dt
〈H〉 = 〈∂H/∂t〉 = −〈Â(t)〉 ∂f/∂t,

which shows that the mean dissipation rate is determined by the out-of-
phase response proportional to χ′′

AA(ω):

Q = 1
2f

2
0 ω0 χ

′′
AA(ω0) (3.3.2)

and χ′′
AA(ω) is therefore called the absorptive part of the susceptibility.

If the eigenvalues Eα and the corresponding eigenstates |α > for
the Hamiltonian H(= H0) are known, it is possible to derive an explicit
expression for χBA(ω). According to the definition (3.2.10),

KBA(t) =
i

h̄

1
Z

Tr
{
e−βH [ eiHt/h̄ B̂ e−iHt/h̄ , Â ]

}
=

i

h̄

1
Z

∑
αα′

e−βEα
{
eiEαt/h̄ < α |B̂ |α′> e−iEα′ t/h̄ < α′ |Â |α >

− < α |Â |α′ > eiEα′ t/h̄ < α′ |B̂ |α > e−iEαt/h̄
}
.

Interchanging α and α′ in the last term, and introducing the population
factor

nα = 1

Z
e−βEα ; Z =

∑
α′
e−βEα′ , (3.3.3a)

we get

KBA(t) = i

h̄

∑
αα′

< α |B̂ |α′ >< α′ |Â |α > (nα − nα′) ei(Eα−Eα′)t/h̄,

(3.3.3b)
and hence

χBA(ω) = lim
ε→0+

∫ ∞

0

KBA(t) ei(w+iε)tdt

= lim
ε→0+

∑
αα′

< α |B̂ |α′ >< α′ |Â |α >
Eα′ − Eα − h̄ω − ih̄ε

(nα − nα′),
(3.3.4a)
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or equivalently

χAB(−ω) = lim
ε→0+

χAB(−ω + iε)

= lim
ε→0+

∑
αα′

< α |Â |α′ >< α′ |B̂ |α >
Eα′ − Eα + h̄ω − ih̄ε

(nα − nα′).
(3.3.4b)

An interchange of α and α′ shows this expression to be the same as
(3.3.4a), with ε replaced by −ε. The application of Dirac’s formula then
yields the absorptive part of the susceptibility (3.2.11b) as

χ′′
BA(ω) = π

∑
αα′

< α |B̂ |α′ >< α′ |Â |α > (nα −nα′) δ
(
h̄ω− (Eα′ −Eα)

)
(3.3.5)

(equal to KBA(ω)/2i in accordance with (3.2.12)), whereas the reactive
part (3.2.11a) is

χ′
BA(ω) =

Eα �=Eα′∑
αα′

< α |B̂ |α′ >< α′ |Â |α >
Eα′ − Eα − h̄ω

(nα − nα′) + χ′
BA(el) δω0,

(3.3.6a)
where

δω0 ≡ lim
ε→0+

iε

ω + iε
=

{
1 if ω = 0
0 if ω �= 0,

and the elastic term χ′
BA(el), which only contributes in the static limit

ω = 0, is

χ′
BA(el) = β

{Eα=Eα′∑
αα′

< α |B̂ |α′>< α′ |Â |α > nα − 〈B̂〉〈Â〉
}
. (3.3.6b)

We remark that χ′
BA(ω) and χ′′

BA(ω) are often referred to respectively as
the real and the imaginary part of χBA(ω). This terminology is not valid
in general, but only if the matrix-element products are real, as they are
if, for instance, B̂ = Â†. The presence of the elastic term in the reactive
response requires some additional consideration. There are no elastic
contributions to KBA(t), nor hence to χ′′

BA(ω), because nα − nα′ ≡ 0
if Eα = Eα′ . Nevertheless, the appearance of an extra contribution at
ω = 0, not obtainable directly from KBA(t), is possible because the
energy denominator in (3.3.4) vanishes in the limit |ω + iε| → 0, when
Eα = Eα′ . In order to derive this contribution, we consider the equal-
time correlation function

SBA(t = 0) = 〈(B̂ − 〈B̂〉)(Â − 〈Â〉)〉

=
∑
αα′

< α |B̂ |α′ >< α′ |Â |α > nα − 〈B̂〉〈Â〉 (3.3.7a)
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which, according to the fluctuation–dissipation theorem (3.2.18), should
be

SBA(t = 0) =
1
2π

∫ ∞

−∞
SBA(ω) dω =

1
π

∫ ∞

−∞

1
1 − e−βh̄ω

χ′′
BA(ω)d(h̄ω).

(3.3.7b)
Introducing (3.3.5), the integration is straightforward, except in a nar-
row interval around ω = 0, and we obtain

SBA(t = 0) =
Eα �=Eα′∑

αα′
< α |B̂ |α′ >< α′ |Â |α > nα + lim

γ→0+

∫ γ

−γ

χ′′
BA(ω)
πβω

dω

after replacing 1− e−βh̄ω with βh̄ω in the limit ω → 0. A comparison of
this expression for SBA(t = 0) with (3.3.7a) shows that the last integral
has a definite value:

lim
γ→0+

∫ γ

−γ

χ′′
BA(ω)
πβω

dω =
Eα=Eα′∑

αα′
< α |B̂ |α′>< α′ |Â |α > nα − 〈B̂〉〈Â〉.

(3.3.8)
The use of the Kramers–Kronig relation (3.1.10), in the form of (3.2.11d),
for calculating χ′

BA(0) then gives rise to the extra contribution

χ′
BA(el) = lim

γ→0+

1
π

∫ γ

−γ

χ′′
BA(ω)
ω

dω (3.3.9)

to the reactive susceptibility at zero frequency, as anticipated in (3.3.6b).
The zero-frequency result, χBA(0) = χ′

BA(0), as given by (3.3.6), is the
same as the conventional isothermal susceptibility (2.1.18) for the mag-
netic moments, where the elastic and inelastic contributions are respec-
tively the Curie and the Van Vleck terms. This elastic contribution is
discussed in more detail by, for instance, Suzuki (1971).

The results (3.3.4–6) show that, if the eigenstates of the Hamil-
tonian are discrete and the matrix-elements of the operators B̂ and Â
between these states are well-defined, the poles of χBA(z) all lie on the
real axis. This has the consequence that the absorptive part χ′′

BA(ω)
(3.3.5) becomes a sum of δ-functions, which are only non-zero when h̄ω
is equal to the excitation energies Eα′ −Eα. In such a system, no spon-
taneous transitions occur. In a real macroscopic system, the distribution
of states is continuous, and only the ground state may be considered as a
well-defined discrete state. At non-zero temperatures, the parameters of
the system are subject to fluctuations in space and time. The introduc-
tion of a non-zero probability for a spontaneous transition between the
‘levels’ α and α′ can be included in a phenomenological way by replac-
ing the energy difference Eα′ −Eα in (3.3.4) by (Eα′ −Eα)− iΓα′α(ω),
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where the parameters, including the energy difference, usually depend
on ω. According to the general stability and causality requirements,
the poles of χBA(z) at z = zα′α = (Eα′ − Eα) − iΓα′α must lie in the
lower half-plane, implying that Γα′α has to be positive (or zero). In the
case where |Eα′ − Eα| � Γα′α, the ω-dependence of these parameters
is unimportant, and the δ-function in (3.3.5) is effectively replaced by a
Lorentzian:

χ′′
BA(ω) 	

∑
αα′

< α |B̂ |α′ >< α′ |Â |α >
(Eα′ − Eα − h̄ω)2 + Γ2

α′α
Γα′α(nα − nα′)

+
h̄ωΓ0

(h̄ω)2 + Γ2
0

χ′
BA(el),

(3.3.10)

with a linewidth, or more precisely FWHM (full width at half maximum),
of 2Γα′α. In (3.3.10), we have added the quasi-elastic response due to a
pole at z = −iΓ0, which replaces the one at z = 0. The corresponding
reactive part of the susceptibility is

χ′
BA(ω) 	

∑
αα′

< α |B̂ |α′ >< α′ |Â |α >
(Eα′ − Eα − h̄ω)2 + Γ2

α′α
(Eα′ − Eα − h̄ω)(nα − nα′)

+
Γ2

0

(h̄ω)2 + Γ2
0

χ′
BA(el). (3.3.11)

The non-zero linewidth corresponds to an exponential decay of the oscil-
lations in the time dependence of, for instance, the correlation function:

SBA(t) ∼ e−izα′αt/h̄ = e−i(Eα′−Eα)t/h̄ e−Γα′αt/h̄.

The absorption observed in a resonance experiment is proportional
to χ′′

AA(ω). A peak in the absorption spectrum is interpreted as an ele-
mentary or quasi-particle excitation, or as a normal mode of the dynamic
variable Â, with a lifetime τ = h̄/Γα′α. A pole at z = −iΓ0 is said to
represent a diffusive mode. Such a pole is of particular importance for
those transport coefficients determined by the low-frequency or hydro-
dynamic properties of the system. Kubo (1957, 1966) gives a detailed
discussion of this subject. As we shall see later, the differential scatter-
ing cross-section of, for example, neutrons in the Born-approximation is
proportional to a correlation function, and hence to χ′′(ω). This implies
that the presence of elementary excitations in the system leads to peaks
in the intensity of scattered neutrons as a function of the energy transfer.
Finally, the dynamic correlation-functions are related directly to various
thermodynamic second-derivatives, such as the compressibility and the
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magnetic susceptibility, and thereby indirectly to the corresponding first-
derivatives, like the specific heat and the magnetization. Consequently,
most physical properties of a macroscopic system near equilibrium may
be described in terms of the correlation functions.

As a supplement to the response function φBA(t − t′), we now in-
troduce the Green function, defined as

GBA(t− t′) ≡ 〈〈B̂(t) ; Â(t′)〉〉

≡ − i

h̄
θ(t− t′)〈 [ B̂(t) , Â(t′) ] 〉 = −φBA(t− t′).

(3.3.12)

This Green function is often referred to as the double-time or the retarded
Green function (Zubarev 1960), and it is simply our previous response
function, but with the opposite sign. Introducing the Laplace transform
GBA(z) according to (3.1.7), we find, as before, that the corresponding
Fourier transform is

GBA(ω) ≡ 〈〈B̂ ; Â〉〉ω = lim
ε→0+

GBA(z = ω + iε)

= lim
ε→0+

∫ ∞

−∞(0)

GBA(t) ei(ω+iε)tdt = −χBA(ω).
(3.3.13)

We note that, if Â and B̂ are dimensionless operators, then GBA(ω) or
χBA(ω) have the dimensions of inverse energy.

If t′ = 0, the derivative of the Green function with respect to t is

d

dt
GBA(t) = − i

h̄

(
δ(t)〈 [ B̂(t) , Â ] 〉 + θ(t)〈 [ dB̂(t)/dt , Â ] 〉

)
= − i

h̄

(
δ(t)〈 [ B̂ , Â ] 〉 − i

h̄
θ(t)〈 [ [ B̂(t) , H ] , Â ] 〉

)
.

A Fourier transformation of this expression then leads to the equation
of motion for the Green function:

h̄ω〈〈B̂ ; Â〉〉ω − 〈〈 [ B̂ , H ] ; Â〉〉ω = 〈 [ B̂ , Â ] 〉. (3.3.14a)

The suffix ω indicates the Fourier transforms (3.3.13), and h̄ω is short-
hand for h̄(ω + iε) with ε → 0+. In many applications, Â and B̂ are
the same (Hermitian) operator, in which case the r.h.s. of (3.3.14a) van-
ishes and one may proceed to the second derivative. With the condition
that 〈 [ [ [ Â(t) , H ] , H ] , Â ] 〉 is −〈 [ [ Â(t) , H ] , [ Â , H ] ] 〉, the equation
of motion for the Green function 〈〈 [ Â , H ] ; Â〉〉ω leads to

(h̄ω)2〈〈Â ; Â〉〉ω + 〈〈 [ Â , H ] ; [ Â , H ] 〉〉ω = 〈 [ [ Â ,H ] , Â ] 〉. (3.3.14b)
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The pair of equations (3.3.14) will be the starting point for our applica-
tion of linear response theory.

According to the definition (3.2.10) of KBA(t), and eqn (3.2.12),

KBA(ω) = 2iχ′′
BA(ω) = −2iG′′

BA(ω).

We may write

i

π

∫ ∞

−∞
χ′′

BA(ω) e−iωtdω = i

h̄
〈 [ B̂(t) , Â ] 〉 (3.3.15)

and, setting t = 0, we obtain the following sum rule:

h̄

π

∫ ∞

−∞
χ′′

BA(ω)dω = 〈 [ B̂ , Â ] 〉, (3.3.16)

which may be compared with the value obtained for the equal-time corre-
lation function 〈B̂ Â〉−〈B̂〉〈Â〉, (3.3.7). The Green function in (3.3.14a)
must satisfy this sum rule, and we note that the thermal averages in
(3.3.14a) and (3.3.16) are the same. Equation (3.3.16) is only the first
of a whole series of sum rules.

The nth time-derivative of B̂(t) may be written

dn

dtn
B̂(t) =

(
i

h̄

)n

LnB̂(t) with LB̂(t) ≡ [H , B̂(t) ].

Taking the nth derivative on both sides of eqn (3.3.15), we get

i

π

∫ ∞

−∞
(−iω)nχ′′

BA(ω) e−iωtdω =
(
i

h̄

)n+1

〈 [LnB̂(t) , Â ] 〉.

Next we introduce the normalized spectral weight function

FBA(ω) =
1

χ′
BA(0)

1
π

χ′′
BA(ω)
ω

, where
∫ ∞

−∞
FBA(ω)dω = 1.

(3.3.17a)
The normalization of FBA(ω) is a simple consequence of the Kramers–
Kronig relation (3.2.11d). The nth order moment of ω, with respect to
the spectral weight function FBA(ω), is then defined as

〈ωn〉BA =
∫ ∞

−∞
ωnFBA(ω)dω, (3.3.17b)

which allows the relation between the nth derivatives at t = 0 to be
written

χ′
BA(0) 〈(h̄ω)n+1〉BA = (−1)n〈 [LnB̂ , Â ] 〉. (3.3.18a)
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These are the sum rules relating the spectral frequency-moments with
the thermal expectation-values of operators obtainable from B̂, Â, and
H. If B̂ = Â = Â†, then (3.3.1) shows thatFBA(ω) is even in ω, and all
the odd moments vanish. In this case, the even moments are

χ′
AA(0) 〈(h̄ω)2n〉AA = −〈 [L2n−1Â , Â ] 〉. (3.3.18b)

3.4 Linear response of the Heisenberg ferromagnet

In this section, we shall illustrate the use of linear response theory by
applying it to the case of the three-dimensional Heisenberg ferromagnet,
with the Hamiltonian

H = −1

2

∑
i�=j

J (ij)Si ·Sj , (3.4.1)

where Si is the spin on the ith ion, placed in a Bravais lattice at the
position Ri. The spatial Fourier transform of the exchange coupling,
with the condition J (ii) ≡ 0, is

J (q) = 1

N

∑
ij

J (ij) e−iq·(Ri−Rj) =
∑

j

J (ij) e−iq·(Ri−Rj), (3.4.2a)

and conversely

J (ij) = 1

N

∑
q

J (q) eiq·(Ri−Rj) =
V

N(2π)3

∫
J (q) eiq·(Ri−Rj)dq,

(3.4.2b)
depending on whether q, defined within the primitive Brillouin zone, is
considered to be a discrete or a continuous variable (we shall normally
assume it to be discrete). N is the total number of spins, V is the
volume, and the inversion symmetry of the Bravais lattice implies that
J (q) = J (−q) = J ∗(q). The maximum value of J (q) is assumed to
be J (q = 0), in which case the equilibrium state at zero temperature,
i.e. the ground state, is the ferromagnet:

〈Si〉 = S ẑ at T = 0, (3.4.3)

where ẑ is a unit vector along the z-axis, which is established as the
direction of magnetization by an infinitesimal magnetic field. This result
is exact, but as soon as the temperature is increased above zero, it is
necessary to make a number of approximations. As a first step, we
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introduce the thermal expectation-values 〈Si〉 = 〈S〉 in the Hamiltonian
which, after a simple rearrangement of terms, can be written

H =
∑

i

Hi −
1

2

∑
i�=j

J (ij)(Si − 〈S〉) · (Sj − 〈S〉), (3.4.4a)

with
Hi = −Sz

i J (0)〈Sz〉 + 1
2J (0)〈Sz〉2, (3.4.4b)

and 〈S〉 = 〈Sz〉 ẑ. In the mean-field approximation, discussed in the pre-
vious chapter, the dynamic correlation between spins on different sites is
neglected. This means that the second term in (3.4.4a) is disregarded,
reducing the original many-spin Hamiltonian to a sum of N indepen-
dent single-spin Hamiltonians (3.4.4b). In this approximation, 〈Sz〉 is
determined by the self-consistent equation

〈Sz〉 =
+S∑

M=−S

M eβMJ (0)〈Sz〉/ +S∑
M=−S

eβMJ (0)〈Sz〉 (3.4.5a)

(the last term in (3.4.4b) does not influence the thermal average) which,
in the limit of low temperatures, is

〈Sz〉 	 S − e−βSJ (0). (3.4.5b)

In order to incorporate the influence of two-site correlations, to
leading order, we consider the Green function

G±(ii′, t) = 〈〈S+
i (t) ; S−

i′ 〉〉. (3.4.6)

According to (3.3.14a), the variation in time of G±(ii′, t) depends on
the operator

[S+
i , H ] = −1

2

∑
j

J (ij)
(
−2S+

i S
z
j + 2Sz

i S
+
j

)
.

The introduction of this commutator in the equation of motion (3.3.14a)
leads to a relation between the original Green function and a new, more
elaborate Green function. Through its equation of motion, this new
function may be expressed in terms of yet another. The power of the
exchange coupling in the Green functions which are generated in this
way is raised by one in each step, and this procedure leads to an infi-
nite hierarchy of coupled functions. An approximate solution may be
obtained by utilizing the condition that the expectation value of Sz

i is
close to its saturation value at low temperatures. Thus, in this limit,
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Sz
i must be nearly independent of time, i.e. Sz

i 	 〈Sz〉. In this random-
phase approximation (RPA) the commutator reduces to

[S+
i , H ] 	 −

∑
j

J (ij)〈Sz〉
(
S+

j − S+
i

)
,

and the equations of motion lead to the following linear set of equations:

h̄ωG±(ii′, ω) +
∑

j

J (ij)〈Sz〉
{
G±(ji′, ω) −G±(ii′, ω)

}
= 〈 [S+

i , S−
i′ ] 〉 = 2〈Sz〉 δii′ .

(3.4.7)

The infinite set of RPA equations is diagonal in reciprocal space. Intro-
ducing the Fourier transform

G±(q, ω) =
∑
i′
G±(ii′, ω) e−iq·(Ri−Ri′ ), (3.4.8)

we obtain

h̄ωG±(q, ω) + 〈Sz〉
{
J (q)G±(q, ω) − J (0)G±(q, ω)

}
= 2〈Sz〉,

or

G±(q, ω) = lim
ε→0+

2〈Sz〉
h̄ω + ih̄ε− Eq

, (3.4.9)

where the dispersion relation is

Eq = 〈Sz〉 {J (0) − J (q)} . (3.4.10)

Introducing the susceptibility χ+−(q, ω) = −G±(q, ω), we obtain

χ+−(q, ω) =
2〈Sz〉
Eq − h̄ω

+ iπ 2〈Sz〉 δ(h̄ω − Eq). (3.4.11a)

Defining χ−+(q, ω) analogously to χ+−(q, ω), but with S+ and S− in-
terchanged, we obtain similarly, or by the use of the symmetry relation
(3.2.15),

χ−+(q, ω) =
2〈Sz〉

Eq + h̄ω
− iπ 2〈Sz〉 δ(h̄ω + Eq), (3.4.11b)

so that the absorptive susceptibility is

χ′′
+−(q, ω) = −χ′′

−+(q,−ω) = 2π 〈Sz〉 δ(h̄ω − Eq). (3.4.11c)
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The above susceptibilities do not correspond directly to physical observ-
ables but, for instance, χxx(q, ω) (where S+ and S− are both replaced
by Sx) does. It is straightforward to see (by symmetry or by direct
verification) that χ++(q, ω) = χ−−(q, ω) ≡ 0, and hence

χxx(q, ω) = χyy(q, ω) = 1

4

{
χ+−(q, ω) + χ−+(q, ω)

}
.

The presence of two-site correlations influences the thermal average
〈Sz〉. A determination of the correction to the MF result (3.4.5b) for
〈Sz〉, leading to a self-consistent RPA result for the transverse suscepti-
bility, requires a relation between 〈Sz〉 and the susceptibility functions
deduced above. The spin commutator-relation, [S+

i , S−
i′ ] = 2Sz δii′ ,

turns out to be satisfied identically, and thus leads to no additional
conditions. Instead we consider the Wortis expansion

Sz
i = S − 1

2S
S−

i S
+
i − 1

8S2(S − 1
2 )

(S−
i )2(S+

i )2 − · · · (3.4.12)

for which the matrix elements between the p lowest single-spin (or MF)
levels are correct, where p ≤ 2S+1 is the number of terms in the expan-
sion. Using (3.4.11), we find from the fluctuation–dissipation theorem
(3.2.18):

〈S−
i S

+
i 〉 = 1

N

∑
q

S−+(q, t = 0)

= 1

N

∑
q

1
π

∫ ∞

−∞

1
1 − e−βh̄ω

χ′′
−+(q, ω)d(h̄ω) = 2〈Sz〉Φ,

(3.4.13a)
with

Φ = 1

N

∑
q

nq ; nq =
1

eβEq − 1
, (3.4.13b)

where nq is the population factor for bosons of energy Eq. If S = 1
2 ,

then Sz is determined by the two first terms of (3.4.12), and

〈Sz〉 = S − Φ〈Sz〉/S,

or
〈Sz〉 = S2/(S + Φ) 	 1

2 − Φ + 2Φ2 − · · ·

In general one may use a ‘Hartree–Fock decoupling’, 〈(S−
i )2(S+

i )2〉 	
2(〈S−

i S
+
i 〉)2, of the higher-order terms in (3.4.13) in order to show that

〈Sz〉 = S − Φ + (2S + 1)Φ2S+1 − · · · 	 S − 1

N

∑
q

nq, (3.4.14)
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where the kinematic correction, of the order Φ2S+1, due to the limited
number of single-spin states, which is neglected in this expression, is
unimportant when S ≥ 1. Utilizing the Hartree–Fock decoupling once
more to write 〈Sz

i S
z
j 〉(i�=j) 	 〈Sz〉2 	 S2 − 2〈Sz〉Φ, we find the internal

energy to be

U = 〈H〉 = −1
2NJ (0)S2 +

∑
q

Eq nq

= −1
2NJ (0)S(S + 1) +

∑
q

Eq(nq + 1
2 ).

(3.4.15)

The second form, expressing the effect of the zero-point motion, is de-
rived using J (ii) = 1

N

∑
q J (q) ≡ 0.

The thermodynamic properties of the Heisenberg ferromagnet are
determined by (3.4.10), (3.4.14), and (3.4.15), which are all valid at low
temperatures. In a cubic crystal, the energy dispersion Eq is isotropic
and proportional to q2 in the long wavelength limit, and (3.4.14) then
predicts that the magnetization 〈Sz〉 decreases from its saturation value
as T 3/2. The specific heat is also found to be proportional to T 3/2. The
thermodynamic quantities have a very different temperature dependence
from the exponential behaviour (3.4.5b) found in the MF approxima-
tion. This is due to the presence of elementary excitations, which are
easily excited thermally in the long wavelength limit, since Eq → 0
when q → 0 in the RPA. These normal modes, which are described
as spin waves, behave in most aspects (disregarding the kinematic ef-
fects) as non-conserved Bose-particles, and they are therefore also called
magnons.

We shall not present a detailed discussion of the low-temperature
properties of the Heisenberg ferromagnet. Further details may be found
in, for instance, Marshall and Lovesey (1971), and a quite complete
treatment is given by Tahir-Kheli (1976). The RPA model is correct at
T = 0 where 〈Sz〉 = S, but as soon as the temperature is increased, the
magnons start to interact with each other, giving rise to finite lifetimes,
and the temperature dependence of the excitation energies is modified
(or renormalized). The temperature dependence of Eq = Eq(T ) is re-
sponsible for the leading order ‘dynamic’ corrections to 〈Sz〉 and to the
heat capacity. A more accurate calculation, which we will present in
Section 5.2, adds an extra term to the dispersion:

Eq = 〈Sz〉 {J (0) − J (q)} + 1

N

∑
k

{J (k) − J (k + q)}nk, (3.4.16)

from which the heat capacity of this non-interacting Bose-gas can be
determined as

C = ∂U/∂T =
∑
q

Eq dnq/dT. (3.4.17)
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We note that there are corrections to U , given by (3.4.15), of second
order in Φ. The low-temperature properties, as determined by (3.4.14),
(3.4.16), and (3.4.17), agree with the systematic expansion performed by
Dyson (1956), including the leading-order dynamical correction of fourth
power in T (in the cubic case), except for a minor kinematic correction
which is negligible for S ≥ 1.

3.5 The random-phase approximation

Earlier in this chapter, we have demonstrated that many experimentally
observable properties of solids can be expressed in terms of two-particle
correlation functions. Hence it is of great importance to be able to cal-
culate these, or the related Green functions, for realistic systems. We
shall therefore consider the determination of the generalized susceptibil-
ity for rare earth magnets, using the random-phase approximation which
was introduced in the last section, and conclude the chapter by apply-
ing this theory to the simple Heisenberg model, in which the single-ion
anisotropy is neglected.

3.5.1 The generalized susceptibility in the RPA
The starting point for the calculation of the generalized susceptibility
is the (effective) Hamiltonian for the angular momenta which, as usual,
we write as a sum of single- and two-ion terms:

H =
∑

i

HJ(Ji) − 1
2

∑
i�=j

J (ij)Ji ·Jj . (3.5.1)

For our present purposes, it is only necessary to specify the two-ion
part and, for simplicity, we consider only the Heisenberg interaction. As
in Section 2.2, we introduce the thermal expectation values 〈Ji〉 in the
Hamiltonian, which may then be written

H =
∑

i

HMF(i) − 1
2

∑
i�=j

J (ij) (Ji − 〈Ji〉) · (Jj − 〈Jj〉), (3.5.2)

where

HMF(i) = HJ(Ji) −
(
Ji − 1

2 〈Ji〉
)
·
∑

j

J (ij)〈Jj〉. (3.5.3)

From the mean-field Hamiltonians HMF(i), we may calculate 〈Ji〉 as
before. The Hamiltonian (3.5.3) also determines the dynamic suscepti-
bility of the ith ion, in the form of a Cartesian tensor χ o

i (ω), according
to eqns (3.3.4–6), with Â and B̂ set equal to the angular-momentum
components Jiα. We wish to calculate the linear response 〈Ji(t)〉 of



3.5 THE RANDOM-PHASE APPROXIMATION 155

the system to a small perturbative field hj(t) = gµBHj(t) (the Zeeman
term due to a stationary field is taken as included in HJ(Ji) ). From
(3.5.2), we may extract all terms depending on Ji and collect them in
an effective Hamiltonian Hi , which determines the time-dependence of
Ji. Transformed to the Heisenberg picture, this Hamiltonian is

Hi(t) = HMF(i, t) −
(
Ji(t) − 〈Ji〉

)
·
(∑

j

J (ij)(Jj(t) − 〈Jj〉) + hi(t)
)
.

(3.5.4)
We note that a given site i appears twice in the second term of (3.5.2),
and that the additional term 〈Ji〉 · hi has no consequences in the limit
when hi goes to zero. The differences Jj(t) − 〈Jj(t)〉 fluctuate in a vir-
tually uncorrelated manner from ion to ion, and their contribution to
the sum in (3.5.4) is therefore small. Thus, to a good approximation,
these fluctuations may be neglected, corresponding to replacing Jj(t)
in (3.5.4) by 〈Jj(t)〉 (when j �= i). This is just the random-phase ap-
proximation (RPA), introduced in the previous section, and so called
on account of the assumption that Jj(t) − 〈Jj(t)〉 may be described in
terms of a random phase-factor. It is clearly best justified when the
fluctuations are small, i.e. at low temperatures, and when many sites
contribute to the sum, i.e. in three-dimensional systems with long-range
interactions. The latter condition reflects the fact that an increase in the
number of (nearest) neighbours improves the resemblance of the sum in
(3.5.4) to an ensemble average. If we introduce the RPA in eqn (3.5.4),
the only dynamical variable which remains is Ji(t), and the Hamiltonian
becomes equivalent to HMF(i), except that the probing field hi(t) is re-
placed by an effective field heff

i (t). With 〈Ji(ω)〉 defined as the Fourier
transform of 〈Ji(t)〉 − 〈Ji〉, then, according to eqn (3.1.9),

〈Ji(ω)〉 = χ
o
i (ω)heff

i (ω),

where the effective field is

heff
i (ω) = hi(ω) +

∑
j

J (ij)〈Jj(ω)〉. (3.5.5)

This may be compared with the response determined by the two-ion
susceptibility functions of the system, defined such that

〈Ji(ω)〉 =
∑

j

χ(ij, ω)hj(ω). (3.5.6)

The two ways of writing the response should coincide for all hj(ω), which
implies that, within the RPA,

χ(ij, ω) = χ
o
i (ω)

(
δij +

∑
j′

J (ij′)χ(j′j, ω)
)
. (3.5.7)
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This self-consistent equation may be solved under various conditions.
For convenience, we shall consider here only the uniform case of a ferro-
or paramagnet, where HMF(i) is the same for all the ions, i.e. 〈Ji〉 = 〈J〉
and χ o

i (ω) = χ
o(ω), in which case we get the final result

χ(q, ω) =
{
1 − χ

o(ω)J (q)
}−1

χ
o(ω). (3.5.8)

Here 1 is the unit matrix, and we have used the Fourier transform (3.4.2)
of J (ij)

J (q) =
∑

j

J (ij) e−iq·(Ri−Rj). (3.5.9)

In the RPA, the effects of the surrounding ions are accounted for
by a time-dependent molecular field, which self-consistently enhances
the response of the isolated ions. The above results are derived from a
kind of hybrid MF-RPA theory, as the single-ion susceptibility χ o

i (ω) is
still determined in terms of the MF expectation values. A self-consistent
RPA theory might be more accurate but, as we shall see, gives rise to fur-
ther problems. At high temperatures (or close to a phase transition), the
description of the dynamical behaviour obtained in the RPA is incom-
plete, because the thermal fluctuations introduce damping effects which
are not included. However, the static properties may still be described
fairly accurately by the above theory, because the MF approximation is
correct to leading order in β = 1/kBT .

The RPA, which determines the excitation spectrum of the many-
body system to leading order in the two-ion interactions, is simple to
derive and is of general utility. Historically, its applicability was ap-
preciated only gradually, in parallel with the experimental study of a
variety of systems, and results corresponding to eqn (3.5.8) were pre-
sented independently several times in the literature in the early 1970s
(Fulde and Perschel 1971, 1972; Haley and Erdös 1972; Purwins et al.
1973; Holden and Buyers 1974). The approach to this problem in the
last three references is very similar, and we will now present it, following
most closely the account given by Bak (1974).

We start by considering the MF Hamiltonian defined by (3.5.3). The
basis in which HMF(i) is diagonal is denoted |νi > ; ν = 0, 1, . . . , 2J ,
and we assume that HMF(i) is the same for all the ions:

HMF(i)|νi > = Eν |νi >, (3.5.10)

with Eν independent of the site index i . The eigenvalue equation defines
the standard-basis operators

aνµ(i) = |νi >< µi |, (3.5.11)
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in terms of which HMF(i) =
∑

ν Eνaνν(i). Defining the matrix-elements

Mνµ = < νi |Ji − 〈Ji〉|µi >, (3.5.12)

we may write
Ji − 〈Ji〉 =

∑
νµ

Mνµ aνµ(i),

and hence

H =
∑

i

∑
ν

Eν aνν(i) − 1

2

∑
ij

∑
νµ

∑
ν′µ′

J (ij)Mνµ · Mν′µ′ aνµ(i) aν′µ′(j).

(3.5.13)
We have expressed H in terms of the standard-basis operators, as we now
wish to consider the Green functions Gνµ,rs(ii′, ω) = 〈〈aνµ(i) ; ars (i′)〉〉.
According to (3.3.14), their equations of motion are

h̄ω Gνµ,rs(ii′, ω) − 〈〈 [ aνµ(i) , H ] ; ars(i′)〉〉 = 〈 [ aνµ(i) , ars(i′) ] 〉.
(3.5.14)

The MF basis is orthonormal, and the commutators are

[ aνµ(i) , ars(i′) ] = δii′{δµraνs(i) − δsνarµ(i)},

so we obtain

{h̄ω − (Eµ − Eν)}Gνµ,rs(ii′, ω)

+
∑

j

J (ij)
∑
ξν′µ′

〈〈{aνξ(i)Mµξ − aξµ(i)Mξν} · Mν′µ′ aν′µ′(j) ; ars(i′)〉〉

= δii′〈δµr aνs(i) − δsν arµ(i)〉. (3.5.15)

In order to solve these equations, we make an RPA decoupling of the
higher-order Green functions:

〈〈aνξ(i) aν′µ′(j) ; ars(i′)〉〉i�=j 	
〈aνξ(i)〉〈〈aν′µ′(j) ; ars(i′)〉〉 + 〈aν′µ′(j)〉〈〈aνξ(i) ; ars(i′)〉〉.

(3.5.16)

This equation is correct in the limit where two-ion correlation effects
can be neglected, i.e. when the ensemble averages are determined by the
MF Hamiltonian. The decoupling is equivalent to the approximation
made above, when Jj(t) in (3.5.4) was replaced by 〈Jj(t)〉. The thermal
expectation value of a single-ion quantity 〈aνµ(i)〉 is independent of i,
and to leading order it is determined by the MF Hamiltonian:

〈aνµ〉 	 〈aνµ〉0 = 1

Z
Tr
{
e−βH(MF) aνµ

}
= δνµ nν , (3.5.17)
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and correspondingly 〈J〉 in (3.5.12) is assumed to take the MF value 〈J〉0.
Here Z is the partition function of the MF Hamiltonian, and thus nν is
the population factor of the νth MF level. With the two approximations
(3.5.16) and (3.5.17), and the condition that

∑
ν′µ′〈Mν′µ′aν′µ′(j)〉0 =

〈Jj − 〈Jj〉0〉0 = 0 by definition, (3.5.15) is reduced to a closed set of
equations by a Fourier transformation:

{h̄ω − (Eµ − Eν)}Gνµ,rs(q, ω)

+
∑
ν′µ′

J (q)(nν − nµ)Mµν · Mν′µ′ Gν′µ′,rs(q, ω) = (nν − nµ) δµrδνs.

(3.5.18)
We now show that these equations lead to the same result (3.5.8) as
found before. The susceptibility, expressed in terms of the Green func-
tions, is

χ(q, ω) = −
∑

νµ,rs

MνµMrsGνµ,rs(q, ω). (3.5.19)

MνµMrs is the dyadic vector-product, with the (αβ)-component given
by (MνµMrs)αβ = (Mνµ)α(Mrs)β . Further, from eqns (3.3.4–6), the
MF susceptibility is

χ
o(ω) =

Eν �=Eµ∑
νµ

MνµMµν

Eµ − Eν − h̄ω
(nν − nµ) +

Eν=Eµ∑
νµ

MνµMµνβ nν δω0.

(3.5.20)
Multiplying (3.5.18) by MνµMrs/(Eµ − Eν − h̄ω), and summing over
(νµ, rs), we get (for ω �= 0)

χ(q, ω) − χ
o(ω)J (q)χ(q, ω) = χ

o(ω), (3.5.21)

in accordance with (3.5.8). Special care must be taken in the case of
degeneracy, Eµ = Eν , due to the resulting singular behaviour of (3.5.18)
around ω = 0. For ω �= 0, Gνµ,rs(q, ω) vanishes identically if Eµ = Eν ,
whereas Gνµ,rs(q, ω = 0) may be non-zero. The correct result, in the
zero frequency limit, can be found by putting Eµ − Eν = δ in (3.5.18),
so that nν − nµ = nν(1 − e−βδ) 	 βnνδ. Dividing (3.5.18) by δ, and
taking the limit δ → 0, we obtain in the degenerate case Eν = Eµ:

−Gνµ,rs(q, 0) − β
∑
ν′µ′

J (q)nνMνµ ·Mν′µ′ Gν′µ′,rs(q, 0) = βnν δµr δνs.

(3.5.22)
Since χ(q, ω) does not depend on the specific choice of state-vectors in
the degenerate case, (3.5.22) must also apply for a single level, i.e. when
µ = ν. It then follows that (3.5.18), when supplemented with (3.5.22),
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ensures that (3.5.21) is also valid at ω = 0, as (3.5.22) accounts for
the elastic contributions due to χ o(ω), proportional to δω0. This zero-
frequency modification of the equations of motion was derived in this
context in a slightly different way by Lines (1974a).

Although eqns (3.5.18) and (3.5.22) only lead to the result (3.5.8),
derived previously in a simpler manner, the equations of motion clarify
more precisely the approximations made, and they contain more infor-
mation. They allow us to keep track in detail of the different transitions
between the MF levels, which may be an advantage when performing ac-
tual calculations. Furthermore, the set of Green functions Gνµ,rs(q, ω)
is complete, and hence any magnetic single- or two-ion response function
may be expressed as a linear combination of these functions.

In the derivation of the RPA result, we utilized two approximate
equations, (3.5.16) and (3.5.17). The two approximations are consistent,
as both equations are correct if two-ion correlation effects are negligible.
However, the RPA Green functions contain implicitly two-ion correla-
tions and, according to (3.3.7), we have in the linear response theory:

〈aνµ(i) ars(j)〉 − 〈aνµ(i)〉〈ars(j)〉 =

1

N

∑
q

eiq·(Ri−Rj)
1
π

∫ ∞

−∞

−1
1 − e−βh̄ω

G′′
νµ,rs(q, ω)d(h̄ω),

(3.5.23)
where, by the definition (3.2.11b),

G′′
νµ,rs(q, ω) =

1
2i

lim
ε→0+

{
Gνµ,rs(q, ω + iε) −Grs,νµ(−q,−ω + iε)

}
.

Equation (3.5.23), with i = j, might be expected to give a better esti-
mate of the single-ion average 〈aνµ〉 than that afforded by the MF ap-
proximation used in (3.5.17). If this were indeed the case, the accuracy of
the theory could be improved by using this equation, in a self-consistent
fashion, instead of (3.5.17), and this improvement would maintain most
of the simplicity and general utility of the RPA theory. Unfortunately,
such an improvement seems to occur only for the Heisenberg ferromagnet
discussed previously, and the nearly-saturated anisotropic ferromagnet,
which we will consider later. Equation (3.5.23) allows different choices
of the Green functions Gνµ,rs(q, ω) for calculating 〈aνν〉, and the results
in general depend on this choice. Furthermore, (3.5.23) may lead to
non-zero values for 〈aνµ(i) ars(i)〉, when µ �= r, despite the fact that
< µi |ri >= 0 by definition. The two-ion correlation effects which are
neglected by the RPA decoupling in (3.5.18) might be as important,
when using eqn (3.5.23) with i = j, as those effects which are accounted
for by the RPA. Nevertheless, it might be possible that certain choices
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of the Green functions, or a linear combination of them, would lead to
an accurate determination of 〈aνν〉 (the most natural choice would be to
use G′′

ν0,0ν(q, ω) ). However, a stringent justification of a specific choice
would require an analysis of the errors introduced by the RPA decou-
pling. We conclude that a reliable improvement of the theory can only
be obtained by a more accurate treatment of the higher-order Green
functions than that provided by the RPA. General programs for ac-
complishing this have been developed, but they have only been carried
through in the simplest cases, and we reserve the discussion of these
analyses to subsequent sections, where a number of specific systems are
considered.

3.5.2 MF-RPA theory of the Heisenberg ferromagnet
We conclude this chapter by applying the RPA to the Heisenberg model,
thereby demonstrating the relation between (3.5.8) and the results pre-
sented in the previous section. In order to do this, we must calculate
χ

o(ω). The eigenstates of the MF Hamiltonian (3.4.4b) are |Sz = M > ,
with M = −S,−S + 1, · · · , S, and we neglect the constant contribution
to the eigenvalues

EM = −MJ (0)〈Sz〉0 = −M∆ with ∆ = J (0)〈Sz〉0,

denoting the MF expectation-value (3.4.5a) of Sz by 〈Sz〉0. According
to (3.3.4a), we then have (only terms with α = M + 1 and α′ = M
contribute):

χ o
+−(ω) =

S−1∑
M=−S

< M + 1 |S+ |M >< M |S− |M + 1 >

EM − EM+1 − h̄ω
(nM+1 − nM )

= 1

Z

S−1∑
−S

S(S + 1) − M(M + 1)

∆ − h̄ω

(
eβ(M+1)∆ − eβM∆

)
= 1

∆ − h̄ω

1

Z

( S∑
−S+1

{
S(S + 1) − (M − 1)M

}
eβM∆

−
S−1∑
−S

{
S(S + 1) − M(M + 1)

}
eβM∆

)
= 1

∆ − h̄ω

1

Z

S∑
−S

2MeβM∆ =
2〈Sz〉0
∆ − h̄ω

,

as all the sums may be taken as extending from −S to S. Similarly
χ o
−+(ω) = χ o

+−(−ω), whereas χ o
++(ω) = χ o

−−(ω) = 0, from which we
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obtain

χ o
xx(ω) = χ o

yy(ω) = 1

4

{
χ o

+−(ω) + χ o
−+(ω)

}
=

∆〈Sz〉0
∆2 − (h̄ω)2

, (3.5.24a)

and

χ o
xy(ω) = −χ o

yx(ω) = i

4

{
χ o

+−(ω) − χ o
−+(ω)

}
=

ih̄ω〈Sz〉0
∆2 − (h̄ω)2

. (3.5.24b)

We note here that χ o
xy

′(ω) and χ o
xy

′′(ω), obtained by replacing ω by
ω+ iε and letting ε→ 0+, are both purely imaginary. Of the remaining
components in χ o(ω), only χ o

zz(ω) is non-zero, and it comprises only an
elastic contribution

χ o
zz(ω) = β (δSz)2δω0, with (δSz)2 ≡ 〈(Sz)2〉0 − 〈Sz〉20. (3.5.25)

Because χ o
±z(ω) = 0, the RPA equation (3.5.8) factorizes into a 2 × 2

(xy)-matrix equation and a scalar equation for the zz-component. In-
verting the (xy)-part of the matrix {1 − χ

o(ω)J (q)}, we find

χxx(q, ω) =
χ o

xx(ω) − |χ o(ω)|J (q)
1 − {χ o

xx(ω) + χ o
yy(ω)}J (q) + |χ o(ω)|J 2(q)

,

where the determinant is

|χ o(ω)| = χ o
xx(ω)χ o

yy(ω) − χ o
xy(ω)χ o

yx(ω) =
〈Sz〉20

∆2 − (h̄ω)2
.

By a straightforward manipulation, this leads to

χxx(q, ω) =
E0

q〈Sz〉0
(E0

q)2 − (h̄ω)2
, (3.5.26a)

with

E0
q = ∆ − 〈Sz〉0J (q) = 〈Sz〉0{J (0) − J (q)}. (3.5.26b)

The same result is obtained for χyy(q, ω). We note that (3.5.26a) should
be interpreted as

χxx(q, ω) = 1
2 〈S

z〉0 lim
ε→0+

(
1

E0
q − h̄ω − ih̄ε

+
1

E0
q + h̄ω + ih̄ε

)
.

This result is nearly the same as that deduced before, eqns (3.4.10–
11), except that the RPA expectation-value 〈Sz〉 is replaced by its MF
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value 〈Sz〉0, reflecting the lack of self-consistency in this analysis. As a
supplement to the previous results, we find that

χzz(q, ω) =
χ o

zz(ω)
1 − χ o

zz(ω)J (q)
=

β(δSz)2

1 − β(δSz)2 J (q)
δω0, (3.5.27a)

and the corresponding correlation function is

Szz(q, ω) = 2πh̄
(δSz)2

1 − β(δSz)2 J (q)
δ(h̄ω). (3.5.27b)

The zz-response vanishes in the zero-temperature limit and, in this ap-
proximation, it is completely elastic, since (δSz)2 is assumed indepen-
dent of time. However, this assumption is violated by the dynamic
correlation-effects due to the spin waves. For instance, the (n = 1)-sum-
rule (3.3.18b) indicates that the second moment 〈(h̄ω)2〉zz is non-zero,
when q �= 0 and T > 0, which is not consistent with a spectral function
proportional to δ(h̄ω).

Although this procedure leads to a less accurate analysis of the
Heisenberg ferromagnet than that applied previously, it has the advan-
tage that it is easily generalized, particularly by numerical methods, to
models with single-ion anisotropy, i.e. where HJ(Ji) in (3.5.1) is non-
zero. The simplicity of the RPA result (3.5.8), or of the more general
expression (3.5.7), furthermore makes it suitable for application to com-
plex systems. As argued above, its validity is limited to low tempera-
tures in systems with relatively large coordination numbers. However,
these limitations are frequently of less importance than the possibility of
making quantitative predictions of reasonable accuracy under realistic
circumstances. Its utility and effectiveness will be amply demonstrated
in subsequent chapters.



4

MAGNETIC SCATTERING OF NEUTRONS

The scattering of low-energy neutrons provides an extremely powerful
experimental technique for studying the properties of solids. The neu-
tron has a number of special characteristics, on which its utility as a
tool for examining magnetic materials depends. Because it is a neutral
particle, it can penetrate deeply into most crystals, interacting through
its magnetic moment with the electronic moments strongly enough to be
measurably scattered, but without disturbing the magnetic system too
severely. As a consequence, the great majority of neutrons participate
in at most one scattering event, and they sense the properties of the
unperturbed crystal. Thermal neutrons, with energies of the order of
25meV, corresponding to wavelengths of the order of 2 Å, match both
the interatomic spacings and the energies and momenta of the mag-
netic excitations, and are generated with adequate intensity by research
reactors. Cold neutrons, with energies around 5meV and wavelengths
about 4 Å, which are emitted from cooled moderators in reactors, may
be even more ideally suited for studying the spatial arrangement and
the dynamics of the magnetic moments.

The neutron-scattering cross-section contains precisely that infor-
mation which is needed to characterize a magnetic material, and to make
a stringent comparison with theoretical calculations of its properties.
The elastic Bragg scattering or neutron diffraction provides a systematic
procedure for determining the magnetic structure, or the mean values
of the magnetic-moment vectors on the different atomic sites. Inelastic
neutron scattering may be looked upon in three complementary ways.
Through conservation of energy and momentum, the scattered neutrons
measure the dispersion relation of the magnetic excitations. The scat-
tering cross-section is also directly related to the time-dependent pair-
correlation function, which describes the evolution in space and time
of the system of moments. Finally, through the fluctuation–dissipation
theorem presented in the last chapter, the cross-section may be expressed
in terms of the generalized susceptibility of the magnetic crystal, the
function describing the dynamics of the moments which is most read-
ily calculated theoretically. No other experimental technique can aspire
to providing such detailed microscopic information about magnetic sys-
tems.

This chapter does not pretend to be a complete exposition of the
theory of magnetic neutron scattering. We shall rather, by elementary
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means, derive the magnetic cross-section for unpolarized neutrons in the
simple dipole approximation, which is normally adequate for scattering
by rare earth ions, and will therefore suffice in our further discussion.
A neutron interacts with the nuclei in a solid through the nuclear force
and, through its magnetic moment, with the magnetic field due to the
electrons. In solids with unpaired electrons, the two kinds of scatter-
ing mechanism lead to cross-sections of the same order of magnitude.
The magnetic field of the electrons may be described by a multipole ex-
pansion, and the first term in this series, the dipole term, leads to the
dominating contribution to the cross-section at small scattering vectors.
We use this approximation in a derivation from first principles of a gen-
eral expression for the differential cross-section (Trammel 1953), which
we then separate into elastic and inelastic components. Using linear re-
sponse theory, we derive the different forms which the inelastic part may
exhibit, and illustrate some of the results by means of the Heisenberg
ferromagnet. A detailed treatment of both the nuclear and magnetic
scattering of neutrons may be found in Marshall and Lovesey (1971),
and Lovesey (1984), while a brief review of some of the salient features
of magnetic neutron scattering and its application to physical problems
has been given by Mackintosh (1983).

4.1 The differential cross-section in the dipole
approximation

A neutron-scattering experiment is performed by allowing a collimated
beam of monochromatic (monoenergetic) neutrons to impinge upon a
sample, and then measuring the energy distribution of neutrons scat-
tered in different directions. As illustrated in Fig. 4.1, a uniform en-
semble of neutrons in the initial state |ksn> is created, typically by
utilizing Bragg-reflection in a large single-crystal monochromator, plus
suitable shielding by collimators. We may write the state vector for this
initial plane-wave state

|ksn> = V −1/2exp(ik · rn) |sn> ,

representing free neutrons with an energy (h̄k)2/2M and a flux j(ksn) =
V −1h̄k/M . When passing through the target, the probability per unit
time that a neutron makes a transition from its initial state to the state
|k′s′n> is determined by Fermi’s Golden Rule:

W (ksn,k
′s′n) =

2π
h̄

∑
if

Pi |<ksn; i |Hint |k′s′n; f >|2 δ(h̄ω + Ei − Ef ).

(4.1.1)
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Fig. 4.1. The principle of a neutron-scattering experiment, carried out
on a triple-axis spectrometer. An incident beam of neutrons, with well-
defined momenta, is selected from the continuous reactor spectrum by the
monochromator crystal, and scattered from the sample. The intensity of
the scattered beam of neutrons, with generally different momenta defined
by the analyser crystal, is measured by the detector. The scattered in-
tensity, proportional to the scattering cross-section, is thus determined
as a function of the energy transfer h̄ω and the momentum transfer h̄κ
to the sample, whose orientation relative to κ can be varied by rotating

the sample table.

Hint is the Hamiltonian describing the interaction between the neutrons
and the sample, and the sum extends over all possible scattering pro-
cesses. It comprises a summation over all possible final states |f > of
the sample, and an average over all initial states |i> , which occur with
the probability Pi. Energy conservation requires that the energy differ-
ence between the final and initial states of the sample, Ef − Ei, must
be equal to the energy transferred from the neutron to it:

h̄ω =
(h̄k)2

2M
− (h̄k′)2

2M
. (4.1.2)

The linear momentum transferred to the sample is h̄κ = h̄k− h̄k′, where
κ is the scattering vector,

κ = k − k′. (4.1.3)

The information about the sample is obtained by measuring the scat-
tered intensity as a function of the natural variables of the experiment,
the energy transfer h̄ω and the momentum transfer h̄κ.

The scattered neutrons with momenta lying in a narrow range
around h̄k′ are counted by placing a detector in a direction along k′,
subtending a small element of solid angle dΩ. The value of k′, or the final
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neutron energy, is determined by again making use of Bragg-reflection
in a single-crystal analyser, so that only neutrons with energies in a
small interval dE around (h̄k′)2/2M strike the counter. The number of
neutrons in this range, corresponding to a state vector |k′s′n> for the
scattered neutrons, is

δN = V (2π)−3(k′)2dk′dΩ = V (2π)−3(Mk′/h̄2)dEdΩ.

The number of neutrons arriving at the counter per unit time and per
incident neutron is proportional to the scattering area dσ = |j(ksn)|−1×
W (ksn,k

′s′n)δN , or to the differential scattering cross-section

d2σ

dEdΩ
=
k′

k

(
M

2πh̄2

)2∑
if

Pi |<sn; i |Hint(κ) |s′n; f >|2 δ(h̄ω+Ei −Ef ),

(4.1.4a)
where

Hint(κ) =
∫

Hint e
−iκ·rndrn. (4.1.4b)

This result of time-dependent perturbation theory, in the first Born ap-
proximation, is accurate because of the very weak interaction between
the neutrons and the constituents of the sample.

In order to proceed further, it is necessary to specify the interaction
Hamiltonian Hint. The magnetic moment of the neutron is

µn = −gnµNsn ; gn = 3.827 ; µN =
m

M
µB =

eh̄

2Mc
,

with sn = 1
2 . In this chapter, in the interest of conformity with the rest

of the literature, we do not reverse the signs of the electronic angular-
momentum vectors, which are therefore antiparallel to the corresponding
magnetic moments, as is also the case for the neutron.

This magnetic dipole moment at rn gives rise to a vector potential,
at the position re,

An(re, rn) = An(r = re − rn) = µn × r/r3,

with r = |r|. The magnetic-interaction Hamiltonian for a neutron at rn

with a single electron of charge −e, with coordinate re, momentum p,
and spin s is

Hint(re, rn) =
1

2m

(
p +

e

c
(An + Ae)

)2

− 1
2m

(
p +

e

c
Ae

)2

+ 2µBs ·Bn

= 2µB

( 1
h̄
An · p′ + s · (∇× An)

)
, (4.1.5)



4.1 THE DIFFERENTIAL CROSS-SECTION 167

neglecting the diamagnetic term of second order in µN . Ae denotes the
additional contribution to the total vector potential from the surround-
ing electrons, or an external magnetic field. The prime on p only plays
a role if Ae is non-zero, in which case p′ = p + e

cAe. We note that An

commutes with p′, because ∇e ·An = ∇ · An and

∇ ·An(r) = ∇ · {−µn ×∇(1
r )} = µn · ∇ ×∇(1

r ) = 0,

recalling that r/r3 = −∇(1
r ).

The Fourier transform of An with respect to the neutron coordinate,
defining x = rn − re, is∫

An(re−rn) e−iκ·rndrn = e−iκ·re

∫
An(−x) e−iκ·xdx

= −e−iκ·re

∫
(µn × x)x−3e−iκ·xdx = −e−iκ·re

4π
iκ

µn × κ̂,

where κ̂ is a unit vector along κ (the integration is performed straight-
forwardly in spherical coordinates). Applying Green’s theorem and as-
suming V to be a sphere of radius r,∫

∇×
(
e−iκ·xAn(x)

)
dx ∝ (κr)−1 → 0 for r → ∞,

from which we deduce∫ (
∇× An(x)

)
e−iκ·xdx = −

∫ (
∇ e−iκ·x)× An(x)dx

= iκ ×
∫
e−iκ·xAn(x)dx = 4πκ̂ × µn × κ̂

(we note that ∇×An(r) = ∇(x)×An(x)). From these results, we obtain

Hint(κ) =
∫

Hint(re, rn)e−iκ·rndrn

= 2µB e
−iκ·re 4π

( i

h̄κ
µn × κ̂ · p′ + s · (κ̂ × µn × κ̂)

)
,

or

Hint(κ) = 8πµB µn ·
( i

h̄κ
κ̂ × p′ + κ̂ × s× κ̂

)
e−iκ·re . (4.1.6)

κ̂ × p′ commutes with κ · re and therefore also with exp(−iκ · re), and
we have made use of the identity κ̂ × a× κ̂ = a− (κ̂ · a)κ̂.
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For discussing the rare earths, we may restrict ourselves to the case
of electrons localized around the lattice sites in a crystal. Further, we
define re = R̃j +r, with r now being the relative position of the electron
belonging to the jth atom at the position R̃j . Equation (4.1.6) may
then be written

Hint(κ) = 8πµB µn · (Qp + Qs) e
−iκ·R̃j , (4.1.7a)

introducing

Qp =
i

h̄κ
κ̂ × p′ e−iκ·r ; Qs = κ̂ × s× κ̂ e−iκ·r. (4.1.7b)

In order to calculate the matrix element < i |Qp,s |f >, the factor
exp(−iκ · r) is expanded in spherical Bessel functions jn(ρ), and with
ρ = κr and cos θ = κ · r/ρ,

e−iκ·r =
∞∑

n=0

(2n+ 1) (−i)n jn(ρ)Pn(cos θ)

	 j0(ρ) − 3i j1(ρ) cos θ = j0(ρ) − iκ · r{j0(ρ) + j2(ρ)},
(4.1.8)

using jn(ρ) = ρ{jn−1(ρ) + jn+1(ρ)}/(2n + 1). The truncation of the
series is valid for small values of ρ, where

jn(ρ) = (ρn/(2n+ 1)!!){1 − ρ2/(4n+ 6) + · · ·}.

We note that, although κ × p′ commutes with exp(−iκ · r), it does not
commute with the individual terms in (4.1.8). Introducing this expan-
sion in the expression for Qp, we find

Qp = κ̂ ×
( i

h̄κ
j0(ρ)p

′ +
1
h̄
{j0(ρ) + j2(ρ)}(κ̂ · r)p′ + · · ·

)
,

which can be rearranged to read

Qp = 1
2{j0(ρ) + j2(ρ)} κ̂ × l′ × κ̂ + Q′

p. (4.1.9a)

We have defined

Q′
p = κ̂ ×

( i

h̄κ
j0(ρ)p

′ +
1
2h̄

{j0(ρ) + j2(ρ)}{(κ̂ · r)p′ + (κ̂ · p′)r} + · · ·
)
,

(4.1.9b)
where the orbital momentum h̄l = r × p and h̄l′ = h̄l + e

c r × Ae, and
used

κ̂ × h̄l′ × κ̂ = −κ̂ × {κ̂ × (r × p′)} = κ̂ × {(κ̂ · r)p′ − (κ̂ · p′)r},

where [ l′ , jn(ρ) ] = 0 and [ κ̂ × r , κ̂ · p′ ] = 0.
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If H is defined to be the Hamiltonian for the electron, then

p′ = p + e

c
Ae = mdr/dt = m

i

h̄
[H , r ],

and Q′
p may be written

Q′
p =

m

h̄2κ
κ̂ ×

(
−j0(ρ) [H , r ] +

iκ

2
{j0(ρ) + j2(ρ)} [H , (κ̂ · r)r ] + · · ·

)
.

(4.1.10)
Considering an arbitrary operator Â, we have

<i | [H , Â ] | f > = <i |HÂ− ÂH| f > = (Ei − Ef ) <i | Â | f >,

which implies that Q′
p does not contribute to the cross-section (4.1.4)

in the limit κ → 0. In this limit, jn(0) = δn0 and, utilizing the energy
δ-function in (4.1.4), the contribution to the cross section due to Q′

p is
seen to be proportional to∣∣∣∣ mh̄2κ

h̄ω κ̂×<i | r | f >
∣∣∣∣2 → 0 for κ→ 0,

since |h̄ω| ≤ (h̄κ)2/2M . Introducing the vector operator K(κ), defined
so that

<i | κ̂ × K× κ̂ | f > = <i |Qp + Qs | f >, (4.1.11)

we find, neglecting Q′
p in the limit κ→ 0,

2µBK(0) = µB

(
l +

e

h̄c
r × Ae + 2s

)
≡ −µe, (4.1.12a)

or
Hint(0) = −4πµn · (κ̂ × µe × κ̂), (4.1.12b)

implying that the magnetic cross-section (4.1.4), in the limit where the
scattering vector approaches zero, is determined by the magnetic dipole
moment µe of the electron. In the treatment given above, we have
included the diamagnetic contribution to µe, induced by external fields
∝ Ae. This term may however normally be neglected, as we shall do
from now on.

At non-zero κ, we cannot employ directly the above procedure for
obtaining an upper bound on the Q′

p matrix-element, because jn(ρ) does
not commute with H. However, if we restrict ourselves to scattering pro-
cesses in which the l quantum number is conserved, the matrix element
of the first term in (4.1.10) vanishes identically, because j0(ρ) and H
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are both diagonal with respect to l, whereas r has no diagonal elements
(cf. the electric-dipole selection rule ∆l = ±1). In the second term of
(4.1.10) we can, to leading order, replace H by the kinetic-energy oper-
ator and, if we also make the assumption ∆l = 0, this term transforms
like a second-rank tensor and so is quadrupolar. Symmetrizing Q′

p with
respect to the expansion in spherical Bessel functions, and taking (κ̂ · r̂)r̂
outside the commutator, which is allowed because ∆l = 0, we can write
the second term in (4.1.10) as

(κ̂ × r̂)(κ̂ · r̂)Qr,

with r̂ = r/r and

Qr = Q†
r = − i

8

(
{j0(ρ) + j2(ρ)}[∇2 , r2 ] + [∇2 , r2 ]{j0(ρ) + j2(ρ)}

)
.

Thus the second term is a product of an angular and a radial operator,
which are both Hermitian. Our next assumption is that the radial part
of the wavefunction, as specified by the principal quantum number ñ,
and by l, is the same in the initial and the final state, i.e. that both ñ
and l are unchanged. In this case, <i |Qr | f >=<ñl |Qr | ñl> vanishes
identically, because Qr is an imaginary Hermitian operator; Qr = Q†

r =
−Q∗

r. If the radial part of the wavefunction is changed in the scattering
process, or if H is not diagonal in l, then the quadrupole moment leads
to an imaginary contribution to K(κ), and gives a contribution to the
cross-section proportional to κ2. In most cases of interest, however, this
term is very small.

The assumption that | i > and | f > are linear combinations of
the states | (ñls)mlms >, where (ñls) is constant, implies that the two
lowest-order terms in the expansion of Q′

p in (4.1.9b) or (4.1.10) can be
neglected. Furthermore, the radial and angular dependences are then
factorized, both in the expansion of the operators and in the wave-
functions, so that the radial part of the matrix elements may be cal-
culated separately. Hence the orbital contribution Kp to K is approxi-
mately

Kp(κ) = 1
2 {〈j0(κ)〉 + 〈j2(κ)〉} l, (4.1.13a)

with

〈jn(κ)〉 =
∫ ∞

0

r2R2(r)jn(κr)dr ;
∫ ∞

0

r2R2(r)dr = 1, (4.1.13b)

where R(r) is the normalized radial wavefunction. The assumption that
the final and initial states have the same parity implies that only the
terms in the expansion (4.1.8) for which n is odd may contribute to Kp.
By the same argument, the spin part Ks of K only involves the terms
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in (4.1.8) with n even. Neglecting the (n = 2)-term in Ks, proportional
to s times an orbital quadrupole moment, we have Ks(κ) 	 〈j0(κ)〉 s, or

K(κ) = K(κ) = 1
2 〈j0(κ)〉(l + 2s) + 1

2 〈j2(κ)〉 l. (4.1.14)

This result for K(κ) is the basis of the dipole approximation for the
scattering cross-section. Within this approximation, it is straightfor-
wardly generalized to the case of more than one electron per atom, as
the contributions are additive, in the sense that l and s are replaced by
L =

∑
l and S =

∑
s, and R2(r) by the normalized distribution for all

unpaired electrons belonging to the atom at R̃j.
The orbital contribution is important in the case of rare earth or

actinide ions. In transition-metal ions, the orbital momentum is fre-
quently quenched, and Kp may then be neglected to leading order. In
the rare earths, the spin–orbit coupling is strong and only matrix ele-
ments within the ground-state multiplet of J2 = (L+S)2 contribute. In
this case, as discussed in Section 1.2, L + 2S = gJ and L = (2 − g)J,
where g is the Landé factor, and we have

K(κ) = 1
2 〈j0(κ)〉(L + 2S) + 1

2 〈j2(κ)〉L = 1
2gF (κ)J, (4.1.15a)

where F (κ) is the form factor

F (κ) = 〈j0(κ)〉 + 1

g
(2 − g)〈j2(κ)〉, (4.1.15b)

defined so that F (0) = 1. When the spin–orbit interaction is introduced,
the (n = 2)-term in the expansion of Ks gives a contribution to the
dipolar part of K(κ) proportional to 〈j2(κ)〉, but this is an order of
magnitude smaller than the orbital term in (4.1.14). A more systematic
approach, making extensive use of Racah tensor-algebra, is required to
calculate this term and to include the contributions of the higher-rank
multipoles produced by the expansion of exp(−iκ · r). This analysis
may be found in Marshall and Lovesey (1971), Stassis and Deckman
(1975, 1976), and references therein. Within the present approximation,
only tensors of odd rank give a contribution to K, proportional to κτ−1,
where τ is the rank of the tensors (terms with τ = 3 appear already in
order κ2). In contrast to the dipole contributions, the higher-rank tensor
couplings give rise to an angular dependence of K = K(κ). The smaller
the scattering wavelength λ = 2π/κ, the more the neutron senses the
details of the spin and current distributions within the atom, but as long
as λ is larger than approximately the mean radius 〈r〉 of the unpaired
electrons, only the dipolar scattering is important. For rare earth ions,
〈r〉 ≈ 0.6 Å, indicating that (4.1.15) is a valid approximation as long as
κ is smaller than about 6 Å−1.
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Experimental studies of the form factor and the associated moment
densities have been reviewed by Sinha (1978). For an accurate interpre-
tation of the data, it is generally necessary to proceed beyond the dipole
approximation. In the heavy rare earths, the deduced 4f densities are
in good agreement with atomic calculations, provided that relativistic
effects are included, but the conduction-electron distributions are much
less certain. In the light elements, crystal-field effects become impor-
tant, as observed for example in Pr and Nd by Lebech et al. (1979). Of
especial interest is Sm, where the opposition of spin and orbital moments
leads to a form factor which has its maximum at a non-zero κ, and the
conduction-electron polarization seems to be very strong (Koehler and
Moon 1972).

Labelling quantities pertaining to the jth atom with the index j,
and summing over all the atoms in the sample, we find that the total
Hint(κ) (4.1.7), in the dipole approximation, is given by

Hint(κ) = 8πµB

∑
j

{1
2gF (κ)}j e

−iκ·R̃j µn · (κ̂ × Jj × κ̂).

The squared matrix element in (4.1.4) may furthermore be written

<sn; i |Hint(κ) |s′n; f ><s′n; f |Hint(−κ) |sn; i> .

We shall only consider the cross-section for unpolarized neutrons, so
that we sum over all the spin states |s′n > of the scattered neutrons,
and average over the spin-states |sn>, with the distribution Ps, of the
incoming neutrons. With an equal distribution of up and down spins,
Ps = 1

2 , and introducing Qj = κ̂×Jj × κ̂, we find that the cross-section
is proportional to∑

sns′n

Ps < sn |µn ·Qj | s′n><s′n |µn ·Qj′ | sn>

=
∑
s

Ps<sn | (µn ·Qj) (µn ·Qj′) | sn>=
(

1
2gnµN

)2

Qj ·Qj′ ,

as may readily be shown by using the Pauli-matrix representation, in
which Tr{σασβ} = 2 δαβ. We have further that Qj ·Qj′ may be written

(κ̂ × Jj × κ̂) · (κ̂ × Jj′ × κ̂) = (Jj − κ̂(Jj · κ̂)) · (Jj′ − κ̂(Jj′ · κ̂))

= Jj ·Jj′ − (Jj · κ̂) (Jj′ · κ̂) =
∑
αβ

(
δαβ − κ̂ακ̂β

)
Jjα Jj′β ,

in terms of the Cartesian components. Defining (J⊥)j to be the projec-
tion of Jj on the plane perpendicular to κ, we have∑

αβ

(
δαβ − κ̂ακ̂β

)
Jjα Jj′β = (J⊥)j · (J⊥)j′ .
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The various factors in these expressions may be combined to give

k′

k

(
M

2πh̄2 8πµB
1
2gnµN

)2

=
k′

k

(
h̄γe2

mc2

)2

; γ =
1
2h̄

gn.

γ is the gyromagnetic ratio of the neutron, and e2/mc2 = 2.82 fm is
the classical electron radius. The differential cross-section, in the dipole
approximation, for the scattering of unpolarized neutrons is then finally

d2σ

dEdΩ
=
k′

k

(
h̄γe2

mc2

)2∑
αβ

(δαβ − κ̂ακ̂β)
∑
jj′

{1
2gF (κ)}j{1

2gF (κ)}j′

×
∑
if

Pi<i | Jjα e
−iκ·R̃j | f ><f | Jj′β e

iκ·R̃j′ | i>δ(h̄ω + Ei − Ef ),

(4.1.16)
where the total magnetic cross-section is 4π(h̄γe2/mc2)2 = 3.65 barns.

4.2 Elastic and inelastic neutron scattering

If the scattering system is assumed to be in thermal equilibrium at tem-
perature T , the average over initial states in (4.1.16) is the same as the
thermal average 〈· · ·〉 = Tr{ρ0 · · ·}, where ρ0 is the density operator de-
fined in eqn (3.1.1). The atom at the position R̃j = Rj + uj vibrates
around its equilibrium position, the lattice point Rj , and we may write

〈e−iκ·(R̃j−R̃j′ )〉 = e−2W (κ) e−iκ·(Rj−Rj′ ),

where W (κ) is the Debye–Waller factor ≈ 1
6κ

2〈u2〉, discussed in de-
tail by, for example, Marshall and Lovesey (1971). We insert this term
in (4.1.16), and thereby neglect contributions from inelastic phonon-
scattering processes, the so-called magneto-vibrational part of the mag-
netic cross-section. The integral representation of the δ-function is

δ(h̄ω + Ei − Ef ) =
1

2πh̄

∫ ∞

−∞
ei(h̄ω+Ei−Ef )t/h̄dt,

which allows us to write∑
if

Pi <i | Jjα | f ><f | Jj′β | i> δ(h̄ω + Ei − Ef )

=
∑
if

1
2πh̄

∫ ∞

−∞
dt eiωtPi <i | eiHt/h̄Jjαe

−iHt/h̄ | f ><f | Jj′β | i>

=
1

2πh̄

∫ ∞

−∞
dt eiωt

∑
i

Pi <i | Jjα(t)Jj′β(0) | i>

=
1

2πh̄

∫ ∞

−∞
dt eiωt〈Jjα(t)Jj′β(0)〉,
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where Jjα(t) is the angular-momentum operator in the Heisenberg pic-
ture, as in (3.2.1),

Jjα(t) = eiHt/h̄ Jjα e
−iHt/h̄.

At thermal equilibrium, the differential cross-section can then be written

d2σ

dEdΩ
=

k′

k

(
h̄γe2

mc2

)2

e−2W (κ)
∑
αβ

(δαβ − κ̂ακ̂β)
∑
jj′

{1
2gF (κ)}j{1

2gF (−κ)}j′

× 1
2πh̄

∫ ∞

−∞
dt eiωte−iκ·(Rj−Rj′ )〈Jjα(t)Jj′β(0)〉. (4.2.1)

If the magnetic atoms are all identical, the form factor may be taken
outside the summation and the cross-section reduces to

d2σ

dEdΩ
= N

k′

k

(
h̄γe2

mc2

)2

e−2W (κ)|12gF (κ)|2
∑
αβ

(δαβ − κ̂ακ̂β)Sαβ(κ, ω),

(4.2.2a)
where we have introduced the Van Hove scattering function (Van Hove
1954)

Sαβ(κ, ω) =
1

2πh̄

∫ ∞

−∞
dt eiωt 1

N

∑
jj′

e−iκ·(Rj−Rj′ )〈Jjα(t)Jj′β(0)〉,

(4.2.2b)
which is (2πh̄)−1 times the Fourier transform, in space and time, of
the pair-correlation function 〈Jjα(t)Jj′β(0)〉. If 〈Jjα〉〈Jj′β〉 is added
and subtracted, the scattering function may be written as the sum of a
static and a dynamic contribution:

Sαβ(κ, ω) = Sαβ(κ) + Sαβ
d (κ, ω), (4.2.3a)

where the static or elastic component is

Sαβ(κ) = δ(h̄ω) 1

N

∑
jj′

〈Jjα〉 〈Jj′β〉e−iκ·(Rj−Rj′ ) (4.2.3b)

and the inelastic contribution is

Sαβ
d (κ, ω) =

1
2πh̄

Sαβ(κ, ω) =
1
π

1
1 − e−βh̄ω

χ′′
αβ(κ, ω). (4.2.3c)
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We have introduced the dynamic correlation function Sαβ(κ, ω), defined
by eqn (3.2.13), with

α̂ = N− 1
2

∑
j

Jjαe
−iκ·Rj and β̂ = N− 1

2

∑
j′
Jj′βe

iκ·Rj′ ,

and the corresponding susceptibility function χαβ(κ, ω), utilizing the
relation between the two functions given by the fluctuation–dissipation
theorem (3.2.18).

An important consequence of (4.2.2–3) is that the inelastic scat-
tering of neutrons is proportional to the correlation function Sαβ(κ, ω),
which is essentially the Fourier transform of the probability that, if the
moment at site j has some specified vector value at time zero, then the
moment at site j′ has some other specified value at time t. An inelas-
tic neutron-scattering experiment is thus extremely informative about
the dynamics of the magnetic system. Poles in the correlation function,
or in χαβ(κ, ω), are reflected as peaks in the intensity of the scattered
neutrons. According to (4.1.2) and (4.1.3), each neutron in such a scat-
tering peak has imparted energy h̄ω and momentum h̄κ to the sample,
so the peak is interpreted, depending on whether h̄ω is positive or neg-
ative, as being due to the creation or annihilation of quasi-particles or
elementary excitations in the system, with energy |h̄ω| and crystal mo-
mentum h̄q = h̄(κ − τ ), where τ is a reciprocal lattice vector. A part
of the momentum h̄τ may be transferred to the crystal as a whole. If
the sample is a single crystal, with only one magnetic atom per unit
cell, Sαβ(κ, ω) = Sαβ(q = κ − τ , ω), where τ is normally chosen so
that q lies within the primitive Brillouin zone. The form factor in the
scattering amplitude is not however invariant with respect to the addi-
tion of a reciprocal lattice vector. This interpretation of the poles in
Sαβ(q, ω) governs the choice of sign in the exponential arguments in
both the temporal and the spatial Fourier transforms.

The relation (4.2.3c) between the scattering function and the gen-
eralized susceptibility implies that the neutron may be considered as
a magnetic probe which effectively establishes a frequency- and wave-
vector-dependent magnetic field in the scattering sample, and detects
its response to this field. This is a particularly fruitful way of look-
ing at a neutron scattering experiment because, as shown in Chapter
3, the susceptibility may be calculated from linear response theory, and
thus provides a natural bridge between theory and experiment. Using
the symmetry relation (3.2.15), which may here be written χ∗

αβ(q, z) =
χαβ(−q,−z∗), it is straightforward to show that χ′′

αβ(q, ω)+χ′′
βα(q, ω) is

real and equal to Im
{
χαβ(q, ω)+χβα(q, ω)

}
. In addition, the form of the

inelastic cross-section, and also the result (3.3.2) for the dissipation rate,
impose another analytic condition on the function χ′′

αβ(q, ω)+χ′′
βα(q, ω).
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It must be either zero, or positive or negative with ω (such functions are
called herglotz functions), because a negative value of the cross-section
is clearly unphysical.

If the magnetic moments in a Bravais lattice are ordered in a static
structure, described by the wave-vector Q, we may write

〈Jjα〉 = 1
2

(
〈Jα〉 eiQ·Rj + 〈Jα〉∗e−iQ·Rj

)
, (4.2.4)

allowing 〈Jα〉 to be complex in order to account for the phase. The
static contribution to the cross-section is then proportional to∑
αβ

(δαβ − κ̂ακ̂β)Sαβ(κ) =
∑
αβ

(δαβ − κ̂ακ̂β)Re {〈Jα〉〈Jβ〉∗}

× δ(h̄ω)
(2π)3

υ

∑
τ

1
4 (1 + δQ0) {δ(τ + Q− κ) + δ(τ − Q− κ)} ,

(4.2.5)
where δQ0 is equal to 1 in the ferromagnetic case Q = 0, and zero oth-
erwise, and υ is the volume of a unit cell. The magnetic ordering of
the system leads to δ-function singularities in momentum space, corre-
sponding to magnetic Bragg scattering, whenever the scattering vector
is equal to ±Q plus a reciprocal lattice vector τ . The static and dy-
namic contributions from Sαβ(κ) and Sαβ

d (κ, ω) to the total integrated
scattering intensity may be comparable, but the dynamic contributions,
including possibly a quasi-elastic diffusive term, are distributed more or
less uniformly throughout reciprocal space. Consequently, the elastic
component, determined by Sαβ(κ), in which the scattering is condensed
into points in reciprocal space, is overwhelmingly the most intense con-
tribution to the cross-section dσ/dΩ, obtained from the differential cross-
section (4.2.2a) by an energy integration:

dσ

dΩ
	 N

(
h̄γe2

mc2

)2

e−2W (κ)|12gF (κ)|2
∑
αβ

(δαβ − κ̂ακ̂β)Re {〈Jα〉〈Jβ〉∗}

× (2π)3

υ

∑
τ

1
4 (1 + δQ0) {δ(τ + Q − κ) + δ(τ − Q− κ)} .

(4.2.6)
dσ/dΩ is the cross-section measured in neutron diffraction experiments,
in which all neutrons scattered in the direction of k′ are counted without
energy discrimination, i.e. without the analyser crystal in Fig. 4.1. This
kind of experiment is more straightforward to perform than one in which,
for instance, only elastically scattered neutrons are counted. In the
ordered phase, (4.2.6) is a good approximation, except close to a second-
order phase transition, where 〈Jα〉 is small and where critical fluctuations
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may lead to strong inelastic or quasi-elastic scattering in the vicinity of
the magnetic Bragg peaks.

Independently of whether the magnetic system is ordered or not,
the total integrated scattering intensity in the Brillouin zone has a def-
inite magnitude, determined by the size of the local moments and the
following sum rule:

1

N

∑
q

∑
α

∫ ∞

−∞
Sαα(q, ω)d(h̄ω)

= 1

N

∑
j

∑
α

〈Jjα〉2 + 1

N

∑
q

∑
α

Sαα(q, t = 0)

= 1

N

∑
j

∑
α

〈JjαJjα〉 = J(J + 1), (4.2.7)

and taking into account the relatively slow variation of the other param-
eters specifying the cross-section. This implies, for instance, that dσ/dΩ
is non-zero in the paramagnetic phase, when 〈Jα〉 = 0, but the distri-
bution of the available scattered intensity over all solid angles makes it
hard to separate from the background. In this case, much more useful in-
formation may be obtained from the differential cross-section measured
in an inelastic neutron-scattering experiment.

For a crystal with a basis of p magnetic atoms per unit cell, the
ordering of the moments corresponding to (4.2.4) is

〈Jjsα〉 = 1
2

(
〈Jsα〉 eiQ·Rjs + 〈Jsα〉∗e−iQ·Rjs

)
, (4.2.8a)

where
Rjs = Rj0 + ds, with s = 1, 2, · · · , p. (4.2.8b)

Here Rj0 specifies the position of the unit cell, and ds is the vector
determining the equilibrium position of the sth atom in the unit cell.
The summation over the atoms in (4.2.2) may be factorized as follows:

∑
ij

e−iκ·(Ri−Rj)

=
∑
i0j0

e−iκ·(Ri0−Rj0)

p∑
s=1

e−iκ·(Ris−Ri0 )

p∑
r=1

eiκ·(Rjr−Rj0 )

=
∑
i0j0

e−iκ·(Ri0−Rj0) |FG(κ)|2 ; FG(κ) =
p∑

s=1

e−iκ·ds ,
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where FG(κ) is the geometric structure factor. The elastic cross-section
then becomes

dσ

dΩ
= N0

(
h̄γe2

mc2

)2

e−2W (κ)|12gF (κ)|2
∑
αβ

(δαβ − κ̂ακ̂β) |〈Jα〉〈Jβ〉| ×

(2π)3

υ

∑
τ

1
4 (1 + δQ0)Re

{
Fα(τ )F

∗
β (τ )

}{δ(τ +Q− κ) + δ(τ −Q− κ)}
(4.2.9a)

where N0 is the number of unit cells, and the structure factor is

Fα(τ ) = |〈Jα〉|−1
r∑

s=1

〈Jsα〉 e−iτ ·ds . (4.2.9b)

As an example, we return to the Heisenberg ferromagnet discussed
in Chapter 3. The magnitude of the ordered moments and their direction
relative to the crystal lattice, defined to be the z-axis, may be determined
by neutron diffraction, since

dσ

dΩ
= N

(
h̄γe2

mc2

)2

e−2W (κ)|12gF (κ)|2(1− κ̂2z) 〈Sz〉2 (2π)3

υ

∑
τ

δ(τ − κ).

(4.2.10)
The Bragg-peak intensity is thus proportional to the square of the or-
dered moment and to sin2 θ, where θ is the angle between the magne-
tization and the scattering vector. The elastic scattering is therefore
strongest when κ = τ is perpendicular to the magnetization. On the
other hand, the inelastic scattering is strongest when the scattering vec-
tor κ = q+ τ is along the magnetization, in which case, from (3.4.11),

∑
αβ

(δαβ−κ̂ακ̂β)Sαβ(κ, ω) =
1

π

1

1− e−βh̄ω

(
χ′′
xx(q, ω) + χ′′

yy(q, ω)
)

= 〈Sz〉 1

1− e−βh̄ω
{δ(h̄ω − Eq)− δ(h̄ω + Eq)}

= 〈Sz〉 {(nq + 1)δ(h̄ω − Eq) + nq δ(h̄ω + Eq)} , (4.2.11)

where nq = (eβEq − 1)−1 is the Bose population factor. The magnon-
scattering intensity is thus proportional to the ordered moment, and
the stimulated emission and absorption of the boson excitations, i.e. the
magnons, due to the neutron beam, are proportional respectively to
(nq + 1) and nq, which may be compared with the equivalent result for
light scattering from a gas of atoms.
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Fig. 4.2. A typical spectrum of inelastically-scattered neutrons in a
constant-κ experiment, illustrating the determination of the dispersion
relation and the polarization vector of the magnetic excitations. The
peaks in the spectrum establish the energies of excitations which have a
wave-vector q, defined by the scattering vector through κ = q + τ , and
thus determine points on the dispersion relation for Pr, shown in Fig.
7.1. The cross-section is proportional to the factor f(α) = 1 − (κα/κ)2.
Since q is along the ΓM (y)-axis, the absence of the peak of lower en-
ergy in the bottom figure shows unambiguously that it corresponds to a

longitudinal mode.

The dependence of the intensity of inelastically scattered neutrons
on the relative orientation of κ and the direction of the moment fluctu-
ations is illustrated for the example of Pr in Fig. 4.2, which is discussed
in more detail in Chapter 7. As in this figure, the scattering is nor-
mally measured as a function of h̄ω at a fixed value of q, a so-called
constant-q or constant-κ scan, but occasionally constant-energy scans
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may also be employed. In an actual experiment the directions and the
lengths of k and k′ are only defined with a limited degree of accuracy,
and the δ-functions occurring in (4.2.10–11) are broadened into peaks
with the shape of the instrumental resolution function, which to a good
approximation is a Gaussian in the four-dimensional (κ, ω)-space. If the
resolution function is known, it is possible to deconvolute the scattering
peaks obtained in constant q-scans from the broadening due to instru-
mental effects, and thereby determine the lifetimes of the excitations.

In this chapter, we have concentrated on the magnetic scattering of
neutrons, but they may also be scattered through the interaction, via
nuclear forces, with the nuclei in the sample. This interaction leads to
a cross-section of the same order of magnitude as in the magnetic case,
and it results in analogous phenomena to those discussed above, with
the positions of the atoms replacing the magnetic moments as the fluc-
tuating variables. The elastic Bragg scattering reveals the positions of
the atoms in the crystal, and the elementary excitations appearing in
the correlation functions are phonons. The fluctuations in the nuclear
cross-section, due to the different spin states of the nuclei, give rise to
an incoherent scattering, determined by the self-correlation of the indi-
vidual atoms, in contrast to the coherent scattering, which is governed
by the atomic pair-correlation function, in analogy with the magnetic
scattering discussed above. Incoherence can also be produced by differ-
ent isotopes of a particular element in a crystal, just as the variation of
the magnetic moments in disordered alloys leads to incoherent magnetic
scattering.

The magnetic scattering may be difficult to separate experimentally
from the nuclear component. One possibility is to utilize the different
temperature dependences of the two contributions, since the nuclear
scattering normally changes relatively slowly with temperature. If this
is not adequate, it may be necessary to perform polarized neutron scat-
tering, in which the spin states of the incoming and scattered neutrons
are determined, making it possible to isolate the scattering of purely
magnetic origin (Moon, Riste and Koehler 1969). For further details of
neutron scattering by nuclei in solids we refer to the texts mentioned at
the beginning of this chapter.



5

SPIN WAVES IN THE FERROMAGNETIC
HEAVY RARE EARTHS

As discussed in Section 1.5, the exchange interaction dominates the mag-
netic behaviour of the heavy rare earth metals, and the ordered moments
at low temperatures are consequently close to the saturation values. The
excitations of such a system are spin waves, which may be viewed semi-
classically as coupled precessions of the moments about their equilib-
rium directions, with well-defined frequencies which are determined by
the phase relations between the precessing moments on different sites.
From the viewpoint of quantum mechanics, these modes are magnons,
which are linear combinations of single-ion excitations from the ground
state to the first excited molecular-field state, which is to a good approx-
imation |Jz = J − 1>, with phase factors between the coefficients for
different ions which determine the dispersion relation Eq for the magnon
energy. A useful review of the excitations of magnetic systems has been
given by Stirling and McEwen (1987).

These spin waves have been very extensively studied in the heavy
rare earths, both experimentally and theoretically. In this chapter, we
consider the simplest case of the ferromagnet, in which all the sites
are equivalent. Since the magnetic heavy rare earths are all hcp, we
begin by extending the earlier treatment of the linear response of the
isotropic Heisenberg ferromagnet to this structure. These results are
immediately applicable to Gd, where the anisotropy is indeed negligible,
with the consequence that the excitation spectrum is the simplest to
be found among the magnetic rare earths. Crystal-field and magneto-
elastic anisotropies modify the excitation spectrum significantly, induc-
ing an elliptical polarization of the precessing moments, and a spin-wave
energy gap at long wavelengths. To treat such systems, we employ linear
spin-wave theory, determining the magnon energies via the Holstein–
Primakoff transformation. We consider in particular the basal-plane
ferromagnet, comparing the calculated excitation spectrum throughout
with experimental measurements on Tb, which has been very compre-
hensively studied. The magnon energies and their temperature depen-
dence are discussed, and the energy gap associated with the uniform
spin-wave mode is treated in some detail and related to the macro-
scopic magnetic anisotropy. The contribution to this energy gap of the
magnetoelastic coupling, via the static deformation of the crystal, is then
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calculated and its dynamic manifestation in the magnon–phonon inter-
action is discussed. Anisotropic two-ion coupling between the moments
alters the form of the dispersion relations, both quantitatively and, on
occasions, qualitatively. The classical dipole–dipole interaction, though
weak, is highly anisotropic and long-ranged, and may therefore have
an important influence at long wavelengths. Since its form is known
exactly, we can calculate its effects in detail, but we can say much less
about the two-ion anisotropy in general. Its possible origins and symme-
try are however discussed, and examples of observable effects to which it
gives rise are presented. The mutual solubility of the rare earths allows
the formation of an enormous variety of binary alloys, with magnetic
properties which may be adjusted with the concentration. We show how
the excitation spectrum of such systems can be calculated by the virtual
crystal approximation and the coherent potential approximation, and il-
lustrate the phenomena which may be observed by experiments on Tb
alloys. Finally, we consider the interaction between the conduction elec-
trons and the localized 4f moments, and its influence on both the spin
waves and the conduction electrons themselves. The indirect-exchange
interaction is derived more rigorously than in Section 1.4, and the life-
time of the magnons due to electron scattering is deduced. The mass
enhancement of the conduction electrons is determined, and the effects
of magnetic ordering on the band structure, and of magnetic scattering
on the conductivity, are discussed.

5.1 The ferromagnetic hcp-crystal

In Chapter 3, we considered the linear response of a system of magnetic
moments placed on a Bravais lattice and coupled by the Heisenberg
interaction. We shall now generalize this treatment to the hexagonal
close-packed crystal structure of the heavy rare earth metals, in which
there is a basis of two ions per unit cell, constituting two identical sub-
lattices which, for convenience, we number 1 and 2. The surroundings of
the atoms belonging to each of the two sublattices are identical, except
for an inversion. Introducing the following Fourier transforms:

Jss′ (q) =
∑

j∈s′−subl.

J (ij) e−iq·(Ri−Rj) ; i ∈ s-sublattice,

(5.1.1a)
we have, for an hcp crystal,

J1(q) ≡ J11(q) = J22(q)
J2(q) ≡ J12(q) = J21(−q) = J ∗

21(q),
(5.1.1b)

where J1(q) is real. Defining the four Fourier transforms χss′(q, ω) of
the susceptibility tensor equivalently to (5.1.1a), we obtain from the
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RPA equation (3.5.7):

χ11(q, ω) = χ
o(ω)

{
1 + J11(q)χ11(q, ω) + J12(q)χ21(q, ω)

}
χ21(q, ω) = χ

o(ω)
{
J21(q)χ11(q, ω) + J22(q)χ21(q, ω)

}
,

(5.1.2)

assuming that the MF susceptibility χ o(ω) is the same for all the sites,
as in a paramagnet or a ferromagnet. These matrix equations may be
solved straightforwardly, and using (5.1.1b) we find

χ11(q, ω) = D(q, ω)−1{1 − χ
o(ω)J1(q)}χ o(ω)

χ21(q, ω) = D(q, ω)−1
{
χ

o(ω)
}2 J2(−q),

(5.1.3a)

where

D(q, ω) =
{
1 − χ

o(ω)J1(q)
}2 −

{
χ

o(ω) |J2(q)|
}2

=
(
1 − χ

o(ω) {J1(q) + |J2(q)|}
) (

1 − χ
o(ω) {J1(q) − |J2(q)|}

)
,

(5.1.3b)
and, by symmetry,

χ22(q, ω) = χ11(q, ω) and χ12(q, ω) = χ21(−q, ω). (5.1.3c)

If χ o(ω) contains only one pole, as in the case of the Heisenberg ferro-
magnet, then D(q, ω)−1 in (5.1.3a) generates two poles, corresponding
to the existence of both an acoustic and an optical mode at each q-vector.
J2(0) must be real and, since it is also positive in a ferromagnet, the
acoustic mode arises from the zero of the first factor in (5.1.3b), its
energy therefore being determined by the effective coupling parameter
J1(q) + |J2(q)|. On the other hand, if J2(0) is negative, as it is in
paramagnetic Pr, it is the second factor which gives the acoustic mode.
The nomenclature results from the circumstance that the deviations of
the moments from their equilibrium values are in phase in the acoustic
mode in the limit of q → 0, and it therefore dominates the neutron
cross-section. The inelastic neutron scattering is determined by (4.2.2)
and (4.2.3), i.e. by

χ(κ, ω) = 1

N

∑
ij

χ(ij, ω) e−iκ·(Ri−Rj) = 1

2

∑
ss′

χss′ (κ, ω)

= D(κ, ω)−1
{
1 − χ

o(ω)
(
J1(κ) − 1

2 [J2(κ) + J2(−κ)]
)}
χ

o(ω),
(5.1.4)

where N = 2N0 is the number of atoms. Introducing κ = q + τ , with
q lying in the primitive zone, we may write this result as a sum of the
acoustic and optical response functions:

χAc(q, ω) =
{
1 − χ

o(ω)(J1(q) + ν|J2(q)|)
}−1

χ
o(ω)

χOp(q, ω) =
{
1 − χ

o(ω)(J1(q) − ν|J2(q)|)
}−1

χ
o(ω),

(5.1.5)
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where ν = ±1 denotes the sign of J2(0). J1(κ) = J1(q) is real, whereas

J2(κ) = J2(q) eiτ ·ρ = ν|J2(q)|eiϕ, (5.1.6a)

defining the phase ϕ = ϕ(κ), and ρ = d2 − d1 is the vector joining the
two sublattices. In terms of these quantities, the susceptibility (5.1.4)
may be written

χ(q + τ , ω) = 1
2 (1 + cosϕ)χAc(q, ω) + 1

2 (1− cosϕ)χOp(q, ω). (5.1.6b)

The phase ϕ vanishes in the limit q → 0 if τ = 0, and the scattering
cross-section then only depends on the isolated pole in the acoustic re-
sponse function, in accordance with our definition above. Introducing
the following lattice vectors of the hexagonal lattice:

a1 = (a, 0, 0) a2 =
(
−a

2
,

√
3a

2
, 0
)

a3 = (0, 0, c), (5.1.7a)

we find the corresponding reciprocal lattice vectors:

b1 =
(2π

a
,

2π√
3a

,0
)

b2 =
(
0,

4π√
3a

, 0
)

b3 =
(
0, 0, 2π

c

)
. (5.1.7b)

Since ρ =
(a

2
,

a

2
√

3
,
c

2

)
,

τ ·ρ = 4π

3
h+ 2π

3
k+πl with τ = (hkl) = hb1 +kb2 + lb3. (5.1.8)

If q is parallel to the c-axis, J2(q) is real. The phase ϕ in (5.1.6) is then
τ ·ρ and, if the Miller indices h and k are both zero, ϕ = τ ·ρ = lπ. In this
case, with κ in the c-direction, the inelastic scattering detects only the
acoustic or the optical excitations, depending on whether l is respectively
even or odd, and no energy gap appears at the zone boundary, even
though l changes, because J2(b3/2) = 0 by symmetry. We may therefore
use a double-zone representation, in which the dispersion relation for the
excitations is considered as comprising a single branch extending twice
the distance to the Brillouin zone boundary, corresponding to an effective
unit cell of height c/2. We shall generally use this representation when
discussing excitations propagating in the c-direction.
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Fig. 5.1. Spin-wave dispersion relations for Gd, after Koehler et
al. (1970). The two atoms of the hcp structure give rise to acoustic
and optical branches. Since the single-ion anisotropy is negligible, the

acoustic mode rises quadratically from the origin.

Because L = 0, so that J = S, anisotropy effects are small in Gd,
and it is therefore a good approximation to a Heisenberg ferromagnet.
Using the above procedure to generalize (3.5.26) to the hcp structure,
we obtain the two branches of the excitation spectrum

EAc
q = 〈Jz〉

{
J1(0) + J2(0) − J1(q) − |J2(q)|

}
EOp

q = 〈Jz〉
{
J1(0) + J2(0) − J1(q) + |J2(q)|

}
,

(5.1.9)

since J2(0) is positive. The dispersion relations measured by inelastic
neutron scattering by Koehler et al. (1970) are shown in Fig. 5.1. This
figure illustrates the use of the double-zone representation when q is
along the c-axis, resulting in a single spin-wave branch. The renormal-
ization predicted by the simple RPA theory, that Eq(T ) is proportional
to σ, is not followed very precisely. σ changes from about 0.97 at 78K
to 0.66 at 232K. As may be seen from Fig. 5.1, and from more exten-
sive studies by Cable et al. (1985), the energies in the c-direction vary
approximately like σ0.5 at the largest wave-vectors, like σ in the mid-
dle of the branch, and faster than σ at small wave-vectors. However, it
is also evident from the figure that the form of J (q) changes with de-
creasing magnetization, so some of the discrepancy between the simple
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prediction and the observed behaviour at low temperatures may be due
to changes of J (q). At higher temperatures, the RPA renormalization
breaks down completely. The spin-wave energy at the zone boundary
has only fallen by about a factor two at 292K, very close to TC . Fur-
thermore, strongly-broadened neutron peaks are observed even at 320K,
well above the transition, close to the zone boundary in the basal plane,
with energies of about kBTC . On the other hand, the low-energy spin
waves progressively broaden out into diffusive peaks as TC is approached
from below.

5.2 Spin waves in the anisotropic ferromagnet

In the heavy rare earth metals, the two-ion interactions are large and
of long range. They induce magnetically-ordered states at relatively
high temperatures, and the ionic moments approach closely their sat-
uration values at low temperatures. These circumstances allow us to
adopt a somewhat different method, linear spin-wave theory, from those
discussed previously in connection with the derivation of the correlation
functions. We shall consider the specific case of a hexagonal close-packed
crystal ordered ferromagnetically, with the moments lying in the basal
plane, corresponding to the low-temperature phases of both Tb and Dy.
For simplicity, we shall initially treat only the anisotropic effects intro-
duced by the single-ion crystal-field Hamiltonian so that, in the case of
hexagonal symmetry, we have

H =
∑

i

[ ∑
l=2,4,6

B0
l Q

0
l (Ji) +B6

6Q
6
6(Ji)− gµBJi ·H

]
− 1

2

∑
i�=j

J (ij)Ji ·Jj .

(5.2.1)
The system is assumed to order ferromagnetically at low temperatures,
a sufficient condition for which is that the maximum of J (q) occurs at
q = 0. Qm

l (Ji) denotes the Stevens operator of the ith ion, but defined
in terms of (Jξ, Jη, Jζ) instead of (Jx, Jy, Jz), where the (ξ, η, ζ)-axes
are fixed to be along the symmetry a-, b- and c-directions, respectively,
of the hexagonal lattice. The (x, y, z)-coordinate system is chosen such
that the z-axis is along the magnetization axis, specified by the polar
angles (θ, φ) in the (ξ, η, ζ)-coordinate system. Choosing the y-axis to
lie in the basal plane, we obtain the following relations:

Jξ = Jz sin θ cosφ− Jx cos θ cosφ+ Jy sinφ
Jη = Jz sin θ sinφ− Jx cos θ sinφ− Jy cosφ
Jζ = Jz cos θ + Jx sin θ,

(5.2.2)

from which

Q0
2 = 3{J2

z cos2 θ+J2
x sin2 θ+(JzJx+JxJz) cos θ sin θ}−J(J+1). (5.2.3)
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Initially we assume that 〈Jz〉 = J at T = 0, which implies that the
ground state is the product of |Jz = J >-states of the single ions. In
this case, we find, consistently with eqn (2.2.14),

〈Q0
2〉 = <J |Q0

2 |J > = J (2)(3 cos2 θ − 1),

where, as before, J (n) = J(J − 1
2 ) · · · (J − n−1

2 ), and we have used the
expectation values 〈J 2

z 〉 = J2, 〈J 2
x 〉 = 1

2J and 〈JzJx〉 = 0. Analogously,
though with considerably more labour, we can show that, for instance,

〈Q6
6〉 = <J | 12 (Jξ + iJη)6 + 1

2 (Jξ− iJη)6|J > = J (6) sin6 θ cos 6φ. (5.2.4)

For simplicity, we neglect for the moment B0
4 and B0

6 , and specifying
the direction of the magnetic field by the polar angles (θH , φH), we find
that the ground-state energy is, within this approximation,

U(T = 0) 	 N
[
B0

2J
(2)(3 cos2 θ − 1) +B6

6J
(6) sin6 θ cos 6φ

− gµBJH{cos θ cos θH + sin θ sin θH cos (φ− φH)} − 1
2J (0)J2

]
,

(5.2.5)
where θ and φ are determined so that they minimize this expression. In
zero magnetic field, H = 0, (5.2.5) only gives two possibilities for θ, viz.
θ = 0 for B0

2J
(2) < − 1

3 |B6
6 |J (6) or θ = π

2 for B0
2J

(2) > − 1
3 |B6

6 |J (6). We
shall here be concerned with the second case of θ = π

2 , i.e. the basal-
plane ferromagnet. In this case, the angle φ is determined by the sign
of B6

6 . The magnetic moments will be along an a- or a b-axis (φ = 0
or φ = π

2 ) if B6
6 is respectively negative or positive. Having specified

the (approximate) ground state, we turn to the excitations, i.e. the spin
waves.

Instead of utilizing the standard-basis operators, defined by (3.5.11),
we shall introduce a Bose operator ai for the ith ion, satisfying

[ai , a
+
j ] = δij ; [ai , aj ] = [a+

i , a
+
j ] = 0, (5.2.6)

which acts on the |Jz >-state vector of this ion (the site index is sup-
pressed) in the following way:

a |J > = 0 ; a |J −m> =
√
m |J −m+ 1> (5.2.7)

Holstein and Primakoff (1940) introduced the following representation
of the angular momentum operators:

Jz = J − a+a

J+ =
(
2J − a+a

) 1
2 a

J− = a+
(
2J − a+a

) 1
2 .

(5.2.8)
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If the usual basis vectors in the Hilbert space created by the Bose oper-
ators are denoted by |n), i.e. a|n) =

√
n|n− 1) where n = 0, 1, 2, · · · ,∞,

then by the definition (5.2.7), |n) = |Jz = J−n> for n = 0, 1, 2, · · · , 2J ,
but there is no physical |Jz>-state corresponding to |n) when n > 2J .
It is straightforward to see that the Bose representation (5.2.8) produces
the right matrix-elements of the angular momentum operators, as long
as |n) is restricted to the physical part of the Hilbert space, n ≤ 2J ,
but this representation presupposes the presence of an infinite number
of states. In the ferromagnetic case, the unphysical states are at high
energies, if J is large and T is low, and their influence on the thermal
averages is negligible. In this regime of J and T , the Holstein–Primakoff
transformation is useful and the results derived from it are trustworthy.

In order to be able to treat the Bose operators under the square
roots in eqn (5.2.8), we shall utilize 1/J as an expansion parameter.
This means that, instead of the J± given by (5.2.8), we shall use

J+ = (J−)† 	
√

2J
(
a− 1

4J
a+aa

)
. (5.2.9)

It is important here to realize that the expansion parameter is 1/J and
not, for instance, ‘the number of deviation operators’. If the latter
were the case, a well-ordered expansion of J+ (Lindg̊ard and Danielsen
1974) would suggest instead J+ =

√
2J{a−(1−

√
1 − 1/2J)a+aa+ · · ·},

corresponding to a replacement of 1
4J in (5.2.9) by 1

4J (1+ 1
8J + · · ·). We

emphasize that we shall be expanding the reduced operators (1/J (l))Om
l ,

leaving no ambiguities either in (5.2.9) or in the following. Using eqn
(5.2.9) and Jz = J − a+a, it is straightforward to express the Stevens
operators in terms of the Bose operators. For O0

2 , we get

O0
2 = 3J2

z − J(J + 1) = 3(J − a+a)2 − J(J + 1)

= 2J(J − 1
2 ) − 6(J − 1

2 ) a+a+ 3a+a+aa

= 2J (2)
{
1 − 3

J
a+a+ 3

2J2
a+a+aa+ O(1/J3)

}
.

(5.2.10)

Here we have used [a , a+] = 1 to arrange the operators in ‘well-ordered’
products, with all the creation operators to the left, and in the last line
1/J (2) has been replaced by 1/J2 in the term of second order in 1/J . In
the same way, we obtain

O2
2 = 1

2 (J2
+ + J2

−) = J (2)
{ 1

J
(a+a+ + aa)

+ 1

4J2
(a+a+ + aa− 2a+a+a+a− 2a+aaa) + O(1/J3)

}
.

(5.2.11)
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The expression for Q0
2 is then determined using Q0

2(θ = π
2 ) = − 1

2O
0
2 +

3
2O

2
2 . For the case of Q6

6, we refer to Lindg̊ard and Danielsen (1974),
who have established the Bose operator expansion of the tensor operators
up to the eighth rank. Introducing these expansions into (5.2.1), and
grouping the terms together according to their order in 1/J , we may
write the Hamiltonian

H = H0 + H1 + H2 + · · · + H′, (5.2.12)

where H0 = U0 is the zero-order term, and

U0 = N
[
−B0

2J
(2) +B6

6J
(6) cos 6φ− gµBJH cos (φ− φH) − 1

2J
2J (0)

]
,

(5.2.13)
corresponding to (5.2.5), when we restrict ourselves to the case θ = θH =
π/2. H1 comprises the terms of first order in 1/J , and is found to be

H1 =
∑

i

[
Aa+

i ai +B 1
2 (a+

i a
+
i + aiai)

]
−
∑
ij

JJ (ij)(a+
i aj − a+

i ai),

(5.2.14)
where the parameters A and B are

A = 1

J

{
3B0

2J
(2) − 21B6

6J
(6) cos 6φ+ gµBJH cos (φ − φH)

}
B = 1

J

{
3B0

2J
(2) + 15B6

6J
(6) cos 6φ

}
.

(5.2.15)

If we consider only the zero- and first-order part of the Hamiltonian,
i.e. assume H 	 H0 + H1, it can be brought into diagonal form via
two transformations. The first step is to introduce the spatial Fourier
transforms of J (ij), eqn (3.4.2), and of ai:

aq =
1√
N

∑
i

ai e
−iq·Ri ; a+

q =
1√
N

∑
i

a+
i e

iq·Ri , (5.2.16)

for which the commutators are

[aq , a
+
q′ ] =

1
N

∑
i

e−i(q−q′)·Ri = δqq′.

In the case of an hcp lattice, with its two ions per unit cell, the situation
is slightly more complex, as discussed in the previous section. However,
this complication is inessential in the present context, and for simplicity
we consider a Bravais lattice in the rest of this section, so that the results
which we obtain are only strictly valid for excitations propagating in
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the c-direction, for which the double-zone representation may be used.
Introducing the Fourier transforms, we may write

H1 =
∑
q

[
Aq a

+
q aq +B 1

2 (a+
q a

+
−q + aqa−q)

]
, (5.2.17)

with
Aq = A+ J{J (0) − J (q)}. (5.2.18)

H1 is quadratic in the Bose operators, and it can be diagonalized by
performing a Bogoliubov transformation. A new Bose operator αq is
introduced, such that

aq = uqαq − vqα
+
−q ; |uq|2 − |vq|2 = 1, (5.2.19)

in terms of which H0 + H1 is transformed into

H0 + H1 = U0 + U1 +
∑
q

Eq α
+
q αq, (5.2.20)

when uq and vq are adjusted appropriately. Here they can both be
chosen to be real quantities, and are determined by the equation

(uq ± vq)2 = (Aq ±B)/Eq. (5.2.21)

The energy parameters are

U1 = 1

2

∑
q

(Eq −Aq) ; Eq =
√
A2

q −B2. (5.2.22)

When B is different from zero, as occurs if either B0
2 or B6

6 is non-zero,
the product of the |Jiz = J >= |0)i-states is no longer the (MF) ground
state. Q0

2 and Q6
6 give rise to couplings between the single-ion states

|J >, |J −2> etc. as reflected in the term proportional to B in (5.2.17).
The new ground state established by the Bogoliubov transformation
has the energy U0 + U1 (= U0 −

∑
qB

2/4Eq to leading order in B),
which is always smaller than U0. The admixture of (predominantly) the
|J − 2>-state into the ground state implies that the system is no longer
fully polarized at T = 0, as assumed in (5.2.5). Using (5.2.19) and the
conditions 〈αqαq〉 = 〈α+

q α
+
q 〉 = 0, whereas

〈α+
q αq〉 = nq =

1
eβEq − 1

(5.2.23)
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is the usual Bose population-factor, we find to first order in 1/J :

〈Jz〉 =
〈
J − 1

N

∑
q

a+
q aq

〉
= J(1 −m), (5.2.24)

with
m = 1

N

∑
q

1

J
〈a+

q aq〉 = 1

N

∑
q

mq

and
mq = 1

J
〈(uqα

+
q − vqα−q)(uqαq − vqα

+
−q)〉

= 1

J

{
u2
qnq + v2

q(nq + 1)
}

= 1

J

{Aq

Eq

(
nq + 1

2

)
− 1

2

}
,

(5.2.25)

which is positive and non-zero, even when nq = 0 at T = 0.
The second-order contribution to the Hamiltonian is

H2 =
∑

i

[
B

1

8J
(a+

i a
+
i + aiai) + C1a

+
i a

+
i aiai

+ C2(a+
i a

+
i a

+
i ai + a+

i aiaiai) + C3(a+
i a

+
i a

+
i a

+
i + aiaiaiai)

]
− 1

4

∑
ij

J (ij)
(
2a+

i a
+
j aiaj − a+

i a
+
j ajaj − a+

i a
+
i aiaj

)
, (5.2.26)

with
C1 = − 1

J2

(3
2B

0
2J

(2) − 105B6
6J

(6) cos 6φ
)

C2 = − 1

J2

(3
4B

0
2J

(2) + 195
4 B6

6J
(6) cos 6φ

)
C3 = 1

J2

15
4 B

6
6J

(6) cos 6φ.

(5.2.27)

Introducing the Fourier transforms of the Bose operators in H2, we find
straightforwardly that

ih̄∂aq/∂t = [aq , H] 	 [aq , H1 + H2] = Aqaq +B
(
1 + 1

4J

)
a+
−q +

1

N

∑
k,k′

[{
−J (q − k′)+ 1

2J (k′)+ 1
4J (k)+ 1

4J (q)+2C1

}
a+
k ak′aq+k−k′

+ C2

{
3a+

k a
+
−k′aq+k−k′ + a−kak′aq+k−k′

}
+ 4C3 a

+
k a

+
−k′a

+
−q−k+k′

]
,

(5.2.28)
for the operator [aq , H], which appears in the equation of motion of,
for instance 〈〈aq ; a+

q 〉〉. When the thermal averages of terms due to H2
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are considered, the replacement of H by H0 + H1 in the density matrix
only gives rise to errors of higher-order in 1/J . Because H0 + H1 is
quadratic in the Bose operators, this replacement results in a decoupling
of the H2-terms (according to Wick’s theorem) which is equivalent to the
RPA decoupling utilized previously. Hence, when considering thermal
averages, we have to leading order in 1/J , for instance,

a+
k ak′aq+k−k′ 	 a+

k 〈ak′aq+k−k′〉 + ak′〈a+
k aq+k−k′〉 + aq+k−k′〈akak′〉

= δk,−qa
+
−q〈ak′a−k′〉 + δk′,qaq〈a+

k ak〉 + δk,k′aq〈a+
k ak〉,

(5.2.29)
where the last line follows from the diagonality of H0 +H1 in reciprocal
space. We note that it is convenient here that the single-ion operators are
expressed as products of Bose operators which are well-ordered. When
this decoupling is introduced in (5.2.28), it reduces to

[aq , H] = Ãq(T ) aq + B̃q(T ) a+
−q, (5.2.30)

where the effective, renormalized parameters are

Ãq(T ) = A+4JC1m+ 6JC2b+ J{J (0) − J (k)}(1 −m)

+ 1

N

∑
k

J{J (k) − J (k − q)}mk (5.2.31a)

and

B̃q(T ) =B
(
1 + 1

4J

)
+ 2JC1b+6JC2m+12JC3b− 1

2J{J (0) −J (q)}b

+ 1

2N

∑
k

J{J (0) − J (k)}bk + 1

N

∑
k

J{J (k) − J (k − q)}bk.

(5.2.31b)
mk and bk are respectively the correlation functions (1/J)〈a+

k ak〉 and
(1/J)〈a+

k a
+
−k〉 = (1/J)〈aka−k〉, and m and b are the corresponding aver-

ages over k. Equation (5.2.30) implies that the operator [aq , H], in the
equations of motion of any Green function involving aq, can be replaced
by the expression on the right-hand side. The same result is obtained if,
instead, H2 is neglected, and Aq and B in H1 are replaced by Ãq(T ) and
B̃q(T ) in (5.2.17). Consequently, the system behaves as if the Hamilto-
nian H0 +H1 +H2 is replaced by H̃0 + H̃1, which is similar to H0 +H1

except for the introduction of the effective, temperature-dependent pa-
rameters. The RPA decoupling (5.2.29) introduces errors in the Green
functions, but only in the third order of 1/J , and as it leads to an effec-
tive Hamiltonian which is quadratic in the Bose operators, it is a valid
procedure. This internal consistency of the theory to second order in
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1/J means that the RPA contributions to the correlation functions are
reliably estimated, and that all second-order contributions are included
when H̃0 +H̃1 is used, instead of H0 +H1, in the calculation of the ther-
mal averages. We shall therefore use the following self-consistent expres-
sions for the characteristic correlation functions, mk and bk, determined
straightforwardly by utilizing the correspondence between H0 +H1 and
H̃0 + H̃1:

mk =
1
J

{ Ãk(T )
Ek(T )

(
nk + 1

2

)
− 1

2

}
, (5.2.32a)

corresponding to (5.2.25), and

bk = − 1
J

B̃k(T )
Ek(T )

(
nk + 1

2

)
. (5.2.32b)

In order to express the result in a convenient form, we rewrite one of the
second-order terms in B̃q(T ) as

1

2N

∑
k

J{J (0)−J (k)}bk = −1
2B(m+ 1

2J )− 1
2Ab+O(1/J3), (5.2.33)

since, to leading order, J{J (0) − J (k)} = Ãk(T ) − A, and B̃k(T ) in
bk can be approximated by B. We note that Aq and B are parameters
of the order 1/J , as are m and b (at low temperatures). In addition
to introducing (5.2.33) into (5.2.31b), it is adequate for calculating the
spin-wave energies to define a transformed set of parameters:

Aq(T ) = Ãq(T ) + 1
2 B̃q(T ) b

Bq(T ) = B̃q(T ) + 1
2 Ãq(T ) b

(5.2.34)

and these are then, to the order considered,

Aq(T ) = A+ 4JC1m+ 6JC2b + 1
2Bb

+J{J (0) − J (q)}(1 −m) + 1

N

∑
k

J{J (k) − J (k − q)}mk

(5.2.35a)
and

Bq(T ) = B + 2JC1b+6JC2m+ 12JC3b− 1
2Bm

+ 1

N

∑
k

J{J (k) − J (k − q)}bk.
(5.2.35b)

This transformation leaves the expression for the excitation energies un-
changed, i.e.

Eq(T ) =
{
[Aq(T ) +Bq(T )][Aq(T ) −Bq(T )]

} 1
2 , (5.2.36)
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when higher-order corrections are neglected. Inserting the eqns (5.2.15),
(5.2.18), and (5.2.27) into (5.2.35), we finally obtain, at zero wave-vector,

A0(T ) −B0(T ) = 1

J

{
−36B6

6J
(6)(1 − 20m+ 15b) cos6φ

+ gµBJH cos (φ− φH)
}

(5.2.37a)

and

A0(T ) +B0(T ) = 1

J

{
6B0

2J
(2)(1 − 2m− b)

− 6B6
6J

(6)(1 − 20m+ 5b) cos 6φ+ gµBJH cos (φ− φH)
}
, (5.2.37b)

and, at non-zero wave-vector,

Aq(T ) = A0(T )+J{J (0)−J (q)}(1−m)+ 1

N

∑
k

J{J (k)−J (k−q)}mk

(5.2.38a)
and

Bq(T ) = B0(T ) + 1

N

∑
k

J{J (k) − J (k − q)}bk. (5.2.38b)

The spin-wave energies deduced here, to second order in the expansion
in 1/J , depend on temperature and on the crystal-field mixing of the
Jz-eigenstates, and both dependences are introduced via the two corre-
lation functions mk and bk, given self-consistently by (5.2.32) in terms
of the energy parameters. Bq(T ) vanishes if there is no anisotropy, i.e.
if B0

2 and B6
6 are zero. In the case of single-ion anisotropy, Bq(T ) is in-

dependent of q if the small second-order term in (5.2.38b) is neglected,
nor does it depend on the magnetic field, except for the slight field-
dependence which may occur via the correlation functions m and b.

When the spin-wave excitation energies have been calculated, it is a
straightforward matter to obtain the corresponding response functions.
Within the present approximation, the xx-component of the susceptibil-
ity is

χxx(q, ω) = − 1

4N

∑
ij

〈〈(J+ + J−)i e
−iq·Ri ; (J+ + J−)j e

iq·Rj〉〉

= −J

2

(
1 − 1

2m− 1
4b
)2〈〈aq + a+

−q ; a+
q + a−q〉〉.

(5.2.39)
The Bogoliubov transformation, eqns (5.2.19) and (5.2.21), with the
parameters replaced by renormalized values, then leads to

χxx(q, ω) = −J

2

(
1 −m− 1

2 b
)Ãq(T ) − B̃q(T )

Eq(T )
〈〈αq + α+

−q ; α+
q + α−q〉〉,
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which is a simple combination of Bose Green-functions determined by
(5.2.20), with Eq replaced by Eq(T ). Introducing these functions and
the parameters given by (5.2.34), we finally obtain

χxx(q, ω) = J(1 −m)
Aq(T ) −Bq(T )
E2

q(T ) − (h̄ω)2
, (5.2.40a)

neglecting third-order terms. A rotation of the coordinate system by
π/2 around the z-axis changes the sign of Bq(T ), and hence we have

χyy(q, ω) = J(1 −m)
Aq(T ) +Bq(T )
E2

q(T ) − (h̄ω)2
. (5.2.40b)

These results show that the ratio between the neutron-scattering inten-
sities due to the spin-wave at q, neglecting Szz(q, ω), in the two cases
where the scattering vector is perpendicular to the basal y–z plane and
to the x–z plane is

Rq(T ) =
Sxx(q, ω)
Syy(q, ω)

∣∣∣∣
h̄ω=±Eq(T )

=
χxx(q, 0)
χyy(q, 0)

=
Aq(T ) −Bq(T )
Aq(T ) +Bq(T )

.

(5.2.41)
The measured intensities from Tb, which differ substantially from those
calculated for the Heisenberg ferromagnet, agree well with this expres-
sion, especially if the correction for anisotropic two-ion coupling is taken
into account (Jensen et al. 1975).

In the Heisenberg ferromagnet without rotational anisotropy, corre-
sponding to Bq(T ) = 0, the elementary excitations at low temperatures
are circularly polarized spin waves, in which the local moments precess
in circles around the equilibrium direction. In the presence of anisotropy,
Rq(T ) differs from unity, and the excitations become elliptically polar-
ized spin waves. The eccentricity of the ellipse depends on the wave-
vector of the excited spin wave, and by definition Rq(T ) is the square of
the ratio of the lengths of the principal axes which, at least to the order
in 1/J which we have considered, is equal to the ratio between the cor-
responding static susceptibility components. So the static anisotropy is
reflected, in a direct way, in the normal modes of the system. The result
(5.2.41) justifies the transformation (5.2.34) by attributing observable
effects to the parameters Aq(T )±Bq(T ), whereas the parameters which
are defined via the Hamiltonian alone, here Ãq(T )± B̃q(T ), depend on
the particular Bose representation which is employed.

The longitudinal correlation function Szz(q, ω), which is neglected
above, contains a diffusive mode at zero frequency, but no well-defined
normal modes of non-zero frequency. There is inelastic scattering, but
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the inelastic response, as well as the elastic mode, are purely of second
order in 1/J and we shall not consider the longitudinal fluctuations
further here.

The method developed in this section may be utilized, essentially
unchanged, to calculate the MF susceptibility χ o(ω) of the single sites.
The result to first order in 1/J is:

χ o
xx(ω) = 〈Jz〉

A−B + hex

E2
ex − (h̄ω)2

χ o
yy(ω) = 〈Jz〉

A+B + hex

E2
ex − (h̄ω)2

χ o
xy(ω) = −χ o

yx(ω) = 〈Jz〉
ih̄ω

E2
ex − (h̄ω)2

,

(5.2.42a)

where 〈Jz〉 is the MF expectation value of Jz , hex is the exchange field,
and Eex is the energy of the first excited MF state:

hex = 〈Jz〉J (0) ; E2
ex = (A+ hex)

2 −B2. (5.2.42b)

Introducing this expression for χ o(ω) into the RPA equation (3.5.8), we
may derive χ(q, ω) by the same method as was used for the Heisenberg
ferromagnet in Section 3.5.2, in which case A = B = 0. The results for
the xx- and yy-components are then found to agree with eqn (5.2.40)
to leading order in 1/J . To the next order in 1/J , the parameters are
replaced by renormalized values, but this procedure is not here easily
generalized so as to become fully self-consistent. However, most of the
corrections may be included by substituting A0(T ) ± B0(T ) for A ± B
in the expression for χ o(ω), and the self-consistent value of 〈Jz〉 for its
MF value. The only terms which are not included in χ(q, ω) by this
procedure, as we may see by a comparison with eqn (5.2.40), are the
q-dependent contributions to Aq(T )±Bq(T ) determined by the k-sums
in (5.2.38). At low temperatures, these contributions are small and
may safely be neglected in systems with long-range interactions. This
formulation therefore represents a valid alternative, which is useful for
generalizing the linear spin-wave theory to the hcp structure, discussed
in Section 5.1, or to the helically or conically ordered systems which we
will consider in Chapter 6.

As an example of the magnon dispersion relations for the anisotropic
basal-plane ferromagnet, we show in Fig. 5.2 experimental measurements
on Tb at 4K (Mackintosh and Bjerrum Møller 1972). The principal
differences between these results and the corresponding excitations for
Gd in Fig. 5.1 are the pronounced interactions which are observed be-
tween the magnons and phonons, which we shall discuss in some detail in
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Fig. 5.2. The spin-wave dispersion relations along the symmetry lines
in the Brillouin zone for Tb. In contrast to Gd, the anisotropy gives rise to
an energy gap at the origin, and there are large effects due to interactions
with the phonons. The third branch along, for example, ΓM may also be
due to phonon interactions, or it may be a manifestation of the breaking
of the hexagonal symmetry by the ordered moment in a particular do-
main, in the multi-domain sample.The lifting of the double degeneracy
along the line KH provides evidence for anisotropic two-ion coupling.
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Section 5.4.2, and the appearance of an energy gap at long wavelengths.
This gap has its origin in the magnetic anisotropy. Even though
the exchange energy required to excite a magnon vanishes in the long-
wavelength limit, work is still required to turn the moments away from
the easy direction against the anisotropy forces. If we neglect the small
terms due to the sums over k in (5.2.38), the dispersion relation along
the c-axis in zero field becomes, from eqns (5.2.36–38),

Eq(T ) =
{
[A0(T ) +B0(T ) + 〈Jz〉{J (0) − J (q)}]

× [A0(T ) −B0(T ) + 〈Jz〉{J (0) − J (q)}]
} 1

2 .
(5.2.43)

For an arbitrary direction in the zone, this relation is generalized anal-
ogously to eqn (5.1.9), giving rise again to acoustic and optical modes.
From the dispersion relations, the magnon density of states and J (q)
may readily be determined and hence, by a Fourier transform, the nom-
inal Heisenberg exchange interaction J (ij) between moments on differ-
ent atomic sites (Houmann 1968). The energy gap at zero wave-vector
is given by

E0(T ) =
{
[A0(T ) +B0(T )][A0(T ) −B0(T )]

} 1
2 , (5.2.44)

and as we shall see in the next section, it is proportional to the geo-
metrical mean of the axial- and hexagonal-anisotropy energies. We shall
return to the dependence of this energy gap on the temperature and the
magnetoelastic effects in the following two sections.

5.3 The uniform mode and spin-wave theory

The spin-wave mode at zero wave-vector is of particular interest. In
comparison with the Heisenberg ferromagnet, the non-zero energy of
this mode is the most distinct feature in the excitation spectrum of the
anisotropic ferromagnet. In addition, the magnitude of the energy gap
at q = 0 is closely related to the bulk magnetic properties, which may
be measured by conventional techniques. We shall first explore the con-
nection between the static magnetic susceptibility and the energy of the
uniform mode, leading to an expression for the temperature dependence
of the energy gap. In the light of this discussion, we will then consider
the general question of the validity of the spin-wave theory which we
have presented in this chapter.

5.3.1 The magnetic susceptibility and the energy gap
The static-susceptibility components of the bulk crystal may be deter-
mined as the second derivatives of the free energy

F = U − TS = − 1

β
lnZ. (5.3.1)
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The specific heat C may be derived in a simple way, within our current
spin-wave approximation, by noting that the excitation spectrum is the
same as that for a non-interacting Bose system, so that the entropy
is fully determined by the statistics of independent bosons of energies
Eq(T ):

S = kB

∑
q

[
(1 + nq) ln (1 + nq) − nq lnnq

]
, (5.3.2)

and hence

C = T∂S/∂T = kBT
∑
q

(dnq/dT ) ln {(1 + nq)/nq},

or, with nq =
[
eβEq(T ) − 1

]−1,

C =
∑
q

Eq(T ) dnq/dT

= β
∑
q

nq(1 + nq)Eq(T )
{
Eq(T )/T − ∂Eq(T )/∂T

}
,

(5.3.3)

as in (3.4.17).
The first derivative of F with respect to the angles θ and φ can be

obtained in two ways. The first is to introduce S, as given by (5.3.2)
into (5.3.1), so that

∂F

∂θ
=
∂U

∂θ
−
∑
q

Eq(T )
∂nq

∂θ

=
∂U

∂θ

∣∣∣∣
mq,bq

+
∑
q

(
∂U

∂mq

∂mq

∂θ
+
∂U

∂bq

∂bq
∂θ

− Eq(T )
∂nq

∂θ

)
=
∂U

∂θ

∣∣∣∣
mq,bq

, (5.3.4)

as it can be shown that ∂U/∂mq = JÃq(T ) and ∂U/∂bq = JB̃q(T ),
when U = 〈H0 +H1 +H2〉, and hence that each term in the sum over q
in the second line of (5.3.4) vanishes, when (5.2.32) is used. This result
is only valid to second order in 1/J . However, a result of general validity
is

∂F/∂θ =
〈
∂H/∂θ

〉
, (5.3.5)

as discussed in Section 2.1, in connection with eqn (2.1.5). The two dif-
ferent expressions for ∂F/∂θ, and corresponding expressions for ∂F/∂φ,
agree if H in (5.3.5) is approximated by H0 + H1 + H2, i.e. to second
order in 1/J . However, the results obtained up to now are based on the
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additional assumption, which we have not stated explicitly, that H′ in
the starting Hamiltonian (5.2.12) is negligible. H′ is the sum of the terms
proportional to Stevens operators Om

l with m odd, and it includes for in-
stance the term 3B0

2(JzJx+JxJz) cos θ sin θ associated with B0
2Q

0
2 in eqn

(5.2.3). H′ vanishes by symmetry if the magnetization is along a high-
symmetry direction, i.e. θ = 0 or π/2 and φ is a multiple of π/6. In these
cases, the results obtained previously are valid. If the magnetization is
not along a high-symmetry direction, H′ must be taken into account.
The first-order contributions arise from terms proportional to (1/J)1/2

in H′, which can be expressed effectively as a linear combination of Jx

and Jy. In this order, 〈∂H′/∂θ〉 = 0 therefore, because 〈Jx〉 = 〈Jy〉 = 0
by definition. For a harmonic oscillator, corresponding in this system
to the first order in 1/J , the condition for the elimination of terms in
the Hamiltonian linear in a and a+ coincides with the equilibrium con-
dition ∂F/∂θ = ∂F/∂φ = 0. Although the linear terms due to H′ can
be removed from the Hamiltonian by a suitable transformation, terms
cubic in the Bose operators remain. Second-order perturbation theory
shows that, if H′ is non-zero, 〈∂H′/∂θ〉 and the excitation energies in-
clude contributions of the order 1/J2. Although it is straightforward to
see that H′ makes contributions of the order 1/J2, it is not trivial to
calculate them. The effects of H′ have not been discussed in this con-
text in the literature, but we refer to the recent papers of Rastelli et al.
(1985, 1986), in which they analyse the equivalent problem in the case
of a helically ordered system.

In order to prevent H′ from influencing the 1/J2-contributions de-
rived above, we may restrict our discussion to cases where the mag-
netization is along high-symmetry directions. This does not, however,
guarantee that H′ is unimportant in, for instance, the second deriva-
tives of F . In fact ∂〈∂H′/∂θ〉/∂θ ∝ O(1/J2) may also be non-zero when
θ = 0 or π/2, and using (5.3.4) we may write

Fθθ =
∂2F

∂θ2
=
∂2U

∂θ2

∣∣∣∣
mq,bq

+ O(1/J2)

=
〈∂2

∂θ2
(H0 + H1 + H2)

〉
+ O(1/J2) ; θ = 0,

π

2
,

(5.3.6a)

and similarly

Fφφ =
〈∂2

∂φ2
(H0 + H1 + H2)

〉
+ O(1/J2) ; φ = p

π

6
, (5.3.6b)

where the corrections of order 1/J2 are exclusively due to H′. Here we
have utilized the condition that the first derivatives of mq and bq vanish
when the magnetization is along a symmetry direction.
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The derivatives Fθθ and Fφφ are directly related to the static sus-
ceptibilities, as shown in Section 2.2.2. When θ0 = π

2 , we obtain from
eqn (2.2.18)

χxx(0, 0) = N〈Jz〉2/Fθθ ; χyy(0, 0) = N〈Jz〉2/Fφφ. (5.3.7)

These results are of general validity, but we shall proceed one step further
and use F (θ, φ) for estimating the frequency dependence of the bulk
susceptibilities. When considering the uniform behaviour of the system,
we may to a good approximation assume that the equations of motion
for all the different moments are the same:

h̄∂〈J〉/∂t = 〈J〉 × h(eff). (5.3.8)

By equating it to the average field, we may determine the effective field
from

F = F (0) −N〈J〉 · h(eff), (5.3.9a)

corresponding to N isolated moments placed in the field h(eff). The free
energy is

F = F (θ0, φ0) + 1
2Fθθ(δθ)

2 + 1
2Fφφ(δφ)2 −N〈J〉 · h, (5.3.9b)

and, to leading order, δθ = −〈Jx〉/〈Jz〉 and δφ = −〈Jy〉/〈Jz〉. Hence

hx(eff) = − 1
N

∂F

∂〈Jx〉
= hx − 1

N
Fθθ

〈Jx〉
〈Jz〉2

, (5.3.10a)

and similarly

hy(eff) = hy − 1
N
Fφφ

〈Jy〉
〈Jz〉2

. (5.3.10b)

Introducing a harmonic field applied perpendicular to the z-axis into
eqn (5.3.8), we have

ih̄ω〈Jx〉 =
1

N〈Jz〉
Fφφ〈Jy〉 − hy〈Jz〉

ih̄ω〈Jy〉 = − 1
N〈Jz〉

Fθθ〈Jx〉 − hx〈Jz〉,
(5.3.11)

and ∂〈Jz〉/∂t = 0, to leading order in h. Solving the two equations for
hx = 0, we find

χyy(0, ω) = 〈Jy〉/hy =
1
N

Fθθ

E2
0(T ) − (h̄ω)2

, (5.3.12a)
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and, when hy = 0,

χxx(0, ω) =
1
N

Fφφ

E2
0(T ) − (h̄ω)2

, (5.3.12b)

where the uniform-mode energy is

E0(T ) =
1

N〈Jz〉
{
FθθFφφ

}1/2
. (5.3.13)

This result for the uniform mode in an anisotropic ferromagnet was
derived by Smit and Beljers (1955). It may be generalized to an arbitrary
magnetization direction by defining (θ, φ) to be in a coordinate system
in which the polar axis is perpendicular to the z-axis (as is the case here),
and by replacing FθθFφφ by FθθFφφ − F 2

θφ if Fθφ �= 0.
The introduction of the averaged effective-field in (5.3.8) corre-

sponds to the procedure adopted in the RPA, and a comparison of the
results (5.3.12–13) with the RPA result (5.2.40), at q = 0 and ω = 0,
shows that the relations

A0(T ) −B0(T ) =
1

N〈Jz〉
Fφφ

A0(T ) +B0(T ) =
1

N〈Jz〉
Fθθ

(5.3.14)

must be valid to second order in 1/J . In this approximation, A0(T ) ±
B0(T ) are directly determined by that part of the time-averaged two-
dimensional potential, experienced by the single moments, which is
quadratic in the components of the moments perpendicular to the mag-
netization axis. The excitation energy of the uniform mode is thus pro-
portional to the geometric mean of the two force constants characterizing
the parabolic part of this potential. Since A0(T )±B0(T ) are parameters
of order 1/J , the second-order contributions of H′ in (5.3.6), which are
not known, appear only in order 1/J3 in (5.3.14), when the magnetiz-
ation is along a high-symmetry direction.

B0
2 does not appear in A0(T ) − B0(T ), and this is in accordance

with eqn (5.3.14), as Q0
2 is independent of φ. Considering instead the

θ-dependence, we find that the contribution to Fθθ is determined by〈∂2Q0
2

∂θ2
〉

=
〈
− 6(J2

z − J2
x) cos 2θ − 6(JzJx + JxJz) sin 2θ

〉
θ=π/2

= 3〈O0
2 −O2

2〉. (5.3.15)

From (5.2.10) and (5.2.11), the thermal average is found to be

〈O0
2 −O2

2〉 = 2J (2)
〈
1 − 3

J
a+a+ 3

2J2
a+a+aa

− 1

2J
(1 + 1

4J )(aa+ a+a+) + 1

4J2
(a+aaa+ a+a+a+a)

〉
,
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or

〈O0
2 −O2

2〉 = 2J (2){1− 3m+ 3m2 + 3
2b

2 − (1 + 1
4J )b+ 3

2mb+O(1/J3)}.
(5.3.16)

Hence, according to (5.3.6a) and (5.3.14), the B0
2 -term contributes to

the spin-wave parameter A0(T ) +B0(T ) by

3B0
2〈O0

2 −O2
2〉/〈Jz〉 	 6B0

2J
(2)(1 − 3m− b)/J(1 −m)

	 6B0
2J

(2)(1 − 2m− b)/J,

in agreement with (5.2.37b). When b is zero, this result is consistent with
the classical Zener power-law (Zener 1954), 〈Om

l 〉 ∝ δm0 σ
l(l+1)/2, where

σ = 1 −m is the relative magnetization, since, to the order considered,
〈O0

2 − O2
2〉b=0 = 〈O0

2〉b=0 = 2J (2)(1 − m)3. If we include the diagonal
contribution of third order in m or 1/J to 〈O0

2〉 in (5.3.16), the result
differs from the Zener power-law, but agrees, at low temperatures, with
the more accurate theory of Callen and Callen (1960, 1965) discussed in
Section 2.2. The results of the linear spin-wave theory obtained above
can be utilized for generalizing the theory of Callen and Callen to the
case of an anisotropic ferromagnet. The elliptical polarization of the spin
waves introduces corrections to the thermal expectation values, which
we express in the form

〈O0
2 −O2

2〉 = 2J (2)Î5/2[σ] η−1
+ , (5.3.17)

where the factor Îl+1/2[σ] represents the result (2.2.5) of Callen and
Callen, and where η± differs from 1 if b is non-zero. The two correlation
functions m and b are determined through eqn (5.2.32), in terms of the
intermediate parameters Ãk(T ) ± B̃k(T ), but it is more appropriate to
consider instead

mo =
1
NJ

∑
k

{Ak(T )
Ek(T )

(
nk + 1

2

)
− 1

2

}
bo = − 1

NJ

∑
k

Bk(T )
Ek(T )

(
nk + 1

2

)
,

(5.3.18)

defined in terms of the more fundamental parameters. The transforma-
tion (5.2.34) then leads to the following relations:

mo + 1
2J = m+ 1

2J − 1
2b

2 and bo = b− 1
2b(m+ 1

2J ).

Separating the two contributions in (5.3.16), we find

b̃ ≡ 〈O2
2〉/〈O0

2〉 	 (1 + 1
4J )b(1 −m)−3/2, (5.3.19a)
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which, to the order calculated, may be written

b̃ =
(
1 − 1

2J

)−1 bo
σ2
, (5.3.19b)

where
σ = 〈Jz〉/J = 1 −m = 1 −mo − 1

2 bob̃. (5.3.20)

The function η± is then determined in terms of b̃ as

η± = (1 ± b̃)(1 − 1
2 b̃

2). (5.3.21)

The spin-wave theory determines the correlation functions σ and η±
to second order in 1/J , but for later convenience we have included
some higher-order terms in (5.3.20) and (5.3.21). It may be straightfor-
wardly verified that the thermal expectation values of 〈O0

2 − O2
2〉 given

by (5.3.16) and (5.3.17) agree with each other to order 1/J2. In the ab-
sence of anisotropy, the latter has a wider temperature range of validity
than the former, extending beyond the regime where the excitations can
be considered to be bosons. This should still be true in the presence of
anisotropy, as long as b̃ is small.

The combination of the spin-wave theory and the theory of Callen
and Callen has thus led to an improved determination of the thermal
averages of single-ion Stevens operators, as shown in Figs. 2.2 and 2.3.
The quantity O0

2 − O2
2 was chosen as an example, but the procedure is

the same for any other single-ion average. It is tempting also to utilize
this improvement in the calculation of the excitation energies, and the
relation (5.3.14) between the free energy and the spin-wave parameters
A0(T ) ± B0(T ) is useful for this purpose. Neglecting the modifications
due to H′ in (5.3.6), i.e. using Fθθ 	 〈∂2H/∂θ2〉 and similarly for Fφφ,
we find from (5.3.14) the following results:

A0(T )−B0(T ) = − 1

Jσ
36B6

6J
(6)Î13/2[σ]η−15

− cos 6φ+gµBH cos (φ − φH)
(5.3.22a)

and

A0(T )+B0(T ) = 1

Jσ

[
6B0

2J
(2)Î5/2[σ]η−1

+ − 60B0
4J

(4)Î9/2[σ]η7
−η

−1
+

+ 210B0
6J

(6)Î13/2[σ]η18
− η−1

+ − 6B6
6J

(6)Î13/2[σ]η−30
− η−25

+ cos 6φ
]

+ gµBH cos (φ− φH), (5.3.22b)

which for completeness include all contributions from the starting Hamil-
tonian (5.2.1). The spin-wave spectrum at non-zero wave-vectors is
adjusted accordingly by inserting A0(T ) ± B0(T ) given above, instead
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of (5.2.37), in eqns (5.2.36), (5.2.38), and (5.2.40). If the out-of-plane
anisotropy is stronger than the in-plane anisotropy, as in Tb and Dy, B
is positive and b̃ is negative. This means that η+ and η− are respectively
smaller and greater than 1 (for small b̃ ), with the result that the axial
contributions to A0(T ) +B0(T ) are increased, whereas the planar con-
tribution to A0(T ) − B0(T ) is diminished, due to b̃. This is consistent
with the fact that the out-of-plane fluctuations are suppressed in com-
parison with the in-plane fluctuations by the anisotropy. Hence we find,
as a general result, that the elliptical polarization of the spin waves en-
hances, in a self-consistent fashion, the effects of the anisotropy. We note
that Q6

6, which depends on both θ and φ, contributes to both anisotropy
parameters, but that the anisotropy of the fluctuations affects the two
contributions differently.

If b̃ and the k-sums in (5.2.38) are neglected, the above result for
the spin-wave energies Eq(T ) reduces to that derived by Cooper (1968b).
The modifications due to the non-spherical precession of the moments,
b̃ �= 0, were considered first by Brooks et al. (1968) and Brooks (1970),
followed by the more systematic and comprehensive analysis of Brooks
and Egami (1973). They utilized directly the equations of motion of
the angular-momentum operators, without introducing a Bose repre-
sentation. Their results are consistent with those above, except that
they did not include all the second-order modifications considered here.
We also refer to Tsuru (1986), who has more recently obtained a re-
sult corresponding to eqn (5.2.31), when B6

6 is neglected, using a varia-
tional approach. The procedure outlined above essentially follows that
of Lindg̊ard and Danielsen (1974, 1975), which was further developed
by Jensen (1975). This account only differs from that given by Jensen
in the use of η± instead of b̃ as the basis for the ‘power-law’ general-
ization (and by the alternative choice of sign for B and b̃) and, more
importantly, by the explicit use of 1/J as the expansion parameter.

As illustrated in Fig. 5.1 for Gd, and in Fig. 5.3 for Tb, the observed
temperature dependence of the spin-wave spectrum is indeed substan-
tial, both in the isotropic and the anisotropic ferromagnet. In the case
of Tb, the variation of the exchange contribution is augmented by the
temperature dependence of the anisotropy terms, which is reflected pre-
dominantly in the rapid variation of the energy gap at q = 0. A com-
parison of Figs. 5.1 and 5.3 shows that the change in the form of J (q)
appears to be more pronounced in Tb than in Gd. In Tb, the variation
of J (q) with q at a particular temperature is also modified if the mag-
netization vector is rotated from the b-axis to a hard a-axis (Jensen et
al. 1975). Most of these changes with magnetization can be explained
as the result of two-ion anisotropy, which we will consider in Section 5.5.
Anisotropic two-ion terms may also affect the energy gap. In addition,
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Fig. 5.3. The temperature dependence of the dispersion relations for
the unperturbed spin waves in the c-direction in Tb. Both the energy gap
and the q-dependence renormalize with temperature. The results have
been corrected for the magnon–phonon interaction, and the lines show the

calculated energies.

the magnetoelastic coupling introduces qualitatively new effects, not de-
scribable by eqn (5.3.22), to which we will return after a short digression
to summarize our understanding of the spin-wave theory.

5.3.2 The validity of the spin-wave theory

In presenting the spin-wave theory, we have neglected phenomena which
first appear in the third order of 1/J , most importantly the finite life-
times of the excitations. In the presence of anisotropy, when B is dif-
ferent from zero, the total moment is not a conserved quantity, since
[
∑

i Jiz , H ] �= 0, unlike in the Heisenberg model. On the microscopic
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plane, this means that the number of spin-wave excitations, i.e. magnons,
is not necessarily conserved in a scattering process. In contrast to the be-
haviour of the isotropic ferromagnet, the linewidths do not therefore van-
ish at zero temperature, although energy conservation, combined with
the presence of an energy gap in the magnon spectrum, strongly limit
the importance of the allowed decay processes at low temperatures.

The two-ion interactions are assumed to involve only tensor op-
erators of the lowest rank, so that these terms in the 1/J-expansion
only have small numerical factors multiplying the Bose operator prod-
ucts. Therefore, if J is large, as in heavy rare earth-ions, the third-order
terms due to the exchange coupling, which are neglected in the spin-
wave theory, are expected to be small, as long as the number of excited
magnons is not very large. The weak influence, at low temperatures,
of the higher-order contributions of the exchange coupling is also indi-
cated by a comparison with the low-temperature expansion of Dyson
(1956) of the free energy in a Heisenberg ferromagnet with only nearest-
neighbour interactions, also discussed by Rastelli and Lindg̊ard (1979).
If A = B = 0, the results derived earlier, to second order in 1/J , are
consistent with those of Dyson, except that we have only included the
leading-order contribution, in the Born approximation or in powers of
1/J , to the T 4-term in the magnetization and in the specific heat. The
higher-order corrections to the T 4-term are significant if J = 1

2 , but if
J = 6 as in Tb, for example, they only amount to a few per cent of this
term and can be neglected.

If only the two-ion terms are considered, the RPA decoupling of
the Bose operator products (5.2.29) is a good approximation at large
J and at low temperatures. However, this decoupling also involves an
approximation to the single-ion terms, and these introduce qualitatively
new features into the spin-wave theory in the third order of 1/J . For
example, the C3-term in (5.2.26) directly couples the |Jz = J > state
and |J − 4>, leading to an extra modification of the ground state not
describable in terms of B or η±. Furthermore, the Bogoliubov trans-
formation causes the (Jx, Jy)-matrix elements between the ground state
and the third excited state to become non-zero. This coupling then
leads to the appearance of a new pole in the transverse susceptibilities,
in addition to the spin-wave pole, at an energy which, to leading order,
is roughly independent of q and close to that of the third excited MF
level, i.e. 3Eqo(T ), with qo defined as a wave-vector at which J (qo) = 0.
A qualitative analysis indicates that the third-order contribution to e.g.
χxx(0, 0), due to this pole, must cancel the second-order contribution of
H′ to Fθθ in the relation (5.3.12b) between the two quantities. Hence
the approximation Fθθ 	 〈∂2H/∂θ2〉, used in (5.3.22), corresponds to
the neglect of this additional pole.
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The higher-order exchange contributions can thus be neglected at
low temperatures, if J is large. This condition is not, however, sufficient
to guarantee that the additional MF pole is unimportant, and the spin-
wave result (5.3.22), combined with (5.2.36), (5.2.38), and (5.2.40), can
only be trusted as long as the modification of the ground state, due to
the single-ion anisotropy, is weak. This condition is equivalent to the
requirement that |̃b| be much less than 1. The regime within which the
spin-wave theory is valid can be examined more closely by a comparison
with the MF-RPA theory. In the latter, only the two-ion interactions
are treated approximately, whereas the MF Hamiltonian is diagonalized
exactly. The MF-RPA decoupling utilized in Section 3.5 leads here to
a cancellation of the k-sums in (5.3.38), and to a replacement of the
correlation functions mo and bo by their MF values

mo 	 mMF
o =

1
J

{Aqo(T )
Eqo(T )

(
nqo + 1

2

)
− 1

2

}
, (5.3.23)

with a similar expression for bMF
o . The wave-vector qo is defined as

above, such that J (qo) = 0. If the single-ion anisotropy is of second rank
only, including possibly a Q2

2-term as well as the Q0
2-term of our specific

model, all the predictions obtained with the MF-RPA version of the spin-
wave theory agree extremely well with the numerical results obtained
by diagonalizing the MF Hamiltonian exactly, even for relatively large
values of |bMF

o | (≈ 0.1). Even though 1/J is the expansion parameter,
the replacement of (1 + 1

2J ) by (1− 1
2J )−1 in (5.3.19b) extends the good

agreement to the limit J = 1, in which case the MF Hamiltonian can be
diagonalized analytically.

The applicability of the 1/J-expansion for the anisotropy is much
more restricted if terms of high rank, such as Q6

6, dominate. This is a
simple consequence of the relatively greater importance of the contribu-
tions of higher-order in 1/J , like for instance the C3-term in (5.2.26),
for higher-rank anisotropy terms. We have analysed numerically mod-
els corresponding to the low-temperature phases of Tb and Er, which
include various combinations of anisotropy terms with ranks between 2
and 6. In the case of the basal-plane ferromagnet Tb, we find that the
1/J-expansion leads to an accurate description of the crystal-field effects
on both the ground-state properties and the excitation energies. The
MF-RPA excitation-energies calculated with the procedure of Section
3.5 differ relatively only by ∼ 10−3 at T = 0 from those of the spin-wave
theory (Jensen 1976c). We furthermore find that this good agreement
extends to non-zero temperatures, and that the 1/J-expansion is still ac-
ceptably accurate when σ 	 0.8. Consequently, the effective power-laws
predicted by the spin-wave theory at low temperatures (Jensen 1975)
are valid.
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The renormalization of the anisotropy parameters appearing in the
spin-wave energies, in the second order of 1/J , is expected to be some-
what more important in the conical phase of Er than in Tb. In Er,
the moments are not along a symmetry direction (they make an angle
of about 28◦ with the c-axis) and the second-order modifications due
to H′ in (5.2.12) might be expected to be important. The 1/J-results
do not allow a precise estimate of the second-order contributions, but
by introducing two scaling parameters, one multiplying the exchange
terms by σ, and the other scaling the constant crystal-field contribution
in the 1/J-expression for the spin-wave energies in the cone phase, it
is possible (Jensen 1976c) to give an accurate account of the excitation
energies derived by diagonalizing the MF Hamiltonian exactly, the rela-
tive differences being only of the order 10−2. The two scaling parameters
are found to have the expected magnitudes, although σ turns out to be
slightly smaller (	 0.94 in the model considered) than the relative mag-
netization predicted by the MF Hamiltonian (σMF 	 0.98). An analysis
of the MF Hamiltonian shows that the excitations can be described in
terms of an elliptical precession of the single moments, as expected, but
surprisingly the ellipsoid lies in a plane with its normal making an angle
(	 33◦) with the c-axis which differs from the equilibrium cone-angle
(	 28◦), so the polarization of the spin waves is not purely transverse.
In terms of the 1/J-expansion, this modification of the excited states
can only be produced by H′. This observation indicates that H′ has sig-
nificant effects in Er, since it explains the difference between σ and σMF,
as σ becomes equal to σMF if the angle appearing in the renormalized
spin-wave energies is considered to be that defining the excited states,
i.e. 33◦, rather than the equilibrium value.

We may conclude that the 1/J-expansion is a valid procedure for
describing the low-temperature magnetic properties of the heavy rare
earth metals. This is an important conclusion for several reasons. To
first order in 1/J , the theory is simple and transparent. It is therefore
feasible to include various kinds of complication in the model calcula-
tions and to isolate their consequences. This simplicity is retained in
the second order of 1/J , as long as H′ can be neglected, in which case
the first-order parameters are just renormalized. Accurate calculations
of the amount of renormalization of the different terms may be quite
involved, but because of the long range of the two-ion interactions in
the rare earth metals, the MF values of mo and bo utilized above nor-
mally provide good estimates. The spin-wave theory in the harmonic
approximation, to first order in 1/J , has been employed quite exten-
sively in the literature, both for analysing experimental results and in
various theoretical developments. It is therefore fortunate that these
analyses are not invalidated, but only modified, or renormalized, by the
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presence of moderate anisotropy. However, it is necessary to be aware
that the renormalization itself may cause special effects not expected
in the harmonic approximation, as the amount of renormalization may
change when the system is perturbed by an external magnetic field or
pressure, or when the temperature is altered.

There have been attempts (Lindg̊ard 1978, and references therein)
to construct an analytical spin-wave theory starting with a diagonaliza-
tion of the MF Hamiltonian. In principle, this should be an appropriate
starting-point, since the ground state is closer to the MF ground-state
than to the fully polarized state, as soon as the planar anisotropy be-
comes significant. As in the model calculations discussed above, the MF
Hamiltonian can be diagonalized numerically without difficulty, but in
this form the method is non-analytical and the results are not easily
interpretable. In order to diagonalize the MF Hamiltonian analytically,
one is forced to make a perturbative expansion, unless J is small. If
the MF Hamiltonian is expressed in the |Jz >-basis, the natural ex-
pansion parameter is ∼ |Bqo/Aqo | 	 2J |bo| at T = 0. The use of this
expansion parameter and the 1/J-expansion considered above lead to
identical results in the limit 2J |bo| � 1 (Rastelli and Lindg̊ard 1979).
However, the expansion parameter is not small when the anisotropy is
moderately large (2J |bo| 	 0.35 in Tb at T = 0), which severely limits
the usefulness of this procedure as applied by Lindg̊ard (1978, 1988)
to the analysis of the spin waves in the anisotropic heavy rare earths.
It gives rise to a strong renormalization of all the leading-order spin-
wave-energy parameters, which are thus quite sensitive, for example,
to an external magnetic field, and it is extremely difficult to obtain a
reasonable estimate of the degree of renormalization. In contrast, the
1/J-expansion leads, at low temperatures, to results in which only the
high-rank terms (which are quite generally of smaller magnitude than
the low-rank terms) are renormalized appreciably, and the amount of
renormalization can be determined with fair accuracy. In the numerical
example corresponding to Tb, the B6

6 -term is renormalized by −38% at
T = 0, according to the spin-wave theory, which agrees with the value
obtained by diagonalizing the MF Hamiltonian exactly, as indicated in
Fig. 2.3.

To recapitulate, we have developed a self-consistent RPA theory for
the elementary excitations in a ferromagnet, i.e. the spin waves, valid
when the magnetization is close to its saturation value. The major com-
plication is the occurrence of anisotropic single-ion interactions, which
were treated by performing a systematic expansion in 1/J . To first
order in 1/J , the theory is transparent and simple, and it is straightfor-
wardly generalized to different physical situations. Much of the simplic-
ity is retained in second order, as long as the magnetization is along a
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symmetry axis, but the first-order parameters are replaced by effective
values. These effective parameters are determined self-consistently in
terms of the spin-wave parameters Aq(T )±Bq(T ), which depend on T ,
and on an eventual applied magnetic field. One advantage of the use of
1/J as the expansion parameter is that the second-order modifications
are smallest for the low-rank couplings, which are quite generally also
the largest terms. If the magnetization is not along a symmetry axis,
the elementary excitations may no longer be purely transverse. This
additional second-order phenomenon may, however, be very difficult to
detect experimentally within the regime of validity of the second-order
spin-wave theory.

5.4 Magnetoelastic effects

The magnetoelastic coupling between the magnetic moments and the
lattice modifies the spin waves in two different ways. The static de-
formations of the crystal, induced by the ordered moments, introduce
new anisotropy terms in the spin-wave Hamiltonian. The dynamic time-
dependent modulations of the magnetic moments furthermore interfere
with the lattice vibrations. We shall start with a discussion of the
static effects, and then consider the magnon–phonon interaction. The
magnetoelastic crystal-field Hamiltonian was introduced in Section 1.4,
where the different contributions were classified according to the symme-
try of the strain parameters. The two-ion coupling may also change with
the strain, as exemplified by eqn (2.2.32). We shall continue consider-
ing the basal-plane ferromagnet and, in order to simplify the discussion,
we shall only treat the low-rank magnetoelastic couplings of single-ion
origin. In the ferromagnetic case, the magnetoelastic two-ion couplings
do not introduce any effects which differ qualitatively from those due
to the crystal-field interactions. Consequently, those interactions which
are not included in the following discussion only influence the detailed
dependence of the effective coupling parameters on the magnetization
and, in the case of the dynamics, on the wave-vector.

5.4.1 Magnetoelastic effects on the energy gap
The static effects of the α-strains on the spin-wave energies may be
included in a straightforward manner, by replacing the crystal-field pa-
rameters in (5.2.1) with effective strain-dependent values, i.e. B0

2 →
B0

2 + B
(2)
α1 εα1 + B

(2)
α2 εα2, with α-strains proportional to 〈Q0

2〉. Equiva-
lent contributions appear in the magnetic anisotropy, discussed in Sec-
tion 2.2.2. This simplification is not possible with the γ- or the ε-strain
contributions, because these, in contrast to the α-strains, change the
symmetry of the lattice. When θ = π/2, the ε-strains vanish, and the
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γ-strain part of the magnetoelastic Hamiltonian is given by eqn (2.2.23):

Hγ =
∑

i

[1
2cγ(ε2γ1 + ε2γ2) −Bγ2{Q2

2(Ji)εγ1 +Q−2
2 (Ji)εγ2}

−Bγ4{Q4
4(Ji)εγ1 −Q−4

4 (Ji)εγ2}
]
.

(5.4.1)

The equilibrium condition, ∂F/∂εγ = 0, leads to eqn (2.2.25) for the
static strains εγ . The static-strain variables are distinguished by a bar
from the dynamical contributions εγ − εγ . The expectation values of
the Stevens operators may be calculated by the use of the RPA theory
developed in the preceding section, and with θ = π/2 we obtain, for
instance,

〈Q2
2〉 = 〈1

2 (O0
2 +O2

2) cos 2φ+ 2O−1
2 sin 2φ〉 = J (2)Î5/2[σ]η−1

− cos 2φ

〈Q−2
2 〉 = 〈1

2 (O0
2 +O2

2) sin 2φ− 2O−1
2 cos 2φ〉 = J (2)Î5/2[σ]η−1

− sin 2φ.
(5.4.2)

We note that 〈O−1
2 〉 vanishes only as long as H′ in (5.2.12) can be ne-

glected. Introducing the magnetostriction parameters C and A via eqn
(2.2.26a), when θ = π/2,

εγ1 = C cos 2φ− 1
2A cos 4φ

εγ2 = C sin 2φ+ 1
2A sin 4φ,

(5.4.3)

and calculating 〈Q±4
4 〉, we obtain

C = 1

cγ
Bγ2J

(2)Î5/2[σ]η−1
−

A = − 2

cγ
Bγ4J

(4)Î9/2[σ]η−6
− ,

(5.4.4)

instead of eqn (2.2.26b), including the effects of the elliptical preces-
sion of the moments. The equilibrium conditions allow us to split the
magnetoelastic Hamiltonian into two parts:

Hγ(sta) =
∑

i

[1
2cγ(ε2γ1 + ε2γ2) −Bγ2{Q2

2(Ji)εγ1 +Q−2
2 (Ji)εγ2}

−Bγ4{Q4
4(Ji)εγ1 −Q−4

4 (Ji)εγ2}
]
, (5.4.5)

depending only on the static strains, and

Hγ(dyn) =
∑

i

[
1
2cγ{(εγ1 − εγ1)

2 + (εγ2 − εγ2)
2}

−
(
Bγ2{Q2

2(Ji) − 〈Q2
2〉} +Bγ4{Q4

4(Ji) − 〈Q4
4〉}

)
(εγ1 − εγ1)

−
(
Bγ2{Q−2

2 (Ji) − 〈Q−2
2 〉} −Bγ4{Q−4

4 (Ji) − 〈Q−4
4 〉}

)
(εγ2 − εγ2)

]
(5.4.6)



5.4 MAGNETOELASTIC EFFECTS 213

depending only on the dynamical part of the strains.
To leading order, the magnetoelastic energy is determined by the

static part (5.4.5), corresponding to eqn (2.2.27). Hγ influences the
equilibrium condition determining φ and, in the spin-wave approxima-
tion (H′ is neglected), we have

1
N

∂F

∂φ
=

1
N

〈∂
∂φ

{H + Hγ}
〉
	 1
N

〈∂
∂φ

{H + Hγ(sta)}
〉

= − 6B6
6J

(6)Î13/2[σ]η−15
− sin 6φ+ gµBHJσ sin (φ − φH)

+2cγC(εγ1 sin 2φ− εγ2 cos 2φ) − 2cγA(εγ1 sin 4φ+ εγ2 cos 4φ),
(5.4.7)

or, using the equilibrium values of εγ1 and εγ2,

1
N

∂F

∂φ
= gµBJσ

{
H sin (φ− φH) − 1

6H̃c sin 6φ
}
, (5.4.8a)

with the definition

gµBH̃c = 36κ6
6/(Jσ) = 36

{
B6

6J
(6)Î13/2[σ]η−15

− + 1
2cγCA

}
/(Jσ).

(5.4.8b)
If H = 0, the equilibrium condition ∂F/∂φ = 0 determines the sta-
ble direction of magnetization to be along either a b-axis or an a-axis,
depending on whether H̃c is positive or negative respectively.

The additional anisotropy terms introduced by Hγ and proportional
to the static strains, as for instance the term −Bγ2Q

2
2(Ji)εγ1 in (5.4.5),

contribute to the spin-wave energies. Proceeding as in Section 5.3, we
find the additional contributions to A0(T ) ±B0(T ) in (5.3.22), propor-
tional to the static γ-strains,

∆{A0(T ) +B0(T )}
=

cγ
Jσ

{
2C2 +A2η−8

+ η−4
− − CA(2 + η−8

+ η−4
− ) cos 6φ

}
η−1
+ η−

∆{A0(T ) −B0(T )} =
cγ
Jσ

{
4C2 + 4A2 − 10CA cos 6φ

}
. (5.4.9)

The contribution to A0(T ) − B0(T ) is expressible directly in terms of
the strain-parameters, C and A, without the further correction factors
necessary for A0(T )+B0(T ). By using H̃c and the non-negative quantity

Λγ =
4cγ
Jσ

(C2 +A2 + 2CA cos 6φ), (5.4.10)

we can write the total spin-wave parameter

A0(T ) −B0(T ) = Λγ − gµBH̃c cos 6φ+ gµBH cos (φ − φH). (5.4.11)
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This parameter does not obey the relation (5.3.14) with the second
derivative Fφφ of the free energy. A differentiation ∂F/∂φ, as given
by (5.4.8), with respect to φ shows that (5.3.14) accounts for the last
two terms in (5.4.11), but not for Λγ . A calculation from (5.4.7) of the
second derivative of F , when the strains are kept constant, instead of
under the constant (zero) stress-condition assumed above, yields

A0(T ) −B0(T ) =
1

NJσ

∂2F

∂φ2

∣∣∣∣
ε=ε

= Λγ +
1

NJσ
Fφφ, (5.4.12)

which replaces (5.3.14). The relation (5.3.14), determining A0(T ) −
B0(T ), was based on a calculation of the frequency dependence of the
bulk susceptibility and, as we shall see later, it is the influence of the
lattice which invalidates this argument. The Λγ term was originally sug-
gested by Turov and Shavrov (1965), who called it the ‘frozen lattice’
contribution because the dynamic strain-contributions were not consid-
ered. However, as we shall show in the next section, the magnon–phonon
coupling does not change this result.

The modifications caused by the magnetoelastic γ-strain couplings
are strongly accentuated at a second-order phase transition, at which
Fφφ vanishes. Let us consider the case where H̃c is positive, H̃c =
|H̃c| ≡ Hc, i.e. the b-axis is the easy axis. If a field is applied along an
a-axis, φH = 0, then the magnetization is pulled towards this direction,
as described by eqn (5.4.8):

H = Hc
sin 6φ
6 sinφ

= Hc

(
1 − 16

3 sin2 φ+ 16
3 sin4 φ

)
cosφ, (5.4.13)

as long as the field is smaller than Hc. At the critical field H = Hc,
the moments are pulled into the hard direction, so that φ = 0 and the
second derivative of the free energy,

Fφφ = NgµB{H cosφ−Hc cos 6φ}Jσ, (5.4.14)

vanishes. So a second-order phase transition occurs at H = Hc, and the
order parameter can be considered to be the component of the moments
perpendicular to the a-axis, which is zero for H ≥ Hc. An equally good
choice for the order parameter is the strain εγ2, and these two possibili-
ties reflect the nature of the linearly coupled magnetic–structural phase
transition. The free energy does not contain terms which are cubic in
the order parameters, but the transition might be changed into one of
first-order by terms proportional to cos 12φ, e.g. if σ or η±, and thereby
H̃c, depend sufficiently strongly on φ (Jensen 1975). At the transition,
eqn (5.4.11) leads to

A0(T ) −B0(T ) = Λγ at H = Hc, (5.4.15)
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which shows the importance of the constant-strain contribution Λγ . It
ensures that the spin-wave energy gap E0(T ), instead of going to zero
as |H − Hc|1/2, remains non-zero, as illustrated in Fig. 5.4, when the
transition at H = Hc is approached. Such a field just cancels the macro-
scopic hexagonal anisotropy, but energy is still required in the spin wave
to precess the moments against the strain field of the lattice.

By symmetry, the γ-strains do not contain terms linear in (θ − π
2 ),

and the choice between constant-stress and constant-strain conditions
therefore has no influence on their contribution to the second derivative
of F with respect to θ, at θ = π/2. Consequently, the γ-strains do
not change the relation between A0(T ) + B0(T ) and Fθθ, given by eqn
(5.3.14). The ε-strains vanish at θ = π/2, but they enter linearly with
(θ − π

2 ). Therefore they have no effect on A0(T ) + B0(T ), but they
contribute to Fθθ. To see this, we consider the ε-strain part of the
Hamiltonian, eqn (2.2.29):

Hε =
∑

i

[1
2cε(ε

2
ε1 + ε2ε2) −Bε1{Q1

2(Ji)εε1 +Q−1
2 (Ji)εε2}

]
. (5.4.16)

The equilibrium condition is

εε1 = 1

cε
Bε1〈Q1

2〉 = 1
4Hε sin 2θ cosφ,

in terms of the magnetostriction parameter Hε. In the basal-plane fer-
romagnet, εε1 and εε2 both vanish. The transformation (5.2.2) leads
to

Q1
2 = 1

4 (O0
2 −O2

2) sin 2θ cosφ−O1
2 cos 2θ cosφ+O−1

2 cos θ sinφ

+ 1
2O

−2
2 sin θ sinφ, (5.4.17)

and Q−1
2 is given by the same expression, if φ is replaced by φ− π

2 . This
implies that

Hε = 4

cε
Bε1〈1

4 (O0
2 −O2

2)〉 = 2

cε
Bε1J

(2)Î5/2[σ]η−1
+ . (5.4.18)

The static ε-strains are zero and do not contribute to the spin-wave
parameters A0(T ) ± B0(T ), but they affect the second derivative of F ,
with respect to θ, under zero-stress conditions and, corresponding to
(5.4.12), we have

A0(T ) +B0(T ) =
1

NJσ

∂2F

∂θ2

∣∣∣∣
ε=ε

= Λε +
1

NJσ
Fθθ, (5.4.19)
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with
Λε =

cε
4Jσ

H2
ε , (5.4.20)

where Λε in (5.4.19) just cancels the ε-contribution to Fθθ/(NJσ) de-
termined from eqn (2.2.34).

The dependence of the magnon energy gap in Tb on magnetic field
and temperature has been studied in great detail by Houmann et al.
(1975a). They expressed the axial- and hexagonal-anisotropy energies
of eqn (5.2.44) in the form

A0(T ) ±B0(T ) = P0(±) − P6(±) cos 6φ+ gµBH cos (φ− φH) (5.4.21)

and, by a least-squares fitting of their results, some of which are shown
in Fig. 5.4, they were able to deduce the values of the four parameters
P0,6(±), shown as a function of magnetization in Fig. 5.5. According to
eqns (5.3.22) and (5.4.9), these parameters are given at low temperatures
by:

P0(+) =
{
6B0

2J
(2) − 60B0

4J
(4) + 210B0

6J
(6) + cγ(2C2 +A2)

}
/J (a)

P6(+) =
{
6B6

6J
(6) + 3cγCA

}
/J (b)

P0(−) = 4cγ
{
C2 +A2

}
/J (c)

P6(−) =
{
36B6

6J
(6) + 10cγCA

}
/J, (d)

(5.4.22)
where, for convenience, we have set the renormalization parameters σ
and η± to unity. These expressions for the parameters P0,6(±) are de-
rived from a particular model. In general, additional contributions may
appear due to other magnetoelastic interactions, and to anisotropic two-
ion couplings. Nevertheless, within the RPA, the relations between the
spin-wave energy parameters A0(T ) ± B0(T ) and the bulk anisotropy
parameters, (5.4.12) and (5.4.19) combined with (5.3.7), should still be
valid. The values of the anisotropy parameters, and their temperature
dependences, determine the static magnetic and magnetoelastic proper-
ties, and can thus be obtained from bulk measurements on single crys-
tals. A comparison between such static parameters and the dynamic val-
ues P0,6(±), derived from the field dependence of the spin-wave energy
gap, can therefore elucidate the extent to which the spin-wave theory of
the anisotropic ferromagnet is complete and correct.

Such a comparison has been made by Houmann et al. (1975a). The
axial-anisotropy parameter P0(+)+P6(+), when the moments are along
the easy axis, agrees with the values deduced from torque and mag-
netization experiments, to within the rather large uncertainties of the
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Fig. 5.4. The dependence of the square of the magnon energy gap
in Tb on the internal magnetic field. Open symbols represent results
for the field in the hard direction, and closed symbols are for the easy
direction. The non-zero value of the gap at the critical field, which just
turns the moments into the hard direction, is due to the constant-strain
contribution Λγ . The full lines are least-squares fits of the theoretical ex-
pressions for the energy gap, given in the text, to the experimental results.

latter. The basal-plane anisotropies, as determined from the critical
field Hc and the magnetoelastic γ-strain parameters, are well established
by bulk measurements. Here P0(−) agrees, within the small combined
uncertainties, with that derived from (5.4.22c) and (5.4.11), both in
magnitude and temperature dependence. On the other hand, the small
parameter P6(−) differs from the static value, so that

δ6(−) ≡ P6(−) − gµBH̃c + 8cγCA/(Jσ) (5.4.23a)

is found to be non-zero. A part of this discrepancy may be explained by
a twelve-fold anisotropy term, but this would also affect P0(−), and is
expected to decrease more rapidly with increasing temperature than the
experiments indicate. Within the accuracy of the experimental results,
the non-zero value of δ6(−) is the only indication of an additional renor-
malization of the spin-wave energy gap, compared with that derived
from the second derivatives of the free energy.
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Fig. 5.5. Anisotropy parameters in Tb as a function of the relative
magnetization, deduced from results of the type illustrated in Fig. 5.4.

The σ3-dependence of P0(+) on temperature is consistent with the
σ2-renormalization of the dominant two-fold term in (5.4.22a) predicted
by the Callen–Callen theory, but a comparison with the studies of dilute
Tb-alloys by Høg and Touborg (1975) suggests that a large part of the
axial anisotropy may have its origin in the two-ion coupling. The effect
of the two-ion anisotropy is directly apparent in that part of the axial
anisotropy P6(+) which depends on the orientation of the moments in
the basal plane. If only single-ion anisotropy of the type which we have
considered is important, P6(+) in (5.4.22b) is directly related to the crit-
ical field necessary to turn the moments into the hard direction. How-
ever, the experimental value of P6(+) bears little relation to gµBH̃c/6,
even having the opposite sign. We can express this discrepancy by the
parameter ∆M , defined by

∆M = P6(+) − gµBH̃c/6. (5.4.23b)

The influence of ∆M can be directly seen in the results of Fig. 5.4, since
it is responsible for the difference between the slopes when the field is
applied in the easy and hard directions. Although it could in principle be
due to higher-rank γ-strain magnetoelastic terms, the large magnitude
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of ∆M , compared to the contributions of C and A to the energy gap,
effectively precludes this possibly. We must therefore ascribe it to two-
ion anisotropy.

In the analysis of the field dependence of the magnon energy gap,
the possible dependences of the renormalization parameters σ and η±
on magnetic field and the orientation of the moments were neglected
at zero temperature, but included at non-zero temperatures, assuming
the different parameters effectively to be functions of σ only. In the
case of Dy, the zero-temperature change of the renormalization as a
function of φ is of some importance (Egami 1972; Jensen 1975; Egami
and Flanders 1976), whereas in Tb we have estimated by various means
that both approximations are justified. There are some indications that
there might be a systematic error involved in the determination of the
φ-dependent energy-gap parameters P6(±), possibly arising from the
influence of the classical dipole forces on the inelastic neutron-scattering
at long wavelength, discussed in Section 5.5.1. An extrapolation of the
results found at non-zero wave-vectors to q = 0 suggests that both
P6(+) and P6(−) may be about a factor of two smaller than shown
in Fig. 5.5. If this were the case, ∆M would still be too large to be
explained by the γ-strain couplings, but δ6(−) would be reduced almost
to the level of the experimental uncertainties. Otherwise a non-zero
value of δ6(−) can only be explained by theories beyond the RPA, e.g.
by effects, proportional to the frequency, due to the interaction between
the spin-waves and the electron-hole pair-excitations of the conduction
electrons.

5.4.2 The magnon–phonon interaction
The displacement of the ith ion from its equilibrium position, δRi =
u(Ri), can be expanded in normal phonon coordinates in the usual way:

u(Ri) =
∑
νk

Fν
k(βνk + β+

ν−k)eik·Ri , (5.4.24a)

with

F ν
k,α =

[
h̄

2NMωνk

] 1
2

fν
k,α. (5.4.24b)

M is the mass of the ions and fν
k,α is the α-component of the phonon-

polarization vector. βνk is the phonon-annihilation operator and ωνk

the corresponding phonon frequency, where ν denotes one of the three
(acoustic) branches. The polarization vectors are normalized and are
mutually orthogonal: ∑

α

(fν
k,α)∗fν′

k,α = δνν′ . (5.4.24c)
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For simplicity, we assume that there is only one ion per unit cell, but
the results we shall derive are also applicable to the hcp lattice, at least
for the acoustic modes at long wavelengths. In this limit Hγ(dyn), eqn
(5.4.6), augmented by the kinetic energy of the ions, is adequate for
discussing dynamical effects due to the γ-strains, if εαβ are replaced by
their local values

εαβ(i) = εαβ + i

2

∑
νk

(kαF
ν
k,β + kβF

ν
k,α)(βνk + β+

ν−k)eik·Ri . (5.4.25)

We shall initially concentrate on the most important dynamical effects,
and consider only the inhomogeneous-strain terms involving Stevens op-
erators with odd m. Assuming for the moment that φ = pπ

2 , we obtain
the contribution −Bγ2{−2O−1

2 (Ji) cos 2φ}(εγ2(i)−εγ2) from eqn (5.4.6),
and a corresponding term in Bγ4. Introducing the spin-deviation oper-
ators through (5.2.8) and (5.2.9), we obtain, to leading order in m and
b,

Bγ2O
−1
2 (Ji) = J (2)Bγ2

i√
2J

{
a+

i − ai −
5

4J
(a+

i a
+
i ai − a+

i aiai)
}

= J (2)Bγ2
i√
2J

(
1 − 5

2m+ 5
4 b
)
(a+

i − ai)

= cγC
i√
2J

(
1 + 1

2m+ 1
4 b
)
(a+

i − ai)

= icγC
∑
q

[
Aq(T ) +Bq(T )

2NJσEq(T )

] 1
2

(α+
q − α−q) e−iq·Ri ,

(5.4.26)
utilizing the RPA decoupling (5.2.29) and introducing the (renormal-
ized) magnon operators α+

q and α−q, analogously with (5.2.39) and
(5.2.40). The Bγ4-term is treated in the same way, and introducing
the phonon-operator expansion of the strains (5.4.25) into (5.4.6), we
find that H + Hγ leads to the following Hamiltonian for the system of
magnons and phonons:

Hmp =
∑
k

Ek(T )α+
kαk+

∑
νk

{
h̄ωνkβ

+
νkβνk+W ν

k (α+
k −α−k)(βνk+β+

ν−k)
}

(5.4.27)
with a magnon–phonon interaction given by

W ν
k = −cγ

√
N(k1F

ν
k,2+k2F

ν
k,1)

[
Ak(T ) + Bk(T )

2JσEk(T )

] 1
2

(C cos 2φ+A cos 4φ).

(5.4.28)
This Hamiltonian includes the part of Hγ which is linear in the magnon
operators when φ = pπ

2 . The effects of the static deformations are
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included in Ek(T ) through (5.4.11). In general, W ν
k couples all three

phonon modes with the magnons. A simplification occurs when k is
along the 1- or 2-axis, i.e. when k is either parallel or perpendicular to
the magnetization vector. In this case, W ν

k is only different from zero
when ν specifies the mode as a transverse phonon with its polarization
vector parallel to the basal plane. In order to analyse this situation, we
introduce the four Green functions:

G1(k, ω) = 〈〈αk ; α+
k − α−k〉〉 G2(k, ω) = 〈〈α+

−k ; α+
k − α−k〉〉

G3(k, ω) = 〈〈βk ; α+
k − α−k〉〉 G4(k, ω) = 〈〈β+

−k ; α+
k − α−k〉〉,

(5.4.29)
where the phonon mode is as specified above (the index ν is suppressed).
Hmp then leads to the following coupled equations of motion for these
Green functions:

{h̄ω − Ek(T )}G1(k, ω) −Wk{G3(k, ω) +G4(k, ω)} = 1

{h̄ω + Ek(T )}G2(k, ω) −Wk{G3(k, ω) +G4(k, ω)} = 1

{h̄ω − h̄ωk}G3(k, ω) +W−k{G1(k, ω) −G2(k, ω)} = 0

{h̄ω + h̄ωk}G4(k, ω) −W−k{G1(k, ω) −G2(k, ω)} = 0.

(5.4.30)

These four equations may be solved straightforwardly and, using W−k =
−Wk, we obtain, for instance,

〈〈αk − α+
−k ; α+

k − α−k〉〉 = G1(k, ω) −G2(k, ω)

= 2Ek(T ){(h̄ω)2 − (h̄ωk)2}/D(k, ω),
(5.4.31)

where the denominator is

D(k, ω) = {(h̄ω)2−E2
k(T )}{(h̄ω)2−(h̄ωk)2}−4W 2

k h̄ωkEk(T ). (5.4.32)

In a similar way, introducing the appropriate Green functions, we find

〈〈αk+α+
−k ; α+

k +α−k〉〉 =
[
2Ek(T ){(h̄ω)2−(h̄ωk)2}+8W 2

k h̄ωk

]
/D(k, ω).

(5.4.33)
In this situation, the polarization factor is (k1fk,2 + k2fk,1) = ±k, with
k = |k|. At long wavelengths, the velocity v = ωk/k of the transverse
sound waves is related to the elastic constant c66 = ρv2, and hence

cγ = 4c66V/N = 4Mω2
k/k

2, (5.4.34)

and the coupling term in D(k, ω) can be written

4W 2
k h̄ωkEk(T ) = {Ak(T ) +Bk(T )}(h̄ωk)2Λγ , (5.4.35)
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where the parameter Λγ is given by (5.4.10). The magnetic susceptibil-
ities can be expressed in terms of the Green functions calculated above,
using (5.2.39) and (5.2.40), and we finally arrive at

χxx(q, ω) = Jσ
[
{Aq(T )−Bq(T )}{(h̄ωq)2−(h̄ω)2}−Λγ(h̄ωq)2

]
/D(q, ω)
(5.4.36a)

and

χyy(q, ω) = Jσ{Aq(T ) +Bq(T )}{(h̄ωq)2 − (h̄ω)2}/D(q, ω). (5.4.36b)

Because ωq ∝ q and E0(T ) > 0, it is possible to satisfy the inequality
Eq(T ) � h̄ωq by choosing a sufficiently small q. As mentioned ear-
lier, E0(T ) is always greater than zero, if the magnetoelastic coupling is
non-zero, on account of the constant-strain term Λγ . Under these cir-
cumstances the elementary-excitation energies, determined by the poles
of the susceptibilities or by D(q, ω) = 0, are found to be

(h̄ω)2 =
{
E2

q(T ) + 4W 2
q h̄ωq/Eq(T )

(h̄ωq)2 − 4W 2
q h̄ωq/Eq(T ),

(5.4.37)

to leading order in h̄ωq/Eq(T ). The different excitations have become
mixed magnetoelastic modes, which mutually repel due to the magneto-
elastic coupling, and their squared energies are shifted up or down by
an equal amount. When Eq(T ) � h̄ωq, the change in energy of the
upper, predominantly magnon-like branch can be neglected, whereas
the frequency of the lower phonon-like mode, as obtained from (5.4.37),
using the relation (5.4.35),

ω2 = ω2
q

(
1 − Λγ

A0(T ) −B0(T )

)
+ O

(
{h̄ωq/Eq(T )}4

)
, (5.4.38a)

may be modified appreciably relative to the unperturbed phonon fre-
quency. This relation implies that the elastic constant, relative to the
unperturbed value, as determined by the velocity of these magneto-
acoustic sound waves, is

c∗66
c66

= 1 − Λγ

A0(T ) −B0(T )
; q ‖ or ⊥ 〈J〉. (5.4.38b)

At q = 0, the dynamic coupling vanishes identically and the spin-wave
energy gap is still found at h̄ω = E0(T ) = {A2

0(T )−B2
0(T )}1/2, with the

static-strain contributions included in A0(T ) ± B0(T ). Due to the van-
ishing of the eigenfrequencies of the elastic waves at zero wave-vector, the
lattice cannot respond to a uniform precession of the magnetic moments
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at a non-zero frequency. Therefore the spin-wave mode at q = 0 per-
ceives the lattice as being completely static or ‘frozen’. This is clearly
consistent with the result (5.4.12), that the spin-wave energy gap is
proportional to the second derivative of the free energy under constant-
strain, rather than constant-stress, conditions.

If the lattice is able to adapt itself to the applied constant-stress
condition, in the static limit ω � ωq, then, according to (5.4.36b),

χyy(q → 0, 0) = χyy(q ≡ 0, 0) =
Jσ

A0(T ) −B0(T ) − Λγ
= N

(Jσ)2

Fφφ

,

(5.4.39)
in agreement with (5.3.7). However, the first equality is not generally
valid. The susceptibility depends on the direction from which q ap-
proaches 0. If the direction of q is specified by the spherical coordinates
(θq, φq), then eqn (5.4.39) is valid only in the configuration considered,
i.e. for θq = π

2 and φq = 0 or π
2 . If we assume elastically isotropic

conditions (c11 = c33, c44 = c66, and c12 = c13), which is a reasonable
approximation in Tb and Dy, we find that (5.4.39) is replaced by the
more general result

χyy(q → 0, 0) =
Jσ

A0(T ) −B0(T ) − Λγ sin2 θq{1 − (1 − ξ) sin2 θq sin2 2φq}
,

(5.4.40)

when φ = 0 or π
2 , and ξ = c66/c11 (	 0.3 in Tb or Dy). The rea-

son for this modification is that discussed in Section 2.2.2; the abil-
ity of the lattice to adapt to various static-strain configurations is lim-
ited if these strains are spatially modulated. If q is along the c-axis
(θq = 0), the γ-strains are ‘clamped’, remaining constant throughout
the crystal, so that the susceptibilities at both zero and finite frequen-
cies are determined by the uniform γ-strain contributions alone. We
note that, according to (5.4.28), W ν

k vanishes if k is parallel to the c-
axis (k1 = k2 = 0). The opposite extreme occurs when θq = π

2 and
φq = 0 or π

2 . The relevant strain-mode is determined by the equilib-
rium conditions (5.4.3) at zero constant stress, but generalized to the
non-uniform case where the y-component of the moments has a small
modulation, with the wave-vector q along the x-direction. This strain
mode (εγ2(i)+ω21(i) ∝ cos (q ·Ri + ϕ)) coincides with a phonon eigen-
state, the transverse phonon at q with its polarization vector in the basal
plane. This coincidence makes the equilibrium strain-mode viable, which
then explains the constant-stress result (5.4.39) obtained for χyy in this
situation.

We shall now return to the discussion of the second-order transition
occurring at H = Hc, when the field is applied along a hard direction
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in the basal plane. From (5.4.36a), we see that χxx(q → 0, 0) does
not show an anomaly at the transition. The critical behaviour is con-
fined to the yy-component of the static susceptibility. At the transition,
A0(T ) − B0(T ) = Λγ , according to eqn (5.4.15), and (5.4.40) then pre-
dicts a very rapid variation of χyy(q → 0, 0) with the direction of q, with
a divergent susceptibility in the long wavelength limit in the two cases
where q is along the z- or the y-axis, both lying in the basal plane, paral-
lel or perpendicular to the magnetic moments. These divergences reflect
a softening of two modes in the system, the transverse phonons propa-
gating parallel to either of the two axes (θq = π

2 and φq = pπ
2 ), with

their polarization vectors in the basal plane. Equation (5.4.38) predicts
that the velocity of these modes is zero, or c∗66 = 0, at H = Hc, at which
field the dispersion is quadratic in q instead of being linear. The soften-
ing of these modes was clearly observed in the ultrasonic measurements
of Jensen and Palmer (1979). Although the ultrasonic velocity could not
be measured as a function of magnetic field all the way to Hc, because
of the concomitant increase in the attenuation of the sound waves, the
mode with q parallel to the magnetization could be observed softening
according to (5.4.38b), until the elastic constant was roughly halved. On
the other hand, as discussed in the next section, the dipolar interaction
prevents the velocity of the mode in which the ionic motion is along the
magnetization from falling to zero, and (5.4.38b) is replaced by (5.5.13).
When they took this effect into account, Jensen and Palmer (1979) could
fit their results over a wide range of fields and temperatures with the
RPA theory, without adjustable parameters or corrections for critical
phenomena, using the bulk values of the three basal-plane anisotropy
parameters C, A, and H̃c,

The absence of such corrections may be explained by the behaviour
of the critical fluctuations, which is the same as that found in a pure
structural phase-transition in an orthorhombic crystal, where c66 is again
the soft elastic constant (Cowley 1976; Folk et al. 1979). The strong
bounds set by the geometry on the soft modes in reciprocal space con-
strain the transition to exhibit mean-field behaviour. The marginal dim-
ensionality d∗, as estimated for example by Als-Nielsen and Birgeneau
(1977), using a real space version of the Ginzburg criterion, is d∗ = 2
in this kind of system. Whenever the dimensionality d of the system is
larger than d∗, as in this case, Wilson’s renormalization group theory
predicts no corrections to Landau’s mean-field theory. The transition
at H = Hc is thus profoundly influenced by the magnetoelastic effects.
Without them, i.e. with C = A = 0, the spin-wave energy gap would van-
ish at the transition, and the critical fluctuations, the long-wavelength
magnons, would not be limited to certain directions in q-space. Under
such circumstances, the system would behave analogously to a three-
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dimensional Ising model, d∗ = 4, with pronounced modifications in-
duced by the critical fluctuations. The original treatment by Turov and
Shavrov (1965) of the γ-strain contributions, which prevent the uniform
magnon mode from going soft at the critical field, included only the
static-strain components. The more complete analyses, including the
phonon dynamics, were later given by Jensen (1971a,b), Liu (1972b),
and Chow and Keffer (1973).

When the wave-vector is in the c-direction, the γ-strain couplings
vanish, but instead the ε-strains become important. The O1

2-term in Q1
2,

given by eqn (5.4.17), leads to a linear coupling between the magnons
and the phonons, and proceeding as in eqns (5.4.26–27), we find the
additional contribution to Hmp

∆Hmp =
∑
k

iW ν
k (ε)(α+

k + α−k)(βνk + β+
ν−k), (5.4.41a)

with

W ν
k (ε) = −1

4cε
√
N
{
(k1F

ν
k,3 + k3F

ν
k,1) cosφ+ (k2F

ν
k,3 + k3F

ν
k,2) sinφ

}
×
[
Ak(T ) −Bk(T )

2JσEk(T )

] 1
2

Hε, (5.4.41b)

in the long-wavelength limit. When k is parallel to the c-axis, (5.4.28)
and (5.4.41) predicts that only the transverse phonons with their polar-
ization vectors parallel to the magnetization are coupled to the magnons.
The calculation of the velocity of this coupled mode leads, by analogy
to (5.4.38), to an elastic constant

c∗44
c44

= 1 − Λε

A0(T ) +B0(T )
when fν

k ‖ 〈J〉. (5.4.42)

The same result is obtained for the transverse-phonon mode propagating
in the direction of the ordered moments, with the polarization vector
parallel to the c-axis. These are the two modes which go soft in the case
of a second-order transition to a phase with a non-zero c-axis moment.

We have so far only considered the dynamics in the long-wavelength
limit. At shorter wavelengths, where the phonon and spin-wave energies
may be comparable, the magnon–phonon interaction leads to a strong
hybridization of the normal modes, with energy gaps at points in the
Brillouin zone where the unperturbed magnon and phonon dispersion
relations cross each other, as illustrated in Fig. 5.6. The interaction
amplitudes (5.4.28) and (5.4.41b) are correct only for small wave-vectors.
At shorter wavelengths, we must consider explicitly the relative positions
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of neighbouring ions, instead of the local strains. Evenson and Liu (1969)
have devised a simple procedure for replacing the local-strain variables in
the magnetoelastic Hamiltonian with the relative displacements of the
neighbouring ions. Using their procedure, and assuming the nearest-
neighbour interactions to be dominant, we find that eqn (5.4.41b) is
replaced by

W ν
k (ε) = −1

4cε
√
N
(

2

c
sin (kc/2)

)
F ν

k,‖

[
Ak(T ) −Bk(T )

2JσEk(T )

] 1
2

Hε, (5.4.43)

when k is along the c-axis. c is the lattice constant and F ν
k,‖ is the com-

ponent of Fν
k parallel to the magnetization vector, which is only non-zero

for one of the transverse-phonon modes. This interaction does not dis-
tinguish between the two sublattices in the hcp crystal. This means
that W ν

k (ε) only couples the magnons with the phonons at a certain k if
the modes are either both acoustic or both optical, consistent with the
double-zone representation in the c-direction. Except for the replace-
ment of (5.4.41b) by (5.4.43), the interaction Hamiltonian (5.4.41a) is
unchanged. From the equations of motion of the Green functions, we
may derive the susceptibilities, when k is along the c-direction, in the
same way as before, eqns (5.4.29–36), and the results are found to be:

χxx(k, ω) = Jσ{Ak(T ) −Bk(T )}{(h̄ωtk)2 − (h̄ω)2}/Dε(k, ω)

χyy(k, ω) = Jσ{Ak(T ) +Bk(T )}
×
{
(h̄ωtk)2 − (h̄ω)2 − 4W 2

k(ε)h̄ωtk/Ek(T )
}
/Dε(k, ω),

(5.4.44)
with

Dε(k, ω) = {E2
k(T ) − (h̄ω)2}{(h̄ωtk)2 − (h̄ω)2} − 4W 2

k(ε)h̄ωtkEk(T ),
(5.4.45)

where ωtk is the angular frequency of the transverse phonon mode at k.
Introducing the parameter

Υk =
[
1 +

16h̄ωtkEk(T )W 2
k(ε)

{E2
k(T ) − (h̄ωtk)2}2

] 1
2

, (5.4.46)

we find the poles in the susceptibilities at

h̄ω = ±E±
k = ±

[1
2

{
E2

k(T ) + (h̄ωtk)2
}
± 1

2

{
E2

k(T ) − (h̄ωtk)2
}
Υk

] 1
2 ,

(5.4.47a)
corresponding to

Dε(k, ω) = {(E+
k )2 − (h̄ω)2}{(E−

k )2 − (h̄ω)2}. (5.4.47b)
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By a straightforward manipulation of these expressions, we obtain

χ′′
yy(k, ω) = Im

[
χyy(k, ω)

]
= πJσ

Ak(T ) +Bk(T )
2Ek(T )

×
[ E+

k

Ek(T )
Υk + 1
2Υk

{
δ(E+

k − h̄ω) − δ(E+
k + h̄ω)

}
+

E−
k

Ek(T )
Υk − 1
2Υk

{
δ(E−

k − h̄ω) − δ(E−
k + h̄ω)

}]
.

(5.4.48)
Almost the same expression is obtained for χ′′

xx(k, ω); the sign before
Bk(T ) is reversed and the factors E±

k /Ek(T ) are replaced by their re-
ciprocals. If Wk(ε) = 0, then Υk = 1 and E+

k = Ek(T ), and (5.4.48)
is equivalent to eqn (5.2.40b). When Wk(ε) is non-zero, Υk > 1 and
there are two poles in the magnetic susceptibilities, one at E+

k closest
to Ek(T ), and the other at E−

k closest to the energy of the transverse-
phonon mode. Both poles lie outside the energy interval between Ek(T )
and h̄ωtk. The two normal modes at k, the magnons and the transverse
phonons polarized parallel to the magnetization, are transformed into
two magnetoelastic modes, both of which give rise to a magnetic scat-
tering of neutrons. The cross-section for neutrons scattered by a pure
phonon-mode is proportional to (κ · fν

k )2. If the scattering vector κ is
along the c-axis, the transverse phonons in this direction do not therefore
scatter neutrons, unless they are coupled to the magnons. With κ par-
allel to the c-axis, the (magnetic) scattering amplitude is proportional
to χ′′

yy(k, ω) and, in this situation, eqn (5.4.48), combined with (4.2.2)
and (4.2.3), determines the total scattered intensity due to the coupled
magnon and transverse-phonon modes. If the energy difference between
the two uncoupled modes at some k is large, Υk is only slightly greater
than 1, and the coupling induces only a small repulsion of the mode en-
ergies. The pole at energy E+

k , close to the unperturbed magnons, then
dominates the magnetic scattering cross-section. The strongest modifi-
cation occurs at the k-vector where Ek(T ) = h̄ωtk, at which Υk → ∞
and eqn (5.4.48) predicts nearly equal scattering intensities of the two
modes at energies determined by

(h̄ω)2 = E2
k(T ) ± 2Ek(T )|Wk(ε)| ; Ek(T ) = h̄ωtk, (5.4.49a)

corresponding to an energy splitting, or energy gap, between the two
modes of magnitude

∆ 	 2|Wk(ε)|, (5.4.49b)

to leading order. These resonance or hybridization phenomena, the re-
distribution of the scattered intensity and the creation of an energy gap,
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are observed whenever two normal modes are coupled linearly with each
other, and the value of the energy gap at the k-point where the two
coupled modes are closest in energy, or where their scattering intensities
are equal, gives a direct measure of the coupling amplitude at that par-
ticular k-vector. The effect of the magnon–phonon interaction on the
excitation spectrum in Tb is illustrated in Fig. 5.6.

Fig. 5.6. The dispersion relations
for the magnons and phonons propa-
gating in the c-direction of Tb at 53
K, illustrating the magnon–phonon
interaction. The calculated unper-
turbed modes are depicted by the
full curves. The normal modes are
mixed magnon–phonon states, and
energy gaps appear at the crossing
points of the unperturbed dispersion
relations. The acoustic magnons in-
teract both with the acoustic and the
optical phonons.

The method described above, based on the magnetoelastic Hamilto-
nian, is not sufficiently general to enable a prediction of all possible cou-
plings allowed by symmetry, i.e. the selection rules. To accomplish this,
it is necessary either to use group-theoretical arguments, or to derive
a general version of the magnon–phonon Hamiltonian based exclusively
on symmetry considerations. These two methods have been applied to
this system by respectively Cracknell (1974) and Jensen and Houmann
(1975). Their analyses show that, when k is along the c-direction, a
further mixing is allowed in addition to that considered above. This re-
quires the single-zone representation in the c-direction, since it couples
an acoustic mode to an optical mode at the same k-vector. The phonon
modes in question are once more transverse, but their coupling to the
magnons depends on the polarization relative to the direction of magnet-
ization. In an a-axis magnet, the polarization vector should be parallel
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to the magnetization, as is assumed in eqn (5.4.43), whereas in a b-axis
magnet, the acoustic–optical coupling involves the transverse phonons
polarized perpendicular to the magnetization (i.e. still along an a-axis).
The symmetry arguments show that this coupling must be quadratic in
k in the long wavelength limit, instead of linear as is Wk(ε). It there-
fore has no influence on the uniform strains or the elastic constants,
and accordingly no counterpart in the magnetoelastic Hamiltonian. Liu
(1972a) has discussed the possible origin of such an acoustic–optical in-
teraction, and he concludes that it cannot be a crystalline-field effect,
but must be mediated indirectly via the conduction electrons and be
proportional to the spin–orbit coupling forces. As is illustrated in Fig.
5.6, the acoustic–optical magnon–phonon interaction is clearly observed
in Tb, where it leads to the energy gap ∆2, the strongest hybridization
effect seen in the metal. However, a closer examination (Jensen and
Houmann 1975) shows that the transverse phonon modes involved are
those polarized parallel to the magnetization, in spite of the fact that Tb
has its magnetization vector in the b-direction. Hence this interaction
violates the selection rules deduced from the general symmetry argu-
ments, leading to the conclusion that the ground-state of Tb cannot be
a simple b-axis ferromagnet as assumed. The 4f moments are undoubt-
edly along an easy b-axis, but the spins of the conduction electrons are
not necessarily polarized collinearly with the angular momenta of the
core electrons, because of their spin–orbit coupling. If the ground-state
spin-density wave of the conduction electrons in Tb has a polarization
which varies in space within a single unit cell, a coupling mediated by this
spin-density wave may violate the selection rules based on the symmetry
properties of the simple ferromagnet. The presence of the ‘symmetry-
breaking’ acoustic–optical interaction in Tb demonstrates that the con-
duction electrons play a more active role than passively transmitting the
indirect-exchange interaction. This magnon–phonon coupling is directly
dependent on spin–orbit effects in the band electrons, in accordance with
Liu’s explanation, and its appearance demonstrates that the polarization
of the conduction-electron spins must have a component perpendicular
to the angular momenta.

To complete this section, we shall briefly discuss the additional
magnon–phonon interaction terms which are linear in the phonon oper-
ators, but quadratic in the magnon operators:

H(2)
mp =

∑
qkν

[
Uν(k,q)α+

q+kαq + 1
2Vν(k,q)α+

q+kα
+
−q

+1
2V

∗
ν (−k,−q)αqα−q−k

]
(βνk + β+

ν−k). (5.4.50)

Referring back to the magnetoelastic Hamiltonian, we find that such an
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interaction may originate from, for instance, the term

−Bγ2{(O0
2 +O2

2) − 〈O0
2 +O2

2〉}1
2 cos 2φ(εγ1 − εγ1)

in (5.4.6), or the corresponding terms in (5.4.16). In contrast to the lin-
ear couplings considered above, the symmetry-preserving α-strain part
of the magnetoelastic Hamiltonian makes a contribution to the quadratic
interaction terms. Using the procedure of Evenson and Liu (1969), it
is straightforward, if somewhat tedious, to relate the interaction am-
plitudes in eqn (5.4.50) to the magnetoelastic coupling parameters. We
shall not perform this analysis here, but refer instead to the detailed cal-
culations of Jensen (1971a,b). The interactions in eqn (5.4.50) have the
consequence that the equations of motion of the magnon Green func-
tion 〈〈αq ; α+

q〉〉 involve new, higher-order mixed Green functions like
〈〈αq−kβk ; α+

q〉〉. Performing an RPA or Hartree–Fock decoupling, as in
(5.2.29), of the three-operator products which occur in the equations of
motion of the new Green functions, we obtain a closed expression for
the magnon Green function, which may be written

〈〈αq ; α+
q 〉〉 =

1
h̄ω − Eq(T ) − Σ(q, ω)

, (5.4.51)

where Σ(q, ω) is the self-energy, due to the interactions in (5.4.50), of
the magnons of wave-vector q. Neglecting Vν(q,k), we find that the
self-energy at T = 0 is

Σ(q, ω) = lim
ε→0+

∑
kν

|Uν(k,q)|2
h̄ω + ih̄ε− Eq+k(0) − h̄ωνk

. (5.4.52)

These interactions are not diagonal in reciprocal space and the magnons
are therefore affected by all the phonons. Whenever k has a value
such that Eq(0) 	 Eq+k(0) + h̄ωνk, the real part of the denomina-
tor in (5.4.52) vanishes close to the magnon pole at q, as determined
by (5.4.51). This implies a negative imaginary contribution to Σ(q, ω),
when h̄ω 	 Eq(0), and hence a reduction in the lifetime of the magnons.
The energy of the magnons at q is approximately given by Eq(0) +
Re
[
Σ(q, ω)

]
, with h̄ω 	 Eq(0). At non-zero temperatures, the self-

energy terms increase in proportion to the Bose population-factors of
the magnons and phonons involved. These interactions, quadratic in
the magnon operators, do not lead to the kind of hybridization effects
produced by the linear couplings, but rather give rise to a (small) renor-
malization of the normal-mode energies and to a finite lifetime of the ex-
citations. These effects are entirely similar to those due to the magnon–
magnon interactions appearing in the spin-wave theory in the third order



5.5 TWO-ION ANISOTROPY 231

of 1/J . Equation (5.4.52) shows that the ‘zero-point’ motion of the ions,
at T = 0, has a slight effect on the magnons. A similar effect occurs due
to the magnon–magnon interactions, but only in an anisotropic ferro-
magnet where B is non-zero, as we discussed in the previous section. In
most cases, the contributions due to the magnon–magnon interactions
are expected to predominate, because the magnon–phonon coupling pa-
rameters are usually quite small, in comparison with the spin-wave inter-
actions. Although the interactions in (5.4.50) may not be important for
the magnons, they may have observable effects on the phonons at finite
temperatures. For instance, they affect the velocity of the transverse
sound waves propagating in the c-direction and polarized perpendicular
to the magnetization, but not those polarized parallel to the magneti-
zation, which are modified by the linear couplings as discussed above.
Deriving the perturbed phonon Green functions in the same way as the
magnon Green function, and taking the long-wavelength limit, we find
(Jensen 1971a,b)

c∗44
c44

= 1 − Λε
1
NJ

∑
q

nq

Eq(T )
when fν

k ⊥ 〈J〉. (5.4.53)

We note that this result is of higher order in 1/J than the effect due
to the linear coupling, given in (5.4.42). However, the extra factor 1/J
may be compensated by the magnon population-factor nq in the sum
over q, at elevated temperatures.

Modifications of the results obtained above may occur, due to an-
harmonic terms of third order in the strains, or magnetoelastic terms
quadratic in the strains. These higher-order contributions may possi-
bly be of some importance for the temperature dependence of the elas-
tic constants and the spin-wave parameters. However, they should be
of minor significance under the nearly constant-strain conditions which
obtain, for instance, when the magnetic-field dependence of the elastic
constants is considered.

5.5 Two-ion anisotropy

In this section, we discuss the components of the two-ion coupling which
cannot be included in the isotropic Heisenberg Hamiltonian considered
hitherto, i.e. the two-ion term in eqn (5.2.1). We first consider the clas-
sical magnetic dipole–dipole interaction in some detail, and show how
it may affect the spin-wave energies and ultrasonic velocities. There-
after we discuss some of the complexities resulting from the presence of
general two-ion couplings, which are consistent with the symmetry prop-
erties of the magnetic phase. The experimental manifestations of such
interactions, which either have been observed in the excitation spectrum
of Tb, or could in principle be observed, are finally summarized.
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5.5.1 The dipole–dipole interaction
A general two-ion Hamiltonian involving only the dipolar moments of
the 4f electrons is

Hdd = −1

2

∑
ij

∑
αβ

Jαβ(ij)JiαJjβ . (5.5.1)

The Heisenberg interaction, when expressed in this way, is diagonal, with
the form J (ij)δαβ . The most familiar example of an anisotropic two-ion
coupling is the classical magnetic dipole–dipole interaction, which gives
a contribution

∆Jαβ(ij) = N

V
(gµB)2Dαβ(ij), (5.5.2a)

where Dαβ(ij) is the dimensionless coupling parameter

Dαβ(ij) =
V

N

3(Riα −Rjα)(Riβ −Rjβ) − δαβ |Ri − Rj|2

|Ri − Rj |5
, (5.5.2b)

recalling that the magnetic moment of the ith ion is gµBJi. This cou-
pling is weak, being typically one or two orders of magnitude smaller
than the indirect exchange between near neighbours, but it is extremely
long-range and anisotropic and may therefore have important conse-
quences for the magnetic properties, as we shall discuss in the following.

We wish to calculate the spatial Fourier transform

Dαβ(q) = 1

N

∑
i

∑
j

Dαβ(ij) e−iq·(Ri−Rj). (5.5.3)

If q is along the c-axis, which is a three-fold axis of the hcp lattice,
the symmetry dictates that the only non-zero elements of Jαβ(q) are
Jξξ(q) = Jηη(q) and Jζζ(q). In addition, the condition

∑
αDαα(q) = 0

implies that

Dζζ(q) = −2Dξξ(q) = −2Dηη(q) ; q ‖ c− axis, (5.5.4)

with the extra stipulation that q �= 0, in which case the surface of the
sample does not contribute. In the limit of long wavelengths, the shape
of the sample becomes important, and for convenience we assume it to
be an ellipsoid, with the principal axes along the symmetry ξ-, η-, and
ζ-axes. We consider first the limit q = 0 where, because the sample is an
ellipsoid, the summation over j in (5.5.3) leads to a result independent
of i, since an ellipsoid placed in a constant magnetic field has a uniform
magnetization throughout its interior. Furthermore, when r = Ri − Rj

becomes large, it may be replaced by a continuous variable, and the sum
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over j may be split into a sum over the lattice points lying within a large
sphere plus an integral over the rest of the sample:

∑
j

· · · =
∑

j∈sphere

· · · + N

V

∫ sample

sphere

· · · dr.

The value of the integral for the zz-component is∫
1
r3
(3z2

r2
− 1
)
dr = −

∫
∇ ·
( z
r3

)
dr =

∫
sphere

z · dS
r3

−
∫

sample

z · dS
r3

=
4π
3

−Nz,

where dS is a vectorial surface element of the sphere/sample, and Nξ is
the demagnetization factor

Nξ =
∫

sample

(
ξ̂ · r
r3

)
ξ̂ · dS, (5.5.5)

where ξ̂ is a unit vector along the ξ-axis. It is easily seen that Nξ +Nη +
Nζ = 4π. Hence we obtain

Dξξ(0) =
4π
3

+
[
Dξξ(0)

]
L
−Nξ, (5.5.6)

plus equivalent results for the other diagonal components. The first
term is the Lorentz factor, and

[
Dξξ(0)

]
L

is the value of the lattice sum
over the sphere, satisfying the relations

[
Dζζ(0)

]
L

= −2
[
Dξξ(0)

]
L

=
−2
[
Dηη(0)

]
L
. In the case of a cubic lattice, the lattice sums vanish

by symmetry. This is nearly also true for an hcp lattice with an ideal
c/a-ratio, because of the close relationship between the fcc lattice and
the ideal hcp lattice. The hcp lattice of the heavy rare earths is slightly
distorted, as may be seen from Table 1.2, in which case the lattice sums
become non-zero, approximately proportionally to the deviation from
the ideal c/a-ratio;

[
Dξξ(0)

]
L

= −0.0024 + 1.50
(
c/a−

√
8/3

)
. Brooks

and Goodings (1968) overestimate the anisotropy in the free energy due
to the dipole interaction by a factor of two.

When considering the lattice sum determining Dαβ(q) − Dαβ(0),
we may immediately apply the continuum approximation in the long-
wavelength limit 2π/q � a, and replace the sum with the correspond-
ing integral. In the calculation above at q = 0, this approximation
is not directly applicable, because the corresponding integral contains
a divergence at the origin, which is however removed in the difference
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Dαβ(q) − Dαβ(0). In addition to the condition q � 2π/a, we shall
assume that q � 2π/L, or more specifically q ≥ 10/L (Keffer 1966),
where L is a length dimension of the crystal, in which case the effects
of the boundaries on Dαβ(q) are averaged out because of the relatively
rapid variation of the exponential factor on the surface. Using these two
conditions, we find

Dαβ(q) = Dαβ(0) +
∫ 3(α̂·r)(β̂ ·r) − δαβ r

2

r5
(
eiq·r − 1

)
dr

=
[
Dαβ(0)

]
L
+∫∫ 3(α̂·r)(β̂ ·r) − δαβr

2

r5

[ ∞∑
l=0

[4π(2l+ 1)]1/2 il jl(qr)Yl0(θ, φ)
]
r2drdΩ.

The q-independent term in the first integral leads to the same result as in
(5.5.6), but without the lattice-sum contribution, and adding Dαβ(0),
we are left with the term

[
Dαβ(0)

]
L
. The q-dependent exponential

is expanded in terms of the spherical Bessel functions, as in (4.1.8),
with the polar axis chosen to be parallel to q. The dipole factor in the
resulting integral may be written as a linear combination of the spherical
harmonics of second rank Y2m(θ, φ), multiplied by r−3, ensuring that
only the term with l = 2 in the sum over l survives the integration over
solid angles. Further, if α̂ and β̂ are either parallel or perpendicular to
q, only the diagonal components may differ from zero. With α̂ and β̂
both parallel to q, the longitudinal component is

D‖(q) −
[
D‖(0)

]
L

=
∫∫

[16π/5]1/2Y20(θ, φ)r−3[4π · 5]1/2(−1)j2(qr)Y20(θ, φ)r2drdΩ

= −8π
∫ ∞

0

1
ρ
j2(ρ)dρ = −8π

[
− j1(ρ)

ρ

]∞
0

= −8π
3
,

recalling that j1(ρ)/ρ→ 1
3 or 0, for respectively ρ→ 0 or ∞. This result

implies that the two transverse components are

D⊥(q) −
[
D⊥(0)

]
L

= −1
2

{
D‖(q)−

[
D‖(0)

]
L

}
=

4π
3

; (5.5.7)

when 2π/L� q � 2π/a.

The dipole-coupling components change from the values given by (5.5.6)
to those above within a very narrow range of q, i.e. when q goes from
zero to about 10/L, as shown by the detailed analysis of Keffer (1966).
At larger wave-vectors, the variation of Dαβ(q) is smooth and gradual,
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and it may be described by a few interplanar coupling parameters of the
type used for other two-ion interactions. Cohen and Keffer (1955) have
calculated the q-dependence for the three cubic Bravais lattices, and
their results also determine approximately Dαβ(q), with q along the c-
axis, in the hcp lattice with the ideal c/a-ratio, since this is equivalent to
q along a (111)-direction in the fcc crystal. In the distorted case, with
c/a = 0.963

√
8/3 (corresponding to Ho), a numerical calculation gives

Dξξ(q) + 0.02214π

3
=
{
0.9190 + 0.0816 cos (qc/2) − 0.0006 cos(qc)

}4π

3

when q ‖ c-axis and q ≥ 10/L, so that the q-dependence in the c-
direction is very weak, except for the jump at small q, which is illustrated
for the example of Ho in Fig. 5.7.

In a uniform ferromagnet, the demagnetization factor leads to a pos-
itive contribution to the internal energy. Without any external applied

Fig. 5.7. Parallel and perpendicular components of the Fourier trans-
form, for q along the c-direction, of the two-ion coupling in Ho, deduced
from the spin-wave energies. The coupling is assumed to comprise an
isotropic indirect-exchange contribution and the classical dipole–dipole
interaction, which gives rise to the discontinuity at q = 0 in the parallel

component, and stabilizes the cone structure at low temperatures.
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field, it is therefore energetically favourable for the system to split up
in domains, in which the magnetization vector points in different direc-
tions, so that the magnetization almost vanishes at the surface. The
greater the number of domains, the more effectively the demagnetiza-
tion contribution may be eliminated, but this tendency is opposed by
the cost in energy of the domain-walls. It is only the contribution due to
the demagnetization factor (as determined by the magnetization at the
surface) which is affected by the creation of domains, and in a simple
model in which the energy of the domain-walls is neglected, the internal
energy per unit volume, due to the dipole coupling and including the
Zeeman energy, is

UD + UZ 	 −1
2D

eff
zz (0)M2 + 1

2Nz〈M〉2 −HA〈M〉.

The demagnetization factor is considered separately, so that Deff
zz (0) =

4π/3 +
[
Dzz(0)

]
L
, and HA is the field applied in the z-direction. M is

the magnetization,
M = N

V
gµB〈Jz〉 (5.5.8)

in each domain, whereas 〈M〉 is the magnetization averaged over the
whole crystal. If the internal field HI and the demagnetization field HD

are defined by

HI = HA −HD ; HD = Nz〈M〉, (5.5.9)

the energy is minimized by the conditions; HI = 0 when 〈M〉 < M , and
〈M〉 = M when HI > 0. As a function of HI , the magnetization jumps
from zero to its ‘saturation’ value at HI = 0.

The strong q-dependence of the dipole coupling at small q is re-
flected in the energies of the magnetic excitations. In the case of the
anisotropic ferromagnet, it is straightforward to deduce that the two-
ion coupling of eqn (5.5.1) leads to spin-wave energies determined by

E2
T (q) =

[
A0(T ) +B0(T ) + 〈Jz〉{Jξξ(0) − Jζζ(q)}

]
×
[
A0(T ) −B0(T ) + 〈Jz〉{Jξξ(0) − Jηη(q)}

]
−
[
〈Jz〉Jηζ(q)

]2
,

(5.5.10)
assuming that the magnetization vector in the basal plane is parallel
to the ξ-axis, and that Jηζ(q) = Jζη(q). This result may be obtained
by an extension of the procedure used in Section 5.2, most easily from
the MF susceptibility (5.2.42). Introducing the above results into this
expression, we find, at q ≡ 0,

E2
T (0) =

[
A′

0(T )+B′
0(T )+ gµB〈M〉Nζ

][
A0(T )−B0(T )+ gµB〈M〉Nη

]
,

(5.5.11a)
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where the H appearing in A0(T ) in (5.2.37) or (5.3.22) is the internal
field HI , and

A′
0(T ) +B′

0(T ) = A0(T ) +B0(T ) + gµBM
([
Dξξ(0)

]
L
−
[
Dζζ(0)

]
L

)
.

(5.5.11b)
In comparison with the other anisotropy terms, the lattice-sum contribu-
tion to A′

0(T )+B′
0(T ) is very small (except in Gd) and may be neglected.

Equation (5.5.11) demonstrates that the energy gap at q = 0 depends
on the shape of the sample, as was first pointed out by Kittel (1948).
The same is the case with all other spin-wave modes in the magneto-
static region q ≤ 10/L, which are the observable states in ferromagnetic
resonance experiments. In a neutron-scattering experiment, the volume
in reciprocal space enclosed by the resolution function is normally sev-
eral orders of magnitude larger than the volume of the magnetostatic
region. The spin-waves in the long-wavelength limit, detected by inelas-
tic neutron-scattering, therefore emanate from the much larger region
where q ≥ 10/L, but is still much smaller than 2π/a, so that any two-ion
coupling, except for the dipole coupling, is the same as that at q = 0.
The spin-wave energies in this regime are determined by eqn (5.5.10),
when the dipole-coupling tensor in (5.5.7) is transformed to the (ξηζ)-
coordinate system, and are

E2
T (q ≈ 0) = E2

T (0̃) + 4πgµBM
[
{A0(T ) −B0(T )} cos2 θq

+ {A′
0(T ) +B′

0(T )} sin2 θq sin2 φq

]
, (5.5.12a)

where (θq, φq) are the polar angles of q with respect to the c-axis or
ζ-axis, and

E2
T (0̃) =

[
A′

0(T ) +B′
0(T )

][
A0(T ) −B0(T )

]
. (5.5.12b)

As long as the magnetization is in the basal-plane, this result is gener-
ally valid if φq is redefined to be the angle between the magnetization
vector and the projection of q on the basal-plane. ET (0̃) is the min-
imum excitation energy, and the corresponding spin waves propagate
parallel to the magnetization vector. If A′

0(T ) + B′
0(T ) is significantly

larger than A0(T ) − B0(T ) (in Tb it is an order of magnitude greater
at T = 0), the maximum value of ET (q ≈ 0) occurs when q lies in the
basal plane perpendicular to the magnetic moments, whereas the spin
waves propagating in the c-direction only have an energy slightly greater
than ET (0̃). An inelastic neutron-scattering experiment, with the mean
value of the scattering vector equal to a reciprocal lattice vector, will
sample a whole spectrum of spin waves with energies between the two
extremes. The shape of the scattering peak will be dependent on the
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form of the resolution function. With a spherical resolution, the scatter-
ing will be quite sharply peaked at the intermediate energy of the spin
waves propagating in the c-direction, as illustrated in the case of Tb
in Fig. 5.8. The calculated sharp peak at about 1.8meV and the high-
energy shoulder are clearly apparent in the experimental measurements
of Houmann et al. (1975a). In the measurements of Bjerrum Møller
and Mackintosh (1979), on the other hand, the resolution function was
such that the modes propagating in the basal plane perpendicular to
the magnetization were most heavily weighted, so that the predominant
peak occurs at about 2.0meV. In Ho, the effect of the dipole interaction
on the long-wavelength spin waves is even more pronounced. This is an
example of the opposite extreme, where A′

0(T )+B′
0(T ) is much smaller

than A0(T ) − B0(T ), so that the maximum value of ET (q ≈ 0) occurs
when q lies along the c-direction. As illustrated in Fig. 5.9, the dipolar
splitting in this case is sufficiently great that the neutron scattering at
q ≈ 0 can be resolved into two peaks.

Another consequence of the strong directional dependence of the
dipolar contributions to the spin-wave energies is found in the behaviour
of the coupled magneto-acoustic sound waves, discussed in the previ-
ous section. The region in q-space sampled in ultrasonic measurements
(with frequencies in the MHz regime) is just that in which eqn (5.5.12)

Fig. 5.8. The state density of the long-wavelength spin-wave mode
ET (q ≈ 0) in Tb at 4K, calculated from eqn (5.5.12), taking into account
the splitting of the dispersion relations by the dipole–dipole interaction.

The sharp peak is due to the branch in the c-direction.
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applies. If q is parallel to the magnetization, the spin-wave energies
are unchanged from the values deduced in Sections 5.2–4, provided that
the lattice-sum contribution is included in the axial anisotropy term
(5.5.11b), and eqn (5.4.38) is still valid. On the other hand, when q is
in the basal-plane and perpendicular to the magnetization, the ultrasonic

Fig. 5.9. Dispersion relations, in the double-zone representation, for
magnetic excitations propagating in the c-direction of Ho90Tb10 in the
ferromagnetic phase (upper branch), and the bunched helical structure
(lower branch). The full and dashed lines for the ferromagnetic phase
show the theoretical dispersion relations at 4K and 16K respectively, and
the open and filled symbols are the corresponding experimental results.
The calculated long-wavelength energies in the basal plane are shown to
the left of the ordinate axis and the discontinuity, which is due to the
dipole–dipole interaction, is clearly manifested in the neutron-scattering
spectra in the inset. This discontinuity also appears in the helical phase,
and the bunching causes an energy gap on the ALH face of the Brillouin

zone, which is not resolved in these measurements.
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velocities are determined by

c∗cc

c66
= 1 −

Λγ

A0(T ) −B0(T ) + 4πgµBM
; q ⊥ 〈J〉. (5.5.13)

This modification means that only the velocity of those magneto-acoustic
modes which propagate parallel to the magnetization vanishes at the
critical field HI = Hc where, according to (5.4.15), A0(T )−B0(T ) = Λγ ,
whereas the velocity of the modes propagating in the basal-plane per-
pendicular to the field remains non-zero. This difference in the velocities
of the ultrasonic modes was very clearly manifested in the ultrasonic ex-
periment on Tb discussed in Section 5.4 (Jensen and Palmer 1979). This
example shows that the dipolar coupling is able to lift the degeneracy
in the velocities of two transverse sound-waves which are related to each
other by an interchange of the directions of the wave-vector and the
polarization vector. The same effect may be produced by the torque
exerted on the moments when the local magnetic anisotropy axes are
rotated by the transverse phonons relative to the direction of an exter-
nal magnetic field. As discussed by Melcher (1972) and Dohm and Fulde
(1975) the influence of this mechanism on the sound velocities may be
derived from the principle that the total system has to be rotationally
invariant. Their theory has been extended by Jensen (1988b), who finds
that the dipolar-coupling contribution strongly dominates in a ferromag-
net, but that the importance of the two mechanisms may be comparable
in paramagnets.

5.5.2 General two-ion interactions
The two-ion couplings described by eqn (5.5.1) only involve the dipolar
moments of the 4f electrons. A more general two-ion Hamiltonian is

HJJ = −1

2

∑
ij

∑
l+l′:even

∑
mm′

[
Kmm′

ll′ (ij)Õlm(Ji)Õl′m′(Jj)

+ (−1)m+m′{Kmm′
ll′ (ij)}∗Õl −m(Ji)Õl′ −m′(Jj)

]
,

(5.5.14)
expressed in terms of the Racah operators or tensor operators Õlm(Ji)
introduced in Section 1.4, rather than the Stevens operators. Tables
of these operators and a discussion of their properties may be found in
Buckmaster et al. (1972) and in Lindg̊ard and Danielsen (1974). Here
we neglect the possible effects of the polar tensors, which vanish for the
isolated ions. In principle, these polar tensors may be non-zero in the
hcp metals, because the surroundings lack inversion symmetry, but they
occur only because of odd-parity configuration-mixing of the 4f wave-
functions, which should be insignificant for the ground-state multiplet.
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This leaves only the axial tensors, i.e. magnetic multipoles of odd rank
and electric multipoles of even rank. Time reversal of these tensors ef-
fects the transformation cÕlm → c∗(−1)l+mÕl −m, whereas Hermitian

conjugation gives
(
cÕlm

)† = c∗(−1)mÕl −m. The requirement that HJJ

should be invariant under both transformations allows only those terms
in eqn (5.5.14) for which l + l′ is even. The violation of time-reversal
symmetry which occurs when the system is magnetically ordered im-
plies that HJJ should be supplemented by interactions proportional to
〈Õλµ〉Õlm(Ji)Õl′m′(Jj), satisfying the condition that λ + l + l′ is even.
An obvious example is magnetoelastic contributions to the Hamiltonian
such as eqn (5.4.5). The tensor operators in (5.5.14) emanate from lo-
calized 4f wavefunctions with the orbital quantum number lf = 3, which
puts the further restriction on the phenomenological expansion of HJJ

that l and l′ cannot be larger than 2lf+1 = 7, as the operator-equivalents
of higher rank than this vanish identically.

In the rare earth metals, several different mechanisms may give rise
to such anisotropic two-ion couplings, and these have been listed by,
for instance, Wolf (1971) and Jensen et al. (1975). We have already
considered the magnetostatic coupling of lowest rank in the magnetic
multipole expansion, namely the classical magnetic dipole–dipole inter-
action. This is of importance only because of its long range. The higher
order magnetostatic couplings are of shorter range (∝ (1/r)l+l′+1) and
have negligible effects. The electrostatic Coulomb interaction gives rise
to terms in (5.5.14) in which both l and l′ are even. The single-ion
contributions (l′ = 0) are of decisive importance, when L �= 0, but
even the lowest-order electrostatic two-ion term, which contributes to
the quadrupole–quadrupole interactions, is so small that it may be ne-
glected.

The overlap between the 4f wavefunctions of neighbouring ions is so
weak that it cannot generate any two-ion coupling of significance. The
dominant terms in the two-ion Hamiltonian HJJ therefore arise indi-
rectly via the propagation of the conduction electrons. We have already
mentioned in Section 1.4 the most important of these, due to the ex-
change interaction between the band electrons and the 4f electrons, and
it will be discussed in more detail in Section 5.7. In the simplest ap-
proximation, the indirect exchange is invariant with respect to a uniform
rotation of the angular momenta, i.e. this RKKY interaction is isotropic.
However, the neglect of the contribution of the orbital moment in the
scattering process is not generally justified. If L is non-zero, the or-
bital state of the 4f electrons may change in an exchange-scattering
process, if the conduction electron is scattered into a state with a dif-
ferent orbital momentum relative to the ion. The leading-order correc-
tions to the isotropic RKKY interaction due to such processes have been
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considered by Kaplan and Lyons (1963) and Kasuya and Lyons (1966).
In order to obtain an estimate of the importance of the corrections, they
assumed plane-wave states for the conduction electrons, expanded in a
series of spherical Bessel functions centred at the ion. These calculations
indicated anisotropic two-ion couplings with a magnitude of the order of
10% of the isotropic coupling, or greater (Specht 1967). As discussed in
Section 1.3, the free-electron model does not provide a very satisfactory
description of the conduction electrons in the rare earths. It is partic-
ularly inadequate when orbital effects are involved, since the expansion
of the plane-wave states clearly underestimates the (l = 2)-character of
the d-like band-electrons, which dominates the exchange interaction in
the (L = 0)-case of Gd (Lindg̊ard et al. 1975). When L is non-zero, the
Kaplan–Lyons terms may be of comparable importance to the RKKY
interaction in the rare earth metals. The relativistic modification of the
band states, due to the spin–orbit coupling, may enhance the orbital
effects and also lead to anisotropic interactions in Gd. In addition to
the exchange, the direct Coulomb interaction between the 4f and the
band electrons may contribute to eqn (5.5.14), with terms in which l
and l′ are both even. This coupling mechanism, via the conduction elec-
trons, is probably more important for this kind of term than the direct
electrostatic contribution mentioned above.

The RKKY interaction is derived on the assumption that the 4f
electrons are localized in the core, and that their mixing with the conduc-
tion electrons is exclusively due to the exchange. However, the Coulomb
interaction may lead to a slight hybridization of the localized 4f states
with the band states. In recent years, Cooper and his co-workers (Cooper
et al. 1985; Wills and Cooper 1987) have analysed the consequences of
a weak hybridization between an ion with one or two f electrons and
the band electrons, with special reference to the magnetic behaviour of
Ce compounds and the actinides. They find that the magnetic two-ion
coupling becomes highly anisotropic in the Ce compounds. Although
Ce is the rare earth element in which the strongest hybridization effects
would be expected to occur, these results and the analysis of Kaplan and
Lyons (1963) suggest that the presence of anisotropic two-ion couplings
should be a common feature in rare earth metals with orbital angular
momentum on the ion.

As is clear from the above discussion, an analysis from first prin-
ciples cannot at present give a reliable estimate of the relative magni-
tude of the Heisenberg exchange interaction and the various possible
anisotropic two-ion couplings in the rare earth metals. We cannot a
priori exclude any terms of the form given by eqn (5.5.14). In order to
arrive at such an estimate, it is necessary to calculate the consequences
of the anisotropic two-ion terms and compare the predictions with exper-
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imental observations. In the case of the nearly saturated ferromagnet, it
is straightforward to take into account the effects of HJJ on the ground-
state properties and the spin-waves. The Racah operators, defined with
reference to the (ξ, η, ζ)-coordinate system, may be expanded in terms
of the spin deviation operators. When the moments in the basal-plane
(θ = π/2) are close to their saturation value (〈Jz〉 	 J),

〈Õlm〉 	
(

4π
2l+ 1

)1/2

J (l)Ylm(θ =
π

2
, φ) = J (l)Γlm eimφ, (5.5.15a)

where

Γlm =

⎧⎪⎨⎪⎩ (−1)(l+m)/2 [(l +m)!(l −m)!]1/2

(l +m)!!(l −m)!!
, l +m even

0 , l +m odd.
(5.5.15b)

Utilizing the equivalence between the Racah operators and the spherical
harmonics, and the connection between the spin-wave energies and the
angular derivatives of the expectation values (which leads to the relation
(5.3.14)), we have to first order in 1/J (Jensen et al. 1975):

Õlm(Ji) =(
1 − m√

2J
(a+

i − ai) −
l(l+ 1)

2J
a+

i ai −
l(l+ 1) − 2m2

4J
(a+

i a
+
i + aiai)

)
× J (l)Γlme

imφ, (5.5.16a)

if l +m is even, and if l +m is odd

Õlm(Ji) =[
(l + 1)2 −m2

]1/2
( 1√

2J
(a+

i + ai) −
m

2J
(a+

i a
+
i − aiai)

)
J (l)Γl+1 me

imφ.

(5.5.16b)

Introducing these expressions into the two-ion Hamiltonian, we may
derive the spin-wave energies, to leading order in 1/J . The number of
terms in eqn (5.5.14) which contribute to the excitation energies, in this
order, may be reduced by the symmetry elements of the lattice which
leave the q-vector unchanged. In the simplest case, where q is along
the c-axis, the three-fold symmetry about this axis plus the mirror-
plane perpendicular to the ξ-axis (i.e. the a-axis) ensure that only terms
with m + m′ = 3p, where p is an integer, contribute, and that their
contribution is proportional to cos (3pφ). The terms in which p is an
odd integer couple the acoustic and optical magnons, but they do not
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lift the degeneracy of the modes at A on the Brillouin-zone boundary
of Fig 1.4. When q is parallel to the c-axis, a direct calculation of the
spin-wave energies (Jensen et al. 1975) shows that the two-ion terms in
HJJ lead to the following modifications of the earlier results (5.2.38) and
(5.3.22):

(i) The two-ion anisotropy may contribute to the parameters
Aq(T ) ±Bq(T ) at zero wave-vector.

(ii) Bq(T ) becomes dependent on q to leading order in 1/J .
(iii) The q-dependent parts ofAq(T )±Bq(T ) may change when

the direction of magnetization is changed.

There are no direct ways of separating the single- and two-ion con-
tributions to the energy gap at zero wave-vector. However, a strong
q-dependence of Bq(T ) is only possible if the two-ion Hamiltonian is
anisotropic. One way to determine Bq(T ) is to utilize the dependence of
the neutron cross-section on this parameter, given by eqn (5.2.41). This
method requires accurate intensity measurements and is not straightfor-
ward. The other possibility is to measure the field dependence of the
spin-wave energies since, from (5.2.38) or (5.3.22),

αq(T ) ≡ ∂E2
q(T )/∂(gµBH) 	 2Aq(T ), (5.5.17)

when the field is parallel to the magnetization. This relation is only true
to first order in 1/J , and corrections have to be made for the influence
of any field-dependent changes of the correlation functions σ and η±.
Both Aq(T ) and Bq(T ) may be determined from the energies and initial
slopes, since

Aq(T ) ±Bq(T ) 	 1
2αq(T ) ± 1

2 [α2
q(T ) − 4E2

q(T )]
1
2 . (5.5.18)

This method was used by Jensen et al. (1975) for a comprehensive study
ot the two-ion anisotropy in Tb. The values of Aq(T ) and Bq(T ), de-
duced from eqn (5.5.18), were parametrized in various ways, and clearly
the best least-squares fit was obtained with expressions of the form

(Aq +Bq) − (A0 +B0) = I(q) + K(q) − C(q) cos 6φ

(Aq −Bq) − (A0 −B0) = I(q) −K(q) −D(q) cos 6φ,
(5.5.19)

where A0 ± B0 were taken from the simultaneous measurements of
the magnetic anisotropy at q = 0, discussed in the previous section.
The low-temperature isotropic coupling I(q), which in the absence of
anisotropy would just be J [J (0) − J (q)], and the φ-independent two-
ion anisotropy K(q) are shown in Fig. 5.10. The φ-dependent axial
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Fig. 5.10. Isotropic and anisotropic two-ion coupling parameters I(q)
(upper curve) and K(q) (lower curve) for Tb at 4K, deduced from the
field dependence of the spin-wave energies. The former is closely related
to J [J (0)−J (q)], an estimate of which is indicated by the dashed line.
The magnon–phonon interaction causes relatively large uncertainties at

intermediate wave-vectors.

anisotropy C(q) is about the same magnitude as K(q), while D(q) is
very small. The φ-dependent anisotropy is detected very clearly in the
experiments, since it gives rise to a change in the dispersion Eq(T ),
when the moments are rotated from the the easy to the hard planar
direction. C(q) is the q-dependent generalization of the φ-dependent
anisotropy ∆M in A0 + B0, introduced in the previous section, and
∆M ≈ −〈C(q)〉q.

As mentioned in Section 5.4.1, the corrections to the field depen-
dence of the magnon energies in (5.5.17) were included in an effective
fashion, neglecting changes due to the rotation of the moments and as-
suming η− 	 1/η+ 	 {1−b(T = 0)}σ−k, where k may be estimated to be
about 0.3. The renormalization effects are thus taken as proportional to
σ raised to a power which depends on the term considered. We estimate
that the effects neglected in this approach only introduce corrections
of the order of the experimental uncertainties. The two-ion coupling
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parameters decrease with increasing temperature or decreasing mag-
netization. The three anisotropy component all decrease very rapidly,
roughly proportionally to σ15 (like ∆M), which means that they are only
important at low temperatures and may be neglected above about 150K.
The strong temperature dependence of the anisotropic components indi-
cates, according to the Callen–Callen theory, that higher-rank couplings
make the dominant contribution. The lowest-order term in eqn (5.5.14)
which contributes to C(q) involves K33

44 , and it should renormalize ap-
proximately as σ19. The renormalization is observed to be q-dependent
for all the parameters, being slower at larger wave-vectors, and it lies in
the range σ2-σ0.1 for I(q). In Tb, I(q) may include higher-rank con-
tributions besides the RKKY-exchange term, but the way in which it
renormalizes resembles quite closely the behaviour observed in Gd and
shown in Fig. 5.1. A q-dependent renormalization may partially be ac-
counted for, in the self-consistent RPA theory, by the k-sum terms in
(5.2.38).

When q is not along the c-axis, there are other ways in which the
presence of two-ion anisotropy may be detected in the ferromagnetic
excitation spectrum:

(iv) Spin-wave energy gaps may appear at the boundaries of
the Brillouin zone.

The isotropic two-ion coupling alone does not lead to energy gaps at
these boundaries, whereas anisotropic two-ion couplings may lift those
degeneracies which are not dictated by symmetry. In fact, the first in-
dication of the presence of two-ion anisotropy in the rare earth metals,
other than the classical magnetic-dipolar interaction, was the splitting
shown in Fig. 5.2 along the KH edge of the Brillouin zone in the ferro-
magnetic phase of Tb (Lindg̊ard and Houmann 1971). Finally, we have
the related effect:

(v) The spin-wave energies, at a particular q, in domains with
different angles between the q-vector and the magnetiza-
tion vectors, need not be equal if two-ion anisotropy is
important.

In a single domain, the two-ion anisotropy forces may lift the ‘accidental’
degeneracies between spin waves at q-vectors which are equivalent in the
paramagnetic phase, but which are no longer equivalent in the Brillouin
zone of the ferromagnet. This manifestation of the two-ion anisotropy
has not yet been subjected to experimental investigation, but it may
provide a useful supplement to studies of the q-dependence of Bq(T ).

As we have seen, the expectation values 〈Õlm〉 are approximately
proportional to σl(l+1)/2, if the extra modification due to the elliptical
polarization of the spin-waves is neglected. This means that the impor-
tance of the higher-rank couplings declines relatively rapidly with tem-
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perature. The effects of these interactions on the ground state and the
spin waves are therefore most pronounced in the low-temperature limit,
whereas the behaviour of the system at high temperatures which, in the
heavy rare earths, includes the critical region around the phase transi-
tion between the ordered and paramagnetic phases, is dominated by the
coupling between the dipolar moments, and the single-ion quadrupole
interaction, i.e. by the terms in eqn (5.5.14) with l + l′ = 2.

5.6 Binary rare earth alloys

The great similarity in the chemical properties of the different rare earth
metals allows almost complete mutual solubility. It is therefore possible
to fabricate rare earth alloys with nearly uniform electronic properties,
but containing ions with disparate magnetic properties, distributed ran-
domly on a single lattice. By a judicious choice of the constituents,
the macroscopic magnetic properties, such as the ordering temperatures
and the anisotropy parameters, may be continuously adjusted as desired.
From a macroscopic viewpoint, such an alloy resembles a uniform and
homogeneous crystal, with magnetic properties reflecting the character-
istics and concentrations of the constituents. The spectrum of magnetic
excitations also displays such average behaviour (Larsen et al. 1986),
but in addition, there are effects which depend explicitly on the dispar-
ity between the different sites.

We restrict ourselves to binary alloys, which are described by the
Hamiltonian,

H =
∑

i

{ciH1(J1i) + (1 − ci)H2(J2i)}

− 1

2

∑
i�=j

J (ij) {ciJ1i + γ(ij)(1 − ci)J2i} · {(cjJ1j + γ(ij)(1 − cj)J2j} ,

(5.6.1)
where ci is a variable which is 1 if the ion on site i is of type 1, and
0 if the ith ion is of type 2. The configurational average of ci is the
atomic concentration of the type-1 ions, 〈ci〉cf = c. In addition to the
simplifications made earlier in the Hamiltonian, we shall assume that
γ(ij) is a constant γ, independent of i and j. This approximation is
consistent with a model in which the indirect exchange is assumed to
dominate the two-ion coupling, in which case

γ(ij) = γ = (g2 − 1)/(g1 − 1), (5.6.2)

where the indices 1 and 2 refer to the two types of ions with angular
momenta J1 and J2.

In order to derive the excitation spectrum of the alloy system,
we first make the assumption that the surroundings of each ion are
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so close to the average that individual variations can be neglected.
Thus we replace the actual MF Hamiltonian of the ith ion with the
configurationally-averaged MF Hamiltonian and, considering a type 1
ion (ci = 1), obtain

HMF(i) 	 〈HMF(i)〉cf =

H1(J1i) − (J1i − 1
2 〈J1i〉) ·

∑
j

J (ij){c〈J1j〉 + (1 − c) γ〈J2j〉}. (5.6.3)

From this equation, and the similar one for ci = 0, we may determine
the MF values of the two moments 〈J1〉 and 〈J2〉, and the corresponding
susceptibilities χ o

1 (ω) and χ
o
2 (ω). For a paramagnetic or ferromagnetic

system these quantities are all site-independent, in the present approx-
imation. We note that (5.6.3) is correct in the case of a paramagnet,
as possible environmental variations on the individual ions are already
neglected in the starting Hamiltonian. The next step is the introduction
of a 2× 2 matrix of susceptibility tensors χrs(ij, ω), where the elements
with r = 1 or 2 are defined in terms of ciJ1i or (1 − ci)J2i respectively,
and s = 1 or 2 similarly specifies the other component. We may then
write the RPA equation (3.5.7):

χrs(ij, ω) = χr(i, ω)
(
δrsδij +

∑
j′

∑
s′
γrs′J (ij′)χs′s(j

′j, ω)
)
, (5.6.4a)

where

χ1(i, ω) = ciχ
o
1 (ω) ; χ2(i, ω) = (1 − ci)χ

o
2 (ω), (5.6.4b)

recalling that c2i = ci (= 0 or 1), and defining Jrs(ij) = γrsJ (ij), with

γ11 = 1 ; γ12 = γ21 = γ ; γ22 = γ2. (5.6.4c)

In spite of the great simplification introduced through the random-phase
approximation, the RPA equation for the alloy is still very complicated,
because χr(i, ω) depends on the randomness, and it cannot be solved
without making quite drastic approximations. The simplest result is
obtained by neglecting completely the site-dependence of χr(i, ω), and
consequently replacing ci in (5.6.4b) by its average value c. This pro-
cedure corresponds to the replacement of each individual angular mo-
mentum Jri by the average cJ1i + (1 − c)J2i, and it is known as the
virtual crystal approximation (VCA). In this approximation, (5.6.4) may
be solved straightforwardly after a Fourier transformation, and defining
the T-matrices according to

χrs(q, ω) = χr(ω)δrs + χr(ω)T rs(q, ω)χs(ω), (5.6.5a)
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where

χ1(ω) = cχ
o
1 (ω) and χ2(ω) = (1 − c)χ o

2 (ω), (5.6.5b)

we find that these T-matrices are given by

T rs(q, ω) = γrsJ (q)D(q, ω)−1, (5.6.6a)

with

D(q, ω) = 1 −
{
cχ

o
1 (ω) + (1 − c) γ2 χ

o
2 (ω)

}
J (q). (5.6.6b)

This result is simplified by the assumption, (5.6.2) or (5.6.4c), that
J12(q) is the geometric mean of J11(q) and J22(q). In this and in
more complex cases, the introduction of the T-matrices in (5.6.5) makes
it somewhat easier to handle the RPA equations. The configurationally-
averaged susceptibility is χ(q, ω) =

∑
rs χrs(q, ω), but this does not di-

rectly determine the inelastic neutron-scattering cross-section. We must
take into account the difference in the form factor { 1

2gF (κ)} for the two
kinds of ions, in the differential cross-section (4.2.1). At small scattering
vectors, F (κ) is generally close to one and the most important variation
is due to the g-factor. In this case, the inelastic scattering is proportional
to the susceptibility:

g2χ(q, ω) ≡
∑
rs

grgsχrs(q, ω)

= g2
1c χ

o
1 (ω) + g2

2(1 − c)χ o
2 (ω) + χ3(ω)J (q)D(q, ω)−1χ3(ω),

(5.6.7a)
with

χ3(ω) = g1c χ
o
1 (ω) + g2(1 − c) γ χ o

2 (ω). (5.6.7b)

If χr(i, ω) only depends on ci, as assumed in (5.6.4b), the RPA
equation (5.6.4a) is equivalent to that describing the phonons in a crys-
tal with diagonal disorder, in the harmonic approximation. The possible
variation of the molecular field (or other external fields) from site to site,
which is neglected in (5.6.3), introduces off-diagonal disorder. If such
off-diagonal disorder is neglected, the main effects of the randomness, in
3-dimensional systems, are very well described in the coherent potential
approximation (CPA) (Taylor 1967; Soven 1967; Elliott et al. 1974; Lage
and Stinchcombe 1977; Whitelaw 1981). In the CPA, the different types
of ion are treated separately, but they are assumed to interact with a
common surrounding medium. This configurationally-averaged medium,
i.e. the effective medium, is established in a self-consistent fashion. The
method may be described in a relatively simple manner, following the
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approach of Jensen (1984). We first consider the case where χ
o
2 (ω)

vanishes identically, corresponding to the presence of non-magnetic im-
purities with a concentration 1 − c. The RPA equation (5.6.4a) may
then be solved formally by iteration:

χ(ij, ω) = ciχ
o(ω)δij + ciχ

o(ω)J (ij)cjχ
o(ω)

+
∑
j′
ciχ

o(ω)J (ij′)cj′χ
o(ω)J (j′j)cjχ

o(ω) + · · · .

(5.6.8)
The VCA result is obtained by assuming 〈cnj′ 〉cf = cn, which is incorrect
since 〈cnj′ 〉cf = 〈cj′〉cf = c. Consequently, the VCA leads to errors already
in the fourth term in this expansion, or in the third term if i = j, even
though J (ii) is zero. In order to ameliorate these deficiencies, we first
consider the series for χ(ii, ω), where i = j. The different terms in this
series may be collected in groups according to how many times the ith
site appears, which allows us to write

χ(ii, ω) = ci

[
χ

o(ω) + χ
o(ω)K(i, ω)χ o(ω)

+ χ
o(ω)K(i, ω)χ o(ω)K(i, ω)χ o(ω) + · · ·

]
= ci

{
1 − χ

o(ω)K(i, ω)
}−1

χ
o(ω), (5.6.9)

where K(i, ω) is the infinite sum of all the ‘interaction chains’ involv-
ing the ith site only at the ends, but nowhere in between. A similar
rearrangement of the terms in the general RPA series leads to

χ(ij, ω) = χ(ii, ω)δij + χ(ii, ω)T (ij, ω)χ(jj, ω), (5.6.10)

where T (ij, ω) is only non-zero if i �= j and, by exclusion, is the sum
of all the interaction chains in which the ith site appears only at the
beginning, and the jth site only at the end of the chains. Introducing
this expression in the RPA equation (5.6.4), we may write it

χ(ij, ω) =

ciχ
o(ω)

[
δij + J (ij)χ(jj, ω) +

∑
j′

J (ij′)χ(j′j′, ω)T (j′j, ω)χ(jj, ω)
]
.

From (5.6.9), we have χ o(ω)−1 χ(ii, ω) = ci{1 +K(i, ω)χ(ii, ω)}, and a
comparison of this equation for χ(ij, ω) with (5.6.10), leads to the result:

δij+J (ij)χ(jj, ω) +
∑
j′

J (ij′)χ(j′j′, ω)T (j′j, ω)χ(jj, ω)

= {1 +K(i, ω)χ(ii, ω)}{δij + T (ij, ω)χ(jj, ω)}, (5.6.11)
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leaving out the common factor ci. Although this means that K(i, ω)
and T (ij, ω) may be non-zero even when ci is zero, this has no conse-
quences in eqn (5.6.10). In order to derive the configurational average of
this equation, we make the assumption that each site is surrounded by
the same effective medium. Hence K(i, ω) 	 K(ω) is considered to be
independent of the site considered, and therefore we have, from (5.6.9),

χ(ii, ω) = ciχ(ω) ; χ(ω) =
{
1 − χ

o(ω)K(ω)
}−1

χ
o(ω). (5.6.12)

With this replacement, the configurational average of eqn (5.6.11) may
be derived straightforwardly, as we can take advantage of the condition
that, for instance, cj′ only occurs once in the sum over j′. It is important
here that the common factor ci was cancelled, because T (j′j, ω) involves
the site i, making the averaging of ciT (j′j, ω) more complicated. Intro-
ducing the notation TE(ij, ω) =

〈
T (ij, ω)

〉
cf

, we get from (5.6.11) the
CPA equation

δij + cJ (ij)χ(ω) +
∑
j′
c2 J (ij′)χ(ω)TE(j′j, ω)χ(ω)

= {1 + cK(ω)χ(ω)}{δij + c TE(ij, ω)χ(ω)} (5.6.13)

for the effective medium, which may be diagonalized by a Fourier trans-
formation. Introducing the effective coupling parameter

J E(q) = J (q) −K(ω), (5.6.14)

where the scalar appearing in a matrix equation is, as usual, multiplied
by the unit matrix, we get

TE(q, ω) = J E(q)DE(q, ω)−1 ; DE(q, ω) = 1 − c χ(ω)J E(q)
(5.6.15)

and, from (5.6.10),

χ(q, ω) = c χ(ω) + c2 χ(ω)TE(q, ω)χ(ω) = DE(q, ω)−1c χ(ω). (5.6.16)

Hence the result is similar to that obtained in the VCA, except that the
parameters are replaced by the effective quantities introduced by eqns
(5.6.12) and (5.6.14). These effective values are determined from the
‘bare’ parameters in terms of K(ω). It is easily seen that we retain the
VCA result, i.e. K(ω) cancels out of (5.6.15), if (5.6.12) is replaced by
the corresponding VCA equation χ(ω) 	

{
1 − c χ

o(ω)K(ω)
}−1

χ
o(ω).
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In the case c = 1, both the VCA and the CPA results coincide with the
usual RPA result. K(ω) is itself determined by the effective parameters,
and (5.6.13), with i = j, leads to the following self-consistent equation

K(ω) = 1

N

∑
q

cJ (q)χ(ω)TE(q, ω). (5.6.17a)

This result may be written

K(ω) = 1

N

∑
q

J (q)DE(q, ω)−1 =
∑
q

J (q)χ(q, ω)
/∑

q

χ(q, ω),

(5.6.17b)
corresponding to the condition that the effective T-matrix vanishes when
summed over q,

∑
q TE(q, ω) = 0, in accordance with our starting as-

sumption, (5.6.10).
In order to derive the effective medium result (5.6.13), χ(j′j′, ω)

in (5.6.11) was replaced by cj′χ(ω), which is an approximation, as this
response depends on the actual surroundings, including the sites i and
j. The CPA incorporates the same type of mistake as in the VCA, but
it is clear that the frequency of such errors is substantially reduced. The
dependence of χ(j′j′, ω) on ci and cj , corresponding to a site dependence
of K(j′, ω), becomes relatively unimportant if the configuration number
Z is large, since i or j may only be one of the Z neighbours of the site
j′.

The effective medium procedure is straightforwardly generalized to
the case where χ2(i, ω) is non-zero (Jensen 1984). Again the CPA result
may be expressed in the same way as the VCA result, (5.6.5–6), except
that all the quantities are replaced by their effective CPA counterparts;
J (q) becomes J E(q), given by (5.6.14), and χ o

r (ω) in (5.6.6) is replaced
by

χr(ω) =
{
1 − γrrχ

o
r (ω)K(ω)

}−1

χ
o
r (ω), (5.6.18)

where the effective-medium parameter K(ω) is determined by the same
self-consistent equation (5.6.17) as above. To a first approximation,
DE(q, ω)−1 in this equation may be replaced by the simpler virtual-
crystal result. Because of the poles in D(q, ω)−1, both the real and
imaginary parts of K(ω) are usually non-zero, and the imaginary con-
tribution then predicts a finite lifetime for the excitations, due to the
static disorder. This leading-order result may serve as the starting point
in an iterative calculation of K(ω), and thus of a more accurate CPA
result.

It is much more complicated to include the effects of off-diagonal
disorder. They have been considered in the papers referred to above, but
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only in relatively simple models like the dilute Heisenberg ferromagnet
with nearest-neighbour interactions. This model may be considered as
the extreme example of off-diagonal disorder, and the CPA concept of
an effective medium loses its meaning completely below the percolation
concentration, where all clusters of interacting spins are of finite size,
precluding any long-range order. If the molecular field is independent
of the site considered, i.e. HMF(i) = 〈HMF(i)〉cf in (5.6.3), as happens
in the paramagnetic case or if 〈J1〉 = γ〈J2〉, then the CPA result above
should apply. However, except in a pure boson or fermion system, the
‘dynamical’ disorder due to thermal fluctuations introduces corrections
to the RPA equation (5.6.4), with consequences of the same order of
magnitude as K(ω) in (5.6.16), at least at elevated temperatures. In
most magnetic systems, the two kinds of disorder may lead to damping
effects of the same magnitude, and furthermore the use of the CPA result
(5.6.16), without taking into account the dynamic renormalization of the
RPA, occasionally leads to misleading results, as discussed for instance
by Jensen (1984).

The excitations of binary heavy-rare-earth alloys have been studied
much less extensively than their magnetic structures. However, the effect
of 10% of Y, Dy, Ho, and Tm on the spin-wave spectrum of Tb has
been examined, and the characteristic influence of the different solutes
observed. The results of Larsen et al. (1986) for the Y and Dy alloys
could be interpreted in terms of a simple average-crystal model, in which
all sites are considered as equivalent, and the effect of the solute atoms
is to modify the average exchange and the effective single-ion anisotropy.
Thus Dy reduces the effective hexagonal anisotropy, and the spin-wave
energy gap therefore decreases. On the other hand, Y dilutes the two-
ion coupling, and therefore decreases TN and the spin-wave energies,
although the relative magnitude of the peak in J (q) increases, extending
the temperature range over which the helical structure is stable. The first
excited state of the Ho ion in the Tb host lies in the spin-wave energy
band, and the dispersion relation is consequently strongly perturbed
(Mackintosh and Bjerrum Møller 1972).

However, the most pronounced effects were observed by Larsen et
al. (1988) in Tb90Tm10, where the Tm ions, with a spin S = 1, are
relatively weakly coupled to the surrounding Tb moments, with S = 3.
Furthermore, the axial anisotropy of the Tm ions is large and of opposite
sign to that of Tb. As a result, well-defined quasi-localized states may
be excited on the Tm sites, as shown in Fig. 5.11. These rather complex
results were interpreted by means of a VCA calculation, in which the
crystal-field parameters for the Tm ions were deduced from the dilute-
alloy experiments of Touborg (1977), while the single-ion anisotropy and
the two-ion coupling between the Tb ions were taken from the analysis
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Fig. 5.11. Excitations in the c-direction of Tb90Tm10 at 4K. The
Tb magnon modes, the crystal-field excitations on the Tm ions, and
the transverse phonons polarized parallel to the magnetization mutu-
ally interfere to produce the calculated dispersion relations shown by the
thick lines. The dashed lines indicate the unperturbed Tb magnons, and
the short and long dashes the phonons. A and O signify acoustic and

optical respectively.

of Jensen et al. (1975) of the magnon dispersion relations. The magnon–
phonon interaction, which plays an important role in determining the
dispersion relations, was incorporated in the calculations by the method
which will be presented in Section 7.3.1, which leads to results consis-
tent with those derived in Section 5.4.2. The effective exchange between
the moments on the different ions was scaled as in eqn (5.6.1–2), but
γ was given the value 0.24, instead of the 0.33 which (5.6.2) yields, in
order to fix correctly the energy of the first excited state on the Tm
ions. Such a departure from the simple de Gennes scaling is not partic-
ularly surprising for ions with very different orbital angular momenta.
In the system Pr95Er5, for example, Rainford et al. (1988b) found that
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Fig. 5.12. Experimental and calculated neutron-scattering spectra
in Tb90Tm10 for the indicated scattering vectors, which correspond to a
reduced wave-vector of 0.33 in Fig. 5.11. In the lower curve, the scattering
vector is in the c-direction, while it is close to the hexagonal plane in the
upper, where an unperturbed transverse phonon is observed. The ratio
of the impurity intensity to the magnon peak is roughly doubled when
the scattering vector moves from the c-direction to the plane, showing
that the magnetic fluctuations in the impurity mode are predominantly

along the c-axis.

the Er ions modify the two-ion coupling of the host substantially.
The theoretical results give a good account both of the excitation

energies and of the observed neutron-scattering spectra, as illustrated
in Fig. 5.12. They reveal that the difference between the interactions
of the Tb and Tm ions in this alloy has a profound influence on the
magnetic behaviour at the two types of site. The exchange forces the
Tm moment to lie in the plane at low concentrations but, according to
the calculations, the crystal fields reduce it from the saturation value of
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7µB to about 5.9µB, whereas the Tb moment is very close to saturation.
Furthermore, the first excited-state on the Tm ions is at a relatively low
energy, and the associated magnetic fluctuations are predominantly in
the c-direction, reflecting an incipient realignment of the moments, which
actually occurs at higher concentrations (Hansen and Lebech 1976). The
Tb fluctuations, on the other hand, are largely confined to the plane,
with the result that the neutron-scattering intensity stemming from the
c-axis fluctuations is comparable for the two types of site, even though
only 10% of the ions are Tm.

The CPA theory has not yet been applied to heavy rare earth-alloys.
The extra linewidth-effects due to the randomness are not expected to
be very pronounced in the 10% alloys. At low temperatures, they are of
the order of the contribution of the scattering against the electron-hole
pair excitations of the conduction electrons, and they become decreas-
ingly important compared with intrinsic effects at higher temperatures.
The CPA theory has been applied to the light rare earth-alloy Pr95Nd5

(Jensen 1979a) in the paramagnetic phase, where the linewidth effects
predicted by the CPA at 9K are found to be of the same order as the
intrinsic effects due to thermal disorder.

5.7 Conduction-electron interactions

As we have already discussed in Section 1.4, the conduction electrons
in the rare earth metals act as the medium through which the coupling
is established between the 4f electrons localized on the ions. In this
section, we shall investigate this RKKY coupling in more detail, and
consider its influence on both the spin waves in the ferromagnetic phase,
and also on the conduction electrons themselves. The indirect-exchange
interaction is first derived, and its effects in limiting the lifetimes of
the spin waves and in polarizing the conduction electrons are deduced.
The enhancement of the effective mass of the conduction electrons by
the dynamical magnetic fluctuations is then calculated. Finally, the
modification of the electrical resistivity by the exchange interaction is
discussed, including the scattering of the conduction electrons by the
spin-wave excitations, and the influence of the magnetic ordering on the
conduction-electron band structure. For completeness, we include the
effect of magnetic superzones in periodic structures in this section.

5.7.1 The indirect-exchange interaction
The starting point for our consideration of the indirect exchange, or
RKKY coupling, of the localized moments is the Heisenberg–Dirac ex-
change between the 4f electrons and the conduction electrons. The 4f -
core electrons of the ion at site i are assumed to be described to a good
approximation by non-overlapping atomic wavefunctions φ4f (r − Ri).
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We shall neglect the spin–orbit coupling of the conduction electrons,
and assume their wavefunctions to be the Bloch functions

ψnk(r) = unk(r) e
ik·r = ψnk(r−Ri) e

ik·Ri , (5.7.1)

independent of the spin state σ. unk(r) = unk(r −Ri) has the period-
icity of the lattice, and n is the band index. The Hamiltonian of the
conduction electrons in second quantization is

Hs =
∑
nkσ

εnkc
+
nkσcnkσ, (5.7.2)

where the index s is conventionally used for the conduction electrons
even though, as we saw in Section 1.3, they have predominantly d char-
acter. c+nk↑ creates and cnk↑ annihilates a spin-up electron in the band-
state (nk), and they are Fermi-operators which satisfy the anticommu-
tation relations

{cnkσ , c+n′k′σ′} ≡ cnkσc
+
n′k′σ′ + c+n′k′σ′cnkσ = δnn′δkk′δσσ′

{c+nkσ , c+n′k′σ′} = {cnkσ , cn′k′σ′} = 0.
(5.7.3)

An exposition of second quantization may be found, for example, in
White (1983). The exchange interaction between a pair of electrons is
−2Is1 · s2, where I is the exchange integral. If s1 is the spin of a 4f
electron at site i, then the sum over all the 4f electrons at this site gives∑

4f el.

−2Is1 · s2 = −2ISi · s2 = −2I(g − 1)Ji · s2,

where I is an average value of the exchange integral for the 4f elec-
trons, and states other than those in the ground-state J-multiplet are
neglected. The spin-density of the conduction electrons at r may be
expressed in second-quantized form so that, for instance,

s2z(r) =
∑
nn′

∑
kk′

ψ∗
n′k′(r)ψnk(r)

1
2

(
c+n′k′↑cnk↑ − c+n′k′↓cnk↓

)
. (5.7.4)

The introduction of the Bloch functions implies that the sf-exchange
interaction depends on:∫

dr1dr2ψ
∗
n′k′(r1)φ

∗
4f (r2 −Ri)

e2

|r1 − r2|
ψnk(r2)φ4f (r1 −Ri)

=
1

N
I(n′k′, nk)e−i(k′−k)·Ri ,
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with

I(n′k′, nk) = N

∫
dr1dr2ψ

∗
n′k′(r1)φ

∗
4f (r2)

e2

|r1 − r2|
ψnk(r2)φ4f (r1),

(5.7.5)
If there are several 4f electrons per ion, I(n′k′, nk) should be averaged
over their wavefunctions. The Hamiltonian Hsf , describing the exchange
interaction between the conduction electrons and the 4f electrons, is
found to be

Hsf = − 1

N

∑
i

∑
nn′

∑
kk′

(g − 1)I(n′k′, nk)e−i(k′−k)·Ri

×
[
(c+n′k′↑cnk↑ − c+n′k′↓cnk↓)Jiz + c+n′k′↑cnk↓J

−
i + c+n′k′↓cnk↑J

+
i

]
,

(5.7.6)
in second quantization, where N is the number of rare earth ions.

In the ordered ferromagnetic phase, we may use the MF approxi-
mation, in which case

Hsf (MF) = −
∑
nn′

∑
k

(g − 1)I(n′k, nk)(c+n′k↑cnk↑ − c+n′k↓cnk↓)〈Jz〉.

(5.7.7)
This Hamiltonian gives rise to both diagonal and off-diagonal contribu-
tions to the energies of the conduction electrons. The diagonal energies
are

εnk↑ = εnk − 〈Jz〉(g − 1)I(nk, nk)

εnk↓ = εnk + 〈Jz〉(g − 1)I(nk, nk).
(5.7.8)

Second-order perturbation theory then gives the energies of the band
electrons as

ε̃nkσ = εnkσ + 〈Jz〉2(g − 1)2
∑
n′ 6=n

|I(n′k, nk)|2
εnk − εn′k

. (5.7.9)

This dependence of the energies of the perturbed band-electrons on their
state of polarization implies that the electron gas itself develops a non-
zero magnetization. In order to calculate this moment, we first note that
(5.7.9) corresponds to a replacement of Hs + Hsf (MF) by an effective
Hamiltonian for the band electron,

H̃s =
∑
nkσ

ε̃nkσ c̃
+
nkσ c̃nkσ, (5.7.10)

where the new Fermi operators are determined in terms of the old by

cnk↑ = c̃nk↑ +
∑
n′

Uk(n, n
′)c̃n′k↑

cnk↓ = c̃nk↓ −
∑
n′

Uk(n, n
′)c̃n′k↓,

(5.7.11a)
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to leading order. Uk(n, n) = 0 and, for n′ �= n,

Uk(n, n′) = (g − 1)〈Jz〉
I(nk, n′k)
εnk − εn′k

. (5.7.11b)

The (approximately) diagonal form of (5.7.9) implies that the thermal
expectation values are

〈c̃+
nkσ c̃n′k′σ′〉 = δnn′δkk′δσσ′ fnkσ, (5.7.12a)

where
fnkσ =

1

eβ(ε̃
nkσ

−µ
F

) + 1
(5.7.12b)

is the Fermi–Dirac distribution function and µF is the chemical poten-
tial, equal to the Fermi energy ε̃F in the temperature regime in which
we shall be interested. The moment density is determined by (5.7.4),
and introducing the new Fermi operators and using (5.7.12), we obtain

〈µz(r)〉c.el. = µB

∑
nn′

∑
kk,

ψ∗
n′k′(r)ψnk(r)

(
〈c+

n′k′↑cnk↑〉 − 〈c+
n′k′↓cnk↓〉

)
= µB

∑
nn′

∑
k

ψ∗
n′k(r)ψnk(r)

[
{δnn′ + U∗

k(n′, n)}(fnk↑ − fnk↓)

+ Uk(n, n′)(fn′k↑ − fn′k↓)
]
. (5.7.13)

The uniform, averaged part of this moment density can be obtained
by an integration of eqn (5.7.13) over space, and remembering that the
wavefunctions are orthogonal and normalized, we find the magnetic mo-
ment of the conduction electrons per ion to be

〈µz〉c.el. = µB
1

N

∑
nk

(
fnk↑ − fnk↓

)
. (5.7.14)

We note that, in addition to this uniform polarization of the conduction
electrons, there is a spatially non-uniform component of the polarization
density with the periodicity of the lattice. This non-uniform component
reflects the variation in the electronic density, including the perturba-
tive changes due to the interband contributions proportional to Uk(n, n′).
Furthermore, when the spin–orbit coupling of the conduction electrons
is of importance, the interband coupling may induce a positional depen-
dence in the direction of the spin polarization.

In order to obtain order-of-magnitude estimates of the exchange
effects, we introduce a reasonable but somewhat crude approximation
for the exchange integral, which is due to Overhauser (1963) and has
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been discussed in detail by Freeman (1972). First we assume that the
Coulomb interaction in eqn (5.7.5) is strongly shielded, so that it can
be replaced by a δ-function. Next, using plane waves for the Bloch
functions, we obtain

(g − 1)I(nk′, nk) ≈ j(q = k′ − k) ∝
∫
dr|φ4f (r)|2e−iq·r, (5.7.15)

which is the form factor of the 4f -electron density, approximately the
same as the local moment density (4.1.15). In this simplified model,
where the conduction electrons are assumed to be free-electron-like, the
interband exchange integrals, in which n′ �= n, are obtained by adding
reciprocal-lattice vectors τ to q in eqn (5.7.15). In this model, we obtain
a rigid band-splitting, independent of k, between the spin-down and
spin-up bands, of magnitude

∆ = ε̃nk↓ − ε̃nk↑ = 2〈Jz〉j(0). (5.7.16)

Since j(0) has the same sign as (g − 1), it is positive in the heavy rare
earth metals. If N (ε) is the density of electronic states per ion and per
spin state in the paramagnetic phase, the shifts of the spin-up and spin-
down bands lead to an excess number of spin-up electrons proportional
to

N (ε̃F ) =
1
∆

∫ ε̃F +∆
2

ε̃
F
−∆

2

N (ε)dε, (5.7.17)

when the small modification of the density of states due to the interband
coupling is neglected, so that ε̃F is close to the Fermi energy εF of
the non-magnetic system. In combination with eqn (5.7.14), this result
predicts a (positive) augmentation of the ferromagnetic moment of the
4f electrons, due to the conduction electrons, of magnitude

〈µz〉c.el. = µBN (ε̃F )∆, (5.7.18)

when kBT � ε̃F . The total moment per ion may then be expressed in
terms of an effective g-factor:

〈µz〉 = gµB〈Jz〉 + 〈µz〉c.el. = (g + ∆g)µB〈Jz〉, (5.7.19a)

where
∆g = 2j(0)N (ε̃F ). (5.7.19b)

In the metals, the effective exchange integral j(0) is ∼ (g − 1)× 0.1 eV,
leading to an exchange splitting ∆ which, in Gd for example, is nearly 1
eV. This relatively large splitting has the consequence that N (ε̃F ) may
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differ somewhat from the value N (εF ) in the paramagnetic phase. In
the hcp metals, the band structure calculations discussed in Section
1.3 reveal that εF is near a peak in the density of states due to the d
electrons, and that N (εF ) 	 1 eV−1 per spin state per ion, corresponding
to an electronic moment of the order of one-tenth of the local moment.
In the example of Gd, for which g = 2, ∆g = 0.18. The same value of
∆g/(g− 1) accounts fairly well for the conduction-electron contribution
to the moments of the other heavy rare earths in Table 1.6, bearing
in mind the uncertainties in the experimental results, and the possible
effects of the crystal fields in quenching the local moments.

The spin waves in the ferromagnetic phase are decisively influenced
by the sf -exchange interaction. In order to consider such effects, we
introduce the Bose operators acting on the angular-momentum states,
as in eqns (5.2.6–8), and find, to first order in 1/J ,

Hsf 	 Hsf (MF) − 1
N

∑
kqτ

∑
i

j(q + τ ) e−iq·Ri

[
−δq0(〈c+k+τ ↑ck↑〉

− 〈c+k+τ ↓ck↓〉)a+
i ai +

√
2Jc+k+q+τ ↑ck↓ a

+
i +

√
2Jc+k+q+τ ↓ck↑ ai

]
,

using the simplified exchange of eqn (5.7.15), and neglecting effects of
third or higher order in j(q) due to (c+k′σckσ − 〈c+k′σckσ〉)a+

i ai. q is
assumed to lie in the primitive Brillouin zone, but no such restriction
is placed on k. We note that c+k and c+k+τ , where τ is a reciprocal
lattice vector, create electrons in different bands in the free-electron
model. Introducing the crystal-field Hamiltonian to first order in 1/J
(eqn (5.2.14) with J (ij) = 0), and the Fourier transforms of the Bose
operators (5.2.16), we find that the total magnetic Hamiltonian becomes

H = H̃s +
∑
q

[
{A+ JJ̃ (0, 0)}a+

q aq +B 1
2 (aqa−q + a+

q a
+
−q)

]
−
√

2J/N
∑
kqτ

j(q + τ )
(
c+k+q+τ ↑ck↓ a

+
−q + c+k+q+τ ↓ck↑ aq

)
,

(5.7.20)
where

J̃ (0, 0) = 2j2(0)N (ε̃F ) +
2
N

∑
k,τ �=0

|j(τ )|2
fk↓ − fk+τ ↑
εk+τ − εk

, (5.7.21)

including the ‘interband’ contributions as in (5.7.9). The spin-wave en-
ergies may be obtained from the poles in the Green function 〈〈aq ; a+

q 〉〉.
The equation of motion (3.3.14) for this Green function is determined
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from H to be{
h̄ω −A−JJ̃ (0, 0)

}
〈〈aq ; a+

q 〉〉 −B〈〈a+
−q ; a+

q 〉〉

+
√

2J/N
∑
kτ

j(−q− τ )〈〈c+k−q−τ ↑ck↓ ; a+
q 〉〉 = 1. (5.7.22)

The equation of motion of the new Green function 〈〈c+k−q−τ ↑ck↓ ; a+
q 〉〉

involves the following commutator:

[ c+k−q−τ ↑ck↓ ,H ] =
(
εk↓ − εk−q−τ ↑

)
c+k−q−τ ↑ck↓

+
√

2J/N
∑
q′
j(q′)

(
c+k−q−τ+q′↓ck↓ − c+k−q−τ ↑ck−q′↑

)
aq′

	
(
εk↓ − εk−q−τ ↑

)
c+k−q−τ ↑ck↓ +

√
2J/N j(q + τ )

(
fk↓ − fk−q−τ ↑

)
aq

(5.7.23)
obtained by applying the anticommutator relations (5.7.3) and, in the
second equation, an RPA decoupling of the operator products. It is
not necessary here to differentiate between the new and the old Fermi
operators, as the differences introduce corrections only in the third order
of |j(q)|. Introducing this RPA result in the equation of motion for the
Green function 〈〈c+k−q−τ ↑ck↓ ; a+

q 〉〉, we obtain(
h̄ω − εk↓ + εk−q−τ ↑

)
〈〈c+k−q−τ ↑ck↓ ; a+

q 〉〉

−
√

2J/N j(q + τ )
(
fk↓ − fk−q−τ ↑

)
〈〈aq ; a+

q 〉〉 = 0,
(5.7.24)

which, in combination with (5.7.22), leads to{
h̄ω−A−JJ̃ (0, 0)+JJ̃ (q, ω)

}
〈〈aq ; a+

q 〉〉−B〈〈a+
−q ; a+

q 〉〉 = 1, (5.7.25)

where

J̃ (q, ω) = lim
ε→0+

2
N

∑
τ

|j(q + τ )|2
∑
k

fk↓ − fk−q−τ ↑
h̄ω + ih̄ε− εk↓ + εk−q−τ ↑

.

(5.7.26a)
This result may be expressed in terms of the susceptibility of the con-
duction electrons. Introducing the spin susceptibility per ion, which is
the usual magnetic susceptibility times (2µB)−2V/N , so that

χ+−
c.el.(q, ω) = − 1

N

∫
dr1dr2〈〈s+(r1) ; s−(r2)〉〉 e−iq·(r1−r2)

= − 1
N

∑
k′k′′

〈〈c+k′−q↑ck′↓ ; c+k′′+q↓ck′′↑〉〉

= lim
ε→0+

1
N

∑
k

fk↓ − fk−q↑
h̄ω + ih̄ε− εk↓ + εk−q↑

,

(5.7.26b)
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and neglecting the higher-order corrections to the spin-susceptibility,
due to the coupling to the local moments, we can write the above result

J̃ (q, ω) = 2
∑
τ

|j(q + τ )|2χ+−
c.el.(q + τ , ω), (5.7.26c)

where by the relation (3.2.15), χ+−
c.el.(q, ω) = [χ−+

c.el.(−q,−ω)]∗. In gen-
eral, when the Coulomb interaction cannot be approximated by a δ-
function, this factorization is not valid, and the indirect exchange is
instead given by

J̃ (q, ω) =

lim
ε→0+

2
N

∑
nn′

∑
k

(g − 1)2|I(n′k − q, nk)|2
fnk↓ − fn′k−q↑

h̄ω + ih̄ε− εnk↓ + εn′k−q↑
,

(5.7.27)
where k is now confined to the primitive Brillouin zone.

In the frequency regime of the spin waves, where |h̄ω| is much
smaller than the Fermi energy or the exchange splitting ∆, the fre-
quency dependence of J̃ (q, ω) can, to a good approximation, be ne-
glected. The spins of the conduction electrons respond essentially in-
stantaneously to any changes in the state of the local angular momenta,
compared with the time-scale of these changes. For a Bravais-lattice,
J̃ (q, ω) 	 J̃ (q, 0) = J̃ (−q, 0). A comparison of eqn (5.7.25) with the
1/J spin-wave result (5.2.18) shows that J̃ (0, 0) − J̃ (q, 0) replaces the
contribution of the Heisenberg interaction considered in eqn (5.2.1). In
this equation, J (ii) ≡ 0 by definition and, since this is not the case for
J̃ (ii) = (1/N)

∑
q J̃ (q, 0), J̃ (q, 0) cannot be associated directly with

J (q). The instantaneous or frequency-independent part of the coupling
of Ji with itself leads to a contribution 1

2N J̃ (ii)〈Ji · Ji〉 to the total
energy, where 〈Ji ·Ji〉 = J(J + 1), independently of the magnetic order-
ing or the temperature. This assertion may be verified (to first order
in 1/J) by a direct calculation of 〈H〉 from (5.7.20). For this purpose
〈c+k−q−τ ↑ck↓a

+
q 〉, for instance, is determined from eqn (5.7.24), but a

self-energy correction of a factor 1/2 must be included in its contribu-
tion to 〈H〉. Taking this condition into account, we may finally write

J (q) = J̃ (q, 0) − 1

N

∑
q′

J̃ (q′, 0). (5.7.28)

The exchange interaction between the 4f electrons and the conduction
electrons thus leads to an effective Heisenberg interaction between the
local angular momenta, as given in (5.2.1). This is the RKKY interaction
discussed earlier in Section 1.4.
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The above calculation has been performed for a Bravais lattice, but
the result (5.7.26) is readily generalized to a crystal with a basis of p
ions, as the conduction electrons, in the approximation adopted, are
not affected by the presence of the basis. If the couplings between the
different sublattices are introduced in an equivalent manner to (5.1.1),
then

J̃ss′ (q, ω) = 2

p

∑
τ

|j(q + τ )|2χ+−
c.el.(q + τ , ω) exp

(
iρss′ · τ

)
(5.7.29)

replaces (5.7.26c), where ρss′ is the vector connecting the two sublattices
s and s′.

The interaction between the localized moments is effectuated via
virtual electron-hole pair-excitations of the conduction electrons. The
transmission of any time-dependent event may be disturbed in two ways;
either by the finite propagation-time of the pairs, or by a decay of the
pair states into unbound electron and hole excitations, the so-called
Stoner excitations. The second effect produces by far the most impor-
tant correction to the instantaneous interaction, but we shall begin with
a discussion of the frequency-dependence of the real part of J̃ (q, ω), due
to the finite transmission time. Returning to the simple model leading
to (5.7.26), we find that the exchange coupling is proportional to the
susceptibility function χ+−

c.el.(q, ω), which for unpolarized free electrons
is the same as the Lindhard function (Lindhard 1954). If corrections of
the order kBT/εF are neglected, the real part at zero wave-vector is

Re
[
χ+−

c.el.(0, ω)
]

=
1
N

∑
k

fk↓ − fk↑
h̄ω − εk↓ + εk↑

=
1
N

∑
k

fk↑ − fk↓
∆ − h̄ω

= N (ε̃F )
(
1 +

h̄ω

∆

)
.

(5.7.30)

From this result, we find immediately that the intra-band contribution
at zero frequency to J̃ (q → 0, 0) in eqn (5.7.26a) is 2j2(0)N (ε̃F ), which
is the same as in (5.7.21). On the other hand, the interband contri-
butions differ in the two expressions, as the denominator in (5.7.26a)
involves the exchange splitting ∆, whereas that in (5.7.21) does not.
However, this difference can be neglected, as it is of the order (∆/εF )2

times the intra-band contribution, which is beyond the order considered
in these calculations. In fact, since the starting Hamiltonian (5.7.6) is
invariant with respect to the choice of z-axis for the electronic spins
and the angular momenta, the spin-wave frequency must vanish when
q → 0 and A = B = 0, according to the Goldstone theorem, which will
be discussed in the next chapter. Therefore J̃ (q → 0, 0) = J̃ (0, 0),
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and we simply assume that eqn (5.7.26a), with (q, ω) = (0, 0), replaces
eqn (5.7.21). In the presence of an external field, ∆ in eqn (5.7.16) is
increased by an amount 2µBH , which leads to the extra contribution
∆gµBH to J̃ (0, 0) in (5.7.21), as the change with field of the interband
terms may be neglected. To leading order, J̃ (q → 0, 0) is not affected
by the applied field, so to this order the extra polarization of the con-
duction electrons, due to an external field, may simply be accounted
for by replacing gµBH by (g + ∆g)µBH , both in the Zeeman energy
(5.7.19a) and in the spin-wave energy parameters (in A). Writing the
susceptibility in eqn (5.7.26b) as the sum of two terms, and replacing
k − q by k in the term involving fk−q↑, we obtain

Re
[
χ+−

c.el.(q, ω)
]

=

V

(2π)3
2π
N

∫ kF↓

0

k2dk

∫ 1

−1

dµ
[
h̄ω − ∆ +

(h̄q)2

2m
− h̄2kq

m
µ
]−1

− V

(2π)3
2π
N

∫ kF↑

0

k2dk

∫ 1

−1

dµ
[
h̄ω − ∆ − (h̄q)2

2m
− h̄2kq

m
µ
]−1

,

or

Re
[
χ+−

c.el.(q, ω)
]

=
V

N

m

(2πh̄)2
{
kF↓(1 − η)F

( q

2kF↓
(1 − η)

)
+ kF↑(1 + η)F

( q

2kF↑
(1 + η)

)}
(5.7.31a)

where we have introduced the function

F(x) =
1
2

+
1 − x2

4x
ln
∣∣∣∣1 + x

1 − x

∣∣∣∣ (5.7.31b)

and the parameter

η =
∆ − h̄ω

εF

(
kF

q

)2

. (5.7.31c)

The Fermi energy is εF = (h̄kF )2/2m, and the wave-vectors of the spin-
up and the spin-down electrons at the Fermi surface are

kF↑ = kF

(
1 +

∆
2εF

) 1
2 ; kF↓ = kF

(
1 − ∆

2εF

) 1
2 . (5.7.31d)

η → ∞ in the limit q → 0 and, using F(x) = 1/3x2 when |x| → ∞, we
may re-derive the result (5.7.30). At non-zero q, a numerical analysis
shows that, to a good approximation,

Re
[
χ+−

c.el.(q, ω)
]

= N (ε̃F )
{
F
( q

2kF

)
+ ξq

h̄ω

∆

}
, (5.7.32)
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even when ∆/εF is as large as 0.5. The parameter ξq is equal to 1
at q = 0, and peaks at q = q0 = kF↑ − kF↓, after which it rapidly
decreases (ξq 	 0.25 at q = 2q0). For ∆/εF = 0.1, the maximum value
is about 4 and it decreases for increasing values of ∆, falling to about
3 at ∆/εF = 0.4. Usually q0 is much smaller than the length of any
reciprocal-lattice vector, which means that the frequency dependence of
the ‘interband’ term in the real part of J̃ (q, ω) can be neglected. The
intra-band contribution is 2|j(q)|2N (ε̃F )ξqh̄ω/∆, and using

{
h̄ω +A+ JJ̃ (0, 0) − JJ̃ ∗(−q,−ω)

}
〈〈a+

−q ; a+
q 〉〉 +B〈〈aq ; a+

q 〉〉 = 0,
(5.7.33)

which follows by symmetry from eqn (5.7.25), we may determine the
spin-wave energies from the real part of J̃ (q, ω) to be

h̄ω = E′
q = Eq

[
1 + ξqN (ε̃F )|j(q)|2/j(0)

]−1
, (5.7.34a)

to first order in 1/J , with Eq given by (5.2.22). The extra factor, which
originates from the frequency dependence of χ+−

c.el.(q, ω), differs from 1
by only a few per cent, and its q-dependent contribution could scarcely
be distinguished from that of J (q). However, the presence of this factor
at q = 0 means that the energy of the uniform spin-wave mode is no
longer determined exclusively by the magnetic anisotropy of the bulk,
according to (5.4.12) and (5.4.19), when the magnetoelastic effects are
included, but instead the energy gap is

E′
0 =

1
N

(
∂2F

∂θ2
∂2F

∂φ2

∣∣∣∣
ε

)1
2 1
〈Jz〉(1 + 1

2∆g)
. (5.7.34b)

Although this modification is small, it demonstrates that the frequency
dependence of χ+−

c.el.(q, ω) may cause small deviations between the static
anisotropy parameters and those derived from the energy gap, as possi-
bly detected in Tb in the form of a non-zero value of δ6(−), defined by
eqn (5.4.23a).

The dominant term in the real part of χ+−
c.el.(q, ω) is the frequency-

independent contribution proportional to F(q/2kF ). Including only this
contribution, and making the rather drastic simplifying assumption that
|j(q + τ )| in eqn (5.7.26c) is a constant |j0| at all wave-vectors, we may
derive the exchange coupling in real space, which then depends only on
the distance R between the different ions:

J (R) = 2|j0|2
V

N(2π)3

∫
N (ε̃F )F

( q

2kF

)
eiq·Rdq.
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The sum over τ in (5.7.26c) corresponds to letting q vary between 0 and
∞, and the result is

J (R) = 12πν|j0|2N (ε̃F )
sin(2kFR) − 2kFR cos(2kFR)

(2kFR)4
, (5.7.35)

where ν is the number of conduction electrons per ion; ν = V k3
F /3π

2N .
Although this result is not directly applicable to realistic systems, it
demonstrates explicitly that the indirect coupling mediated by the con-
duction electrons is long range, J (R) ∝ R−3 for large R, and that it
oscillates. The period of the oscillation is here 2π/2kF whereas, in a real
system, such oscillations may occur as a result of large parallel areas of
Fermi surface, the separation of which determines an effective value of
2kF . It is interesting that J (R), derived from the excitation spectrum
in Pr and shown in Fig. 1.18 on page 49, is reasonably well described
by the above function, especially when R is in the basal plane, provided
that an effective value of 2kF of about 1.1 Å−1 is used.

The magnetic scattering of the electron-hole pairs leads to a damp-
ing of the spin waves, which is determined by the imaginary part of the
susceptibility (5.7.26b). The complementary result to eqn (5.7.31a) is
then

Im
[
χ+−

c.el.(q, ω)
]

=

− V

(2π)3
2π
N

∫ ∞

0

k2dk

∫ 1

−1

dµπδ
(
h̄ω − ∆ +

(h̄q)2

2m
− h̄2kq

m
µ
)
fk↓

+
V

(2π)3
2π
N

∫ ∞

0

k2dk

∫ 1

−1

dµπδ
(
h̄ω − ∆ − (h̄q)2

2m
− h̄2kq

m
µ
)
fk↑.

Because −1 < µ < 1, the δ-function argument in the first term can only
be zero if εq ≡ (h̄q)2/(2m) lies between the two roots ε± = 2εk + ∆ −
h̄ω ± 2

[
εk(εk + ∆ − h̄ω)

]1/2. For the second term, the same condition
applies, except that the signs of ∆ and h̄ω are reversed, leading to the
extra requirement that εk > εK = ∆ − h̄ω. If these conditions are
satisfied,

Im
[
χ+−

c.el.(q, ω)
]

=

− V

N(2π)2

∫ ∞

0

πm

h̄2q
kf(εk + ∆

2 )dk +
V

N(2π)2

∫ ∞

K

πm

h̄2q
kf(εk − ∆

2 )dk,

where f(ε) = 1/
[
exp(ε−εF )+1

]
. By a suitable change of variables, the

two integrals acquire the same limits and the same condition on εq, and
they may therefore be combined in a single integral:

Im
[
χ+−

c.el.(q, ω)
]

=
V

N(2π)2
πm2

h̄4q

∫ ∞

∆−h̄ω
2

{
−f(ε+ h̄ω

2 ) + f(ε− h̄ω
2 )
}
dε.
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The integrand is only non-zero in a narrow interval of width |h̄ω| �
∆ < εF around the Fermi surface, in which case the condition on εq can
be written kF↑ − kF↓ < q < kF↑ + kF↓ (if ∆ = 0 the lower boundary is
replaced by (h̄ω)2/(4εF ) < εq). With this condition fulfilled,

Im
[
χ+−

c.el.(q, ω)
]

=
V

N(2π)2
πm2

h̄4q
h̄ω,

independent of T (as long as kBT � εF ). Using

Nσ(εF ) = (V/N)(2πh̄)−22mkFσ ; (V/N)(2π)−2 2
3 (k3

F↑ + k3
F↓) = ν,

where ν is the number of conduction electrons per ion (ν = 3), we may
write the result:

Im
[
χ+−

c.el.(q, ω)
]

=
π

3ν
N↑(εF )N↓(εF )

kF

q
h̄ω; (5.7.36)

kF↑ − kF↓ < q < kF↑ + kF↓,

neglecting corrections of second order in ∆/εF . In the zero-frequency
limit considered here, q has to exceed the threshold value q0 = kF↑−kF↓
before the imaginary part of χ+−

c.el.(q, ω) becomes non-zero. This thresh-
old value corresponds to the smallest distance in q-space between an oc-
cupied spin-down state and an unoccupied spin-up state, or vice versa,
of nearly the same energy (	 εF ). At q = q0, the function makes a dis-
continuous step from zero to a finite value. The above result, combined
with eqn (5.7.26), leads to

Im
[
J̃ (q, ω)

]
= ζ(q)h̄ω, (5.7.37a)

with

ζ(q) =
2π
3ν

N↑(εF )N↓(εF )
∑
τ

|j(q + τ )|2 kF

|q + τ | , (5.7.37b)

where the sum is restricted to kF↑ − kF↓ < |q + τ | < kF↑ + kF↓. The
imaginary part of J̃ (q, ω) gives rise to a non-zero width in the spin-wave
excitations. If the above result is inserted in eqns (5.7.25) and (5.7.33),
the denominator of the Green functions may approximately be written
(h̄ω)2−(E′

q)2 +2iΓqh̄ω, where Γq is half the linewidth of the spin waves
at the wave-vector q, and is found to take the form

Γq = J
[
A+ J{J (0) − J (q)}

]
ζ(q) = JAq ζ(q). (5.7.38)
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Fig. 5.13. The linewidths of magnons propagating in the c-direction of
Tb at 4K, compared with a theory based upon the nearly-free-electron
model. The abrupt changes in the calculated lifetimes are due to the

spin-splitting of the Fermi surface.

The lifetimes of the magnons propagating in the c-direction in Tb
at 4K, at which temperature the conduction electrons provide the dom-
inant scattering process, were measured by Bjerrum Møller and Mack-
intosh (1979). As illustrated in Fig. 5.13, the linewidths are small, but
non-zero, at small wave-vectors, rise abruptly at about a quarter of the
way to the zone boundary, and fall again at large q. In order to inter-
pret these results rigorously, it would be necessary to use eqn (5.7.27),
with the correct band structure for Tb and realistic values for the ex-
change matrix elements I(n′k′, nk). However, it is possible to obtain a
semi-quantitative description by using the simple free-electron expres-
sion (5.7.37). As we shall see in the remainder of this section, this model,
with an sf -interaction determined, for example, from the polarization of
the conduction electrons (5.7.16–19), gives a surprisingly good account
of the real scattering processes involving the interaction between the 4f
and conduction electrons. Although the dominant d bands are far from
parabolic in the rare earths, the nearly-free-electron Fermi surface for a
trivalent hcp metal has a sheet with the form of a lens normal to the
c-axis (Mackintosh et al. 1963), which mimics the Fermi-surface webbing
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described in Section 1.3, and reproduces a number of observed features.
In the calculations of Jensen (1982a), compared with the experimen-
tal results in Fig. 5.13, the spin-splitting of this surface gives rise to the
critical value q0 at which the linewidths abruptly increase. The finite life-
times below this cut-off are due to interband transitions between states
on sections of the Fermi surface with opposite spin, which intersect in
the primitive Brillouin zone after translation through a reciprocal-lattice
vector. These effects will also occur in calculations based on a realistic
band structure, whereas the behaviour at higher q is much more depen-
dent on the details of the energy bands.

5.7.2 The mass-enhancement of the conduction electrons
The processes in which the spin waves are scattered by the electron-
hole pair excitations of the conduction electrons, and which therefore
limit their lifetime, also have consequences for the conduction electrons.
The energies of the conduction electrons are changed, and hence also
their effective mass at the Fermi surface m∗, as measured directly by
cyclotron resonance or the de Haas–van Alphen effect, or as determined
from the low-temperature heat capacity. In the zero-temperature limit,
the electronic part of the specific heat is

C = γT =
m∗

m
γ0T ; γ0 = 1

3π
2k2

B

{
N↑(ε̃F ) + N↓(ε̃F )

}
N, (5.7.39)

where m∗ = (m∗
↑ + m∗

↓)/2 in the spin-polarized case. The use of ε̃F

instead of εF is meant to indicate that all the effects of the MF Hamil-
tonian, including the interband couplings in (5.7.7), are assumed to be
incorporated in γ0 or m.

In order to calculate m∗, we shall utilize the Green functions of
the conduction electrons. Because these particles are fermions, it is
convenient to introduce an alternative type of Green function, in which
an anticommutator bracket replaces the commutator bracket occurring
in the definition (3.3.12), so that, for instance,

G↑(k, t− t′) ≡ 〈〈ck↑(t) ; c+k↑(t
′)〉〉+ = − i

h̄
θ(t− t′)〈{ck↑(t) , c

+
k↑(t

′)}〉.
(5.7.40)

The Fourier transform obeys an equation of motion equivalent to eqn
(3.3.14a), except that the commutator on the right-hand side of this
equation is replaced by the anticommutator, or

h̄ωG↑(k, ω) − 〈〈[ ck↑ , H ] ; c+k↑〉〉+ = 〈{ck↑ , c
+
k↑}〉 = 1. (5.7.41)

If H is approximated by H̃s, given by eqn (5.7.10), we obtain the non-
interacting value of the Green function

G↑(k, ω) 	 Go
↑(k, ω) =

1
h̄ω − εk↑

(5.7.42)
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(neglecting the minor difference between ε and ε̃), showing that the poles
of the Green function determine the energies of the conduction elec-
trons. Considering the total Hamiltonian, in the approximation given
by (5.7.20), we have instead

(h̄ω − εk↑)G↑(k, ω) +
√

2J/N
∑
qτ

j(q + τ )〈〈ck−q−τ ↓a
+
−q ; c+k↑〉〉+ = 1.

(5.7.43)
The equation of motion of the new Green function is determined from

[ ck−q−τ ↓a
+
−q , H ]

=
{
εk−q−τ ↓ −A− JJ̃ (0, 0)

}
ck−q−τ ↓a

+
−q −B ck−q−τ ↓aq

−
√

2J/N
∑
k′τ ′

j(−q − τ ′)
[
c+k′−q−τ ′↓ck−q−τ ↓ck′↑

+ δk−τ ,k′−τ ′ 〈a+
−qa−q〉ck+τ ′−τ ↑

]
,

using an RPA decoupling procedure to obtain the last term. To pro-
ceed further, we have to calculate 〈〈c+k′−q−τ ′↓ck−q−τ ↓ck′↑ ; c+k↑〉〉+ and,
within the RPA,

〈〈c+k′−q−τ ′↓ck−q−τ ↓ck′↑ ; c+k↑〉〉+
= δk′−τ ′,k−τ fk−q−τ ↓〈〈ck+τ ′−τ ↑ ; ck↑〉〉+

−
√

2J/N
j(q + τ ′){fk′↑ − fk′−q−τ ′↓}

h̄ω − εk′↑ − εk−q−τ ↓ + εk′−q−τ ′↓
〈〈ck−q−τ ↓a

+
−q ; c+k↑〉〉+.

Writing h̄ω1 = h̄ω − εk−q−τ ↓, we obtain from these equations

{
h̄ω1 +A+ JJ̃ (0, 0) − JJ̃ ∗(q,−ω1)

}
〈〈ck−q−τ ↓a

+
−q ; c+k↑〉〉+

+B〈〈ck−q−τ ↓aq ; c+k↑〉〉+
= −

√
2J/N

∑
τ ′

j(−q− τ ′)
(
fk−q−τ ↓ + 〈a+

−qa−q〉
)
〈〈ck+τ ′−τ ↑ ; c+k↑〉〉+.

(5.7.44)
In the sum, the terms with τ ′ �= τ only lead to higher-order corrections,
of the same type as those arising from the difference between ck↑ and
c̃k↑, and they can be neglected. Calculating 〈〈ck−q−τ ↓aq ; c+k↑〉〉+ in an
equivalent way, and introducing the notation:

Gm1(q, ω) = 〈〈aq ; a+
q 〉〉 ; Gm2(q, ω) = 〈〈a+

q ; aq〉〉 = G∗
m1(q,−ω)

Gm3(q, ω) = 〈〈a+
−q ; a+

q 〉〉 (5.7.45)



272 5. SPIN WAVES IN THE FERROMAGNETIC RARE EARTHS

for the magnon Green functions determined by (5.7.25) and (5.7.33), we
obtain

〈〈ck−q−τ ↓a
+
−q ; c+k↑〉〉+ =

√
2J/N j(−q− τ )G↑(k, ω)

×
[
{fk−q−τ ↓ + 〈a+

q aq〉}Gm2(q, ω1) − 〈aqa−q〉Gm3(q, ω1)
]
.

(5.7.46)

Defining the self-energy of the spin-up electrons by the relation

G↑(k, ω) =
1

h̄ω − εk↑ − Σ↑(k, ω)
, (5.7.47)

and using (3.1.10) to establish that

Gm(q, ω) =
1
iπ

∫
Gm(q, ω′)
h̄ω′ − h̄ω

d(h̄ω′),

we obtain finally

Σ↑(k, ω) = −2J
N

∑
qτ

|j(q + τ )|2 1
iπ

∫ ∞

−∞

d(h̄ω′)
h̄ω′ − h̄ω + εk−q−τ ↓

×
[
{fk−q−τ ↓ + 〈a+

q aq〉}Gm2(q, ω
′) − 〈aqa−q〉Gm3(q, ω

′)
]
. (5.7.48)

This result corresponds to that deduced by Nakajima (1967), as gener-
alized by Fulde and Jensen (1983).

The average effective mass of the spin-up electrons at the Fermi
surface is determined by

1
m∗

↑
=

1
h̄2k

∂Ek↑
∂k

∣∣∣∣
k=k

F↑

,

averaged over the direction of k. Here Ek↑ = εk↑+Re
[
Σ↑(k, Ek↑)

]
is the

corrected energy of the spin-up electrons. We can neglect the explicit
k-dependence of Σ↑(k, ω) in comparison to its frequency dependence,
disregarding terms of the order Eq/εF in the derivative of Ek↑, so that

∂Ek↑
∂k

=
∂εk↑
∂k

+
1
h̄

∂

∂ω
Re
[
Σ↑(k, ω)

]∣∣∣∣
h̄ω=E

k↑

∂Ek↑
∂k

,

or
m∗

↑
m

= 1 − 1
h̄

∂

∂ω
Re
[
Σ↑(kF↑, ω)

]∣∣∣∣
h̄ω=E

F

, (5.7.49)

averaged over the Fermi surface. Within the same approximation, the
terms in eqn (5.7.48) proportional to the magnon correlation-functions
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can be neglected and, to leading order, h̄ω = EF in the ω-derivative may
be replaced by εk↑, with k = kF↑. In the limit of zero temperature, the
free-electron model then gives

m∗
↑
m

= 1 +
2J
N

∑
qτ

|j(q + τ )|2 1
π

∫ ∞

−∞
d(h̄ω′)

× 1
2

∫ 1

−1

dµ
Im
[
Gm2(q, ω

′)
](

h̄ω′ + ∆ + (h̄|q+τ |)2
2m − h̄2k|q+τ |

m µ
)2 ,

subject to the conditions that k = kF↑ and |k − q − τ | < kF↓. These
conditions imply that kF↑−kF↓ < |q+τ | < kF↑+kF↓, and that the lower
bound −1 of the µ-integral is replaced by (h̄2q2+2m∆)/(2h̄2kF↑|q+τ |).
Because Im

[
Gm2(q, ω′)

]
is odd in ω′, the contribution due to the upper

bound in the µ-integral can be neglected (it is of the order h̄ω′/εF ).
Since

1
π

∫ ∞

−∞

Im
[
Gm2(q, ω′)

]
h̄ω′ d(h̄ω′) = Re

[
Gm2(q, 0)

]
= −

Aq

E2
q

,

the average mass-enhancement of the spin-up electrons at the Fermi
surface is

m∗
↑
m

= 1 +
N↓(εF )
2kF↑kF↓

∫ kF↑+kF↓

k
F↑−k

F↓

dq

∫
dΩq

4π
q|j(q)|2

2JAq

E2
q

, (5.7.50)

and, by symmetry, m∗
↓/m is given by the same expression, except that

N↓(εF ) is replaced by N↑(εF ). We note that the mass-enhancement only
depends on the static part of the susceptibility, i.e. Gm2(q, 0), and that
the magnitude of the mass-renormalization is intimately related to the
linewidth of the spin waves derived above in eqn (5.7.38). Utilizing this
connection, we can write the specific heat, in the zero-temperature limit,

C =
π2

3
k2

BT

[
N↑(εF ) + N↓(εF ) +

1
N

∑
q

2Γq

πE2
q

]
N, (5.7.51)

where again the q-sum only extends over the primitive Brillouin zone.
With typical values of EqN (εF ) ≈ 0.01 and 2Γq/Eq ≈ 0.05, this expres-
sion predicts a doubling of the linear term in the heat capacity due to the
interaction between the conduction electrons and the spin waves, which
therefore has an appreciable effect on the effective mass of the electrons
near the Fermi surface. More detailed analyses (Nakajima 1967; Fulde
and Jensen 1983) show that the deformation of the electronic bands is
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pinned to the Fermi surface, and occurs within a narrow interval with a
width corresponding to the spin-wave energies. This implies that, even
if the electronic energies εkσ appearing in the magnon Green-functions
were replaced with Ekσ, due to higher-order processes, this modification
would not be of much importance. The total electronic heat capacity
is Ce =

∑
kσ Ekσdfkσ/dT , when the imaginary part of the self-energy is

neglected. The extra contribution due to the coupling to the spin waves
is linear only at the lowest temperatures (kBT < 0.05Eq), after which it
increases more rapidly than linearly to its maximum at kBT 	 0.15Eq.
Above kBT 	 0.3Eq, this contribution becomes negative and finally dies
out when kBT ≈ Eq. This variation with temperature was described
by Fulde and Jensen (1983), and has been discussed in the context of
the phonon interaction by Grimvall (1981). The bosons (magnons and
phonons) do not contribute directly to the linear term in the heat capac-
ity, which is thus a characteristic phenomenon of the Fermi gas. How-
ever, the departure from the linear variation when kBT > 0.05Eq may
be influenced by the spin-wave contribution

Cm =
∑
q

1
π

∫ ∞

−∞
d(h̄ω) 2Γq(h̄ω)3{

(h̄ω)2 − E2
q(T )

}2
+
{
2Γqh̄ω

}2

d

dT

( 1
1 − e−βh̄ω

)
	
∑
q

Eq(T )
d

dT

(
nq + 1

2

)
+
π2

3
k2

BT
∑
q

2Γq

πE2
q

[
2

5y2
+

4

7y4
+ · · ·

]
y=βEq/2π

,

(5.7.52)
to first order in Γq/Eq. The first term is the RPA spin-wave contribu-
tion (5.3.3) derived before, which dominates strongly at elevated tem-
peratures. However, in the low-temperature limit, the second term is
of the same order of magnitude as the non-linear corrections to eqn
(5.7.51). For comparison, the last term in this equation is multiplied
by the factor

[
1 + 3/(5y2) + 5/(7y4) + · · ·

]
when the higher-order tem-

perature effects are included. The additional contribution due to the
non-zero linewidth of the bosons is normally not considered in the lit-
erature. It may be added to the pure electronic contribution derived by
Fulde and Jensen (1983), by replacing yL′(y) with 2yL′(y)+L(y) in their
eqn (17a). The mass-enhancement effect increases proportionally to the
inverse of Eq (Γq ∝ Aq). On the other hand, the interval in which the
linear variation occurs is diminished correspondingly, requiring a more
careful consideration of the higher-order modifications.

In the metals, the itinerant electrons also interact with the phonons,
and this leads to an entirely equivalent enhancement of their mass. This
effect has been calculated for the whole rare earth series by Skriver and
Mertig (1990), who find an increase of the band mass due to coupling to
the phonons of typically about 35% for the heavy elements. Assuming
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the different contributions to be additive, we may write the total mass-
enhancement

m∗

m
= 1 + λtot = 1 + λsw + λph + λc (5.7.53)

as a sum of contributions from the interactions with the spin waves and
the phonons, and from the possible exchange and Coulomb interactions
within the electron gas itself (λc). Although the different correlation
effects may increase the effective mass derived from band structure cal-
culations by a factor of two or more, it is difficult to isolate this en-
hancement in heat capacity measurements, because of the quite narrow
temperature interval where a truly linear behaviour can be anticipated.
This interval is bounded below because of the nuclear spins, which may
give large contributions to the heat capacity in the mK-range. The upper
bound is due partly to the higher-order temperature effects, but most
importantly to the disturbance by the normal boson contributions, ap-
proximately proportional to Tαexp(−E0/kBT ) and T 3 for the magnons
and the phonons respectively, which completely dominate the heat ca-
pacity at elevated temperatures. Because of this limitation, the most
reliable method of determining the mass-enhancement is by measuring
the temperature dependence of the dHvA effect, which also allows a
separation of the contributions from the different sheets of the Fermi
surface. Using this method, and comparing with the results of band
structure calculations, Sondhelm and Young (1985) found values of λtot

varying between 0.2 and 1.1 for Gd. The theoretical results of Fulde
and Jensen (1983) lie within this range, but these measurements point
to the necessity of discriminating between states of different symmetry
in considering the mass-enhancement of the conduction electron gas.

5.7.3 Magnetic contributions to the electrical resistivity
The electrical resistivity of a metal can be calculated by solving the
Boltzmann equation. We shall not discuss the theory of transport prop-
erties in detail here, but instead refer to the comprehensive treatments
of Ziman (1960), and Smith and Højgaard Jensen (1989). The non-
equilibrium distribution function gkσ, generated by the application of
an external electric field E, is written in terms of the equilibrium distri-
bution function, and is determined by the Boltzmann equation:

gkσ = fkσ +fkσ(1−fkσ)ψkσ, where
∂gkσ

∂k
· dk
dt

=
dgkσ

dt

∣∣∣∣
coll

. (5.7.54)

The electrical current-density is then determined as

j = σ ·E = − e

V

∑
kσ

vkσfkσ(1 − fkσ)ψkσ,
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with h̄vkσ = ∂εkσ/∂k. In the linear regime, the left-hand side of the
Boltzmann equation is

∂gkσ

∂k
· dk
dt

	 −∂fkσ

∂εkσ
evkσ · E = eβfkσ(1 − fkσ)vkσ ·E.

The collision term on the right-hand side is

dgkσ

dt

∣∣∣∣
coll

=
∑
k′σ′

[
gk′σ′(1− gkσ)W (k′σ′,kσ)− gkσ(1− gk′σ′)W (kσ,k′σ′)

]
,

where W (kσ,k′σ′) is the probability per unit time for an electronic
transition from an occupied state |kσ> to an unoccupied state |k′σ′>.
Linearizing the collision term, and using the principle of detailed balance,
so that this term must vanish if gkσ = fkσ, we may reduce the Boltzmann
equation to

eβfkσ(1 − fkσ)vkσ · E = −
∑
k′σ′

(1 − fkσ)fk′σ′W (k′σ′,kσ)
(
ψkσ − ψk′σ′

)
.

It is possible to find an upper bound on the resistivity from this equation,
with the use of a variational principle. Defining û to be a unit vector
along one of the principal axes of the resistivity tensor,

ρuu ≤ V

2βe2

∑
kσ

∑
k′σ′(1 − fk′σ′)fkσW (kσ,k′σ′)

(
φkσ − φk′σ′

)2[∑
kσ vkσ · û (1 − fkσ)fkσ φkσ

]2 ,

(5.7.55)
where φkσ is an arbitrary trial function, and where the equality applies
if φkσ = ψkσ. In the case of the free-electron model, the Boltzmann
equation possesses an exact solution, ψkσ ∝ k · û, if the scattering is
purely elastic. As discussed, for instance, by Hessel Andersen et al.
(1980), this trial function is still useful for treating possible inelastic
scattering mechanisms, at least as long as the resistivity is dominated
by elastic impurity scattering, so we shall use φkσ = k · û.

In the Born approximation, the transition probability per unit time
is given by the Golden Rule (4.1.1), which we may here write

W (kσ,k′σ′) =
2π
h̄

∑
if

Pi|<kσ; i |Hint |k′σ′; f > |2δ(h̄ω + Ei − Ef ),

where h̄ω = εkσ − εk′σ′ . Instead of basing the derivation of the mag-
netic resistivity on the linearized spin-wave expression (5.7.20) for Hint,
we shall be somewhat more general and use Hsf from eqn (5.7.6) as the



5.7 CONDUCTION-ELECTRON INTERACTIONS 277

interaction Hamiltonian. We assume that the system is uniform, param-
agnetic or ferromagnetically ordered, continue to utilize the simple free-
electron model, and replace (g−1)I(n′k′, nk) by j(k′−k+τ ). The MF
part (5.7.7) of the Hamiltonian may lead to a modification εkσ → ε̃kσ of
the electronic band-states, but we can neglect this difference to leading
order, and since the MF Hamiltonian does not lead to transitions be-
tween electronic states, we can replace Jiz by Ĵiz = Jiz − 〈Jz〉 in Hint,
and obtain

W (kσ,k′σ′) =
∫ ∞

−∞
d(h̄ω)δ(h̄ω − εkσ + εk′σ′)

× 2π
h̄

∑
if

Pi
1
N2

∑
jj′

|j(k′ − k)|2e−i(k′−k)·(Rj−Rj′ )

×
{
<i |J−

j′ | f ><f |J
+
j | i> δσ↑δσ′↓+ <i |J+

j′ | f ><f |J
−
j | i> δσ↓δσ′↑

+ <i |Ĵj′z| f ><f |Ĵjz | i> (δσ↑δσ′↑ + δσ↓δσ′↓)
}
δ(h̄ω + Ei − Ef ),

(5.7.56)
accounting explicitly for the condition on h̄ω by the integral over the
first δ-function. Using the same procedure as in the calculation of the
neutron-scattering cross-section, when going from (4.1.16) to (4.2.1–3),
we may write this:

W (kσ,k′σ′) =
2
Nh̄

∫ ∞

−∞
d(h̄ω)δ(h̄ω − εkσ + εk′σ′ )

1
1 − e−βh̄ω

|j(k − k′)|2

×
{
χ′′
−+(k − k′, ω)δσ↑δσ′↓ + χ′′

+−(k − k′, ω)δσ↓δσ′↑

+ χ′′
zz(k − k′, ω)(δσ↑δσ′↑ + δσ↓δσ′↓)

}
.

Introducing this expression into (5.7.55), and using φkσ = k · û and
k′ = k − q − τ , we proceed as in the derivation of eqn (5.7.36) for
Im
[
χ+−

c.el.(q, ω)
]
, obtaining

1

N

∑
k

fk↓(1 − fk−q↑)δ(h̄ω − εk↓ + εk−q↑) =

V

N(2π)2

∫ ∞

0

dk k2

∫ 1

−1

dµf(εk↓)
{
1 − f(εk↓− h̄ω)

}
δ
(
h̄ω−∆+ εq −µ

h̄2qk

m

)
= V

N(2π)2

∫ ∞

∆
2

dε
m2

h̄4q
f(ε)

{
1 − f(ε− h̄ω)

}
=

V

N(2π)2
m2

h̄4q

h̄ω

eβh̄ω − 1
,

where kF↑ − kF↓ < q < kF↑ + kF↓ (when kBT � εF ). The denom-
inator in (5.7.55) may be calculated in a straightforward fashion and
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is [Nν/(h̄β)]2, and we finally obtain the following expression for the
resistivity, or rather its upper limit:

ρuu(T ) 	 ρ0

3
(4kF↑kF↓)2j2u

∫ kF↑+kF↓

k
F↑−k

F↓

dq

∫
dΩq

4π

∫ ∞

−∞
d(h̄ω)

× |j(q)|2
(
q · û

)2
q

βh̄ω

sinh2 (βh̄ω/2)
1
π

∑
α

χ′′
αα(q, ω), (5.7.57a)

where

ρ0 =
3
2
V

N

πm

h̄e2εF

j2u =
m

ne2
π

h̄

{
N↑(εF ) + N↓(εF )

}
j2u, (5.7.57b)

n = νN/V is the electron density, and

j2u = 4
3

(2kF )4

∫ 2kF

0

dq

∫
dΩq

4π
|j(q)|2

(
q · û

)2
q. (5.7.57c)

For cubic symmetry, ρuu is independent of u and
(
q·û

)2 can be replaced
by q2/3. In the high-temperature limit, we have

1
π

∫ ∞

−∞
d(h̄ω)

βh̄ω

sinh2 (βh̄ω/2)

∑
α

χ′′
αα(q, ω) 	

1
π

∫ ∞

−∞
d(h̄ω)

4
βh̄ω

∑
α

χ′′
αα(q, ω) =

4
β

∑
α

χ′
αα(q, 0) = 4J(J + 1),

recalling that χ′
αα(q, 0) = 1

3βJ(J + 1) in this limit. This result shows
that the magnetic resistivity saturates at temperatures which are so high
that the ions are uniformly distributed over the states in the ground-
state J-multiplet, since the condition kBT � εF is always satisfied:

ρuu(T ) → J(J + 1) ρ0 for T → ∞, (5.7.58)

and J(J + 1) ρ0 is called the saturation value of the spin-disorder re-
sistivity. Since ρ0 contains the factor (g − 1)2, the spin-disorder re-
sistivity is proportional to the de Gennes factor, as observed (Legvold
1972). If the crystal-field splitting of the energy levels is neglected, this
factor also determines the relative magnitudes of the contributions of
magnetic rare earth-impurities to the resistivity of a non-magnetic host
(Kasuya 1959). However, in analysing the measurements of Mackintosh
and Smidt (1962) of the resistivity changes produced by small amounts
of heavy rare earths in Lu, Hessel Andersen (1979) found that such
crystal-field effects are indeed important at 4K.
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In a metal, the total collision rate W (kσ,k′σ′) in eqn (5.7.55) is
actually the sum of contributions from several scattering mechanisms.
If the trial function for elastic impurity-scattering still leads to a re-
sult reasonably close to that determined by the exact solution of the
Boltzmann equation, then (5.7.55) implies that the different scattering
mechanisms contribute additively to the total resistivity, in accordance
with Matthiessen’s rule:

ρtotal(T ) = ρimp + ρm(T ) + ρph(T ). (5.7.59)

Here ρimp is the residual resistivity due to elastic scattering of the elec-
trons from impurities and from lattice defects. ρm(T ) is the contribution,
calculated above, due to the magnetic excitations, whereas ρph(T ) is the
equivalent term due to the phonons. The two last terms, associated with
the excitations in the metal, vanish in the limit of zero temperature, so
that ρtotal(T = 0) = ρimp. The problem of distinguishing between the
magnetic and phonon scattering can be approximately solved by esti-
mating the latter from the temperature dependence of the resistivity of
Lu, which has an electronic structure and phonon spectrum very similar
to those of the magnetic heavy rare earths, but no magnetic moment.
Using this method, Mackintosh (1963) was able to show that the mag-
netic scattering in Tb increases as exp(−E0/kBT ) at low temperatures,
where the spin-wave energy gap E0/kB was estimated to be about 20
K, a value which was subsequently verified by neutron scattering. This
analysis was refined by Hessel Andersen and Smith (1979), who used
the free-electron model to show that the magnetic resistivity associated
with the scattering by spin waves with an isotropic dispersion relation
Eq = E0 + h̄2q2/2msw is given by

ρm(T ) =
J

4
m2

sw

m2

E0kBT

ε2F
e−E0/kBT

(
1 + 2

kBT

E0

+ 1
2e

−E0/kBT + · · ·
)
ρ0,

(5.7.60)
approximating the lower cut-off kF↑−kF↓ by 0 in (5.7.57a). A numerical
calculation, utilizing the measured spin-wave energies and including one
scaling parameter for the magnetic scattering and one for the phonon
scattering, gave the excellent fit shown in Fig. 5.14. The disordered elec-
tric quadrupole moments of the 4f -charge distributions can also provide
a mechanism for the scattering of the conduction electrons. This is nor-
mally very difficult to distinguish from the magnetic scattering, but in
TmSb, where the exchange interaction is relatively small and the electric
quadrupoles large, the latter appear to dominate the electrical resistivity
at low temperatures (Hessel Andersen and Vogt 1979).

Even though kBT � εF , the residual resistivity ρimp is only inde-
pendent of temperature as long as the ground-state properties of the
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Fig. 5.14. A comparison of the measured and calculated resistivity of
a Tb single crystal, as a function of temperature, after Hessel Andersen
and Smith (1979). The residual resistivity has been subtracted from the
experimental results. The full line includes the calculated contributions
from both the magnon scattering and the phonons. The rapid increase
around 20K is predominantly due to the excitation of magnons across

the energy gap.

electron gas remain unchanged. If the resistivity of the unpolarized
electrons is ρ0

total(T ) and their density of states at the Fermi surface is
N (εF ), the polarization (5.7.16) of the conduction electrons in the ferro-
magnetic state leads to a scaling of the total resistivity, which according
to eqn (5.7.55) is

ρtotal(T ) =
{
1 + ζ(T )

}
ρ0
total(T ) ; ζ(T ) =

N↑(ε̃F ) + N↓(ε̃F )
2N (εF )

− 1.

(5.7.61)
In ρ0

total(T ), the residual resistivity is temperature independent and the
magnetic contribution is determined by the above result, if Nσ(εF ) in
(5.7.57b) is replaced by its paramagnetic value N (εF ). The modifica-
tion ζ(T ), due to the polarization of the conduction electrons, depends
on the temperature via the magnetization, and ζ(T ) ∝ 〈Jz〉2 at small
magnetization.

The most important effect on the resistivity produced by the spin-
polarization of the electronic states results from the change in the density
of states at the Fermi surface, taken into account by ζ(T ) in (5.7.61).
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Since the other modification, the appearance of kFσ instead of the para-
magnetic value kF in (5.7.57b), generally only causes a minor correction
to the value of the integral in this equation, the magnetic contribu-
tion to ρ0

total(T ) is approximately independent of the spin-polarization,
in this model. However, the spin-polarization in the real metals may
be sufficiently great to alter the topology of the Fermi surface, as dis-
cussed in Section 1.4, so that the resistivity may change abruptly with
temperature or magnetic field. Under these circumstances, the resistiv-
ity must be calculated from first principles, using a realistic model of
the spin-polarized energy bands. The zz-contribution should be treated
separately, as the q-integral for this case should go from 0 to 2kF , even
when the electron spins are polarized, since no spin-flip is involved in
the scattering process. This modification is, however, unimportant as
the dominating contributions, in the ordered phase, arise from the per-
pendicular spin-wave components of the susceptibility.

The above results also apply, to a good approximation, when the
moments are ordered antiferromagnetically, if the value of ζ(T ) is calcu-
lated for a spatial modulation of the moments. The spin-polarization of
the band electrons is determined by the MF Hamiltonian, and assuming
〈Jiz〉 = 〈Jz〉 cos (Q ·Ri), we may replace (5.7.7) by

Hsf (MF) = −
∑
nn′

∑
kk′

(g − 1)I(n′k′, nk)
(
c+n′k′↑cnk↑ − c+n′k′↓cnk↓

)
×1

2

(
δk′,k+Q+τ + δk′,k−Q+τ

)
〈Jz〉, (5.7.62)

showing that the modulated moments induce a coupling between the
band electrons at the wave-vectors k and k ± Q + τ . In the same way
as the periodic lattice potential lifts the degeneracy of the band states
at the Brillouin-zone boundaries (passing through k = τ/2), the above
MF Hamiltonian gives rise to energy gaps at the superzone boundaries,
the planes perpendicular to, and passing through, the vectors ks =
(±Q + τ )/2. If ks is along the c-axis, the value of the energy gap δ
is (g − 1)|I(nk, n − k)|〈Jz〉 in the nth band. The importance of the
superzone gaps for the resistivity was first pointed out by Mackintosh
(1962), and detailed theories were developed by Elliott and Wedgwood
(1963) and Miwa (1963). These theories utilized the free-electron model
and the relaxation time approximation, dgkσ/dt|coll = −(gkσ−fkσ)/τkσ,
giving a conductivity

σuu =
e2β

V

∑
kσ

τkσ

(
vkσ · û

)2
fkσ

(
1 − fkσ

)
or, if the relaxation time τkσ is assumed to be constant over the Fermi
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surface,

σuu 	 e2τ

(2π)3h̄2

∑
σ

∫
ε
kσ

=ε
F

(
∂εkσ

∂ku

)2 1
|∇kεkσ|

dS, (5.7.63)

where dS is a surface element of the Fermi surface. Even without de-
tailed calculations, this expression shows that the conductivity may be
reduced substantially if the superzone gaps are able to eliminate sig-
nificant areas of the Fermi surface. Furthermore, the Fermi-velocity
factor puts different weight on the various regions of the Fermi surface
in the different components of the conductivity tensor. If ks is parallel
to the c-axis, as in the heavy rare earths, and if its length is close to
that of the Fermi wave-vector in the c-direction, only the cc-component
of the conductivity is appreciably affected by the superzone boundary.
For instance, an internal field of 2 kOe in the basal plane of Ho at 4
K, which eliminates the superzone energy gaps by inducing a transi-
tion from the cone to ferromagnetic ordering, increases the conductivity
along the c-axis by about 30%, while decreasing the b-axis component
by only about 1% (Mackintosh and Spanel 1964). As illustrated in Fig.
5.15, the anomalous increase in the resistivity in the helical phase of
Tb is eliminated by a magnetic field which is large enough to suppress
this structure, leaving only a weak maximum similar to that observed
in Gd, which has been ascribed to critical scattering of the conduction
electrons by magnetic fluctuations (de Gennes and Friedel 1958). This
anomalous increase is not observed in the basal plane and the resistivity
is little affected by a magnetic field (Hegland et al. 1963).

The theoretical calculations of the superzone effects within the free-
electron model give a semi-quantitative account of the experimental ob-
servations, with a small number of adjustable parameters. For example,
a superzone boundary normal to the c-axis, which intersects the Fermi
surface, gives a positive contribution to ζcc(T ) in (5.7.61) which is pro-
portional to δ/εF , while ζbb(T ) decreases like (δ/εF )2. Bearing in mind
the analogy between the real and free-electron Fermi surfaces mentioned
above, this corresponds well with the observations in, for example, Ho.
In addition, the model calculations suggest that the superzone gaps are
important for the value of the ordering wave-vector Q, at which the
exchange energy has its maximum (Elliott and Wedgwood 1964; Miwa
1965), by predicting a gradual reduction of the length of Q with the
increase of the size of the superzone gaps, which are proportional to
〈Jz〉 below the Néel temperature. Hence the exchange coupling J (q) is
somewhat dependent on the magnetization, because the nearly elastic
intra-band contributions to the exchange interaction depend on the den-
sity of states near the Fermi surface, as is also true in the ferromagnetic
case, according to (5.7.21).
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Fig. 5.15. The c-axis resistivity of Tb in the vicinity of TN = 230K,
after Hegland et al. (1963). As the helical ordering develops, the magnetic
superzones cause a sharp increase in the resistivity, which disappears at
TC = 220 K. The superzones may also be eliminated by a magnetic field

in the b-direction, which suppresses the helical structure.

The agreement obtained between simple model calculations of the
variation of Q and that observed experimentally is surprisingly good,
to some extent fortuitously so. The band electrons are far from free-
electron-like in the rare earth metals, and the approximation in which
I(n′k′, nk) is replaced by j(k′−k+τ ) is rather crude. The effective free-
electron model, with j(q) proportional to a form factor

[
1 + (Aq)2

]−1

where A ≈ 0.2 Å and 2kF ≈ 2.8 Å−1, leads to a maximum in J (q)
at q 	 0.3 Å−1 parallel to the c-axis, in the paramagnetic phase. In
this model, 1

N

∑
q J̃ (q) is found to be an order of magnitude larger

than J (0), and the same is the case with the interband contributions
(τ �= 0) to the exchange interaction, compared to the intra-band con-
tributions. However, various estimates indicate that all these terms are
of the same order of magnitude. Lindg̊ard et al. (1975) have made the
only existing ab initio calculation of J (q) in a rare earth metal, consid-
ering the simplest case of Gd, and they obtained a reasonable account
of the dependence on wave-vector, even though the magnitude differed
by as much as a factor of four from that determined experimentally.
Their calculations show that the exchange integral is dominated by the
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contributions of the d-like band electrons, as is the density of states
at the Fermi surface. Although the effective free-electron model is not
adequate for determining the exchange interaction, other quantities de-
rived above which depend on real scattering processes close to the Fermi
surface (i.e. the contributions to the spin-wave linewidths, the mass en-
hancement, and the resistivity), may be more trustworthy, particularly
if the actual density of states of the band electrons is substituted for
the free-electron value. This should especially be true for the linewidth
and mass-enhancement, but the strong polarization effect (5.7.60) on
the resistivity in the ferromagnetic phase, for which the maximum effect
occurs in Gd, with ζ(T ) approaching −0.5 in the zero temperature limit
(Fulde and Jensen 1983), may be somewhat exaggerated, because the
conductivity is strongly influenced by the sp-band electrons.



6

SPIN WAVES IN
PERIODIC STRUCTURES

Because of the modification of the translational symmetry, the spin
waves in modulated magnetic structures display certain interesting as-
pects which are not shared by the simple ferromagnetic structure. How-
ever, this same feature makes their experimental study considerably
more difficult, and the results which have been obtained on such sys-
tems are still relatively sparse. This chapter is correspondingly short,
and in its two sections we distinguish between structures incommensu-
rable with the lattice periodicity, when the translational symmetry in
the direction of the wave-vector is, in principle, destroyed, and com-
mensurable structures, in which this symmetry is only modified, though
possibly quite drastically.

The stringent mathematical definition of an incommensurable struc-
ture is straightforward, but it presupposes that the coherence lengths of
the lattice and of the magnetic system are both infinite. In this idealized
case, an irrational ratio between the periodicities of the two subsystems
breaks the translational invariance, the wave-vector q is consequently no
longer a good quantum number, and neutron-diffraction peaks acquire
a non-zero width. Furthermore, the energy eigenvalues which deter-
mine the excitation spectrum also have a certain width when projected
on to q-space, which is the appropriate representation for interpreting
constant-q neutron-scattering experiments. The alternative method of
distinguishing experimentally between the two types of structure is to
follow the ratio between the two periodicities as a function of temper-
ature or external field. If this ratio changes discontinuously between
constant steps, the structure is commensurable. On the other hand,
if the variation is observed to be continuous, the structure is usually
classified as being incommensurable. As examples of transverse incom-
mensurable structures, we shall accordingly take the helix in Tb, which
exists only over a small range of temperature below TN , and the low-
temperature cone in Er. It is generally questionable whether any partic-
ular structure can strictly be classified as incommensurable but, as we
shall see, the distinction in these cases is unimportant. The magnetic
high-temperature phase of Er is treated as an example of an incom-
mensurable longitudinal-wave structure, although it may only be truly
incommensurable at the highest temperatures in the ordered phase. In
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this case, the incommensurability has significant qualitative effects on
the excitation spectrum.

In a commensurable structure, where m|Q| = mQc is p times the
length 4π/c of the (effective) reciprocal lattice vector, the number m
of layers between magnetically-identical lattice planes will have an im-
portant influence on the character of the excitations. If m is small,
they will be well-defined, long-lived at low temperatures, and relatively
easy to study experimentally. As examples of such ideal commensurable
structures, we shall consider the low-temperature bunched helix in Ho,
and the longitudinal ferrimagnetic structure in Tm, where the crystal
fields make a decisive contribution. These relatively simple structures
are stable at low temperatures but, in both cases, the configuration of
the moments becomes more complicated as the temperature is increased.
In Ho, for example, spin-slip structures of reduced symmetry and gener-
ally increasing m evolve, and the excitations, of which only preliminary
studies have so far been made, become correspondingly complex. Al-
though these excitations may be just as well-defined as when m is small,
the extension of the magnetic Brillouin zone, in the c-direction, is re-
duced by the factor 1/m, while the number of branches in the dispersion
relation is multiplied by m. The different branches are separated from
each other by energy gaps at the boundaries of the magnetic Brillouin
zone, and the corresponding excitations scatter neutrons with different
weight, depending on the scattering vector and described in terms of the
dynamical structure factor. If m is large, however, it may be extremely
difficult to resolve the different branches experimentally. As m increases
towards the values of the order of 50 which characterize some of the
commensurable structures presented in Section 2.3, imperfections in the
lattice, or boundaries between different magnetic domains, become more
important. We should also expect that disordering phase-slips would be-
come relatively more frequent, leading to a less well-defined structure,
and disturbing the very long-range periodicity. It is unlikely that a spe-
cific pattern involving 100 or more layers could be repeated many times
in the crystal, without significant errors, and we might rather anticipate
a somewhat chaotic arrangement, where the phase factor characterizing
the moments changes systematically from layer to layer, but with an
occasional minor phase slip, so that the structure never repeats itself
exactly. This kind of structure may frequently in practice be described
as incommensurable.

6.1 Incommensurable periodic structures

In this section, we shall first discuss the spin waves in the regular helix or
cone, including the hexagonal anisotropy only as a minor perturbation.
On account of the infinitely larger number of irrational than rational
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numbers, these structures are most naturally classified as incommen-
surable, particularly as the distinction is immaterial in this case. If
the hexagonal anisotropy and possible external fields are neglected, the
translational symmetry is broken only formally, as a rigid rotation of
the moments, or of the total system, around the spiral axis costs no
energy. We then consider the longitudinally polarized phase, in which
genuine effects due to incommensurability would be expected. On the
other hand, the stronger coupling between the two periodicities increases
the tendency of the magnetic-ordering wave-vector to lock into a value
which is commensurable with the lattice. It may perhaps be questioned
whether theoretical results derived for ideal incommensurable models
are relevant to real, three-dimensional systems. However, it appears
that the essential features of systems which are classified experimentally
as incommensurable may be described theoretically as such, provided
that the analysis includes an averaging or coarse graining of the results,
of a magnitude somewhat smaller than the experimental resolution.

6.1.1 The helix and the cone
A helical ordering of the moments in an hcp lattice, with a wave-vector
Q along the c- or ζ-axis, is described by the following equations:

〈Jiξ〉 = 〈J⊥〉 cos (Q ·Ri + ϕ)
〈Jiη〉 = 〈J⊥〉 sin (Q ·Ri + ϕ)
〈Jiζ〉 = 0.

(6.1.1)

As usual, we shall be most interested in excitations propagating in the
c-direction, and hence may use the double-zone representation, corre-
sponding to the case of a Bravais lattice. The moments of constant
length 〈J⊥〉 lie in the ξ–η plane perpendicular to Q, and rotate uni-
formly in a right-handed screw along the Q-vector. The elastic cross-
section corresponding to this structure is, according to (4.2.6),

dσ

dΩ
= N

(
h̄γe2

mc2

)2

e−2W (κ)|12gF (κ)|2〈J⊥〉2(1 + κ̂2
ζ)

× (2π)3

υ

∑
τ

1

4
{δ(τ + Q− κ) + δ(τ − Q− κ)} . (6.1.2)

In this system the molecular field in (3.5.3) changes from site to site,
as does the MF susceptibility χ o

i (ω) in (3.5.7). This complication may
be alleviated by transforming into a rotating (xyz)-coordinate system
with the z-axis parallel to the moments, i.e.

Jiξ = Jiz cosφi + Jiy sinφi

Jiη = Jiz sinφi − Jiy cosφi

Jiζ = Jix,

(6.1.3)
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where φi = Q ·Ri + ϕ. Carrying out this transformation, we find that
Ji ·Jj becomes

(JizJjz + JiyJjy) cos (φi − φj) + (JiyJjz − JizJjy) sin (φi − φj) + JixJjx,

so that the Hamiltonian (3.5.1) may be written, in the (xyz)-coordinate
system,

H =
∑

i

HJ(J
2
ix) − 1

2

∑
i�=j

∑
αβ

JiαJαβ(ij)Jjβ , (6.1.4)

where α and β signify the Cartesian coordinates x, y, and z. Here we
have assumed that the dependence of the single-ion anisotropy on Jiξ

and Jiη can be neglected, and that only even powers of Jiζ = Jix occur,
since otherwise the helical structure becomes distorted and (6.1.1) is no
longer the equilibrium configuration. The ordering wave-vector Q is de-
termined by the minimum-energy condition that J (q) has its maximum
value at q = Q. After this transformation, the MF Hamiltonian is the
same for all sites:

HMF(i) = HJ(J
2
ix) − (Jiz − 1

2 〈J⊥〉)
∑

j

〈J⊥〉J (ij) cos (φi − φj)

= HJ(J
2
ix) − (Jiz − 1

2 〈J⊥〉)〈J⊥〉J (Q) ; 〈J⊥〉 = 〈Jz〉,
(6.1.5)

as is the corresponding MF susceptibility χ o(ω). The price we have paid
is that the two-ion coupling J (ij) is now anisotropic, and its non-zero
Fourier components are

Jxx(q) = J (q) ; Jyy(q) = Jzz(q) = 1

2
{J (q + Q) + J (q − Q)}

Jyz(q) = −Jzy(q) = i

2
{J (q + Q) − J (q − Q)}. (6.1.6)

However, it is straightforward to take account of this complication in
the RPA, and the result is the same as (3.5.8) or (3.5.21), with J (q)
replaced by J (q),

χt(q, ω) =
{
1 − χ

o(ω)J (q)
}−1

χ
o(ω), (6.1.7)

where the index t indicates that this is the (xyz)-susceptibility, and not
the (ξηζ)-susceptibility χ(q, ω) which determines the scattering cross-
section. From the transformation (6.1.3), it is straightforward, but
somewhat cumbersome, to find the relation between the two suscep-
tibility tensors.
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In the general case, the MF susceptibility χ
o(ω) is determined

by three distinct diagonal components, plus the two off-diagonal terms
χ o

xy(ω) = −χ o
yx(ω), with the same analytical properties, (3.5.24b) and

(5.2.42), as in the Heisenberg ferromagnet. It may be seen that χ o
xy

′(ω),
for instance, is imaginary by recalling that the MF Hamiltonian is in-
dependent of Jy, in which case the eigenvectors in the Jz-representation
can all be chosen to be real, so that the products of the matrix ele-
ments of Jx and of Jy are imaginary. The vanishing of the other four
off-diagonal terms follows from the two-fold symmetry about the z-axis
of the MF Hamiltonian. In spite of this reduction, the analytical ex-
pression for χ(q, ω) is still quite formidable. However, in most cases of
interest, the single-ion anisotropy is relatively weak, and the inelastic
modifications due to χ o

zz(ω) can be neglected, so that, for ω �= 0,

χxx(q, ω) =
{
χ o

xx(ω) − |χ o(ω)| Jyy(q)
}
/D(q, ω)

χxy(q, ω) =
{
χ o

xy(ω) + |χ o(ω)| Jxy(q)
}
/D(q, ω),

(6.1.8a)

and the same relations hold with x and y interchanged. Here

D(q, ω) = 1 −
∑
αβ

χ o
αβ(ω)Jβα(q) + |χ o(ω)| | J (q)|, (6.1.8b)

where α or β are x or y, and |χ o(ω)| or | J (q)| are the determinants
of the 2 × 2 matrices. In the weak-anisotropy limit, we may to a good
approximation use the result (5.2.42) derived in Section 5.2, and to first
order in 1/J , we have

χ o
xx(ω) = 〈Jz〉

A−B + hex

E2
ex − (h̄ω)2

χ o
yy(ω) = 〈Jz〉

A+B + hex

E2
ex − (h̄ω)2

χ o
xy(ω) = −χ o

yx(ω) = 〈Jz〉
i h̄ω

E2
ex − (h̄ω)2

(6.1.9a)

and χ o
zz(ω) 	 β(δJz)2 δω0. The only modification is that the exchange

field, given in eqn (6.1.5), is now

hex = 〈Jz〉J (Q) and E2
ex = (A+ hex)2 −B2. (6.1.9b)

There are inelastic contributions to χ o
zz(ω), but they are of the order

A/2JEex, relative to the other inelastic terms, and can be neglected.
The parameters A and B are the same as those derived in Section

5.2, when HJ in (6.1.4) is replaced by the usual crystal-field Hamilto-
nian, except that we here neglect explicitly the hexagonal anisotropy
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B6
6 . The result above may be generalized to include most of the renor-

malization effects appearing in the second order of 1/J , by replacing
A±B by A0(T )±B0(T ), in accordance with the discussion at the end
of Section 5.2. After the transformation to the rotating coordinates, the
system becomes equivalent to the basal-plane ferromagnet, except that
the hexagonal anisotropy is neglected and the γ-strains vanish, due to
the lattice-clamping effect discussed in Section 2.2.2. Hence we may take
A ± B to be A0(T ) ± B0(T ), given by eqn (5.3.22), with B6

6 = 0 and
H = 0.

In the present situation, where HJ in (6.1.4) only depends on J2
x ,

A = B and (6.1.9) implies, for instance, that χ o
yy(ω = 0) = 1/J (Q).

This result is quite general and may be derived directly from (6.1.5); the
addition of a small rotating field hy in the y-direction, perpendicular
to the exchange field, only has the consequence that the direction of
the angular momentum is rotated through the angle φ, where tanφ =
hy/hex, and hence δ〈Jy〉 = 〈Jz〉 tanφ = {1/J (Q)} hy. Substituting
(6.1.9) with A = B into (6.1.8), we obtain

χxx(q, ω) = 〈Jz〉
Aq −Bq

E2
q − (h̄ω)2

; χyy(q, ω) = 〈Jz〉
Aq +Bq

E2
q − (h̄ω)2

,

(6.1.10a)
with

Eq =
[
A2

q −B2
q

]1/2 (6.1.10b)

and

Aq +Bq = 2A+ 〈Jz〉 {J (Q) − J (q)}

Aq −Bq = 〈Jz〉
{
J (Q) − 1

2J (q + Q) − 1
2J (q − Q)

}
,

(6.1.10c)

neglecting χ o
zz(0). The absorptive components of χt(q, ω) are

χ′′
xx(q, ω) =

π

2
〈Jz〉

(
Aq −Bq

Aq +Bq

) 1
2

{ δ(Eq − h̄ω) − δ(Eq + h̄ω)}

χ′′
yy(q, ω) =

π

2
〈Jz〉

(
Aq +Bq

Aq −Bq

) 1
2

{ δ(Eq − h̄ω) − δ(Eq + h̄ω)} ,

(6.1.11)
demonstrating that the scattered intensities due to the two components
are different, if Bq is non-zero. The neutron cross-section d2σ/dEdΩ,
(4.2.2), is proportional to∑

αβ

(δαβ − κ̂ακ̂β)χ′′
αβ(κ, ω) = (1 − κ̂2

ζ)χ
′′
ζζ(κ, ω) + (1 + κ̂2

ζ)χ
′′
ηη(κ, ω),

(6.1.12a)
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since the ξξ- and ηη-components are equal. The components in this
equation are derived from the equality χt(κ, ω) = χt(κ + τ , ω), and

χξξ(κ, ω) = χηη(κ, ω) = 1

4

{
χyy(κ − Q, ω) + χyy(κ + Q, ω)

}
χζζ(κ, ω) = χxx(κ, ω). (6.1.12b)

From this we deduce that, if the scattering vector is along the ζ-axis,
we expect to observe both the spin waves propagating parallel to Q,
emerging from the magnetic Bragg peak at τ + Q, and the spin waves
propagating antiparallel to −Q, but with their q-vector determined rel-
ative to the Bragg peak at τ − Q.

If 〈Jz〉 is zero, the system described by the Hamiltonian (6.1.4) is
invariant with respect to a uniform rotation of all the angular momenta
around the x- or ζ-axis, corresponding to the condition [

∑
i Jix , H ] = 0.

In the helical phase, this commutation relation is unchanged, but nev-
ertheless the system is no longer invariant with respect to such a rota-
tion, since it will alter the phase constant ϕ in (6.1.1). This system is
thus an example of a situation where a continuous symmetry is spon-
taneously broken. In this case, a theorem of Goldstone (1961) predicts
the existence of collective modes with energies approaching zero as their
lifetimes go to infinity. A detailed discussion of this phenomenon is
given by Forster (1975). The Goldstone mode, or the broken-symmetry
mode, in the helix is the spin-wave excitation occurring in χt(q, ω) in
the limit of q → 0. Since this mode is related to a uniform change of
the phase ϕ, it is also called the phason. In the long-wavelength limit,
Aq − Bq 	 1

2 〈Jz〉(q · ∇)2J (0) goes to zero, and the spin wave energies
Eq 	 { 1

2 (A0 + B0)〈Jz〉(q · ∇)2J (0)}1/2 vanish linearly with q. The
result (6.1.8) is valid in general at long wavelengths, independently of
χ o

zz(ω), because the Jz-response is only mixed with the spin-wave re-
sponse proportionally to |Jyz(q)|2 ∝ q6 in the limit of small q. In the
static limit, χ o

xy(ω → 0) vanishes by symmetry, and (6.1.8) then predicts
that, in general,

χyy(q, 0) = 1/
{
J (Q) − 1

2J (q + Q) − 1
2J (q − Q)

}
∝ q−2

when q → 0, which is also in accordance with (6.1.10). The divergence
of χyy(q → 0, 0) is easily understood, as this susceptibility component
determines the response 〈Jy〉 to the application of a constant rotating
field hy at every site, which causes the same rotation of all the moments,
corresponding to a change of the phase constant ϕ in (6.1.1). A rigid ro-
tation of the helix costs no energy, and the lack of restoring forces implies
that the susceptibility diverges. A divergence in the static susceptibility
is not sufficient to guarantee the presence of a soft mode in the system, as
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there might be a diffusive mode in the excitation spectrum of the diverg-
ing susceptibility component, with an intensity (∝ χ′′(ω)/ω) which goes
to infinity as the critical q is approached. Outside the critical region, the
inelastic excitation-energies must approach zero, in the absence of a dif-
fusive mode, as a consequence of the Kramers–Kronig relation, but the
excitations may be overdamped, i.e. still become diffusive, sufficiently
close to the critical q. In this case, the generator 1 − iδϕ

∑
i Jxi of an

infinitesimal rotation δϕ of the helix commutes with the Hamiltonian,
and the Goldstone theorem applies, predicting that the spin waves are
perfectly well-defined excitations in the limit of q → 0.

If HJ can be neglected, the system contains one more Goldstone
mode, since

∑
i Jiξ or

∑
i Jiη now also commute with H. The transfor-

mation exp(−iθ
∑

i Jiξ) generates a tilting of the plane spanned by the
moments, relative to the ξ–η plane perpendicular to Q, giving rise to the
tilted helix structure. In this configuration, the Jiζ = Jix-component is
non-zero and oscillates with the phase Q·Ri. The magnitude of the mod-
ulation is determined by the susceptibility component χxx(q = Q, 0),
which diverges in the limit where HJ or 2A vanishes. The situation is
very similar to the rotation of the helix considered above. The Gold-
stone mode is the spin-wave excitation at q = Q, and the spin-wave
energy vanishes linearly with |q−Q|. The Heisenberg ferromagnet may
be considered to be a helix with Q = 0, and in this case the two Gold-
stone modes collapse into one at q = 0, where the spin-wave dispersion
now becomes quadratic in q.

The first study of the spin waves in a periodic magnetic structure
was performed by Bjerrum Møller et al. (1967) on a Tb crystal, to which
10% Ho had been added to stabilize the helix over a wider temperature
range. The results of these measurements are shown in Fig. 6.1. The
hexagonal anisotropy in Tb is small, and 〈O6

6〉 has renormalized to neg-
ligible values in the helical phase, so the theory for the incommensurable
structure would be expected to apply. The dispersion relations do in-
deed have the form of eqn (6.1.10), rising linearly from zero at small q,
and with a non-zero value of EQ, due to the axial anisotropy B0

2 . An
analysis of the experimental results in terms of this expression gives the
exchange functions illustrated in Fig. 6.1. The decrease in the size of
the peak in J (q) with decreasing temperature contributes towards the
destabilization of the helix, as discussed in Section 2.3. The effects of the
change in this function with temperature can be seen fairly directly in
the dispersion relations since, from (6.1.10), the initial slope is propor-
tional to the square root of the curvature J ′′(Q), and EQ is proportional
to {J (Q)− 1

2J (0)− 1
2J (2Q)}1/2. Similar results have been obtained for

Dy by Nicklow et al. (1971b) and analysed in the same way, even though
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Fig. 6.1. Spin-wave dispersion relations and exchange in the c-
direction, in the helical and ferromagnetic phases of Tb90Ho10. In the
helical phase, the energy of the phason excitations goes linearly to zero
at long wavelengths, owing to the broken rotational symmetry around
the c-axis, but that of the mode at Q remains non-zero, because of the
axial anisotropy. The peak in the exchange function, which stabilizes the
periodic structure, is reduced and shifted as the magnetic order increases.
In the ferromagnetic phase at 185 K, the energy rises quadratically from

a non-zero value, and the peak in the exchange is absent.

the relatively large hexagonal anisotropy makes the use of this theory
somewhat marginal in this case. As we shall see in the next section, the
very large value of B6

6 has a decisive influence on the excitations in Ho.
The dispersion relation for the cone may be derived by the same

procedure. In the conical structure the moments along the c-axis are
non-zero, so that

〈Jiζ〉 = 〈J‖〉 = 〈Jz〉 cos θ0 ; 〈Jz〉2 = 〈J‖〉2 + 〈J⊥〉2. (6.1.13)

Introducing the transformation (2.2.8), which corresponds to (6.1.3) in
the case where cos θ0 �= 0, we may derive the effective coupling param-
eters within the rotating coordinate system. For the (xy)-part of the
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interaction matrix, the result is

Jxx(q) = 1

2
{J (q + Q) + J (q − Q)} cos2 θ0 + J (q) sin2 θ0

Jyy(q) = 1

2
{J (q + Q) + J (q − Q)}

Jxy(q) = −Jyx(q) = i

2
{J (q + Q) − J (q − Q)} cos θ0,

(6.1.14)

where Jxy(q) is now non-zero. Neglecting the longitudinal response, as
we may in a weakly anisotropic system, we may calculate the response
functions by introducing these coupling parameters in (6.1.8). In order
to estimate the (xy)-components of the MF susceptibility, or A±B+hex

in eqn (6.1.9), we may utilize their relation to the derivatives of the
free energy, as expressed in eqn (2.2.18). The free energy for the ith
ion, including the Zeeman contribution from the exchange field of the
surrounding ions, is

F (i) = f0 + f(u = cos θ) − h‖〈Jz〉 cos θ − h⊥〈Jz〉 sin θ cos (φ− φ0),
(6.1.15a)

with φ0 = Q ·Ri + ϕ, and

h‖ = 〈Jz〉J (0) cos θ0 ; h⊥ = 〈Jz〉J (Q) sin θ0. (6.1.15b)

HJ is again, as in (6.1.4), the usual crystal-field Hamiltonian, except that
B6

6 is neglected. The function f(u) is given by (2.2.17) in terms of κm
l (T ),

with κ6
6 = 0. From (6.1.15), the equilibrium angles are determined by

−f ′(u0) sin θ0 + h‖〈Jz〉 sin θ0 − h⊥〈Jz〉 cos θ0 = 0,

and φ = φ0. f ′(u) is the derivative of f(u) with respect to u, and
u0 = cos θ0. With sin θ0 �= 0, this equation leads to

f ′(u0) cos θ0 = 〈Jz〉2{J (0) − J (Q)} cos2 θ0. (6.1.16)

The spin-wave parameters may then be derived as

〈Jz〉(A+B + hex) = Fθθ(i)

= f ′′(u0) sin2 θ0 − f ′(u0) cos θ0 + h‖〈Jz〉 cos θ0 + h⊥〈Jz〉 sin θ0
〈Jz〉(A−B + hex) = Fφφ(i)/ sin2 θ0 = h⊥〈Jz〉/ sin θ0.

Introducing the values of the exchange fields and applying the equilib-
rium condition (6.1.16), we then find that

A+B + hex = {f ′′(u0)/〈Jz〉} sin2 θ0 + 〈Jz〉J (Q)

A−B + hex = 〈Jz〉J (Q).
(6.1.17)
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These parameters determine the (xy)-components of χ o(ω) in (6.1.9),
and are valid, at least, to first order in 1/J . From (6.1.8), we finally
obtain

χxx(q, ω) = 〈Jz〉
Aq −Bq

A2
q −B2

q − (h̄ω − Cq)2

χyy(q, ω) = 〈Jz〉
Aq + Bq

A2
q −B2

q − (h̄ω − Cq)2

χxy(q, ω) = 〈Jz〉
i(h̄ω − Cq)

A2
q −B2

q − (h̄ω − Cq)2
,

(6.1.18)

where the parameters are now

Aq −Bq = 〈Jz〉{J (Q) − 1
2J (q + Q) − 1

2J (q − Q)}
Aq +Bq = (Aq −Bq) cos2 θ0 +

[
L+ 〈Jz〉{J (0) − J (q)}

]
sin2 θ0

Cq = 1
2 〈Jz〉{J (q − Q) − J (q + Q)} cos θ0,

(6.1.19)
and the axial anisotropy constant is

L = 〈Jz〉{J (Q) − J (0)} + f ′′(u0)/〈Jz〉, with

f ′′(u0) = 3κ0
2(T ) + 15

2 κ
0
4(T )(7 cos2 θ0 − 1)

+ 105
8 κ0

6(T )(33 cos4 θ0 − 18 cos2 θ0 + 1).

(6.1.20)

This constant, to order 1/J , is that determined by the c-axis bulk sus-
ceptibility: χζζ(0, 0) = 〈Jz〉/L. The dispersion relation, derived from
the pole at positive energies, is

Eq = Cq +
[
A2

q −B2
q

]1/2
, (6.1.21)

which is no longer even with respect to q, because the parameter Cq

changes sign, whereas Aq and Bq are unaffected, if q is replaced by −q.
The other pole, with a minus before the square root, lies at negative
energies. If the two energies for q were both positive, the two poles at
−q would both lie at negative energies, indicating an instability of the
magnetic system. Hence in a stable cone C2

q < A2
q − B2

q (Cooper et al.
1962).

The scattering cross-section of the spin waves is still determined by
(6.1.12a), but (6.1.12b) is replaced by

χζζ(κ, ω) = χxx(κ, ω) sin2 θ0

χξξ(κ, ω) = χηη(κ, ω) = 1

4

{
χxx(κ − Q, ω) + χxx(κ + Q, ω)

}
cos2 θ0

+ 1

4

{
χyy(κ − Q, ω) + χyy(κ + Q, ω)

}
− i

2

{
χxy(κ − Q, ω) − χxy(κ + Q, ω)

}
cos θ0.
(6.1.22)
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When κ is along the c-axis, the scattering is determined by the basal-
plane component alone, and introducing (6.1.18) in this expression, we
find for positive energies

χ′′
ξξ(κ, ω) =

∑
q

π〈Jz〉
8rq

{
(rq cos θ0 + 1)2δq,κ−Q−τ

+ (rq cos θ0 − 1)2δq,κ+Q−τ
}
δ(Eq − h̄ω), (6.1.23)

where the ratio rq = [(Aq−Bq)/(Aq +Bq)]1/2. This equation is consis-
tent with the original result of Bar’yakhtar and Maleev (1963), who also
considered the spin-polarized neutron cross-section. As in the helical
case, there are two branches, emerging from either of the Bragg peaks
at τ ± Q, but the intensities of the two branches are no longer equal.
Furthermore, the crystal will normally split up into four distinct types
of domain, as the energy of the cone structure depends on the sign of
neither cos θ0 nor Q = Q · ζ̂. The spin-wave parameter Cq changes sign
with either of these two quantities, and this leads to two different values
E+

q and E−
q of the spin-wave energies in the four domains, corresponding

to regions where the signs of cos θ0 and Q are respectively the same or
different. All the vectors in (6.1.23) are along the ζ-axis, and we may
therefore write the total response function at positive energies in terms
of their magnitudes, in the presence of the four domains, as

χ′′
ξξ(κ, ω) =

∑
q

π〈Jz〉
8rq

[{
(rq| cos θ0| + 1)2δq,κ−|Q|−τ

+ (rq| cos θ0| − 1)2δq,κ+|Q|−τ

}
δ(E+

q − h̄ω)+{
(rq| cos θ0| − 1)2δq,κ−|Q|−τ + (rq| cos θ0| + 1)2δq,κ+|Q|−τ

}
δ(E−

q − h̄ω)
]

(6.1.24)

showing that there will normally be four spin-wave resonances in a
constant-κ scan, at positive energies. We shall denote the spin-waves
with energies determined by E+

q , when q is positive or negative respec-
tively, as the +q branch or −q branch. The energy difference E+

q −E−
q =

E+
q −E+

−q = 2C+
q is normally positive, when q = q·ζ̂ > 0, so that the +q

branch lies above the −q branch. Equation (6.1.24) then predicts that
neutron scans at a series of values of κ, starting from the Bragg peak at
τ + |Q|, will show both the +q and the −q branches, that the +q branch
will have the largest intensity when κ > τ + |Q|, and that the response
function is symmetrical around the lattice Bragg point κ = τ . Although
two of the four types of domain may be removed by the application of an
external field along the c-axis, this does not remove the degeneracy with
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respect to the helicity of the cone, and eqn (6.1.24) remains unchanged.
Different sign conventions, stemming from whether θ0 is determined by
the ζ-component of the magnetic moments or of the angular momenta,
may lead to a different labelling of the branches by ±q, but this does not
of course reflect any arbitrariness in, for instance, the relation between
the spin-wave energies and their scattering intensities.

In Fig. 6.2 is shown the dispersion relations E±
q obtained in the

c-direction in the conical phase of Er at 4.5K by Nicklow et al. (1971a).
The length of the ordering wave-vector is about 5

21 (2π/c) and the cone
angle θ0 	 28◦. The relatively small cone angle leads to a large splitting
between the +q and −q branches. According to the dispersion relation
(6.1.21), this splitting is given by 2Cq, from which J (q) may readily be
derived. This leaves only the axial anisotropy L as a fitting parameter
in the calculation of the mean values of the spin-wave energies. This
parameter may be estimated from the magnetization measurements,
L = 〈Jz〉/χζζ(0, 0), which indicate (Jensen 1976b) that it lies between
15–25meV. Nicklow et al. (1971a) were not able to derive a satisfac-
tory account of their experimental results from the dispersion relation
given by (6.1.21) in terms of J (q) and L. In order to do so, they intro-
duced a large anisotropic coupling between the dipoles Jζζ(q) − J (q),
corresponding to a q-dependent contribution to L = L(q) in (6.1.19).
Although this model can account for the spin-wave energies, the value of
L(0) is much too large in comparison with that estimated above. This
large value of L(q) also has the consequence that rq becomes small, so
that the scattering intensities of the +q and −q branches are predicted
to be nearly equal, since (rq cos θ0 − 1)2 	 (rq cos θ0 + 1)2, in disagree-
ment with the experimental observations. A more satisfactory model
was later suggested by Jensen (1974), in which an alternative anisotropic
two-ion coupling was considered; Kmm′

ll′ (ij)Õlm(Ji)Õl′m′(Jj) + h.c., as
in (5.5.14), with m = −m′ = 2. This coupling modifies the close rela-
tionship between Cq and Aq−Bq found above in the isotropic case, and
it was thereby possible to account for the spin-wave energies, as shown
in Fig. 6.2, and for the intensity ratio between the two branches at most
wave-vectors, since rq is much closer to 1, when π/c < q < 2π/c, than
in the model of Nicklow et al. (1971a). Finally, the value of L used in
the fit (L = 20meV) agrees with that estimated from the magnetization
curves. The anisotropic component of the two-ion coupling derived in
this way was found to be of the same order of magnitude as the isotropic
component, but the contributions of this anisotropic interaction (with
l = l′ = 2) to the spin-wave energies and to the free energy are effectively
multiplied by respectively the factor sin2 θ0 and sin4 θ0, where sin2 θ0 	
0.2 in the cone phase. It is in fact almost possible to reproduce the
dispersion relations, within the experimental uncertainty, by including
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Fig. 6.2. Spin-wave dispersion relations in the c-direction, in the cone
phase of Er at 4.5 K, after Nicklow et al. (1971a). The closed and open
symbols represent the +q and −q branches respectively. The solid lines
are the results of the spin-wave calculation described in the text, and
the dashed lines are the dispersion relations for the transverse phonons

originating from 2π/c ± 2Q.

only the isotropic part of the coupling, but this requires a value of L 	 35
meV, and the intensity ratio, in the interval π/c < q < 2π/c, is found
to be wrong by a factor of three or more.

It has been suggested (Lindg̊ard 1978) that the necessity of intro-
ducing anisotropic two-ion coupling in the description of the spin-waves
in Er may be an artifact due to a breakdown of the linear spin-wave
theory. As discussed in Section 5.3.2, the linear theory is not valid in
strongly anisotropic systems, i.e. when the numerical value of the b-
parameter is large and the length of the moments is significantly smaller
than their saturation value, in the low-temperature limit. However,
the model for Er presented in Section 2.3, which describes the mag-
netic structure as a function of temperature and magnetic field reason-
ably well, predicts that σ(T = 0) is only reduced by 1–2%, and that
|b| 	 0.08. The excitation spectrum in the cone phase may be derived,
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in the presence of arbitrarily large anisotropy, by a numerical calcula-
tion of the MF susceptibility χ

o(ω), as determined by the crystal-field
Hamiltonian and the exchange field, given by (6.1.15b). In the general
case, it is necessary to include the total interaction-matrix J (q), and
not only the (xy)-part as in (6.1.14), when deriving the final suscepti-
bility matrix (6.1.7). A numerical calculation of the excitation energies,
for a model which also accounts fairly accurately for the anisotropy of
Er, leads to energies which are very well described by the linear spin-
wave theory (Jensen 1976c), the discrepancies being only of the order
of a few per cent. The spin waves are not purely transverse, as the
individual moments are calculated to precess in a plane whose normal
makes an angle of about 33◦ with the c-axis. The relation between the
difference and the sum of E+

q and E−
q is still found to be obeyed, when

the two-ion anisotropy is neglected. The experimental results therefore
attest to the importance of such anisotropy effects. Except for the tilt-
ing of the plane in which the moments precess, which is not easy to
detect experimentally, the linear spin-wave theory is found to give an
accurate account of the excitations at low temperatures in Er. In spite
of this, it is not a good approximation to consider only the ground state
and the first excited state of the MF Hamiltonian, when calculating the
excitation spectrum, because 10–15% of the dispersive effects are due
to the coupling between the spin waves and the higher-lying MF levels.
These effects are included implicitly, to a first approximation, in the
linear spin-wave theory, which gives an indication of the efficacy of the
Holstein–Primakoff transformation (when J is large).

We have so far neglected the hexagonal anisotropy. In Section 2.1.3,
we found that B6

6 causes a bunching of the moments about the easy
axes in the plane, leading to (equal) 5th and 7th harmonics in the
static modulation of the moments. The cone is distorted in an anal-
ogous way, but the hexagonal anisotropy is effectively multiplied by the
factor sin6 θ0 ≈ 0.01 in Er. The effects of B6

6 on the spin waves are
therefore small, and may be treated by second-order perturbation the-
ory, which predicts energy gaps in the spectrum whenever Eq = Eq±6Q

(for a further discussion, see Arai and Felcher, 1975). In the experi-
mental spin-wave spectrum of Er, shown in Fig. 6.2, energy gaps are
visible, but not at the positions expected from the coupling due to the
hexagonal anisotropy. It seems very likely that the two gaps observed
close to q = 0.4 (2π/c) are due to an interaction with the transverse
phonons. Although the normal magnetoelastic ε-coupling, which leads
to energy gaps when Eq = h̄ωq±Q, might be significant for the lower
branch, the positions of both gaps agree very well with those expected
from an acoustic–optical coupling, occurring when Eq = h̄ωq±2Q+b3

(in
the double-zone representation), as indicated in Fig. 6.2. Although the
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two gaps are close to each other on the figure, they appear in practice
on different sides of q = 0, and do not interfere. This interaction is
equivalent to the strong optical-magnon – acoustic-phonon coupling ob-
served in Tb, shown in Fig. 5.6. However, in Er, it is not possible to say
whether or not a non-collinear component of the spin-density wave of
the polarized conduction electrons is involved, as this coupling is allowed
independently of whether such a component is present or not.

6.1.2 The longitudinally polarized structure
In the helix or the cone, the magnitude of the moments is constant, and
a transformation to the rotating coordinate system yields a Hamiltonian
which is equivalent to that of a ferromagnet, independently of whether
or not the ordering is commensurable. In the longitudinally polarized
phase, the length of the moments is modulated and the magnitude of the
exchange field changes from site to site. This results in a modulation of
the energies of the MF levels, whereas in the helix or the cone, it is only
the matrix elements of the dipole moments which change. In the com-
mensurable case, which we shall discuss in more detail in the following
section, the RPA always predicts well-defined excitations. If the mag-
netic ordering is incommensurable, the single-site energy levels change
in a pattern which never repeats itself, introducing effectively random
energy-barriers along the paths of the excitations. Hence it is not obvi-
ous whether well-defined excitations can exist in this phase (Cooper et
al. 1962). We shall focus on the effects of incommensurable ordering by
considering the simplest possible model. The single-ion anisotropy terms
are neglected, but in order to confine the moments along the c-axis, the
two-ion dipole coupling is assumed to be anisotropic, J‖(q) �= J⊥(q).
Furthermore, we assume that the temperature is so close to TN that
the tendency towards squaring-up, i.e. the higher harmonics discussed
in Section 2.1.4, can be neglected, in which case

〈Jiζ〉 = Ai = A cos (Q ·Ri + ϕ). (6.1.25)

The exchange field acting on the ith site is then

heff
iζ =

∑
j

J‖(ij)A cos (Q ·Rj + ϕ) = AiJ‖(Q),

and the transverse component of the MF Green function is

g o
i (ω) ≡ −χ o

+−(ω) =
2Ai

h̄ω −AiJ‖(Q)
, (6.1.26)

as in Section 3.5.2. Because χ o
++(ω) and χ o−−(ω) both vanish, the site-

dependent equation determining the final RPA Green function G(ij, ω),



6.1 INCOMMENSURABLE PERIODIC STRUCTURES 301

corresponding to g o
i (ω), may be written{

h̄ω −AiJ‖(Q)
}
G(ij, ω) = 2Aiδij −

∑
j′

AiJ⊥(ij′)G(j′j, ω), (6.1.27)

obtained from the RPA equation (3.5.7) by multiplying with the energy
denominator in g o

i (ω). We introduce the Fourier transforms

Gn(q, ω) = 1

N

∑
ij

G(ij, ω)e−iq·(Ri−Rj)e−inQ·Ri , (6.1.28)

where n is an integer, and the coupling parameter

γn(q) = −1
2 A

{
J‖(Q) − J⊥(q + nQ)

}
, (6.1.29)

which is always negative (A > 0), as the stability of the structure re-
quires J‖(Q) − J⊥(Q) > 0. From (6.1.27), we then obtain the infinite
set of equations

h̄ωGn(q, ω)+γn+1(q)Gn+1(q, ω)+γn−1(q)Gn−1(q, ω) = A(δn,1+δn,−1)
(6.1.30)

whenever Q is incommensurable. In a commensurable structure, for
which mQ = pτ , we determine Gn(q, ω) = Gn+m(q, ω) by the corre-
sponding finite set of m equations. Of the infinite number of Green
functions, we wish to calculate the one with n = 0, as the transverse
scattering function is proportional to Im

[
G0(q, ω)

]
.

It is possible to rewrite eqn (6.1.30) so that G0(q, ω) is expressed
in terms of infinite continued fractions. In order to derive such an ex-
pression, we shall introduce the semi-infinite determinant Dn, with n
positive,

Dn =

∣∣∣∣∣∣∣∣∣∣∣

h̄ω γn+1 0 0 0 0 · · ·
γn h̄ω γn+2 0 0 0 · · ·
0 γn+1 h̄ω γn+3 0 0 · · ·
0 0 γn+2 h̄ω γn+4 0 · · ·
...

...
. . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣
(6.1.31)

leaving out the variables q and ω. Expanding the determinant in terms
of the first column, we have

Dn = h̄ωDn+1 − γnγn+1Dn+2. (6.1.32)
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When n = 1, eqn (6.1.30) may be written h̄ωG1 + γ2G2 = A − γ0G0,
and the semi-infinite series of equations with n ≥ 1 may be solved in
terms of G0 and Dn:

G1 = (A− γ0G0)
D2

D1

= (A− γ0G0)
1

h̄ω − γ1γ2D3/D2

, (6.1.33)

utilizing (6.1.32) in the last step. In terms of the two infinite continued
fractions (n ≥ 1)

zn(q, ω) =
γn(q)

h̄ω − γn(q)zn+1(q, ω)

z−n(q, ω) =
γ−n(q)

h̄ω − γ−n(q)z−n−1(q, ω)
,

(6.1.34)

eqn (6.1.33) may be written γ1G1 = (A−γ0G0)z1, and in the same way,
we have γ−1G−1 = (A − γ0G0)z−1. Introducing these expressions into
(6.1.30), with n = 0, we finally obtain

G0(q, ω) = A
z1(q, ω) + z−1(q, ω)

γ0{z1(q, ω) + z−1(q, ω)} − h̄ω
. (6.1.35)

A similar result was derived by Liu (1980). In this formal solution, there
is no small parameter, except in the high-frequency limit, which allows
a perturbative expansion of G0(q, ω). The infinite continued fraction
determining zn never repeats itself, but it is always possible to find an
n = s such that zs is arbitrary close to, for instance, z1. This property
may be used for determining the final response function when h̄ω → 0.
In this limit, we have from (6.1.34): z1 = −1/z2 = z3 = −1/z4 = · · ·
and, using z1 	 zs for s even, we get z1 = −1/z1 or z1 = ±i. At q = 0,
we have by symmetry z1 = z−1 = ±i, which also has to be valid at
any other q. The correct sign in front of the i is determined from a
replacement of ω by ω+ iε, where ε is an infinitesimal positive quantity
or, more easily, from the property that Im

[
G0(q, ω)

]
should have the

opposite sign to ω, i.e.

G(q, ω → 0) =
A
γ0

− i
A

2γ2
0

h̄ω. (6.1.36a)

Since
χξξ(q, ω) = χηη(q, ω) = −1

4

{
G(q, ω) +G∗(q,−ω)

}
,

we get

χξξ(q, ω → 0) =
1

J‖(Q) − J⊥(q)
+ i

h̄ω

A{J‖(Q) − J⊥(q)}2
. (6.1.36b)
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The imaginary term linear in ω implies that the correlation function
(4.2.3), which is proportional to χ′′

αβ(q, ω)/βh̄ω for ω → 0, is non-zero
in this limit. Hence the inelastic-scattering spectrum of the incommen-
surable system contains a tail down to zero frequency, with a magnitude
at ω = 0 proportional to T . At non-zero frequencies, eqn (6.1.35) can
only be solved in special cases, such as if γn is independent of n, corre-
sponding to J⊥(q) = 0 (Liu 1980). In general, numerical methods must
be applied. We may, for example, replace ω by ω + iε and, instead of
considering the limit ε → 0+, allow ε to stay small but non-zero (e.g.
ε = 0.01|ω |). Then G0(q, ω) becomes insensitive to the value of z±n,
if n is sufficiently large (n > 50). ε acts as a coarse-graining param-
eter, of the type mentioned at the beginning of this section, and any
energy gaps in the spectrum, smaller than h̄ε, are smeared out. A more
careful treatment of this problem has been given by Lantwin (1990).
Solutions of eqn (6.1.35) have been presented by Ziman and Lindg̊ard
(1986), Lovesey (1988), and Lantwin (1990), for various values of Q
and the axial anisotropy parameter J‖(Q) − J⊥(Q). The most impor-
tant result is that the imaginary part of G0(q, ω)/ω contains a number

Fig. 6.3. The imaginary part of the response function χξξ(q, ω)/ω
for an incommensurable longitudinal structure, as a function of ω and q,
from Ziman and Lindg̊ard (1986). The sharp peaks indicate the presence

of well-defined excitations in this structure.
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of sharp peaks, as a function of ω at a constant value of q; one such
example is shown in Fig. 6.3. These peaks indicate the presence of well-
defined excitations. The variation of the energy with the component of
q parallel to Q is very small, but the spectral weights of the different
peaks change. This pattern indicates that the excitations propagating
parallel to the ordering wave-vector are quasi-localized modes of com-
posite angular momenta. This behaviour may be explained by a closer
examination of the single-site response function (6.1.26). g o

i (ω) becomes
nearly zero, at non-zero frequencies, whenever Ai = 〈Jiζ〉 is small, which
generally occurs twice in every period. This explains the low-frequency
diffusive response, and implies that the excitations become essentially
trapped between the sites with small moments.

This theory may, with some modifications, be applicable to a de-
scription of Er in its high-temperature, longitudinally polarized phase
(T ′

N < T < TN ). The excitations in this temperature interval have been
studied by Nicklow and Wakabayashi (1982). They found no sharp peaks
in the transverse spectrum, but saw indications of relatively strong dis-
persive effects at small values of q ± Q. The absence of sharp peaks in
the spectrum may be explained by intrinsic linewidth effects, neglected
in the RPA theory utilized above, which may be quite substantial at the
relatively high temperatures of the experiments. However, the strong
dispersive effects detected close to the magnetic Bragg peaks are not
consistent with the results discussed above. One modification of the sim-
ple model which may be important is the squaring-up of the moments,
which has been considered by Lantwin (1990). The higher harmonics
lead to additional coupling terms in (6.1.30), and the analysis becomes
correspondingly more complex. However, a simple argument shows that
the higher harmonics result in less localized modes, and thus lead to a
stronger dispersion, as also concluded by Lantwin. It is because the in-
tervals along the c-axis in which the moments are small become narrower
when the moments square up, so that the excitations may tunnel more
easily through these regions. Another limitation of the theory, which
may be important for Er, is that the single-site crystal-field anisotropy,
neglected in the model, is probably more important than the two-ion ax-
ial anisotropy. The single-ion anisotropy splits the levels, even when the
exchange field vanishes, and excited dipolar states may occur at energies
suitable for allowing the excitations to propagate across sites with small
moments, more freely than in the simple model. In the limit where the
exchange field is small compared to the crystal-field splittings, which we
shall discuss in the next chapter, the corresponding continued fractions
in G0(q, ω) converge rapidly (Jensen et al. 1987), and the results become
largely independent of whether the ordering is commensurable or not.
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6.2 Commensurable periodic structures

In the preceding section, we discussed the spin-wave spectra in helical
or conical systems, which are characterized by the important feature
that the magnitude of the ordered moments, and hence of the exchange
field, are constant. This simplification allowed an analytic derivation
of the spin-wave energies, in weakly anisotropic systems. If B6

6 only
leads to a slight distortion of the structure, its effects on the spin waves
may be included as a perturbation. If B6

6 is large, however, as it is for
instance in Ho, this procedure may not be sufficiently accurate. Instead
it is necessary to diagonalize the MF Hamiltonian for the different sites,
determine the corresponding MF susceptibilities, and thereafter solve
the site-dependent RPA equation

χ(ij, ω) = χ
o
i (ω)δij +

∑
j′
χ

o
i (ω)J (ij′)χ(j′j, ω). (6.2.1)

In uniform para- or ferromagnetic systems, χ o
i (ω) is independent of the

site considered, and the equation may be diagonalized, with respect to
the site dependence, by a Fourier transformation. In an undistorted helix
or cone, the transformation to the rotating coordinate system eliminates
the variation of χ o

i (ω) with respect to the site index, and (6.2.1) may be
solved as in the uniform case. If B6

6 is large, the transformation to a (uni-
formly) rotating coordinate system leaves a residual variation in χ o

i (ω),
and in the direction of the moments relative to the z-axis of the rotating
coordinates. This complex situation can usually only be analysed by
numerical methods. A strong hexagonal anisotropy will normally cause
the magnetic structure to be commensurable with the lattice, as dis-
cussed in Section 2.3. We shall assume this condition, and denote the
number of ferromagnetic hexagonal layers in one commensurable period
by m, with Q along the c-axis. The spatial Fourier transformation of
(6.2.1) then leaves m coupled equations. In order to write down these
equations explicitly, we define the Fourier transforms

χ
o(n;ω) = 1

N

∑
i

χ
o
i (ω) e−inQ·Ri (6.2.2a)

and, corresponding to (6.1.28),

χ(n;q, ω) = 1

N

∑
ij

χ(ij, ω) e−iq·(Ri−Rj) e−inQ·Ri , (6.2.2b)

where n is an integer. Equation (6.2.1) then leads to

χ(n;q, ω) = χ
o(n;ω) +

m−1∑
s=0

χ
o(n− s;ω)J (q + sQ)χ(s;q, ω), (6.2.3)
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where χ o(n+m;ω) = χ
o(n;ω). The m matrix equations may be solved

by replacing ω by ω+ iε. Instead of taking the limit ε→ 0+, as required
by the definition of the response function, ε is considered as non-zero
but small, corresponding to a Lorentzian broadening of the excitations.
Equation (6.2.3) may then be solved by a simple iterative procedure,
after the diagonal term χ(n;q, ω) has been isolated on the left-hand
side of the equation. If m is not too large, and if ε is not chosen to
be too small, this procedure is found to converge rapidly, requiring only
10–20 iterations at each (q, ω). The energies of the magnetic excitations
at the wave-vector q are then derived from the position of the peaks, of
width 2h̄ε, in the calculated response function Im

[
χ(0;q, ω)

]
.

The use of numerical methods, which is unavoidable in systems with
complex moment-configurations, leads to less transparent results than
those obtained analytically. However, compared with the linear spin-
wave theory, they have the advantage that anisotropy effects may be
included, even when they are large, without difficulty. The introduc-
tion of a non-zero value for ε means that the response function is only
determined with a finite resolution, but this is not a serious drawback.
The experimental results are themselves subject to a finite resolution,
because of instrumental effects. Moreover, intrinsic linewidth phenom-
ena, neglected within the RPA, provide a justification for adopting a
non-zero ε.

The numerical method summarized above has been used for calcu-
lating the spin-wave energies in the various structures of Ho discussed
in Section 2.3. In Fig. 5.9, we presented the dispersion relations in the
c-direction of Ho containing 10% of Tb, in its ferromagnetic and helical
phases (Larsen et al. 1987). The Tb content has the desirable effects
of confining the moments to the basal plane, and inducing the simple
bunched helix or zero-spin-slip structure (1.5.3) in the range 20–30K,
and ferromagnetism below 20K. The commensurability of the 12-layer
structure implies that the energy of the helix is no longer invariant un-
der a uniform rotation, and an energy gap appears at long wavelengths,
reflecting the force necessary to change the angle φ which the bunched
moments make with the nearest easy axis. The excitations in this rel-
atively straightforward structure can be treated by spin-wave theory,
and the energies in the c-direction may be written in the form of eqn
(6.1.10b):

Eq =
[
A2

q −B2
q

]1/2
,

where now

Aq +Bq = A+B + J
{
J‖(0) − J‖(q)

}
, (6.2.4a)
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and

Aq −Bq = A−B + u2J
{
J⊥(Q) − 1

2J⊥(q + Q) − 1
2J⊥(q − Q)}

+v2J{J⊥(5Q) − 1
2J⊥(q + 5Q) − 1

2J⊥(q − 5Q)
}
. (6.2.4b)

In this case, the axial- and hexagonal-anisotropy terms are

A+ B = 1

J

{
6B0

2J
(2) − 60B0

4J
(4) + 210B0

6J
(6) + 6B6

6J
(6) cos 6φ

}
+ J

{
u2J⊥(Q) + v2J⊥(5Q) − J‖(0)

}
, (6.2.5a)

and
A−B = 36B6

6J
(6) cos 6φ, (6.2.5b)

while u and v are determined from the bunching angle, by (1.5.3b), as
respectively cos (π/12 − φ) and sin (π/12 − φ). As may be seen from the
above expressions, the energy gap E0 in the periodic structure should be
smaller than that in the ferromagnet by a factor of approximately cos 6φ,
or about 0.8. The observed difference in Fig. 5.9 is considerably greater
than this, and corresponds to an effective reduction of B0

2 by about
50% in the helical phase. Such an effect can be accounted for by an
anisotropic two-ion coupling of the type observed in Tb and considered
in Section 5.5.2. Specifically, the term C(q) in eqn (5.5.19a) gives a
contribution C(0) to A+B in the ferromagnetic phase, and C(3Q) cos 6φ
in the bunched helical structure.

As in the ferromagnetic phase, treated in Section 5.5.1, the dis-
continuity in the dispersion relations at q = 0 is due to the classical
magnetic dipole–dipole interaction. As illustrated in Fig. 5.7, the basal-
plane coupling J⊥(q) has its maximum at q 	 Q, but the jump in the
long-wavelength limit in the dipolar contribution to J‖(q)−J‖(0), which
has a magnitude 4πgµBM or 0.28meV, is sufficiently large that the ab-
solute maximum in J‖(q) is shifted from q = Q to q = 0. Consequently,
the soft mode, whose energy goes to zero with the vanishing of the axial
anisotropy at a temperature of 20K in pure Ho, is the long-wavelength
spin wave propagating perpendicular to the c-axis, rather than the mode
of wave-vector Q along the c-axis. As discussed in Section 2.3.1, the cone
structure, rather than the tilted helix, is thereby stabilized. Near the
second-order phase transition, the divergence of χζζ(0, 0) is accompanied
by a vanishing of the energy gap as (T − TC)1/2.

The calculated small energy gap at the centre of the zone in the
commensurable helix, shown in Fig. 5.9, is due to the bunching of the
moments; ϕ = π/2 + pπ/3 ± φ, where the sign before φ alternates from
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Fig. 6.4. Magnetic excitations propagating in the c-direction in
the one-spin-slip structure of Ho at 20K, after Patterson et al. (1990;
and to be published). The full curve is the calculated dispersion rela-
tion and the points are the experimental results. The energy gap at
q = 5

11
(2π/c), due to the eleven-layer period, is resolved in these mea-

surements. The linewidth of the scattering peaks behaves anomalously
around q = 6

11
(2π/c) suggesting a gap of the order of 0.3 meV at this

wave-vector. The calculated energy of the long-wavelength modes in the
basal plane is indicated by the line on the left. The discontinuity at q = 0
is due to the dipolar coupling, and the transition to the cone structure is

accompanied by a softening of this lowest-energy mode.

one layer to the next. This alternation doubles the periodicity in the
rotating coordinate system, and thereby halves the Brillouin zone in the
c-direction. The predicted gap is somewhat smaller than the experi-
mental energy-resolution, and is therefore not observed in these mea-
surements. The equivalent gap has however been measured in the one-
spin-slip structure of Fig. 2.5 by Patterson et al. (1990), whose results
are shown in Fig. 6.4. In this case, the 11-layer structure causes an
eleven-fold reduction in the Brillouin zone, but only the first-order gap
at 5/11 times 2π/c is calculated to be readily observable. This gap, on
the other hand, is amplified by about a factor two, as compared to that
in the structure without spin slips. As the number of spin slips increases,
the calculated excitation spectra (Jensen 1988a) become more complex,
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Fig. 6.5. The energies of the magnetic excitations propagating in
the c-direction in the 19-layer and 9-layer spin-slip structures of Fig. 2.5.
The solid lines indicate the positions of the main peaks in the calculated
spectrum, whereas the dashed extensions designate peaks of relatively
lower intensities. The energy gaps due to the reduced symmetry are not

resolved in the experimental measurements of Nicklow (1971).

as illustrated in Fig. 6.5. The dispersion relations are broken into short
segments by a succession of energy gaps, which may however be difficult
to identify because of intrinsic broadening effects, neglecting in the RPA,
which become more and more pronounced at increasing temperatures.

At temperatures above about 50K, when 〈O6
6〉 in Ho is small and

the distortion of the helix correspondingly weak, the large B6
6 still plays

an important role in mixing |Jz > molecular-field (MF) states. Indeed,
as the temperature is increased and the exchange field decreases, this
effect becomes relatively more important, so that, for example, the en-
ergy difference between the two lowest MF levels varies by an order of
magnitude as the moment on the site moves from an easy to a hard
direction at elevated temperatures, while this variation is much smaller
in the low-temperature limit. The large changes in the MF states from
site to site tend to disrupt the coherent propagation of the collective
modes, providing a mechanism for the creation of energy gaps in the
excitation spectrum. The spectrum thus becomes similar to that of the
incommensurable longitudinal phase, illustrated in Fig. 6.3.

Whenever the moments are not along a direction of high symmetry,
B6

6 mixes the transverse and longitudinal components of the single-site
susceptibility, so that the normal modes are no longer either pure trans-
verse spin waves or longitudinal excitations. At low temperatures, where
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〈Jz〉 is close to its maximum value, this mixing is unimportant, but it
has significant effects on the excitations at higher temperatures. In the
RPA, the pure longitudinal response contains an elastic component, and
the (mixed) excitation spectrum in the long-wavelength limit therefore
comprises an elastic and an inelastic branch. The inelastic mode is cal-
culated to lie around 1meV in the temperature interval 50–80K. In the
RPA, this feature is independent of whether the magnetic periodicity
is commensurable with the lattice. In the incommensurable structure,
the free energy is invariant to a rotation of the helix around the c-axis,
implying that χt(q, ω) diverges in the limit (q, ω) → (0, 0). However,
the corresponding generator of rotations no longer commutes with the
Hamiltonian, as in the regular helix, because B6

6 is now non-zero. The
divergence of χt(q, ω) is therefore not reflected in a conventional Gold-
stone mode, but is rather manifested in the elastic, zero-energy pha-
son mode, which coexists with the inelastic mode. Beyond the RPA,
the elastic response is smeared out into a diffusive mode of non-zero
width. This broadening may essentially eliminate the inelastic phason
mode, leaving only a diffusive peak centred at zero energy in the long-
wavelength limit. The intensity of this peak diverges, and its nominal
width goes to zero, when the magnetic Bragg reflection is approached.
However, a diffusive-like inelastic response is still present at q = 0, and
a true inelastic mode only appears some distance away. In the calcula-
tions, the elastic single-site response was assumed to be broadened by
about 6meV, corresponding to the spin-wave bandwidth. This assump-
tion gives a reasonable account of the excitations in the long-wavelength
limit, suggesting that they become overdamped if the wave-vector is
less than about 0.1 times 2π/c. Although the inelastic phason mode is
largely eliminated, the calculations suggest that a residue may be ob-
servable. The most favourable conditions for detecting it would occur
in a neutron-scattering scan with a large component of the scattering
vector in the basal plane at about 50K.

Another example to which the above theory has been applied is
Tm (McEwen et al. 1991), where the c-axis moments order below 57.5
K in a longitudinally polarized structure, which becomes commensu-
rable around 32K. Below this temperature, as described in Section 2.3.1,
the structure is ferrimagnetic, comprising four layers with the moments
parallel to the c-axis, followed by three layers with the moments in
the opposite direction. Although Tm belongs to the heavy end of the
rare earth series, the scaling factor for the RKKY-exchange interaction,
(g − 1)2 = 1/36, is small, and the Néel temperature is low compared to
the crystal-field energy-splittings. The crystal-field effects are therefore
more important in this element than in the other heavy rare earths. The
energy difference between the MF ground state and the dipolar excited
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state is calculated to vary between 8.0 and 10.2meV, while the exchange
field lies between 0 and 1.8meV. Hence the exchange field acts as a minor
perturbation, and incommensurable effects above 32K in the excitation
spectrum should be unimportant. In the low-temperature limit, the
magnetic excitations are spin waves; the MF ground state and the first
dipolar excited state are almost pure | ± 6> and | ± 5> levels (+ or −
depending on the site considered). The excitations propagating in the
c-direction are found to lie between 8.5 and 10meV (Fernandez-Baca
et al. 1990; McEwen et al. 1991). The magnetic period is seven times
that of the lattice, and the exchange coupling splits the spin waves into
seven closely lying bands, which cannot be separated experimentally.
With a finite resolution, the exchange coupling leads to a single or, at
some wave-vectors, a double peak, whose shape and width change with
q. At low temperatures, a relatively strong coupling between the spin
waves and the transverse phonons is observed, and when this coupling
is included in the determination of the RPA response functions, by the
method presented in Section 7.3.1 in the next chapter, good agreement
is obtained between the calculated neutron spectra and those observed
experimentally. At elevated temperatures, both below and just above
TN , other excitations between the excited crystal-field (MF) levels are
observed to be important, both in the transverse and the longitudinal
components of the response function, and good agreement is again found
between theory and experiment. With respect to its magnetic proper-
ties, Tm is thus an exceptional member of the heavy rare earths, as it
is the only one in which well-defined crystal-field excitations have been
detected. Hence it provides an appropriate termination of our discussion
of spin-waves, as well as a natural transition to the crystal-field systems
which are the topic of the next chapter.



7

CRYSTAL-FIELD EXCITATIONS IN
THE LIGHT RARE EARTHS

A magnetic ion in a rare earth metal experiences a crystalline electric
field from the surroundings, which gives rise to an overall splitting of
the order 10–20meV of the ionic ground-state J-multiplets. Crystal-
field excitations are collective normal modes of the system, associated
with transitions between the different levels of the ground-state multi-
plets. Even though there is an obvious qualitative difference between
the crystal-field excitations in paramagnetic Pr and the spin waves in
the isotropic ferromagnet Gd, it is not in general easy to give a precise
prescription for differentiating between the two types of excitation. The
spin-wave modes are derived from the precession which the moments ex-
ecute when placed in a magnetic field. The two transverse components
of a single moment change in time in a correlated fashion in such a pre-
cession, and this phase-locking is only possible when the time-reversal
symmetry is broken. Hence the spin waves may be considered as the
magnetic excitations related to the broken time-reversal symmetry of
a magnetically ordered phase. However, spin waves may exist in the
paramagnetic phase in the vicinity of the phase transition, if the time-
reversal symmetry is broken locally. In the ordered phase, there may
be additional magnetic excitations, associated either with the longitu-
dinal fluctuations of the moments, or with further transitions between
the MF levels, made possible by a strong mixing of the |Jz >-states in
the crystal field, as discussed in Section 5.3.2. Depending on the cir-
cumstances, these additional excitations may be named crystal-field or
molecular-field excitations. The effects of the crystal field, relative to
that of the exchange field, are important in the four heavy rare earths
Tb – Er, but not sufficiently to produce other well-defined magnetic ex-
citations, in addition to the spin waves. In their paramagnetic phases,
the temperature is sufficiently high, compared with the crystal-field split-
tings, that potential crystal-field excitations have such low intensity, and
are so damped, as to be unobservable. Among the rare earth metals,
crystal-field excitations are consequently only found in the light half of
the series, and in Tm (McEwen et al. 1991) where, as discussed in the
previous section, the crystal-field effects are relatively stronger because
of the de Gennes scaling of the exchange.

We shall therefore concentrate our discussion on Pr, the paradigm
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of crystal-field systems. We begin by using the RPA to analyse a num-
ber of model systems which, though oversimplified, contain much of the
essential physics of the magnetic excitations, sometimes known as mag-
netic excitons, observed on both the hexagonal and the cubic sites in Pr.
In the following section, it is shown how effects neglected in the RPA
modify the energies and lifetimes of these excitations. The perturba-
tions of the crystal-field system by the lattice, the conduction electrons,
and the nuclei are then considered. This discussion is largely parallel to
that of spin-wave systems in Chapter 5; the magnetoelastic interactions
couple the phonons to the magnetic excitations and modify the elastic
constants, and the conduction electrons limit the lifetimes of the excita-
tions, especially at small q, while themselves experiencing a substantial
increase in effective mass. The major effect of the hyperfine interaction
has no counterpart in spin-wave systems, however, since it is able to
induce collective electronic–nuclear ordering at low temperatures, and
hence affect all magnetic properties drastically. Because the hexagonal
sites in Pr constitute an almost-critical system, relatively small pertur-
bations are able to drive it into a magnetically-ordered state. The effect
of the internal interactions with the nuclei and magnetic impurities, and
external perturbations by uniaxial stress or a magnetic field, are consid-
ered. Finally, we discuss a number of specific aspects of the magnetic
excitations in Pr, in the paramagnetic and ordered phases.

7.1 MF-RPA theory of simple model systems

The general procedure for calculating the RPA susceptibility was out-
lined in Section 3.5. If we consider the Hamiltonian

H =
∑

i

HJ(Ji) −
1

2

∑
ij

Ji ·J (ij) ·Jj , (7.1.1)

which includes a general two-ion coupling between the dipolar moments,
and assume the system to be in the paramagnetic state, we find the RPA
susceptibility to be

χ(q, ω) =
{
1 − χ

o(ω)J (q)
}−1

χ
o(ω), (7.1.2)

which is a simple generalization of eqn (3.5.8), as in (6.1.7). The essence
of the problem therefore lies in the calculation of the non-interacting sus-
ceptibility χ o(ω), as determined by the single-ion Hamiltonian HJ(Ji).
In the case of a many-level system, where J is large, this normally re-
quires the assistance of a computer. Analytical expressions for χ(q, ω)
may, however, be obtained for systems where the number of crystal-field
levels is small, i.e. between 2–4 states corresponding to J = 1

2 , 1, or 3
2 .

Such small values of J are rare, but the analysis of these models is also
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useful for systems with larger J , if the higher-lying levels are not coupled
to the ground state, and are so sparsely populated that their influence is
negligible. According to Kramers’ theorem, the states are at least dou-
bly degenerate in the absence of an external magnetic field, if 2J is odd.
In order to construct simple models with relevant level-schemes, we may
consider a singlet–singlet or a singlet–triplet configuration, instead of
systems with J = 1

2 or J = 3
2 . These models may show some unphysical

features, but these do not normally obscure the essential behaviour.
The simplest level scheme is that of the singlet–singlet model. This

may be realized conceptually by lifting the degeneracy of the two states
with J = 1

2 with a magnetic field, and then allowing only one of the
components of J perpendicular to the field to interact with the neigh-
bouring ions. This is the so-called Ising model in a transverse field.
Assuming the coupled components to be along the α-axis, we need only
calculate the αα-component of χ o(ω). The lower of the two levels, at
the energy E0, is denoted by |0 >, and the other at E1 by |1 >. The
single-ion population factors are n0 and n1 respectively, and the use of
eqn (3.5.20) then yields

χ o
αα(ω) =

2n01M
2
α∆

∆2 − (h̄ω)2
, (7.1.3)

whereMα = |< 0|Jα| 1>| is the numerical value of the matrix element of
Jα between the two states, while the two other (elastic) matrix elements
are assumed to be zero. ∆ = E1 − E0 is the energy difference, and
n01 = n0 − n1 is the difference in population between the two states.
From eqn (7.1.2), we have immediately, since only Jαα(q) is non-zero,

χαα(q, ω) =
2n01M

2
α∆

E2
q − (h̄ω)2

, (7.1.4a)

where the dispersion relation is

Eq =
[
∆
{
∆ − 2n01M

2
αJαα(q)

}]1/2
. (7.1.4b)

These excitations are actually spin waves in this case of extreme axial
anisotropy, but they have all the characteristics of crystal-field excita-
tions. The energies are centred around ∆, the energy-splitting between
the two levels, and the bandwidth of the excitation energies, due to
the two-ion interaction, is proportional to the square of the matrix el-
ement, and to the population difference, between them. These factors
also determine the neutron-scattering intensities which, from (3.2.18)
and (4.2.3), are proportional to

Sαα
d (q, ω) =

1
1 − e−βh̄ω

n01M
2
α∆

Eq

{
δ
(
h̄ω − Eq

)
− δ

(
h̄ω + Eq

)}
	M2

α

∆
Eq

{
n0δ

(
h̄ω − Eq

)
+ n1δ

(
h̄ω + Eq

)}
.

(7.1.5)
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The approximate expression is obtained by using h̄ω 	 ±∆ in the tem-
perature denominator.

The above results are only valid as long as the excitation energies
remain positive for all q. The mode of lowest energy is found at the wave-
vector Q at which Jαα(q) has its maximum. Introducing the critical
parameter

R(T ) = 1 − χ o
αα(0)

χαα(Q, 0)
, (7.1.6a)

which, in the present approximation, depends on T through n01:

R(T ) = 1 −
(
EQ/∆

)2 = n01R0 ; R0 =
2M2

αJαα(Q)
∆

, (7.1.6b)

we find that the excitation energies are all positive as long as R(T ) <
1. This parameter increases monotonically when the temperature is
lowered and, if the zero-temperature value R0 is greater than one, the
energy EQ of the soft mode vanishes at a temperature T = TN (or TC if
Q = 0) determined by R(TN ) = 1. Correspondingly, the susceptibility
χαα(Q, 0) becomes infinite at this temperature. This indicates that the
system undergoes a second-order phase transition, from a paramagnetic
phase to one which has the same symmetry as the soft mode. In this case,
this means that 〈Jαi〉 = 〈Jα〉 cos (Q ·Ri + ϕ), where the MF equations
have a non-zero solution for 〈Jα〉 below, but not above, TN .

We shall assume ferromagnetic ordering with Q = 0. For the Ising
model in a transverse field, the development of a ferromagnetic moment
below TC corresponds to a rotation of the moments away from the di-
rection of the ‘transverse field’. The MF Hamiltonian in the (|0> |1>)-
basis is

HMF(i) =
(
E0 −δ
−δ E1

)
; δ = MαJαα(0)〈Jα〉. (7.1.7)

Introducing the new eigenstates

|0′> = cos θ|0> + sin θ|1>
|1′> = cos θ|1> − sin θ|0>,

(7.1.8a)

we find that the coupling parameter δ, due to the molecular field, gives
rise to a non-zero moment < 0′ |Jα|0′>= Mα sin 2θ in the ground state.
Because it is a singlet, the ground state |0> in the paramagnetic phase is
necessarily ‘non-magnetic’, in zero field. This condition does not apply
in the ordered phase, so the nomenclature induced-moment system is
frequently used. In the ordered phase, the splitting between the two
singlets is ∆/ cos 2θ, and 〈Jα〉 = n01Mα sin 2θ (where n0 and n1 are now
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the population factors of the new eigenstates). The condition that HMF

should be diagonal in the new basis requires that

cos 2θ =
1

n01R0

, (7.1.8b)

which only has a solution if n01R0 ≥ 1, in accordance with the critical
condition R(TC) = 1. The MF susceptibility is

χ o
αα(ω) =

2n01M
2
α∆ cos 2θ

(∆/ cos 2θ)2 − (h̄ω)2
+β(n0+n1−n2

01)M
2
α sin2 2θ δω0, (7.1.9)

revealing that there are now two kinds of excitation. The first is a
continuation of the paramagnetic inelastic branch, with the dispersion
relation

E2
q =

∆
cos 2θ

( ∆
cos 2θ

− 2n01M
2
αJ (q) cos2 2θ

)
, (7.1.10)

which is again positive at all wave-vectors, consistent with the stabil-
ity of the ordered phase. EQ therefore vanishes when T approaches TC

from above or below, and this kind of second-order phase transition is
frequently known as a soft-mode transition. In addition to the inelastic
mode, there appears a diffusive mode which, within the RPA, is purely
elastic. The diffusive mode, but not the inelastic branch, has a parallel
in the spectrum of the longitudinal fluctuations of a Heisenberg ferro-
magnet, described by eqn (3.5.27), since the spectrum analysed here is
longitudinal relative to the polarization of the spontaneously ordered
moment.

The behaviour discussed above is typical for a system where the
crystal-field ground state is a singlet. The most characteristic feature
of such a system is that the two-ion coupling must exceed a certain
threshold value, relative to the crystal-field splitting, in order to force
the system into a magnetically-ordered state at low temperatures. In
this case, the condition is that the ratio R0 must be greater than one.
The general (MF) condition is that χ o

αα(0)Jαα(Q) > 1, for at least one
of the α-components, where χ o

αα(0) is the paramagnetic susceptibility
at zero temperature. This condition is a consequence of the fact that
the single-ion susceptibility remains finite in the zero-temperature limit,
if the ground state is non-degenerate. If the ground state is degenerate,
on the other hand, one or more components of the static single-ion sus-
ceptibility contains an elastic contribution proportional to 1/kBT , and
its divergence in the T = 0 limit results in an ordering of the moments,
within the MF approximation, no matter how weak the two-ion cou-
pling. Fluctuations not included in the MF theory modify the critical
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condition for J (Q), but the qualitative behaviour is unchanged. It is
therefore possible to realize a system in which the moments are rela-
tively strongly coupled to each other, but which remains paramagnetic
at low temperatures, i.e. a crystal-field system in which cooperative ef-
fects are important. Perhaps the best example is elemental Pr, which is
only slightly undercritical, with R0 	 0.92, and therefore exhibits a rich
variety of unusual magnetic phenomena.

Pr crystallizes in the double hexagonal-close-packed (dhcp) struc-
ture, illustrated in Fig. 1.3, with the stacking sequence ABAC along the
c-axis. This implies that there are two non-equivalent types of site of
different symmetry in the crystal. The ions in A layers are in an ap-
proximately cubic environment, with nearest neighbours close to the fcc
configuration, while those in the B and C layers experience a crystal
field of hexagonal symmetry and form together an hcp structure. The
tripositive Pr ion, with two 4f electrons, is a non-Kramers ion (S = 1,
L = 5, and J = 4 for the ground-state multiplet) allowing the occurrence
of singlet crystal-field states. Experimental observations, particularly of
neutron scattering, have revealed that both kinds of site in fact have
a singlet as the ground state. The lowest states of the hexagonal ions
are the singlet |Jζ = 0 > followed by the doublet |Jζ = ±1 >, with
an energy difference of ∆h 	 3.5meV, as illustrated in Fig. 1.16. If
the distortion of the point symmetry of the cubic ions, due to the non-
ideal c/a ratio, is neglected, their ground state is the Γ1-singlet, with
the Γ4-triplet lying ∆c 	 8.4meV above it. A complete survey of the
classification and energies of crystal-field states in cubic surroundings
has been given by Lea, Leask, and Wolf (1962). The possibility that
the Γ4 state is split into a singlet and a doublet, due to the deviation
from cubic symmetry, has not yet been investigated experimentally. At
temperatures well below 40K (∼ 3.5meV), only the two ground states
are populated significantly, and Pr may be considered to be a coupled
singlet–doublet and singlet–triplet system. Furthermore, the difference
between ∆h and ∆c is so large, compared to the two-ion interactions,
that the excitation spectrum can be divided into two parts, related re-
spectively to the crystal-field transitions on each kinds of ion. The weak
coupling of the two components may be accounted for by second-order
perturbation theory (Jensen 1976a), leading to an effective decoupling,
with the two-ion parameters replaced by slightly different, effective val-
ues. Hence, at low temperature, Pr may be treated as a combination of a
singlet–doublet system on an hcp lattice and a singlet–triplet system on
a simple hexagonal lattice. Of these, the singlet–doublet system is much
the more important because of the smaller value of the crystal-field split-
ting. The singlet–doublet scheme corresponds to an effective J = 1 and,
if the two doublet states are defined to be |1s>=

(
|+1>+ |−1>

)
/
√

2
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and |1a >=
(
|+1> −|−1>

)
/
√

2i, the only non-zero matrix elements of
J are < 1a |Jζ |1s >= i and < 0 |Jξ|1s >=< 0 |Jη|1a >=

√
J(J + 1)/2,

plus their Hermitian conjugates. In Pr, the matrix element of Jζ is a
factor of

√
10 smaller than the other matrix elements. This means that

the transformation of the (J = 4) ion of Pr to an effective J = 1 system
introduces a scaling of the two-ion couplings Jξξ(q) and Jηη(q) by a
factor of 10, compared to Jζζ(q), and the latter may therefore be ne-
glected to a first approximation. Hence the (J = 1) XY -model is an
appropriate low-temperature description of the hexagonal ions in Pr.

The RPA theory of the XY -model, in the singlet–doublet case, is
nearly identical to that developed above for the Ising model in a trans-
verse field. One difference is that n0 + n1 + n2 = n0 + 2n1 = 1, instead
of n0 +n1 = 1, but since this condition has not been used explicitly (the
population of any additional higher-lying levels is neglected), it may be
considered as accounted for. The other modification of the above results
is that there are now two components of χ(q, ω) which are important:
χ o

xx(ω) = χ o
yy(ω) are given by the same expression as χ o

αα(ω) in eqn
(7.1.3) (with Mα = 1 when J = 1), whereas χ o

xy(ω) ≡ 0 (the (xyz)-axes
are assumed to coincide with the (ξηζ)-axes). This means that, for a
Bravais lattice, there are two poles at positive energies in the RPA sus-
ceptibility (7.1.2) at each q-vector. As long as Jxy(q) = 0, one of the
modes describes a time variation of Jx alone, and the other Jy alone,
and their dispersion relations are both given by eqn (7.1.4b), with α set
equal to x or y. It is interesting to compare this result with the spin-
wave case. Although the magnetic response is there also determined by
a 2 × 2 matrix equation, it only leads to one (spin-wave) pole at posi-
tive energies, independently of whether the two-ion coupling is isotropic.
The cancellation of one of the poles is due to the specific properties of
χ o

xy(ω) in (5.1.3), produced by the molecular field (or the broken time-
reversal symmetry) in the ordered phase. In the case considered above,
the two modes may of course be degenerate, but only if Jxx(q) is equal
to Jyy(q). In an hcp system, such a degeneracy is bound to occur, by
symmetry, if q is parallel to the c-axis. If the degeneracy is lifted by
anisotropic two-ion couplings, which is possible in any other direction in
q-space, the x- and y-modes mix unless q is parallel to a b-axis. The va-
lidity of the results derived above is not restricted to the situation where
the doublet lies above the singlet. If the XY -model is taken literally,
all the results apply equally well if ∆, and hence also n01, is negative.
However, if the z-components are coupled to some extent, as in Pr, the
importance of this interaction is much reduced at low temperature if ∆
is positive. In this case the zz-response, which is purely elastic,

χzz(q, ω) 	 χ o
zz(ω) = 2βn1δω0
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is frozen out exponentially in the low-temperature limit.
As shown in Fig. 7.1, the dispersion relations for the magnetic exci-

tations on the hexagonal sites in Pr, measured by Houmann et al. (1979),
illustrate many of the characteristic features of the (J = 1) XY -model.
As mentioned above, when q is along ΓM, the excitations are pure x-
or y-modes. The hexagonal ions constitute an hcp structure, so there
are an optical and an acoustic mode for each polarization. The excita-
tion energies (7.1.4) are then generalized analogously to eqn (5.1.9), and
since J2(0) is negative in this case, the lower two branches are the opti-
cal modes. From intensity measurements of the type illustrated in Fig.
4.2, it may readily be deduced that the lowest branch is the longitudinal
optical y-mode. The experimental dispersion relations show clearly that
Jxx(q) and Jyy(q) have very different dependences on wave-vector, and
that the anisotropic component is a substantial fraction of the two-ion
coupling.

Fig. 7.1. Dispersion relations for the magnetic excitations propagat-
ing on the hexagonal sites of Pr at 6K. In the basal plane, the squares
and circles denote the experimental results for the acoustic and optical
modes respectively. The double degeneracy of these excitations is lifted
by anisotropic exchange, and the lower and upper branches correspond
respectively to polarizations predominantly parallel and transverse to the
wave-vector. The double-zone representation is used for the ΓA direction,
along which the two transverse excitations are degenerate by symmetry,

and therefore form a single branch.
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The singlet–triplet model, relevant in the case of cubic symmetry
and, with some modifications, also for the cubic ions in Pr, introduces
one new feature; each component of the single-ion susceptibility includes
a mixture of an elastic and an inelastic response. In surroundings with
cubic symmetry, χ o(ω) is proportional to the unit tensor, and the diag-
onal component is

χ o(ω) =
2n01M

2
1 ∆

∆2 − (h̄ω)2
+ 2βn1M

2
2 δω0, (7.1.11)

where now n0 + 3n1 = 1. This result follows from the circumstance
that Jx, for instance, has a matrix element between the singlet state
and one of the triplet states, and a matrix element between the two
other triplet states, the numerical values of which are denoted by M1

and M2 respectively. In the Γ1 − Γ4 case with J = 4, corresponding to
Pr, M1 =

√
20/3 and M2 = 1/2. The inelastic χ(q, ω �= 0) is equivalent

to (7.1.4) for the singlet–singlet system, but with Mα replaced by M1.
Because of the elastic contribution, the critical condition R(TN ) = 1 is
now determined from

R(T ) =
(
2n01M

2
1 + 2β∆n1M

2
2

)Jαα(Q)
∆

. (7.1.12)

The inelastic neutron-scattering spectrum is also determined by eqn
(7.1.4) with Mα = M1 and α = x, y, or z, when the off-diagonal cou-
pling is neglected. The only difference is that there may now be three
different branches, depending on the polarization. In addition to the in-
elastic excitations, the spectrum also includes a diffusive, elastic mode.
In order to determine its contribution to the scattering function, δω0 in
(7.1.11) may be replaced by δ2/

{
δ2 − (h̄ω)2

}
, and if the limit δ → 0 is

taken at the end, the result is found to be:

Sαα
d (q, ω ≈ 0) =

χ o(0) − χ o(ω → 0)
β{1 − χ o(ω → 0)Jαα(q)}{1 − χ o(0)Jαα(q)}δ(h̄ω)

= 2n1M
2
2

(
∆
Eq

)2
χαα(q, 0)
χ o(0)

δ(h̄ω). (7.1.13)

The two-ion coupling is assumed to be diagonal, and χ o(ω → 0) is
the static susceptibility without the elastic contribution. The scatter-
ing function at q = Q, integrated over small energies, diverges when
T approaches TN , as it also does in the singlet–singlet system. In the
latter case, and in the singlet–doublet system, the divergence is related
to the softening of the inelastic mode (EQ → 0 when T → TN ), as
in eqn (7.1.5). In the singlet–triplet system, it is the intensity of the
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elastic, diffusive mode which diverges, whereas the intensity of the in-
elastic mode stays finite and its energy is still non-zero at the transition.
Within the simple MF-RPA theory, the critical behaviour has changed,
because of the elastic term in the crystal-field susceptibility, so that the
transition is no longer accompanied by a soft mode. The energy of the
inelastic mode at q = Q, when T is close to TN , depends on ∆ and on
how large the elastic term is at the transition. If this elastic contribution
is small, the energy of the inelastic mode may be so small that it be-
comes overdamped because of the influence of the critical fluctuations,
and therefore indistinguishable from the divergent diffusive peak. How-
ever, if the inelastic mode is sufficiently separated in frequency from
the low-frequency critical fluctuations, it may persist as a reasonably
well-defined excitation even near the phase transition.

The dhcp structure of Pr has four atoms per unit cell, so there
are four branches of the dispersion relation for each polarization. If the
hexagonal and cubic sites are decoupled, these decompose into two sets,
each comprising two modes, which may be described as acoustic and
optical, propagating on the sites of a particular symmetry. The com-
plementary excitations to those of Fig. 7.1 propagate on the cubic sites,
and their dispersion relations, also studied by Houmann et al. (1979),
are illustrated in Fig. 7.2. If the hexagonal sites are ignored, the cubic
sites lie on a simple hexagonal lattice, so that a double zone may be

Fig. 7.2. Dispersion relations for the excitations propagating on the
cubic sites of Pr at 6K, plotted in the Brillouin zone of the dhcp structure.
The upper and lower branches in the basal plane are respectively the
acoustic and optical modes. The polarization vector of these excitations
is perpendicular to the c-axis. In contrast to Fig. 7.1, no splitting of
these branches by anisotropic two-ion coupling is observed, within the

experimental resolution of about 0.5meV.
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used. However, it is both more convenient and, in general, more correct
to use the true Brillouin zone for the dhcp structure, as in Fig. 7.2.
The excitations in this figure are polarized in the plane, and may also
be described by (7.1.4), with parameters appropriate to the cubic sites.
The z-modes were not observed in these experiments, on account of the
neutron scans employed. The dispersion is much smaller than that on
the hexagonal sites and, in particular, it is negligible in the c-direction,
indicating very weak coupling between planes of cubic ions normal to
this axis. Again in contrast to the hexagonal ions, the splitting between
modes of different polarization is not resolved, demonstrating that the
anisotropy in the two-ion coupling is smaller.

7.2 Beyond the MF-RPA theory

When the temperature is raised, the available magnetic scattering inten-
sity, from eqn (4.2.7) proportional to J(J+1), is divided more and more
equally among the (2J)! different dipolar transitions, and in the high-
temperature limit half the intensity is transferred to the emissive part of
the spectrum. This means that the different crystal-field excitations be-
come weaker and less dispersive, and correspondingly correlation effects
become less important as the temperature is raised. An additional mech-
anism diminishing the correlation effects at elevated temperatures is the
scattering of the excitations against random fluctuations, neglected in
the MF-RPA theory. In this theory, all the ions are assumed to be in
the same MF state, thus allowing an entirely coherent propagation of
the excitations. However, at non-zero temperatures, the occupations of
the different crystal-field levels differ from site to site, and these single-
site fluctuations lead to a non-zero linewidth for the excitations. In
fact, if two-ion interactions are important, such fluctuations already ex-
ist at zero temperature, as the MF ground state

∏
i |0i > cannot be

the true ground state, because
∑

i |0i >< 0i | does not commute with
the two-ion part of the Hamiltonian. Hence, the occupation n0 of the
‘ground-state’ is reduced somewhat below 1 even at T = 0. The re-
sponse functions derived above already predict such a reduction of n0

but, as discussed earlier in connection with eqn (3.5.23), the MF-RPA
theory is not reliable in this order. A more satisfactory account of the
influence of fluctuations, both at zero and non-zero temperatures, can
only be obtained by calculations which go beyond the MF-RPA.

One way to proceed to higher order is to postpone the use of the
RPA decoupling to a later stage in the Green-function hierarchy gener-
ated by the equations of motion. Returning to our derivation of the MF-
RPA results in Section 3.5; instead of performing the RPA decoupling on
the Green function 〈〈aνξ(i)aν′µ′(j) ; ars(i

′)〉〉, as in eqn (3.5.16), we first
apply this decoupling to the higher-order Green functions appearing in
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the equation of motion of this function. This method requires rather ex-
tensive manipulation, but it is essentially straightforward, and we shall
not discuss the details here. It has been applied to the (J = 1)-model,
corresponding to Pr (Jensen 1982b), and the results may be interpreted
by replacing the crystal-field splitting and the exchange coupling by
renormalized quantities, while the excitations acquire a linewidth pro-
portional to the fluctuations in the single-site population factors. As
may be seen in Fig. 7.3, this self-consistent RPA gives a good account of
the temperature dependence of the excitations on the hexagonal sites in
Pr, and fits the results of Houmann et al. (1975b) somewhat better than
their MF model. The mode of lowest energy varies very rapidly with

Fig. 7.3. The temperature dependence of the excitation energies at
three different wave-vectors for the hexagonal sites in Pr. The dashed
lines give the results of a MF calculation, and the full curves are based
on the self-consistent RPA. The lowest-lying mode is the incipient soft
mode, whose q and longitudinal polarization correspond to the antiferro-
magnetic structure which may be induced in Pr by various perturbations.
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temperature, but does not become soft, so Pr remains paramagnetic
down to very low temperatures. However, these calculations indicate
that R0 	 0.92, so that the exchange is very close to the critical value
which would drive this incipient soft mode to zero energy. As we shall
discuss in Section 7.4.1, under these circumstances a variety of pertur-
bations may induce magnetic ordering.

A more elegant technique for obtaining such results is based on
a diagrammatic-expansion technique. The introduction of this method
requires a further development and refinement of the mathematical anal-
ysis of the Green functions, which falls outside the scope of this book.
Nevertheless, we wish to discuss some essential problems connected with
the use of the technique for rare earth systems, so we will present it very
briefly and refer to the books by Abrikosov et al. (1965), Doniach and
Sondheimer (1974), and Mahan (1990) for more detailed accounts.

Instead of the retarded Green function, introduced in eqn (3.3.12),
we consider the Green function defined as the τ -ordered ensemble aver-
age: Gτ

BA(τ1 − τ2) ≡ −〈Tτ B̂(τ1)Â(τ2)〉. Here B̂(τ) is the equivalent of
the time-dependent operator in the Heisenberg picture, eqn (3.2.1), with
t replaced by −ih̄τ . The τ -ordering operator Tτ orders subsequent oper-
ators in a sequence according to decreasing values of their τ -arguments,
i.e. Tτ B̂(τ1)Â(τ2) = B̂(τ1)Â(τ2) if τ1 ≥ τ2 or Â(τ2)B̂(τ1) otherwise. Re-
stricting ourselves to considering the Green function Gτ

BA(τ) only in the
interval 0 ≤ τ ≤ β, where β = 1/kBT , we may represent it by a Fourier
series (corresponding to letting the function repeat itself with the period
β):

Gτ
BA(τ) = −〈Tτ B̂(τ)Â〉 =

1
β

∑
n

Gτ
BA(iωn) e−ih̄ωnτ ; h̄ωn =

2πn
β
.

(7.2.1a)
n is an integer and the ωn are called the Matsubara frequencies. The
Fourier coefficients are determined by

Gτ
BA(iωn) =

∫ β

0

Gτ
BA(τ) eih̄ωnτdτ. (7.2.1b)

The most important property of the τ -ordered Green function is that
it can be calculated by perturbation theory using the Feynman–Dyson
expansion. By dividing the Hamiltonian into two parts, H = H0 + H1,
and denoting the ensemble average with respect to the ‘unperturbed’
Hamiltonian H0 by an index ‘0’, it can be shown that

Gτ
BA(τ) = − 〈TτU(β, 0)B̂(τ)Â(0)〉0

〈U(β, 0)〉0
, (7.2.2a)
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where

U(β, 0) = 1 −
∫ β

0

H1(τ1)dτ1 + · · ·

· · · + (−1)n

n!

∫ β

0

· · ·
∫ β

0

TτH1(τ1)· · ·H1(τn)dτ1 · · · dτn + · · · (7.2.2b)

which is suitable for a diagrammatic representation in which the denom-
inator in (7.2.2a) just eliminates all ‘un-linked’ diagrams. Furthermore,
it can be shown that the retarded Green function is the analytic contin-
uation of the τ -ordered function to the real axis in the complex ω-plane,
or

χBA(ω) = − lim
ε→0+

Gτ
BA(iωn → ω + iε), (7.2.3)

and we shall therefore use the frequency arguments iωn and ω to distin-
guish between respectively the τ -ordered and the retarded Green func-
tion.

Considering the simplest case of the Ising model, we wish to calcu-
late the Fourier transform of G(ij, τ) = −〈TτJiα(τ)Jjα〉. We take H0 to
be the single-ion crystal-field Hamiltonian, and the perturbation H1 is
then the two-ion part. With this partition, the ensemble average 〈 〉0 of
a product of operators belonging to different sites is just the product of
the averages of the operators, i.e. 〈JiαJjα〉0 = 〈Jiα〉0〈Jjα〉0 if i �= j. This
concentrates attention on the Green function for a single site G(ii, iωn),
for which the perturbation expansion leads to a series corresponding to
that considered in the CPA calculation, eqn (5.6.9). The only differences
are that K(i, ω) is replaced by the αα-component K(iωn′) and, more sig-
nificantly, that the products (ciχ

o(ω))p = ci (χ o(ω))p are replaced by
the 2pth order cumulant averages or semi-invariants

S(2p) =
1
βp

∫ β

0

dτ1 · · ·
∫ β

0

dτ2p

〈
Tτ

2p∏
l=1

Jiα(τl)
〉
0

2p∏
l=1

exp
(
ih̄ωnlτl

)
, (7.2.4)

with the conditions
∑

l ωnl = 0 and ωn1 = ωn. The lowest-order semi-
invariant is S(2) = −g(iωn) = 2n01M

2
α∆/

[
∆2 − (ih̄ωn)2

]
, which is the

Fourier transform of 〈TτJiα(τ)Jiα〉0, and −g(iωn → ω) = −g(ω) =
χ o(ω). The calculation of the fourth- and higher-order cumulants is
more involved. It is accomplished basically by utilizing the invariance
of the trace (i.e. of the ensemble average) to a cyclic permutation of
the operators, as is discussed, for instance, by Yang and Wang (1974)
and Care and Tucker (1977). If the operators are proportional to Bose
operators this results in Wick’s theorem, which here implies that S(2p)

Bose =[
S(2)

]p. The determination of the cumulant averages is facilitated by



326 7. CRYSTAL-FIELD EXCITATIONS IN THE LIGHT RARE EARTHS

expressing the angular-momentum components as linear combinations
of the standard-basis operators introduced by eqn (3.5.11). These are
not Bose operators, so the ‘contractions’ determined by the commutators
of the different operators are not c-numbers, but operators which give
rise to new contractions. In the singlet–singlet Ising model, the result is

G(ii, iωn) = G(iωn) = g(iωn)

− 1
n2

01

[
(n0 + n1)g(iωn)K(iωn) +

1
β

∑
n′
g(iωn′)K(iωn′)u(n, n′)

]
g(iωn)

+ · · · (7.2.5a)

with

u(n, n′) =
g(iωn)
M2

α

+
g(iωn′)
M2

α

(ih̄ωn′)2 + ∆2

2∆2
+ 1

2

(
n0 + n1 − n2

01

)
β.

(7.2.5b)
The sum over the Matsubara frequencies may be transformed into an
integral over real frequencies, but it may be advantageous to keep the
frequency sum in numerical calculations. Before proceeding further, we
must clarify a few points. The first is that H1 cannot, in general, be
consider as being ‘small’ compared to H0. However, each time a term
involving the two-ion coupling is summed over q, we effectively gain a
factor 1/Z, where Z is the co-ordination number. Hence, if we use 1/Z
as a small expansion parameter, the order of the different contributions
may be classified according to how many q-summations they involve.
In the equation above, K(iωn′) is derived from one summation over q,
as in (5.6.17), so the series can be identified as being equivalent to an
expansion in 1/Z. The second point to realize is that it is of importance
to try to estimate how the expansion series behaves to infinite order. A
truncation of the series after a finite number of terms will produce a re-
sponse function with incorrect analytical properties. If we consider the
corresponding series determining G(q, iωn), it is clear that any changes
in the position of the poles, i.e. energy changes and linewidth phenom-
ena, are reflected throughout the whole series, whereas a (small) scaling
of the amplitude of the response function, which might be determined by
the first few terms, is not particularly interesting. In other words, what
we wish to determine is the first- (or higher-) order correction in 1/Z to
the denominator of the Green function, i.e. to determine the self-energy
Σ(q, iωn), defined by

G(q, iωn) =
g(iωn)

1 + g(iωn)
{
Jαα(q) + Σ(q, iωn)

} , (7.2.6)

assuming the MF-RPA response function to be the starting point. A
systematic prescription for calculating the Green function to any finite
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order in 1/Z has been given by Stinchcombe (1973), see also Vaks et al.
(1968). The zero-order result is obtained by the ‘boson’ approximation
S(2p) 	 [S(2)]p. As is apparent from (7.2.5a), this corresponds to the
replacement of the second and subsequent terms on the r.h.s. by the in-
finite series generated by −g(iωn)K(iωn)G(iωn), leading to an equation
for the single-site Green function which is the equivalent to the Dyson
equation for bosons (or fermions), or to the CPA equation with c = 1.
The q-dependent Green function may be obtained from the single-site
function by the same procedure as in the CPA case, eqns (5.6.10–17).
In this approximation, the final Green function is that given by the MF-
RPA, corresponding to Σ(q, iωn) = 0 in (7.2.6). This does not involve
any q-summation and may therefore be classified as the (1/Z)0-order re-
sult. In the cumulant-expansion, developed by Stinchcombe (1973) and
others, the difference S(4)−(S(2))2 is included, to the next order in 1/Z,
as an additional vertex appearing in the interaction chain-diagrams of
G(q, iωn), independently of the appearance of the S(2)-vertices. A dif-
ferent approach, which is made possible by the isolation of the single-site
Green function in (7.2.5a), is to generalize this equation once more, so
that it becomes a Dyson equation, by replacing g(iωn) with G(iωn) in
the second term on the r.h.s. of (7.2.5a), retaining the correct coefficient
in this term. The effective-medium equation (5.6.13), with c = 1, is
valid to first order in 1/Z, so that

G(q, iωn) =
G(iωn)

1 +G(iωn)
{
Jαα(q) −K(iωn)

} (7.2.7a)

and, in combination with the Dyson equation for the single-site Green
function, this leads to a q-dependent Green function derived from

Σ(q, iωn) = Σ(iωn) =
1
n2

01

[
(n0 + n1 − n2

01)K(iωn) +
1

βg(iωn)

∑
n′
g(iωn′)K(iωn′)u(n, n′)

]
,

(7.2.7b)
where K(iωn) is determined self-consistently, as in (5.6.17),

K(iωn) =
∑
q

Jαα(q)G(q, iωn)
/∑

q

G(q, iωn). (7.2.7c)

The result obtained in this way is close to that derived by Galili and
Zevin (1987) using a more elaborate renormalization procedure, but in
addition to the simplifications attained by utilizing the effective-medium
approximation, the procedure which we have adopted has allowed us to
achieve a fully self-consistent result. We note that, in the application
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of the equations of motion, the population factors take the realistic val-
ues which may be calculated from eqn (3.5.23) using the more accurate
Green functions, whereas the population factors here are by definition
the unperturbed MF values. This means that the renormalization of the
different RPA parameters predicted by the real part of Σ(ω) includes
the possible effects on the population factors. Σ(ω) is the continuation
of Σ(iωn) on to the real frequency-axis, and the imaginary part of Σ(ω),
which is equal to (n0 + n1 −n2

01)/n
2
01 times Im

[
K(ω)

]
, since the sum in

(7.2.7b) is real, predicts a non-zero linewidth for the crystal-field excita-
tions. Introducing the spectral density of the excited states, at positive
energies E = h̄ω,

N (E) = 2

N

∑
q

Im
[
G(q, E/h̄)

]
πE G(q, 0)

	 1

N

∑
q

δ(Eq − E),

which may be compared with (3.3.17), we find that, at frequencies where
|g(ω)K(ω)| is small compared to one,

Im
[
K(ω)

]
	 πn01M

2
αN (h̄ω)∆

/
h̄ωg2(ω),

corresponding to a linewidth 2Γq of the excitation at q, half of which is

Γq 	 n0 + n1 − n2
01

n2
01

(
∆2 − E2

q

2Eq

)2

πN (Eq). (7.2.8a)

The linewidth is proportional to the density of states and to the squared
energy-difference between the excitation and the crystal-field level (pro-
portional to J 2

αα(q)), where the q-dependences of the two factors rough-
ly balance each other. When Eq is close to ∆, this result is no longer
valid. Instead, at h̄ω = ∆̃, where ∆̃ is the effective crystal-field splitting
determined by Re

[
Σ(∆̃/h̄)

]
= −1

/
g(∆̃/h̄), we find that Re

[
K(∆̃/h̄)

]
=

0 and

Γq(Eq = ∆̃) 	 n0 + n1 − n2
01

n2
01

1

πN (∆̃)
. (7.2.8b)

The first result (7.2.8a) for Γq, but not (7.2.8b), agrees with that ob-
tained by the cumulant-expansion method of Stinchcombe (1973) and
others. One modification which appears when this method is used is
that K(ω) in (7.2.7b) is replaced by K(ω){1 − G(ω)K(ω)}. This is a
(1/Z)2-correction, which however becomes important when h̄ω ≈ ∆,
and in this theory Γq(Eq = ∆) = 0, in contrast to the result (7.2.8b).
In order to decide which of the two procedures leads to the most trust-
worthy results, we have to some extent to rely on the effective-medium
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approximation. It is known (Yonezawa 1968) that the cumulant ex-
pansion, in solving the dilute RPA equation (5.6.8), includes all terms
proportional to P2(ij) = 〈cicj〉 − c2, but that this occurs at the ex-
pense of ‘self-containedness’, leading to unphysical features in the final
results. Compared to this, the CPA neglects some of the products of
P2(ii)P2(jj) for neighbouring sites, which are of the order (1/Z)2 (see
the discussion following (5.6.17)), but it is self-contained and the results
are well-behaved and accurate if Z is not small, as discussed by Elliott
et al. (1974). Hence, referring to the analyses of the dilute systems, we
expect the effective-medium approximation to be more adequate than
the unrestricted cumulant expansion in the first order of 1/Z. More im-
portantly, the Hartree–Fock decoupling of the higher-order cumulants,
i.e. S(6) = (S(2))3 + 3S(2){S(4) − (S(2))2} to first order in 1/Z, which
is one of the basic ideas behind the cumulant-expansion method consid-
ered here, does not appear to be a good approximation. The effective-
medium model is not solved ‘exactly’, as this would require a determi-
nation of the whole series for G(iωn) in (7.2.5a), but a consideration
of the second- and higher-order diagrams in this series indicates that
the Dyson-equation generalization is much more reasonable. The sum
rules, like (3.3.18) or the ‘monotopic restriction’ discussed by Haley and
Erdös (1972), are satisfied to the considered order in 1/Z. This is ob-
viously true for the unrestricted cumulant expansion, but it also holds
for the effective-medium approximation, as this is derived directly from
the behaviour of the single sites. One may ask (Galili and Zevin 1987)
whether there exists any other ‘conservation law’ which permits a more
stringent distinction between the various possibilities. For this purpose,
we propose to use the condition that the resultant Green function should
be independent of adding the following constant to the Hamiltonian:

∆H = −λ
∑

i

Ji ·Ji = −N λJ(J + 1), (7.2.9)

corresponding to a replacement of J (q) by J (q) + λ. This change does
not affect the effective-medium equation (5.6.9), other than by adding
the constant to J (q), so K(iωn) is still determined by (7.2.7c), with λ
added on the r.h.s. A replacement of K(iωn) by K(iωn) + λ in (7.2.5a)
does not make any difference, as (1/β)

∑
n′ g(iω′

n)u(n, n′) = −g(iωn)
when n0 + n1 = 1, so that JiαJiα is a constant. The additions of λ to
both J(q) and K(iωn) cancel out in the q-dependent Green function
expressed in terms of the single-site Green function, as may be seen
from (7.2.7a), so that the final result is independent of λ. This is not
the case when the unrestricted cumulant expansion is used. Formally,
the occurrence of λ is a (1/Z)2-effect, but this is an unphysical feature
which is a serious defect, since λ may assume an arbitrary value. This
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variational test is related to the sum rules (like that considered in eqn
(4.2.7) or below), but it has the advantage that it applies directly to the
q-dependent Green function without involving any additional summa-
tions with respect to q or ωn. For a final comparison of the two meth-
ods, we may utilize the fact that the single-site series can be summed
exactly in an Ising system with no crystal-field splitting. The result
is G(ω) = −βδω0〈J2

αexp{ 1
2βK(0)J2

α}〉0
/
〈exp{ 1

2βK(0)J2
α}〉0, which co-

incides with that deduced by Lines (1974b, 1975) from his correlated
effective-field theory. When J = 1/2, the above method produces the
correct result G(0) = g(0) = −β/4. For the (J = 1)-Ising model,
G(0) = −2β [2 + exp{− 1

2βK(0)} ]−1, which may be compared with the
prediction G(0) = −2β [3 − 1

2βK(0)]−1 of eqns (7.2.5–7). On the other
hand, the unrestricted cumulant expansion, to first order in 1/Z, leads
to spurious contributions of second and higher powers in K(0) and, for
instance, suggests a second-order term in the denominator of G(0) which
is a factor of 14 larger than the correct value. We note that corrections
to the effective-medium theory only appear in the order (1/Z)3 in the
single-site Green function. This comparison is discussed in more detail
by Jensen (1984), in a paper where the 1/Z-expansion, in the effective-
medium approximation, is combined with the CPA, thereby removing
some of the difficulties encountered in the RPA and mentioned at the
end of Section 5.6.

In a crystal-field system, the single-site fluctuations lead to a non-
zero linewidth of the excitations, to first order in 1/Z. This reflects the
relative importance of corrections to the RPA, compared to spin-wave
systems. In the latter, the excitation operators are, to a good approxi-
mation, Bose operators, neglecting the ‘kinematic’ effects, which means
that a non-zero linewidth only appears in the second-order of 1/Z. The
linewidth 2Γq derived above is exponentially small at low temperatures,
but becomes important when kBT ≈ ∆. The linewidth as a function
of ω, Γq(ω) ∝ Im

[
K(ω)

]
, is only non-zero as long as h̄ω lies within the

excitation energy-band, which roughly corresponds to that determined
by the RPA. This means that the linewidth, in this approximation, be-
gins to decrease at higher temperatures when the RPA-excitation band
becomes sufficiently narrow. The behaviour in both limits is modified
by higher-order effects. Within the framework of the 1/Z-expansion,
the effective-medium approximation ceases to be valid in second order.
The leading-order scattering effects are due to the single-site fluctuations
and, if the interactions are long-range, the correlation of the fluctuations
on neighbouring sites only leads to minor modifications (provided that
the system is not close to a second-order phase transition). In this kind
of system, the effective-medium method should be satisfactory, and in
order to avoid the complications encountered in more elaborate theo-
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ries, we confine ourselves to the (1/Z)2-corrections which can be de-
termined within this approximation. This provides a better estimate
of the effects due to the single-site fluctuations, but neglects the pos-
sible q-dependence of the self-energy. The correct (1/Z)2-terms in the
effective-medium theory are obtained by introducing S(6) in the third
term of the single-site series in eqn (7.2.5). This calculation has been
carried out by Jensen et al. (1987) for the (J = 1)-singlet–doublet case,
and the most important effect of the second-order terms is to replace
the MF population-factors in (7.2.7b) by approximately the actual pop-
ulation of the excitonic states. Furthermore, Γq(ω) becomes non-zero
outside the excitation band, and it stays non-zero (although small) in
the T = 0 limit.

The (J = 1)-case has been analysed by Yang and Wang (1975), to
first order in 1/Z, and Bak (1975) independently derived the linewidth
and applied the result to Pr. Psaltakis and Cottam (1982) have consid-
ered the (J = 1)-model in the ordered phase, in the presence of uniaxial
anisotropy, where the ‘kinematic’ effects cannot be neglected. In the
paramagnetic singlet–doublet XY -model, the (1/Z)-results are close to
those derived above for the Ising model. If the xx- and yy-couplings are
assumed to be equal, it is found, to a good approximation, that n0 +n1

in eqn (7.2.7b) is replaced by n0 + 2n1 = 1, and that the frequency sum
in this equation is multiplied by a factor 3/2. If Jzz(q) is non-zero,
it gives rise to additional contributions to the average q-independent
self-energy. Furthermore, it also leads to a q-dependent contribution,
even in the first order of 1/Z. This occurs because the odd-rank cu-
mulants (corresponding to half-integral p in (7.2.4)) involving all three
components may be non-zero. The lowest-rank odd cumulant which is
non-zero is 〈TτJix(τ1)Jiy(τ2)Jiz(τ3)〉0. Although this formally leads to
a (1/Z)-contribution to the q-dependent part of Σ(q, ω), which is not
immediately compatible with the effective-medium results above, this
should be a minor term in systems with long-range interactions and, if
∆ is positive, its importance is much reduced at low temperatures under
all circumstances.

The results of calculations of the lifetimes of the long-wavelength
magnetic optical-modes in Pr, based on eqn (7.2.7), are compared with
the experimental results of Houmann et al. (1979) in Fig. 7.4. This
theory predicts very nearly the same temperature dependence of the en-
ergies as does the self-consistent RPA; the excitation depicted in Fig.
7.4 is the uppermost mode in Fig. 7.3. The theory to first order in
1/Z accounts very well for the temperature dependence of the energies,
lifetimes, and intensities of these excitations, without adjustable param-
eters. The low temperature results are similar to those of Bak (1975),
but the experiments at the highest temperatures in Fig. 7.4 are more
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Fig. 7.4. The temperature dependence of the neutron-scattering in-
tensities for the q = 0 magnetic optical-mode on the hexagonal sites of
Pr. The instrumental resolution and the overall scaling of the intensity
are extracted from the experimental results at 6K, and thereafter used
unchanged in the calculations, which are based on a 1/Z-expansion, as

described in the text.

accurately described by the effective-medium theory developed above,
than by his unrestricted cumulant expansion.

An analysis of the 1/Z-corrections to the MF-RPA theory for the
singlet–triplet model does not exist in the literature, to our knowledge.
We shall not attempt such an analysis here, but we will discuss one
aspect, that the elastic response due to the triplet states is predicted
to be a diffusive peak of non-zero width, to first order in 1/Z, within
the effective-medium approximation. In order to consider this matter,
we can omit the singlet and use instead the (J = 1) Heisenberg model,
corresponding to the above model with ∆ = 0. In this case, the diagonal
components of the single-site Green function are

G(iωn) = −2

3
β
{
1 − 1

6βK(0)
}
δn0 +

4
3(ih̄ωn)2

{
K(0) −K(iωn)

}
+ · · ·

(7.2.10)
to first order in 1/Z. In zero order, the response is purely elastic and
K(iωn) ∝ δn0. If this is introduced into (7.2.10), the second term pre-
dicts an inelastic contribution to G(ω), which further diverges propor-
tionally to ω−2 in the zero-frequency limit. This divergence indicates
that the elastic peak must broaden out to a Lorentzian, with a non-
zero half-width Γ, as in (3.3.10–11), corresponding to the replacement
of (h̄ω)2 in the denominator by (h̄ω)2 +Γ2, when the higher-order terms
in the series are included. The classification of K(iωn �= 0) as a higher-
order term in the series (7.2.9) is not consistent with a simple Lorentzian,
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and a more appropriate form turns out to be

G(ω) = G(0)
(

iΓ
h̄ω + iΓ

)2

= G(0)
Γ2
[
Γ2 − (h̄ω)2 + 2ih̄ωΓ

][
Γ2 + (h̄ω)2

]2 . (7.2.11a)

The real and imaginary parts of this retarded Green function are con-
nected by the Kramers–Kronig relation, and the expansion in powers of
Γ agrees with (7.2.10), when

G(0) = −2

3
β
{
1 − 1

6βK(0)
}

and Γ =
√

2K(0)/β. (7.2.11b)

In the high-temperature limit, K(0) 	 (2β/3N)
∑

q J 2(q), and hence
Γ is independent of T in this limit. The most important reason for
choosing the Green function given by (7.2.11a) is that it satisfies the
sum rule:

− 1
β

∑
n

∑
α=x,y,z

G(iωn) = −3
1
π

∫ ∞

0

d(h̄ω) Im
[
G(ω)

]
coth (βh̄ω/2)

= J(J + 1) = 2, (7.2.12)

to the degree of accuracy with which G(0) is determined (this is the same
sum rule considered in (4.2.7)). The original expansion series satisfies
this sum rule, to first order in 1/Z, but this property is not easily con-
served if a Lorentzian is chosen. The problem with the Lorentzian (with
approximately the same Γ as above) is that it decreases only slowly with
ω, and the tails lead to a divergence of the integral in (7.2.12), unless a
high-frequency cut-off is introduced. In this system, there is no natural
frequency-scale setting such a cut-off, and the only reasonable way of
determining it is through the sum-rule itself, which is rather unsatisfac-
tory.

In addition to the equations of motion and the Feynman–Dyson
linked-cluster-expansion method discussed here, there are other many-
body perturbation techniques which may be useful for analysing this
kind of system. The most important supplementary theories are those
based on the Mori technique (Mori 1965; Huber 1978; Ohnari 1980),
or similar projection-operator methods (Becker et al. 1977; Micnas and
Kishore 1981). However, no matter which theory is used, it cannot
circumvent the essential complication of crystal-field systems; the more
single-ion levels which are important, the greater is the complexity of the
dynamical behaviour. This principle is illustrated by the fact that the
methods discussed above have not yet been extended to systems with
more than two levels, singlet or degenerate, per site.
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7.3 Perturbations of the crystal-field system

In this section, we shall discuss various effects of the surrounding medium
on a crystal-field system. The first subject to be considered is the mag-
netoelastic coupling to the lattice. Its contribution to the magnetic-
excitation energies may be described in terms of frequency-dependent,
anisotropic two-ion interactions, and we include a short account of the
general effect of such terms. We next consider the coupling to the con-
duction electrons, which is treated in a manner which is very parallel
to that used for spin-wave systems in Section 5.7. Finally, we discuss
the hyperfine interaction between the angular momenta and the nuclear
spins, which becomes important at the lowest temperatures, where it
may induce an ordering of the moments in an otherwise undercritical
singlet-ground-state system.

7.3.1 Magnetoelastic effects and two-ion anisotropy
The magnetoelastic interactions which, in the kind of system we are
considering, primarily originate in the variation of the crystal-field pa-
rameters with lattice strain, produce a number of observable phenomena.
The lattice parameters and the elastic constants depend on temperature
and magnetic field, the crystal-field excitation energies are modified, and
these excitations are coupled to the phonons. In addition, the magneto-
elastic coupling allows an externally applied uniaxial strain to modify
the crystal-field energies. All these magnetoelastic effects have their
parallel in the ferromagnetic system discussed in Section 5.4 and, in the
RPA, they may be derived by almost the same procedure as that pre-
sented there, provided that the spin-wave operators are replaced by the
standard-basis operators, introduced in eqn (3.5.11).

In the paramagnetic phase in zero external field, only those strains
which preserve the symmetry, i.e. the α-strains, may exhibit variations
with temperature due to the magnetic coupling. The lowering of the
symmetry by an applied external field may possibly introduce non-zero
strains, proportional to the field, which change the symmetry of the
lattice. In both circumstances, the equilibrium strains may be calculated
straightforwardly within the MF approximation. As an example, we
shall consider the lowest-order magnetoelastic γ-strain Hamiltonian

Hγ =
∑

i

[1
2cγ(ε2γ1 + ε2γ2) −Bγ2

{
O2

2(Ji)εγ1 +O−2
2 (Ji)εγ2

}]
, (7.3.1)

corresponding to eqn (5.4.1) with Bγ4 = 0. The equilibrium strain εγ1,
for instance, is determined in the presence of an external magnetic field
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and external stresses by

1
N

〈∂Hγ

∂εγ1

〉
= cγεγ1 −Bγ2〈O2

2〉 − (t11 − t22) = 0,

with t = (V/N)T , where T is the usual stress-tensor. Introducing the
equilibrium condition into the Hamiltonian, we get

Hγ(sta) = −
∑

i

Bγ2

{
O2

2(Ji)εγ1 +O−2
2 (Ji)εγ2

}
+ H0

γ , (7.3.2a)

where

H0
γ = N

[1
2cγ(ε2γ1 + ε2γ2) − (t11 − t22)εγ1 − 2t12εγ2

]
. (7.3.2b)

The thermal averages have to be calculated self-consistently, which im-
plies that the static magnetoelastic Hamiltonian, (7.3.2), must itself
be included in the total magnetic MF Hamiltonian, which determines
the thermal averages such as 〈O2

2〉 in the equilibrium equation. The
magnetoelastic coupling changes the magnetic-excitation energies if the
crystal is strained, because the extra crystal-field term in (7.3.2a), in-
troduced by Hγ(sta), directly modifies χ o(ω). In the (J = 1)-model
corresponding to Pr, O±2

2 (Ji) couples the two doublet states, and thus
the degeneracy of this level is lifted in proportion to the γ-strains.

Having included the contributions of Hγ(sta) to the single-ion sus-
ceptibility, we continue by discussing the influence of the coupling be-
tween the magnetic excitations and the phonons, as determined by the
dynamic part of the magnetoelastic Hamiltonian Hγ(dyn), given by eqn
(5.4.6) with Bγ4 = 0. As an example, we consider the coupling to the
transverse phonons propagating in the a- or the b-direction, with the
polarization vector in the basal-plane, which is derived from

∆Hγ(dyn) = −Bγ2

∑
i

{
O−2

2 (Ji) − 〈O−2
2 〉

}
εi

= −Bγ2

∑
i

∑
νµ

Nνµaνµ(i)εi, (7.3.3)

where εi is a shorthand notation for εγ2(i)− εγ2, and Nνµ is the matrix
element of the Stevens operator between <ν | and |µ>, cf. eqns (3.5.11–
13). This Hamiltonian introduces an additional term on the l.h.s. of the
equation of motion (3.5.15) for the Green function 〈〈aνµ(i) ; ars(i

′)〉〉:

Bγ2

∑
ξ

〈〈
{
Nµξaνξ(i)−Nξνaξµ(i)

}
εi ; ars(i

′)〉〉 	

Bγ2(nν − nµ)Nµν〈〈εi ; ars(i
′)〉〉, (7.3.4)
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where the approximate result follows from the usual RPA decoupling
introduced by eqn (3.5.16). According to eqn (5.4.25),

εi =
∑
k

(ikFk/2)(βk + β+
−k)exp(ik ·Ri),

where we assume, for simplicity, only one phonon mode. From the equa-
tions of motion determining the two Green functions 〈〈βq ; ars(i′)〉〉 and
〈〈β+

−q ; ars(i
′)〉〉, we obtain

〈〈βq + β+
−q ; ars(i

′)〉〉 =

Bγ2

∑
i

∑
νµ

(iqFq/2)D(q, ω)e−iq·RiNνµ〈〈aνµ(i) ; ars(i
′)〉〉, (7.3.5)

where D(q, ω) is the phonon Green function for the mode considered:

Dν(q, ω) =
2ωνq

h̄
(
ω2 − ω2

νq

) . (7.3.6)

If this is introduced into (7.3.4), and the resulting expression is added
to the l.h.s. of (3.5.18), the procedure leading to eqn (3.5.21) yields the
equivalent result

χ(q, ω) − χ
o(ω)J (q, ω)χ(q, ω) = χ

o(ω). (7.3.7)

However, these quantities are now four-dimensional matrices in the vec-
tor space defined by the operators Jix, Jiy , Jiz, and O−2

2 (Ji), or more
accurately by these operators minus their expectation values. The only
extra element in J (q, ω), in addition to the normal Cartesian compo-
nents Jαβ(q), is

J44(q, ω) = N
( i

2
qFqBγ2

)2
D(q, ω). (7.3.8)

The excitation energies are determined by the condition∣∣1 − χ
o(ω)J (q, ω)

∣∣ = 0.

When q is along an a- or b-direction, and the external fields are applied
in the basal plane, parallel or perpendicular to q, then J (q) and the
3 × 3 Cartesian components of χ o(ω), at low frequencies, are diagonal
with respect to the (ξηζ)-axes. In this case, the most phonon-like pole
is found at a frequency determined by∣∣1−χ o(ω)J (q, ω)

∣∣/∏
α

[
1−χ o

αα(ω)Jαα(q)
]

= 1−Ξ(q, ω)J44(q, ω) = 0,
(7.3.9a)
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where α = ξ, η, and ζ, and

Ξ(q, ω) = χ o
44(ω) +

∑
α

χ o
α4(ω)χ o

4α(ω)Jαα(q)
1 − χ o

αα(ω)Jαα(q)
. (7.3.9b)

At long wavelengths, this pole determines the velocity of the magneto-
acoustic sound waves, as measured in an ultrasonic experiment, and
expressing this velocity in terms of the corresponding elastic constant,
we find

c∗66
c66

= 1 − Ξ(q, 0)B2
γ2/cγ , (7.3.10)

by combining the above relation with eqns (5.4.24b) and (5.4.34). This
result is valid when q is along the ξ- or η-axes, provided that the exter-
nal field is applied along one of the principal axes. In the general case,
it is necessary to include the coupling to the other phonon branches in
eqn (7.3.7), and also to take into account possible off-diagonal terms in
the Cartesian part of the matrices, but these complications may be in-
cluded in the above calculations in a straightforward fashion. One ques-
tion raised by (7.3.10) is whether the magneto-acoustic sound velocities,
measured at non-zero frequencies, depend on possible purely-elastic con-
tributions to the RPA susceptibilities. That these should be included
in (7.3.7), at ω = 0, can be seen by the argument used in deriving
(3.5.22). In the preceding section, we found that the coupling between
the angular momenta broadens the elastic RPA response into a diffusive
peak of width 2Γ, as in (7.2.11b), proportional to T 1/2 at low temper-
atures. Unless this coupling is very weak, Γ is likely to be much larger
than the applied h̄ω in an ultrasonic experiment, in which case the total
elastic contribution to Ξ(q, 0) in (7.3.10) should be included. A more
detailed investigation of this question is given by, for instance, Elliott
et al. (1972), in a paper discussing systems with Jahn–Teller-induced
phase transitions.

In the paramagnetic phase without any external magnetic field, the
susceptibility components χ o

α4(ω) all vanish in the zero frequency limit,
due to the time-reversal symmetry of the system. Replacing t by −t
generates the transformation χ o

α4(ω) → χ o
αT 4T (−ω), where the time-

reversed operators are JT
iα = −Jiα, and O−2

2 (Ji)T = O−2
2 (Ji). These re-

sults follows from the symmetry properties of the axial tensor operators,
discussed after eqn (5.5.14), recalling that the operators are Hermitian,
of rank l = 1 and l = 2 respectively. Hence, because of the time-reversal
symmetry, χ o

α4(ω) = −χ o
α4(−ω) = −

(
χ o

α4(ω
∗)
)∗, where the last result

follows from (3.2.15), and we assume implicitly that all poles lie on the
real axis. This quantity must therefore vanish at zero frequency, and
the reactive and absorptive components are either zero or purely imag-
inary at non-zero frequencies. If there is no ordered moment and no
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external magnetic field, the coupling between the dipolar crystal-field
excitations and the long-wavelength phonons must therefore vanish by
symmetry, within the present approximation, and Ξ(q, 0) = χ o

44(0) in
eqn (7.3.10). In the presence of an external magnetic field, the mixed
dipolar–quadrupolar susceptibility-components may become non-zero,
and hence produce a direct coupling of the elastic waves and the dipo-
lar excitations. In this case, the magnetic dipole coupling, which gives
rise to a directional dependence of Jαα(q), as discussed in Section 5.5,
leads to different values of c∗66 (as determined from the transverse sound
velocity in the b(η)-direction), depending on whether the field is parallel
to the ξ- or the η-axis or, if the field is fixed along one of these two axes,
whether q is along the ξ- or the η-direction. As mentioned earlier, this
anisotropy is similar to that introduced by rotational invariance, and
has a comparable magnitude in paramagnetic systems (Jensen 1988b).

The dynamic coupling between the magnetic and elastic excitations
in Pr has been studied in the long-wavelength limit by Palmer and Jensen
(1978), who measured the elastic constant c66 by ultrasonic means, as a
function of temperature and magnetic field. At 4K, it was found to be
very sensitive to a field applied in the basal plane, but insensitive to a
field along the c-axis, reflecting the anisotropy of the susceptibility. At
non-zero fields in the basal plane, there is furthermore a considerable
anisotropy, due to B6

6 . Using the crystal-field level scheme illustrated in
Fig. 1.16, and a value of Bγ2 consistent with that deduced from the field
dependence of the magnetic excitations (Houmann et al. 1979), they
were able to obtain a very good fit to the observed dependence of c66 on
field, shown in Fig. 7.5, and on temperature.

The above theory is also valid at non-zero frequencies. However, if
q is no longer small, we must take account of the discreteness of the lat-
tice and replace q in (7.3.8) by a sinusoidal function of q and the lattice
parameters, as in (5.4.43) in Section 5.4. Except for the change in the
q-dependence of J44(q, ω), eqn (7.3.7) still applies, and it predicts hy-
bridization effects between the phonons and the crystal-field excitations,
equivalent to those derived from the linear magnon–phonon coupling in
Section 5.4. The time-reversal symmetry of the paramagnetic system in
zero magnetic field does not exclude the possibility that the phonons at
non-zero frequencies are coupled to the crystal-field dipolar excitations
and, in the case of Pr, the doublet excitations are allowed to interact
with the transverse phonons, when q is in the c-direction. Neverthe-
less, the application of a magnetic field will generally introduce new
interactions via χ o

4α(ω), leading to hybridization effects proportional to
the field, as observed in Pr by Houmann et al. (1979) and interpreted
by Jensen (1976a). Interactions between crystal-field excitations and



7.3 PERTURBATIONS OF THE CRYSTAL-FIELD SYSTEM 339

Fig. 7.5. The field dependence of the elastic constant c66 in Pr at
4K, relative to the value at zero field. The elastic constant was deter-
mined from the velocity of the transverse sound waves propagating in an
a-direction, and the open and closed symbols indicate the experimental
results when the field was applied respectively in the a- or the perpen-
dicular b-direction. The solid lines show the calculated field dependence.

the phonons are further discussed by Thalmeier and Fulde (1975), Fulde
(1979), and Aksenov et al. (1981).

The coupling (5.4.50), quadratic in the magnon operators, also has
its counterpart in crystal-field systems. Such interactions arise when, in-
stead of applying the RPA decoupling in the first step, as in eqn (7.3.4),
we proceed to the next step in the hierarchy of Green functions. The
most important effect of these terms is to replace the crystal-field param-
eters by effective values, which might be somewhat temperature depen-
dent, corresponding to an averaging of the effective crystalline field expe-
rienced by the 4f electrons over the finite volume spanned by the thermal
vibration of the ions. As in the spin-wave case, these extra higher-order
contributions do not lead to the kind of hybridization effects produced
by the linear couplings. However, if the density of states of the phonons,
weighted with the amplitude of the coupling to the crystal-field exci-
tations, is particularly large at certain energies, resonance-like bound-
states due to the higher-order terms may be observed in the magnetic
spectrum. The dynamic Jahn–Teller effect observed in CeAl2 (Loewen-
haupt et al. 1979) seems to be due to these higher-order effects, according
to the calculation of Thalmeier and Fulde (1982).

The expression (7.3.7) for the interaction of the crystal-field system
with the phonons has essentially the same form as that derived from any
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general two-ion coupling. Referring to (5.5.14), in which is introduced a
general two-ion Hamiltonian in terms of the tensor operators Õlm(Ji),
we may write

HJJ = −1

2

∑
ij

Jp
i ·J p(ij) ·Jp

j , (7.3.11)

where Jp ≡ (Jx, Jy, Jz, O
−2
2 , Õlm, · · ·) is a generalized p-dimensional mo-

ment operator, and the {lm}-set of operators comprises the tensor cou-
plings from the original Hamiltonian, except those between the first
four components. It is then immediately clear that the final RPA sus-
ceptibility is given by an expression equivalent to (7.3.7), in terms of
the p × p susceptibility-matrix with Jαβ(q, ω) = J p

αβ(q), except that
(at long wavelengths) J44(q, ω) = N(iqFqBγ2/2)2D(q, ω) + J p

44(q). If
the frequency is not near a pole in D(q, ω), the effect of the coupling
to the phonons on the magnetic excitations is therefore similar to that
stemming from the corresponding quadrupole–quadrupole interaction.
If J p

44(0) is non-zero, the ultrasonic velocities are influenced by this cou-
pling, as we now have

c∗66
c66

=
1 − Ξ(q, 0)J44(0, 0)
1 − Ξ(q, 0)J p

44(0)
= 1 − Ξ(q, 0)

1 − Ξ(q, 0)J p
44(0)

B2
γ2/cγ , (7.3.12)

where the sum over α in (7.3.9b) comprises all the (p − 1) components
for which α �= 4, under the same condition that χ o(ω) and J (q, ω)
are both diagonal for α �= 4. In general, χ o

4α(0) may be non-zero, in
the paramagnetic phase in zero magnetic field, if the α-component is
an even-rank tensor, and these interactions may contribute to Ξ(q, 0),
whereas the odd-rank couplings are prevented from affecting the phonons
in the zero-frequency limit by time-reversal symmetry.

In our discussion of crystal-field excitations, we have only been con-
cerned with the excitation spectrum derived from the time variation of
the dipole moments. There are two reasons for this. Most importantly,
the coupling between the dipolar moments expressed in eqn (7.1.1) is
normally dominant in rare earth systems, so that the collective phenom-
ena are dominated by the dipolar excitations. The other reason is that
the magnetic response, including the magnetic susceptibility and the
(magnetic) neutron scattering cross-section, is determined exclusively by
the upper-left 3×3 part of χ(q, ω), in the generalized p-dimensional vec-
tor space introduced through eqn (7.3.11). However, strong quadrupolar
interactions may lead to collective effects and to an ordered phase of the
quadrupole moments. The quadrupolar excitations are not directly vis-
ible in neutron-scattering experiments, but may be detected indirectly
via their hybridization with the dipole excitations, in the same way as
the phonons, or via their hybridization with the phonons, as measured
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by the nuclear scattering of the neutrons. In a paramagnetic system in
zero field, the p × p susceptibility-matrix partitions into two indepen-
dent blocks, at zero frequency, the one depending only on the even-rank
couplings and the other only on the odd-rank couplings. If one of the
two parts of χ(q, 0) diverges at some temperature T ∗, it signals the oc-
currence of a second-order phase transition at this temperature. If it
is the block determined by the even-rank couplings which diverges, the
order parameter below T ∗ is associated with the quadrupole moments,
assuming the lowest-rank terms to be dominant. If there is any coupling
between this order parameter and one of the phonon modes, the transi-
tion is accompanied by a softening of these phonons, provided that the
pure quadrupolar excitations have higher energies than the phonons at
the ordering wave-vector. If this vector Q is zero, the corresponding
elastic constant vanishes at the transition. In the case where Q �= 0, the
situation corresponds to that considered in the magnetic case, and the
phonon mode shows soft-mode behaviour according as there are pure
elastic contributions to the (RPA) susceptibility or not. A quadrupolar
phase-transition involving the phonons is usually referred to as being
induced by the Jahn–Teller effect, and a more detailed discussion and
relevant examples may be found in, for instance, Elliott et al. (1972).
The presence of a non-zero quadrupole moment does not destroy the
time-reversal symmetry, and an ordering of the dipole moments may
follow only after an additional phase transition. In TmZn (Morin et al.
1980) an ordering of the quadrupole moments occurs below a first-order
transition at TQ = 8.6K, and this phase is disrupted by the onset of
ferromagnetic ordering at TC = 8.1K. In the opposite case of order-
ing of the dipole moments, the breaking of the time-reversal symmetry
allows a direct coupling between the dipole and quadrupole moments,
so that the latter are forced to order together with the dipoles, giving
rise to, for example, crystal-field-induced magnetostriction effects, and
the dipolar ordering will normally quench any tendency toward a purely
quadrupolar-ordered phase.

In this chapter, we have formulated the various RPA results in terms
of the generalized-susceptibility matrices. The results apply in param-
agnetic as well as in ordered systems, so long as the order parameter
is uniform throughout the crystal. They agree with the more explicit
results derived previously in the case of a weakly-anisotropic ferromag-
netic system. In a paramagnet or a strongly-anisotropic ferromagnet,
the results above may also be given a more transparent and explicit
form, but only if the number (2J + 1) of different angular-momentum
states can be taken as small; else the matrix-equations themselves are
well-suited for solution by numerical methods. The reduction of the
matrix-equations in, for instance, the (J = 1)-case is straightforward
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and the results, corresponding to Pr in the limit T = 0, are given by
Jensen (1976a).

In the present approximation, the sound velocities are not affected
by the interaction between the dipoles, in the paramagnetic phase at
zero magnetic field. However, in the vicinity of a second-order transi-
tion to a ferromagnetic phase, strong softening of the long-wavelength
phonons may be observed, depending on the symmetry properties, and
this behaviour cannot be explained within the RPA. We have seen that,
according to eqns (5.4.15) and (5.4.38), c∗66 vanishes in the basal-plane
ferromagnet when a field equal to the critical field Hc is applied along
the hard basal-plane direction. When TC is approached from below, Hc

vanishes rapidly, resulting in a strong softening of c∗66 even in zero field,
and it seems likely that similar behaviour should be observed when TC

is approached from above, considering that just above TC there will be
large domains of nearly constant magnetization, allowing an ‘RPA’ cou-
pling between the dipole moments and the sound waves similar to that
occurring in the ferromagnetic phase. Clear indications of this kind of
behaviour have been seen in for example Tb (Jensen 1971b), indicating
that the RPA is not even qualitatively trustworthy when the fluctuations
are a dominating feature of the system.

7.3.2 Conduction-electron interactions
The sf-exchange Hamiltonian (5.7.6) was derived without making any
special assumptions about the rare earth metal involved, and it there-
fore applies equally well to a metallic crystal-field system. For the
weakly-anisotropic ferromagnet considered in Section 5.7, this Hamil-
tonian leads to a Heisenberg two-ion coupling, J̃ (q, ω), which to a
first approximation is instantaneous, and is thus effectively J (q) =
J̃ (q, 0) − (1/N)

∑
q′ J̃ (q′, 0), as given by eqn (5.7.28). This remains

true in crystal-field systems, as may be demonstrated by expanding the
angular-momentum operators in (5.7.6) in terms of the standard-basis
operators, and then calculating the corresponding Green functions which
determine χ(q, ω), utilizing an RPA decoupling of the coupled Green
functions.

In the ordered phase, Jzz(q, ω) may actually differ from the two
other components of the exchange coupling, due to the polarization of
the conduction electrons. However, in the paramagnetic phase in zero
field, the coupling is isotropic, within the approximation made in Sec-
tion 5.7. This may be seen by analysing the full expression (5.7.27) for
J̃ (q, ω), or the simpler result (5.7.26), in which the susceptibility of the
conduction electrons becomes a scalar:

χαβ
c.el.(q, ω) = 1

2χ
+−
c.el.(q, ω) δαβ . (7.3.13)
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Here the reactive and absorptive parts of χ+−
c.el.(q, ω), still given by

(5.7.26b), are both real and even in q, while the reactive part is even
with respect to ω, whereas the absorptive part is odd. When considering
the frequency dependence of the susceptibility, we must distinguish two
separate regimes, defined by the parameter

ϑ = −ηq/2kF = (h̄ω/2εF )(kF /q) = (2/3ν)N (εF )h̄ω(kF /q),

where η is the parameter introduced in (5.7.31c) (with ∆(c.el.) = 0). If
|ϑ| is small compared to one,

χ+−
c.el.(q, ω) = N (εF )

{
F
( q

2kF

)
+ i

π

2
ϑ
}

; |ϑ| � 1, (7.3.14)

where the correction to the real part, of the order ϑ2, may be neglected.
This is the same result as obtained in the ordered phase, eqns (5.7.32)
and (5.7.36), when the small frequency-dependent term in the former is
neglected. When |ϑ| becomes larger than 1 (or q > 2kF ), the imaginary
part vanishes, as shown in the calculations leading to (5.7.36), and the
real part becomes strongly dependent on ω, vanishing for large values of
ϑ as ϑ−2 ∝ ω−2. If h̄ω = 1–10meV, then ϑ = (10−4 – 10−3)kF /q in the
rare earth metals, so that the corrections to (7.3.14) are only important
in the immediate neighbourhood of q = 0. The physical origin of this
particular effect is that the susceptibility of the free-electron gas is purely
elastic in the limit q = 0, and it does not therefore respond to a uniform
magnetic field varying with a non-zero frequency. In the polarized case,
the contributions to the transverse susceptibility are all inelastic at long
wavelengths, so this retardation effect does not occur when the polar-
ization gap ∆(c.el.) is large compared to |h̄ω|. The exchange coupling,
in the limit q = 0, includes both the elastic and inelastic contribu-
tions, as in (5.7.26c), and the abnormal behaviour of the elastic term
may be observable in paramagnetic microwave-resonance experiments,
where the anomalies should be quenched by a magnetic field. On the
other hand, it may not be possible to study such an isolated feature in
q-space by inelastic neutron-scattering experiments. Leaving aside the
small-q regime, we have therefore that the effective exchange-coupling is

J (q, ω) = J (q) + iζ(q)h̄ω, (7.3.15)

where ζ(q) is given by (5.7.37b), and J (q) is the reduced zero-frequency
coupling given above, or by (5.7.28).

In the case of the weakly-anisotropic ferromagnet, the frequency
dependence of the exchange coupling affects the spin-wave excitations
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in the same way as results when J (q) is replaced by J (q, ω) in the usual
RPA expression for the susceptibility, i.e.

χ(q, ω) =
{
1 − χ

o(ω)J (q, ω)
}−1

χ
o(ω). (7.3.16)

In order to establish that this procedure is valid in general, to leading
order in 1/Z, we must appeal to the 1/Z-expansion discussed in Section
7.2. It is clear that the usual RPA decoupling (3.5.16), aνξ(i)aν′µ′(j) 	
〈aνξ(i)〉aν′µ′(j) + aνξ(i)〈aν′µ′(j)〉, is not a good approximation if i = j,
and in (3.5.15) it is only applied in cases where i �= j, as J (ii) = 0 by
definition. Here, however, J (q, ω) does contain a coupling of one ion
with itself, since J (ii, ω) = iζ0h̄ω, where

ζ0 = 1

N

∑
q

ζ(q) = 2π〈|j(q)|2〉N 2(εF ), (7.3.17)

as is obtained by replacing |j(q)| in (5.7.37b) by a constant averaged
value in the integral determining ζ0. This indicates that it is also nec-
essary to rely on the RPA decoupling when i = j, in order to obtain
the result (7.3.16) when ζ0 is not zero. On the other hand, the RPA
decoupling may work just as well if only the time arguments of the two
operators are different, which is the case as J (ii, t = 0) = 0 indepen-
dently of ζ0. Only when t = 0, is aνξ(i, t)aν′µ′(i, 0) equal to aνµ′(i, 0)δξν′ ,
in direct conflict with the RPA decoupling. This indicates that it may
not be necessary to consider separately the effects of ζ(q) − ζ0 and of
ζ0. This point is treated more precisely by the 1/Z-expansion proce-
dure developed in Section 7.2. Since J (q, ω) replaces J (q), it makes no
difference whether J (q, ω) is frequency-dependent or not, nor whether
J (ii, ω) �= 0, and this procedure leads immediately to the result (7.3.16),
in the zeroth order of 1/Z. If J (q, ω) contains a constant term, result-
ing from J (ii, t) ∝ δ(t), it is removed automatically in the next order
in 1/Z, according to the discussion following eqn (7.2.9). The argument
for subtracting explicitly any constant contribution to J (q, ω), in eqn
(7.3.16), is then that this procedure minimizes the importance of the
1/Z and higher-order contributions. The modifications of the 1/Z con-
tributions are readily obtained by substituting J (q, ω) for J (q) in the
expression (7.2.7c), which determines K(ω), i.e.

K̃(ω) = K(ω) + 1

N

∑
q

iζ(q)h̄ωG(q, ω)
/
G(ω) = K(ω) + i〈ζ(ω)〉h̄ω,

(7.3.18a)
and the self-energy is then obtained as

Σ(q, ω) = iζ(q)h̄ω + Σ̃(ω), (7.3.18b)
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where Σ̃(ω) is the previous function with K(ω) replaced by K̃(ω). The
most interesting effects of the scattering of the magnetic excitations
against the electron-hole pair excitations of the conduction electrons de-
rive from the first term in the self-energy, which already appears in the
‘RPA’ in (7.3.16). The lifetime of the excitations becomes q-dependent
and remains finite in the zero-temperature limit, whereas the imagi-
nary part of Σ(ω), and therefore also of Σ̃(ω), vanishes exponentially at
low temperatures, in the order 1/Z. The importance of the higher-order
contributions associated with this scattering mechanism, as compared to
those of the intrinsic processes, i.e. the relative magnitudes of 〈ζ(ω)〉h̄ω
and K(ω), may depend on the system considered, but in Pr, for exam-
ple, Im

[
K(ω)

]
is much the dominant term at frequencies lying within

the excitonic band. Hence, 〈ζ(ω)〉 may be neglected in K̃(ω) at temper-
atures where the linewidths are still somewhat smaller than the overall
bandwidth.

In Pr, the effect of the conduction electrons on the linewidths at
low temperatures only becomes visible due to the strong increase in the
value of ζ(q) in the limit of small q, where it is approximately propor-
tional to 1/q. Houmann et al. (1979) were thus able to observe the
remarkable broadening of the acoustic modes illustrated in Fig. 7.6, as q
was reduced at 6K. The width at q = 0.2 Å is only slightly greater than
the experimental resolution, but the peak has become very broad by
0.05 Å, and it has almost vanished into the background at q = 0, even
though the integrated intensity is expected to increase as the energy
decreases. This behaviour is in sharp contrast to that observed in Tb
where, as shown in Fig. 5.13 on page 269, the width at small q is greatly
reduced by the spin-splitting of the Fermi surface, in accordance with
eqn (5.7.37). Since the spin-splitting of the Pr Fermi surface becomes
very substantial in a large field, as illustrated in Fig. 1.10, the scattering
of the long-wavelength magnetic excitations by the conduction electrons
should be quenched by the application of a field. A careful study of
this phenomenon would allow a detailed investigation of the interaction
between the conduction electrons and the 4f moments.

The modification of K̃(ω) also contributes to the broadening of the
diffusive peak and, instead of (7.2.11), the result for J = 1 is now

G(ω) = G(0)
iΓ1h̄ω − Γ2

(h̄ω + iΓ)2
, (7.3.19a)

with

Γ1 = 2〈ζ(0)〉/β and Γ = Γ1 +
√

2K(0)/β. (7.3.19b)

The term linear in 〈ζ(0)〉, introduced in (7.2.10), predicts Lorentzian
broadening, if K(0) is neglected. The intrinsic contribution may also
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Fig. 7.6. Neutron-scattering spectra from the acoustic branch of the
magnetic excitations propagating along the c-axis on the hexagonal sites
of Pr at 6K. The observed values of Γ, the full width at half maximum,
increase rapidly as q decreases, due to scattering by the conduction elec-
trons, and at q = 0 it is difficult to distinguish the peak from the back-

ground. The experimental energy resolution is about 0.35 meV.

here dominate at most temperatures, but it is clear that this cannot hold
true in the high-temperature limit, where Γ1 increases proportionally
to T , whereas K(0)/β approaches a constant value. So, in the high-
temperature limit, (7.3.19) leads to the Korringa law (Korringa 1950)
for the linewidth:

G(q, ω) 	 G(ω) 	 G(0)
iΓ1

h̄ω + iΓ1
, with

Γ1 = 2〈ζ(0)〉kBT = 4π〈|j(q)|2〉N 2(εF )kBT, (7.3.20)

since 〈ζ(0)〉 = ζ0 in this limit. We argued above that 〈ζ(ω)〉 could
be neglected, in comparison with the intrinsic effects, at relatively low
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temperatures but, in the high-temperature limit, 〈ζ(ω)〉 is the dominant
term. Becker et al. (1977) have deduced the influence of the electron-
hole-pair scattering on the crystal-field excitations, with an accuracy
which corresponds to the results obtained here to first order in 1/Z, using
an operator-projection technique. They performed their calculations for
an arbitrary value of J , but without including the intrinsic damping
effects which, as pointed out above, may be more important, except in
the high-temperature limit.

The effects of the sf-exchange Hamiltonian on the effective mass and
the heat capacity of the conduction electrons in a crystal-field system
may be derived in an equivalent way to that used for the spin-wave
system. The mass-enhancement, m∗/m = 1 + λCF, is deduced to be
given by (White and Fulde 1981; Fulde and Jensen 1983):

λCF = N (εF )
1

2k2
F

∫ 2kF

0

dq

∫
dΩq

4π
q|j(q)|2

∑
α

χαα(q, ω → 0)

=
1
N

∑
q

ζ(q)
2πN (εF )

∑
α

χαα(q, ω → 0),

(7.3.21a)
and is a generalization of eqn (5.7.50), valid in the paramagnetic phase.
The term χαα(q, ω → 0) is the zero-frequency susceptibility, omitting
possible elastic contributions, assuming the broadening effects to be
small. At non-zero temperatures, it is found that excitations with ener-
gies small compared to kBT do not contribute to the mass-enhancement,
and therefore, even in the low-temperature limit considered here, the
purely elastic terms in χαα(q, ω) do not influence the effective mass.
This is also one of the arguments which justifies the neglect to leading
order of the effect on m∗ of the longitudinal fluctuations in a ferro-
magnet, which appear in χzz(q, ω). In contrast, the elastic part of the
susceptibility should be included in eqn (5.7.57), when the magnetic ef-
fects on the resistivity are derived in the general case, as in Section 5.7.
In systems like Pr, with long-range interactions, the dispersive effects
due to the q-dependence of χ(q, ω) are essentially averaged out, when
summed over q. In this case, we may, to a good approximation, re-
place χ(q, ω) in sums over q by its MF value χ o(ω). The correction to
the MF value of the low-temperature heat capacity in Pr, for example,
is minute (Jensen 1982b). In the eqns (7.3.18–20) above, this means
that, to a good approximation, 〈ζ(ω)〉 	 1

N

∑
q ζ(q) = ζ0 even at low

temperatures, and that the mass-enhancement parameter is

λCF 	 ζ0
2πN (εF )

∑
α

χ o
αα(ω → 0). (7.3.21b)
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Fig. 7.7. The field dependence
of the coefficient γ of the linear elec-
tronic heat capacity of Pr at low
temperatures. The experimental re-
sults of Forgan (1981) are compared
with a theory including the renor-
malization of the mass, due to the in-
teraction of the conduction electrons
with the magnetic excitations, and
also taking into account the phonon
enhancement and the dependence of
the Fermi level on magnetic field.
The dashed line shows the results of
the theory when the change of the
Fermi energy with field is neglected.

The mass-enhancement due to the crystal-field excitations is re-
flected directly in the effective mass measured in the de Haas–van Alphen
effect, and in the linear term in the low-temperature electronic specific
heat, analogously to the spin-wave system. The former effect has been
studied by Wulff et al. (1988), who find that the theory of Fulde and
Jensen (1983) accounts very well for the field dependence of the masses
of several orbits, using the same values of the sf -exchange integral I,
about 0.1 eV, as reproduce the variation of the orbit areas discussed
in Section 1.3. The substantial field dependence of the electronic heat
capacity, measured by Forgan (1981), is shown in Fig. 7.7, and com-
pared with values calculated from eqn (7.3.21b), taking into account the
field dependence of the electronic state density at the Fermi level, calcu-
lated by Skriver (private communication), and the phonon enhancement
(Skriver and Mertig 1990). At higher temperatures, the imaginary part
of J (q, ω) in (7.3.16) gives rise to the same contribution to the magnetic
heat capacity as the extra term in (5.7.52) in the spin-wave case, with
ζ(q)

∑
α χαα(q, ω → 0) replacing 2Γq/E

2
q. This contribution should be

added to the non-linear corrections to the total low-temperature heat
capacity calculated by Fulde and Jensen (1983).
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7.3.3 Coupling to the nuclear spins

The hyperfine coupling to the nuclear spins normally has a negligible
influence on the properties of the electronic magnetic moments. How-
ever, in the special case of a crystal-field system with a singlet ground-
state, where the two-ion coupling is smaller than the threshold value for
magnetic ordering, this minute coupling may become of decisive impor-
tance. Under these circumstances, the hyperfine interaction may induce
a cooperative ordering of the combined system of the electronic and
nuclear magnetic moments at very low temperatures. The Hamiltonian
describing the hyperfine interaction in a rare earth ion has been compre-
hensively discussed by Bleaney (1972) and McCausland and Mackenzie
(1979), and the leading-order term is

Hhf = A I ·J, (7.3.22)

where I is the nuclear spin. For the isotope of Pr with mass number 141,
which has a natural abundance of 100%, I = 5/2 and A = 52.5mK = 4.5
µeV. This coupling modifies the MF susceptibility χ

o
(ω) of the single

ion, and since A is small, we may derive this modification by second-
order perturbation theory. In order to simplify the calculations, we as-
sume that the MF ground-state of the electronic system is a singlet, and
that kBT is much smaller than the energy of the lowest excited J-state,
so that any occupation of the higher-lying J-states can be neglected.
Considering first a singlet–singlet system, with a splitting between the
two states |0 > and |1 > of ∆ � |A|, where only Mz =< 0| Jz |1 > is
non-zero, and denoting the combined electronic and nuclear states by
|0,mI > and |1,mI >, where Iz |p,mI >= mI |p,mI >, we find that the
only non-zero matrix elements of Hhf are

< 0,mI | Hhf |1,mI > = < 1,mI | Hhf |0,mI > = mIMzA,

yielding the following modifications of the state vectors:{
|0′,mI > = |0,mI > −(mIMzA/∆)|1,mI >

|1′,mI > = |1,mI > +(mIMzA/∆)|0,mI >,

to leading order. If we neglect the shifts in energy of the different levels,
due to the hyperfine coupling, and the change of the inelastic matrix
element,

< 0′,mI | Jz |1′,mI > =Mz{1− (mIMzA/∆)2} �Mz,

the susceptibility is only modified by the non-zero matrix-element,

< 0′,mI | Jz |0′,mI > = −2mIM
2
zA/∆,
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within the (2I + 1)-ground state manifold, i.e.

δχ o
zz(ω) = β

1

2I + 1

∑
m

I

(
2mIM

2
zA/∆

)2
δω0 = β 1

3I(I+1)A2(2M2
z /∆)2δω0.

(7.3.23)
This result may be straightforwardly generalized to an arbitrary level
scheme, including non-zero matrix elements of the other J-components,
as the different contributions are additive. The susceptibility may then
be written

χ o
αβ(ω) = χJ

αβ(ω) +A2
∑
γγ′

χJ
αγ(ω)χI

γγ′(ω)χJ
γ′β(ω), (7.3.24)

to leading order in A, which is valid as long as the general assumptions
made above are satisfied. χJ

αβ(ω) is the MF susceptibility for the elec-
tronic system alone, when the extra term δHJ(MF) = A〈I〉·J is included
in its MF Hamiltonian. In order to derive the effective MF Hamiltonian
HI(MF), determining the susceptibility of the nuclear spins χI

αβ(ω), we
must consider the possibility, neglected above, that Hhf may lift the
(2I + 1)-fold degeneracy of the ground-state manifold. Calculating the
energies of the ground-state levels, in the presence of an external field,
by second-order perturbation theory, we find straightforwardly that the
equivalent Hamiltonian, describing the splitting of these levels, is

HI(MF) = −gNµNH · I +A
{
〈J〉 +A〈I〉 · χJ(0)

}
· I− 1

2A
2I · χJ(0) · I.

(7.3.25a)
This result can be interpreted as expressing the ability of J to follow
instantaneously any changes of I. The molecular field due to 〈J〉 is
subtracted from the response to I, which then instead gives rise to the
last quadrupolar term. This quadrupolar contribution is the only effect
which is missing in a simple RPA decoupling of the interactions intro-
duced through Hhf . If χJ (0) is not a scalar, the last term gives rise
to a quadrupole-splitting of the ground-state manifold, and the zero-
frequency susceptibility is then, to leading order in this term,

χI
αα(0) = 1

3
I(I + 1)β

[
1 + 1

15A
2β(I + 3

2 )(I − 1
2 )
{
3χJ

αα(0)−
∑

γ

χJ
γγ(0)

}]
(7.3.25b)

if χJ (0) is diagonal. The results above were first obtained and anal-
ysed by Murao (1971, 1975, 1979), except that he replaced χJ

αα(0) in
(7.3.25) by (1/N)

∑
q χ

J
αα(q, 0) which, according to the above inter-

pretation, is to be expected in order 1/Z. For the hexagonal ions in
Pr-metal, AχJ

αα(0) = 0.026 for the two basal-plane components, but is
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zero for the cc-component, which implies that the induced quadrupolar-
interaction is a factor of about seven larger than the intrinsic value of
the electric-quadrupole hyperfine-interaction for the ion (< 0 |HQ |0>=
(5/7)P‖(I2

ξ + I2
η ), with P‖ = −0.128mK, using the notation of Bleaney

(1972)). In any case, the quadrupole contribution to (7.3.25b) only
makes a 1.5% correction at the transition temperature TN ≈ 50mK in
Pr. The induced quadrupole interaction, due to the highly anisotropic
fluctuations of the electronic moments, may be important in nuclear-
magnetic-resonance (NMR) experiments. The most important effect
in NMR is, however, the strong enhancement of the Zeeman splitting
between the nuclear levels by the hyperfine coupling. Introducing
HI(MF) = −gNµNHeff

I · I in (7.3.25a), we find an enhancement

|Heff
I /H | 	 |1 − (gµB/gNµN )Aχzz(0, 0)|, (7.3.26)

which, for the hexagonal ions in Pr, gives a factor of about 40 in the low-
temperature limit, when the field is applied in the basal-plane, but unity
if H is along the c-axis. In addition to the hyperfine interactions consid-
ered above, the nuclear spins may also interact directly with the conduc-
tion electrons, leading to an extra Knight shift and Korringa broadening
of the NMR-levels. The most important NMR-linewidth effect is, how-
ever, due to the fluctuations of the localized electronic moment. If J = 1,
corresponding to Pr, these fluctuations lead to a Lorentzian broadening,
so that χI

ξξ(0) → χI
ξξ(0)

[
iΓN/(h̄ω + iΓN)

]
, with

ΓN = 10(n0n1/n01)M
2
ξ Im

[
K̃(ω = ∆/h̄)

]
,

to first order in 1/Z. In the case of Pr, this gives ΓN 	 exp(−β∆)× 1.0
meV (Jensen et al. 1987).

The magnetization and the neutron-scattering cross-section are de-
termined in the RPA by the usual susceptibility expression (7.1.2), with
χ

o(ω) now given by (7.3.24), provided that we neglect the contribu-
tions of the small nuclear moments. This means that, even though the
electronic system has a singlet ground-state, the hyperfine interaction
induces an elastic contribution, and assuming the electronic system to
be undercritical, so that R(0) < 1 in (7.1.6), we obtain in the low tem-
perature limit, where kBT � ∆,

χξξ(q, 0) =
∆2
{
1 +A2χJ(0)χI(0)

}
E2

q − (∆2 − E2
q)A2χJ(0)χI(0)

χJ (0), (7.3.27)

where χJ(0) = 2M2
ξ /∆, and Eq is given by (7.1.4b), with n01 = 1. If

we introduce the nuclear spin susceptibility, neglecting the quadrupo-
lar contribution, into this expression, it predicts a second-order phase
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transition, at a temperature determined by

kBTN = 1
3I(I + 1)A2χJ(0)

∆2 − E2
Q

E2
Q

= 1
3I(I + 1)A2χJ(0)

R0

1 −R0
,

(7.3.28)
to a modulated phase described by the wave-vector Q at which J (q)
has its maximum value, where R0 is the critical parameter defined by
eqn (7.1.6). With ∆ = 3.52meV and EQ = 1.0meV for the hexagonal
excitations in Pr, the electronic system is just undercritical, with a crit-
ical ratio R0 	 0.92. This means that the importance of the hyperfine
interaction is much enhanced, and eqn (7.3.28) predicts TN = 45mK for
the cooperative ordering of the nuclear and electronic moments in Pr.
The transition is no longer accompanied by a soft mode, but there is
rather an elastic peak, with a scattering intensity given by

Sξξ
d (q, ω ≈ 0) = 1

3I(I + 1)A2
(2M2

ξ /Eq)2

1 − χJ(0){1 +A2χJ(0)χI(0)}J (q)
δ(h̄ω),

(7.3.29)
in the paramagnetic phase, which diverges at q = Q when T approaches
TN , analogously to the behaviour of the singlet–triplet case described
by (7.1.13).

7.4 Magnetic properties of Praseodymium
The magnetic behaviour of Pr has already been extensively discussed in
this chapter, in order to illustrate a number of the phenomena which
occur in crystal-field systems. In this section, we will collect together
these threads into a coherent description of the magnetic ordering which
may be induced by various perturbations, and of the excitations in the
paramagnetic and ordered phases.

7.4.1 Induced magnetic ordering
As discussed at the end of the preceding section, the coupling of the
nuclear spins to the electronic moments in Pr gives rise to a magnetic
system whose ground state is degenerate. According to the third law
of thermodynamics, this degeneracy must be lifted at sufficiently low
temperatures and, within the MF approximation, this is accomplished
by magnetic ordering at a temperature determined by eqn (7.3.28). The
enhancement factor R0/(1 −R0) is about 12 for the hexagonal sites, so
that the calculated collective-ordering temperature for the nuclear spins
and the electronic moments is raised into the more readily accessible
range of about 45mK. The strong neutron-diffraction peak illustrated
in Fig. 7.8 was observed at 40mK by Bjerrum Møller et al. (1982), at a
value of Q close to the minimum in the dispersion relations of the mag-
netic excitons. This mode of excitation comprises magnetic fluctuations
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whose zero-frequency limit is a longitudinal-wave structure along the b-
axis, and the electronic moment induced by the hyperfine coupling, in
the zero-temperature limit, is

〈Jη(Q)〉0 	 IA
χJ(0)

1 − χJ(0)J (Q)
= IA

2M2
η

∆(1 −R0)
, (7.4.1)

multiplied by gµB, corresponding to about 0.6µB. Determining the elec-
tronic moment from the neutron-diffraction intensities is complicated by
the coherent nuclear scattering of neutrons at the same Q, due to the
induced polarization of the nuclei. The two contributions can however
be separated with the help of polarized neutrons, and Kawarazaki et al.
(1988) thereby deduced that the electronic moment on the hexagonal
sites is about 0.4µB at 30mK, while there is also an induced moment
an order of magnitude smaller on the cubic sites. The nuclear polariza-
tion on both types of site is substantial at this temperature, which is
consistent with the observation by Lindelof et al. (1975) and Eriksen et
al. (1983) of a dramatic increase in the nuclear heat capacity, indicating
a second-order transition of the nuclear spins to an ordered structure at
about 50mK.

As may be seen in Fig. 7.8, the magnetic ordering is preceded by
a strong precursor scattering, which has been observed in single crys-
tals by a number of investigators at temperatures as high as 10K, and
was first investigated in the millikelvin range by McEwen and Stirling
(1981). The figure shows that the peak actually comprises two contribu-
tions, one centred at the critical wave-vector, and a broader component
at a slightly smaller wave-vector. The narrower peak, which is usually
known as the satellite, appears around 5K and increases rapidly in in-
tensity as TN is approached, at which temperature it transforms into
the magnetic Bragg peak. Since the width in κ of this peak is greater
than the instrumental resolution, at temperatures above TN , it does not
reflect the presence of true long-range magnetic order, but rather very
intense fluctuations, with a range of several hundred Å, which presum-
ably also vary slowly in time. The RPA theory predicts such a peak
only because of the elastic scattering from the nuclear spins, as given
by eqn (7.3.29). However, the peak produced by this mechanism is es-
timated to be visible only very close to TN , below 200mK, and cannot
therefore explain the observations. The satellite above TN may be in-
terpreted as a critical phenomenon, due to the strong increase in the
fluctuations, neglected in the RPA, which develop as the second-order
transition is approached. When the electronic susceptibility has satu-
rated below about 7K, the critical fluctuations in Pr would be expected
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Fig. 7.8. Neutron-diffraction scans in Pr. The solid lines show the
sum of two Gaussian functions fitted to the data. Only below 50mK is
the width of the narrower of these equal to the experimental resolution,

indicating true long-range magnetic order.

to correspond to those of a normal degenerate system within 10% of
its critical temperature. However, the satellite in Fig. 7.8 is much more
intense than such fluctuations could normally give rise to. An alternative
possibility, which has been analysed theoretically by Murao (1984), is
that much of the intensity of the satellite above TN is due to an ordering
of the moments close to the surface of the crystal, which gives rise to
a Bragg peak of non-zero width. The crystalline electric field acting on
the surface ions is different from that determining the bulk properties,
and the magnetic response of these ions will therefore also be different.
For instance, the lowering of the symmetry near the surface splits the
degeneracy of the |±1>-states, thereby enhancing one of the basal-plane
components of the susceptibility tensor.

The occurrence of the other peak in the scans shown in Fig. 7.8,
known as the central or quasielastic peak, has been a long-standing mys-
tery. It is much broader than the satellite and constitutes a ring of
scattering around Γ in the basal-ΓMK-plane, with a radius which is
slightly smaller than that of the contour of energy mimima found in the
excitation spectrum, illustrated in Fig. 7.1. The integrated quasielastic-
scattering intensity from this ring is therefore rather large, and around 1
K it is found to correspond to a moment of the order of 0.1µB per hexag-
onal ion. In a polycrystalline sample, this ring of scattering cannot be
distinguished from scattering from a single point in κ-space, which pre-
sumably explains why diffraction studies of polycrystalline Pr indicate
that it is antiferromagnetic at 4K (Cable et al. 1964).
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The quasielastic peak cannot be classified as an additional critical
phenomenon, because it is not centred at the critical ordering wave-
vector. Furthermore, even though its intensity increases in the para-
magnetic phase, as the system approaches criticality, it is still present,
with a non-zero width in κ-space, below the transition and its intensity
continues to increase as the temperature is further reduced (Burke et al.
1981; Bjerrum Møller et al. 1982; McEwen 1986). The dynamic effects
associated with this quasielastic peak are very modest, as observed by
Jensen et al. (1987); its width in energy is estimated to be less than 0.1
meV. Nevertheless, its integrated intensity is too large to be explained
as a static phenomenon due to scattering from local short-range ordering
of the crystal near the surface or around bulk defects, such as magnetic
impurities or lattice defects. The only remaining possibility appears to
be that the quasielastic peak is associated with the magnetic response of
the itinerant electrons. This is consistent with one of the results of the
neutron-scattering studies by Leuenberger et al. (1984) of the hexagonal
insulator Cs3Cr2Br9, in which the Cr dimers form a singlet–triplet sys-
tem which has a number of analogies to Pr. Even though this system is
very close to magnetic ordering, and the lowest excitation energies are
only about 0.2meV, there is no sign of either a satellite or a quasielastic
peak. The spin fluctuations of band electrons are not normally expected
to give rise to a quasielastic peak of the intensity observed in Pr, and its
occurrence may therefore indicate the formation of resonant states near
the Fermi surface in Pr, due to hybridization of the conduction electrons
with the 4f electrons. As discussed in Section 1.3, the 4f electrons in Pr
are very close to delocalization, and the incipient magnetic instability
of the localized electrons would therefore be expected to be reflected in
fluctuations in the conduction electron-gas. An indication of the sensi-
tivity of the conduction electrons to the ordering process is provided by
the resistivity measurements of Hauschultz et al. (1978), who found an
increase of almost fifty per cent, over the temperature range in which
the quasielastic peak develops, in the c-direction, where superzone effects
in the ordered phase are expected to be of minor importance. Further
studies of the quasielastic peak, and associated changes in the conduc-
tion electrons, particularly under high pressures with the corresponding
progressive increase in 4f hybridization, would clearly be of interest.

Antiferromagnetism can also be induced in Pr by an internal cou-
pling to magnetic impurities. Assuming that the susceptibility of the
single impurities of concentration c is proportional to 1/T , we find that
eqns (5.6.5–6) of the virtual crystal approximation lead to an ordering
temperature determined by

TN = TN (c) =
c

1 − (1 − c)R(TN )
TN(c = 1), (7.4.2)
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Fig. 7.9. The effective moments, deduced from the intensities of the
narrower peaks in scans of the type illustrated in Fig. 7.8, in Pr and
Pr97.5Nd2.5. Only below about 50 mK and 3.5K respectively do these

moments correspond to a long-range magnetically ordered state.

where R(T ) is the critical parameter of eqn. (7.1.6). This expression
gives TN 	 12.5cTN(c = 1), for c � 1. A rapid increase of TN at
small concentrations of Nd ions in Pr was indeed observed by Lebech
et al. (1975). As illustrated in Fig. 7.9, the study of a single crystal of
Pr97.5Nd2.5 by Bjerrum Møller et al. (1982) revealed a number of infor-
mative details. The temperature dependence of the scattered intensity
follows qualitatively the behaviour observed in pure Pr. The quasielastic
peak appears around 10K, a strong satellite which is broader than the
experimental resolution emerges from it around 6K, and a diffraction
peak, signifying true long-range order, develops below about 3.5K. As
in Pr, the quasielastic peak continues to grow below TN . The rise in
the magnetization below about 0.2K is ascribed to the polarization of
the nuclei and their hyperfine interaction with the 4f moments. Inelas-
tic neutron-scattering experiments by Wulff et al. (1983) gave results
consistent with a crystal-field model in which the Nd ions have a pre-
dominantly |± 3

2 > ground state, and excited |± 1
2 > and predominantly

| ± 5
2 > states at about 0.3meV and 1.2meV respectively.

The application of an external uniaxial pressure along the a-axis
in the basal plane lifts the degeneracy of the | ± 1 > first excited-state
and may therefore induce magnetic ordering, as predicted by Jensen
(1976a) and observed by McEwen et al. (1978). The magnetoelastic
phenomena described in Section 7.3.1, particularly the magnitude of the
field-induced interaction between the magnetic excitations and the trans-
verse phonons, may be used for estimating the coupling parameter Bγ2
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Fig. 7.10. MF calculation of the ordering temperature TN in Pr, as
a function of the uniaxial pressure in the a-direction, compared with the

neutron-diffraction measurements of McEwen et al. (1983).

for the hexagonal ions. Neglecting the magnetoelastic coupling to the
cubic ions, we obtain from eqn (7.3.2) the following γ-strain contribution
to the magnetic Hamiltonian:

Hγ(sta) = −
∑

i∈hex.ions

Bγ2O
2
2(Ji)

[1
2Bγ2〈O2

2(Ji)〉 + t11
]
/cγ + H0

γ , (7.4.3)

in the presence of a uniaxial stress along the ξ-axis. N in (7.3.2) is
the total number of ions, or twice the number of hexagonal sites. At
zero temperature and zero magnetic field, the only effect of Hγ(sta),
within the effective (J = 1)-model, is that the crystal-field splitting
which determines the excitation spectrum becomes different for the two
polarizations, and for instance ∆η, giving the Jη-mode energies, is found
to be

∆η = ∆η(t11) = ∆ −Bγ2M22t11/cγ ,



358 7. CRYSTAL-FIELD EXCITATIONS IN THE LIGHT RARE EARTHS

Fig. 7.11. Experimental measurements of the first harmonic of the
magnetization on the hexagonal sites in Pr, deduced from the intensities
of neutron-diffraction peaks at 1.5K, compared with a MF calculation

for the J = 4 ion.

where the matrix element

M22 ≡ < 1a |O2
2 |1a> = − < 1a |J2

η |1a > = −10,

in Pr. ∆ξ differs from ∆ by the same amount, but with the opposite sign.
At the incipient ordering wave-vector Q along the η-axis, the excitations
are purely transverse or longitudinal, Jξ or Jη modes. The critical ratio
R0, defined by eqn (7.1.6), for the optical longitudinal mode at Q is then
determined by

R0(t11) = R0(0)∆/∆η(t11).

Hence the application of the stress alters the critical ratio, and it attains
the threshold value 1 when

T c
11 =

{1 −R0(0)}∆
M22Bγ2

cγN/V, (7.4.4)

where cγN/V = 4c66. With the following values of the parameters;
R0(0) = 0.92, ∆ = 3.52meV, Bγ2 	 12meV, and c66 = 1.6 · 1010 N/m2,
the effective (J = 1)-model predicts that the critical stress necessary
for inducing magnetic ordering in Pr at zero temperature is T c

11 = −1.5
kbar. However, the |3s >-state lies just above the magnetic excitons
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Fig. 7.12. The crystal-field levels of an isolated hexagonal ion in Pr,
as a function of an applied magnetic field in the a- and c-directions. The

zero-field wavefunctions are specified more precisely in Fig. 1.16.

and, as < 1a |O2
2 |3s > is non-zero, it has a significant effect on ∆η(t11).

A calculation which includes all the crystal-field levels of Pr predicts
the critical uniaxial pressure −T c

11 along the ξ-axis to be 0.7 kbar. As
may be seen in Fig. 7.10, such a calculation is in good agreement with
the experimental observations of McEwen et al. (1983), at temperatures
sufficiently high that the hyperfine coupling is of no importance, and also
accounts very well for the critical pressure at higher temperatures, where
the thermal population of the magnetic excitons becomes significant.
The dependence of the ordered moment at 1.5K on the uniaxial pressure
is also very well reproduced by this theory, as illustrated in Fig. 7.11.
The stable configurations of the moments at zero pressure are expected
to be analogous to those found in Nd and discussed in Sections 2.1.6
and 2.3.1, i.e. a single-Q structure at small values of the magnetization
and a double-Q configuration when the first harmonic of the moments is
larger than about 0.2–0.3µB. This behaviour has not been established
experimentally, but a suggestive rotation of the ordering wave-vector
away from the symmetry axis, as expected in the double-Q structure,
has been detected (McEwen et al. 1983). Uniaxial pressure stabilizes a
longitudinal wave with Q along the b-axis perpendicular to the strain,
and a modest pressure of about 0.1 kbar is estimated to be sufficient
to quench the double-Q structure. Accordingly, the theoretical curve in
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Fig. 7.13. MF calculation of the magnetization of Pr at 4.2 K as a
function of a magnetic field applied in the a- and c-directions. The circles
are the experimental measurements of McEwen et al. (1973), while the
squares are deduced from the neutron-diffraction results of Lebech and

Rainford (1971).

Fig. 7.11 is calculated with the assumption of a single-Q ordering of the
moments.

The final perturbation which may induce a magnetic state in Pr is
an external magnetic field. The modification of the crystal-field levels
of an isolated hexagonal ion by a magnetic field is illustrated in Fig.
7.12. If the field is in the basal plane, the excited states are increased
in energy, relative to the ground state, but they mix strongly into it,
giving rise to the large moment shown in Fig. 7.13. If the magnetic
field is along the c-axis, on the other hand, the matrix elements between
the ground and excited states on the hexagonal sites are zero, but the
|+ 1 > and |3s >→ |+ 3 > states both decrease in energy, linearly
and quadratically respectively. At about 320kOe, the latter crosses
the ground state and the moment increases abruptly, as observed by
McEwen et al. (1973). As illustrated in Fig. 7.13, the model of Houmann
et al. (1979), supplemented with a magnetoelastic coupling Bα2 = 7.0
meV for the hexagonal ions, accounts well for these results. The jump in
the magnetization rapidly becomes smeared out when the temperature
is raised, due to the thermal population of the excited states, as observed
experimentally at 14K (McEwen 1978).
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7.4.2 The magnetic excitations
The magnetic-excitation spectrum in Pr has been investigated experi-
mentally in great detail as a function of various external constraints,
such as the temperature, a magnetic field applied in the basal plane, and
uniaxial pressure. Most of the knowledge about the (low-temperature)
coupling parameters in the model Hamiltonian for Pr, which we have al-
ready utilized several times in the preceding sections, has been derived
from these experiments. The first inelastic neutron-scattering exper-
iments on Pr (Rainford and Houmann 1971; Houmann et al. 1975b)
showed that the excitations behave as expected in a singlet ground-
state system, and that the two-ion coupling is just below the threshold
value for inducing magnetic ordering. A MF analysis of the tempera-
ture dependence of the excitations, shown by the dashed lines in Fig.
7.3, indicated that the crystal-field splitting ∆ between the |0> ground-
state and the first excited | ± 1>-doublet state of the hexagonal ions is
about 3.2meV. An important discovery (Houmann et al. 1975b) was the
observation, illustrated in Fig. 7.1, of a strong splitting of the doublet
excitations, whenever such a splitting is allowed by symmetry, i.e. when
q is not along the c-axis. This effect demonstrates that the anisotropic
contribution to the two-ion Hamiltonian of Pr,

HJJ = −1

2

∑
ij

J (ij)Ji ·Jj

+ 1

2

∑
ij

K(ij)
[
(JiξJjξ − JiηJjη) cos 2φij + (JiξJjη + JiηJjξ) sin 2φij

]
,

(7.4.5)
is important. Here φij is the angle between the ξ-axis and the projection
of Ri − Rj on the basal plane. Real-space coupling parameters J (ij)
and K(ij) derived from the excitation energies shown in Fig. 7.1, using
the MF-RPA expression for the energies with ∆ = 3.52meV, are shown
in Fig. 1.18. This somewhat larger value of ∆ was obtained from a
study of the field dependence of the excitations (Houmann et al. 1979),
but it is still consistent with their temperature dependence, as shown
by the results of the self-consistent RPA, the solid lines in Fig. 7.3.
Besides leading to the more accurate value of ∆, the field experiments
revealed the presence of a rather strong magnetoelastic γ-strain coupling
in Pr, which creates energy gaps proportional to the field at the crossing
points of the magnetic-exciton and transverse-phonon branches in the
basal-plane directions, as illustrated in Fig. 7.14.

The model Hamiltonian, with the two-ion and magnetoelastic terms
given respectively by (7.4.5) and (7.4.3), together with the usual single-
ion crystal-field Hamiltonian for a hexagonal system, describes very well
the excitation-energy changes observed by Houmann et al. (1979) when
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Fig. 7.14. Dispersion relations for the excitations propagating on
the hexagonal sites of Pr at 6K, in an applied field of 43.5 kOe. The
field is in the basal plane and perpendicular to the wave-vector, so that
there is a discontinuity at M, corresponding to a rotation of the field
through 90◦. Compared with Fig. 7.1, the energy of the magnetic exci-
tations has increased, and the field has induced couplings between the
magnetic excitons and the transverse-acoustic phonons polarized in the
basal plane, indicated by dashed lines. These phonons are coupled to the
acoustic and optical longitudinal magnetic modes in the ΓM-direction,
and to the (predominantly) acoustic longitudinal and optical transverse
modes (the two branches of intermediate energy) in the ΓK-direction
(Jensen 1976a). The full lines show the results of an RPA calculation of
the magnetic excitations, neglecting the coupling to the phonons. The
predicted low-intensity higher-lying modes, corresponding to transitions
to the predominantly |3s > crystal-field state, were not observed directly
in the experiments, but their influence may be seen in the lowest branch
along ΓK, since it is their mixing with this mode which holds the energies

below those along ΓM.

a field is applied in the basal plane at low temperature. The dispersion
relation was measured at three values of the field (14.5, 29.0, and 43.5
kOe), and the results obtained at the highest field are shown in Fig.
7.14.

The most important effect of the field is the admixture of |1s,a >
into the ground state. This causes ∆ξ and ∆η to increase, and the
matrix elements Mξ and Mη to decrease. The energies of the excita-
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tions are thereby increased, while the dispersion becomes smaller. If
the field is applied along the ξ-axis, the ξ-mode parameters are changed
approximately twice as much, relative to their zero-field values, as the
η-mode parameters. At H = 43.5kOe, the total molecular field, which
determines the energies in Fig. 7.12, is 100kOe, and ∆ξ = 4.29meV,
whereas ∆η = 3.86meV. This means that the field produces the largest
effects on the excitations polarized (predominantly) parallel to it, which
in Fig. 7.14 are the transverse modes, both when q is along ΓM and
along ΓKM. The γ-strain coupling opposes the splitting of the trans-
verse and longitudinal modes, but only quadratically in the field. The
hexagonal anisotropy does not affect the effective (J = 1)-excitations in
zero field, but B6

6 causes a splitting between the |3s> and |3a >-states
of nearly 5meV. As B6

6 is negative, the lower of the two states is |3s >
which, according to Fig. 1.16 or 7.12, should lie only 0.9meV above
the |1s,a >-states. The magnetic field induces a coupling between this
neighbouring level and the doublet excitations, so that it acquires a sig-
nificant scattering cross-section at the energies indicated by the dashed
lines in Fig. 7.14. Although the extra peak was not sufficiently distinct
to be detected directly in the neutron-scattering experiments, the pres-
ence of this level is clearly manifested in the behaviour of the doublet
excitations. The absolute minimum in the excitation spectrum at zero
field is found along ΓM, whereas at H = 43.5kOe the energy minimum
in the ΓK-direction has become the lowest. The |3s >-excitations are
coupled to the doublet excitations polarized along the ξ-axis, both when
the field is along the ξ- and the η-axis. This means that the energy
increase of the longitudinal (optical) mode in the ΓK-direction is dimin-
ished, due to the repulsive effect of the field-induced coupling to the
|3s >-excitations. When the field is along the ξ-direction, the longitu-
dinal modes in the ΓM-direction are coupled to the |3a >-excitations,
which lie at much higher energies and only perturb the lower modes very
weakly. The basal-plane anisotropy is also clearly reflected in the field
dependence of the elastic constant c66, shown in Fig. 7.5.

The effects of the field on the hexagonal doublet-excitations are
very strong. In comparison with the zero-field result of Fig. 7.1, the
minimum-energy modes have more than doubled their energies, while
the overall width of the excitation bands has been reduced by nearly
a factor of two. Because of these large changes, the measurement of
the field dependence of the excitation spectrum allowed a rather precise
determination of ∆ and the relative position of the |3s > crystal-field
level. With the assumption that B6

6 = −(77/8)B0
6, these results then

led to the crystal-field level-scheme for the hexagonal ions shown in
Figs. 1.16 and 7.12, leaving only the position of the highest-lying level
somewhat arbitrary. The field experiment also determined the value of
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the magnetoelastic parameter (Bγ2)2/cγ . This agrees with the value of
Bγ2 for the hexagonal ions which accounts for the coupling between the
magnetic excitations and the phonons, and for the field dependences of
c66 (Fig. 7.5) and of the γ-strains (Hendy et al. 1979). It furthermore
allowed the accurate prediction of the strain-induced antiferromagnetic
transition in Pr, shown in Fig. 7.10.

The low-temperature magnetic properties of Pr are dominated by
the hexagonal ions. One consequence of this is that it is more difficult
to construct a reliable model for the cubic ions, based on experimentally
derivable parameters. Although the model proposed by Houmann et al.
(1979) accounts accurately for the bulk of the low-temperature experi-
mental results, it is not uniquely specified and some deficiencies appear
in comparison with experiments at elevated temperatures. The model
is based on the following crystal-field Hamiltonian for the cubic ions:

HJ =
∑

i∈cub.ions

[
B0

4(c){O0
4(Ji) − 20

√
2O−3

4 (Ji)}

+B0
6(c){O0

6(Ji) + 35

4

√
2O−3

6 (Ji) −
77

8
O6

6(Ji)}
]
,

(7.4.6)
which neglects the departure of the local symmetry of these sites from
cubic. We shall not present an extensive discussion of the model here
(more details may be found in Houmann et al. (1979) and Jensen (1979b,
1982)), but it is clear that this MF model, which is the simplest descrip-
tion of Pr consistent with its magnetic behaviour in the low-temperature
limit, must be extended in order to describe, for instance, the magne-
tostriction measurements of Hendy et al. (1979) and Ott (1975). In
addition to introducing a non-zero value of Bα2 for the hexagonal ions,
of the magnitude used to obtain agreement with experiment in Fig. 7.13,
it is probably also necessary to include Bα1. Moreover, the magnetoe-
lastic parameters for the cubic ions are presumably of the same order of
magnitude as those on the hexagonal ions. This probably also applies
to B0

2(c), neglected in eqn (7.4.6). The separation of the contributions
from the hexagonal and the cubic ions to the c-axis bulk susceptibility as
a function of temperature, accomplished through neutron-diffraction ex-
periments by Rainford et al. (1981), indicates that not only is B0

2(c) non-
zero, but the exchange between the c-axis components of the moments is
also different from the corresponding coupling between the basal-plane
components. The development of a MF model for Pr which describes
its properties more accurately at elevated temperatures would benefit
greatly from a more detailed examination of the excitations on the cu-
bic sites, i.e. a determination of the energies of the excitations polarized
in the c-direction, and the field-induced changes of these excitations, and
of those polarized in the basal-plane and shown in Fig. 7.2.
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The missing ingredients in the model presented here to describe
Pr have a negligible influence on the pressure-induced ordered struc-
ture, and most of the observations made in this phase were explained
by Jensen et al. (1987) utilizing only the information obtained from the
zero-pressure studies of Houmann et al. (1979). Because the ordered
moments in the antiferromagnetic phase are parallel to Q, the change
of the ground state affects primarily the longitudinal excitations, and
the low-energy optical branch close to the ordering wave-vector is par-
ticularly strongly modified. Fig. 7.15 shows the experimental excitation
energies of the optical modes in the ΓM-direction at 5.5K, in the pres-
ence of a uniaxial pressure of 1.28 kbar, compared with the predictions
of the RPA theory.

Under the conditions of the measurements, the analysis shows that
the induced moments

〈Jiη〉 = 〈Jη(Q)〉 cos(Q ·Ri + ϕ) (7.4.7a)

are so small that the effective (J = 1)-model is adequate to describe
the excitations, and the value of the third harmonic of the longitudi-
nally ordered moments is only a few per cent of 〈Jη(Q)〉. A full account
of the structure would require specifying two phase constants, one for

Fig. 7.15. The dispersion rela-
tions for the optical excitations in
the antiferromagnetic phase of Pr at
5.5K under an applied uniaxial pres-
sure of 1.28 kbar. The ΓM direction
shown is perpendicular to the pres-
sure axis. The circles depict the ex-
perimental results obtained from in-
elastic neutron scattering, with solid
and open symbols indicating the lon-
gitudinal and transverse branches re-
spectively. The solid lines are the
calculated RPA energies for the exci-
tations, whereas the dashed lines in-
dicate longitudinal modes of weaker
intensity. The thin lines are the ex-
perimental dispersion relations in
unstressed Pr, as in Fig. 7.1
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each of the two sublattices. The difference between the two phases is
approximately π, or approximately 0 if Q, within the primitive zone, is
replaced by Q + b3. Introducing the relative magnetization σ by

〈Jη(Q)〉 = Mησ, (7.4.7b)

where the matrix element is slightly dependent on the pressure (Mη =
1.026

√
10 at 1 kbar), we find that σ 	 0.44 under the conditions of Fig.

7.15. Because σ is still small, it may be utilized as an expansion pa-
rameter, both in the calculation of the ordered moments and also in the
equations of motion determining the excitation spectrum. The ordering
wave-vector is close to 1

8b2, but whether the system is commensurable or
not is not easy to decide from the experiments. In any case, this is not
important for calculating the excitation spectrum, because distinctive
effects of commensurability only appear in the order σ8 ≈ 0.001. The
modulation of the length of the moments implies that the single-ion MF
susceptibilty is site-dependent, and the ηη-component is found to be

χ o
ηη(j, ω) =

2n01(j)M
2
α∆ cos 2θj

(∆/ cos 2θj)2 − (h̄ω)2
+ βp01(j)M

2
α sin2 2θj δω0, (7.4.8a)

equivalent to eqn (7.1.9) with 〈Jjη〉 = Mηn01(j) sin(2θj), and p01(j)
defined by

p01(j) = n0(j) + n1(j) − n2
01(j). (7.4.8b)

∆ = ∆η(t11) is here the crystal-field splitting between the ground state
|0> and the excited state |1> (≡ |1a > at zero stress) at the particu-
lar stress considered. In the incommensurable case, the coupling matrix
determining the longitudinal component of the susceptibility tensor is
of infinite extent. The situation is very similar to that considered in
Section 6.1.2 and, as there, the coupling matrix may be solved formally
in terms of infinite continued fractions. The only difference is that, in
the present case, the single-site susceptibility is unchanged if the mo-
ments are reversed, which means that the coupling matrix only involves
terms with n even (where n is the number of the Fourier component,
as in (6.1.28)). Since the effective modulation wave-vector seen by the
longitudinal excitations is 2Q and not Q, the acoustic and the optical
modes propagating parallel to Q may be treated separately, as the q-
dependent phase factor determining the effective coupling parameters
J11(q) ± |J12(q)|, derived from the interactions in the two sublattices
(see Section 5.1), is not affected.

To leading order, the modulation of the moments introduces a cou-
pling between the excitations at wave-vectors q and q± 2Q, and energy
gaps appear on planes perpendicular to Q passing through nQ. When
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q = Q, the coupling between the modes at Q and −Q leads to an ampli-
tude mode and a phason mode, corresponding respectively to an in-phase
and a 90◦ out-of-phase modulation of the lengths of the moments. The
energies of the two longitudinal modes at q = Q are approximately given
by

Eamplitude 	
√

3
2 σ∆

Ephason 	
(1

8β∆p01

)1/2
σ∆,

(7.4.9)

where p01 is the average value of p01(j). The scattering intensity, pro-
portional to 1/[h̄ω{1− exp(−βh̄ω)}], of the lowest-lying phason mode is
much larger than that of the amplitude mode. The low-intensity ampli-
tude mode is indicated by the dashed line at q-vectors close to Q in Fig.
7.15, and it was not clearly resolved in the experiments. The phason
mode has a dispersion relation, indicated by the solid lines in the fig-
ure, which increases linearly from the magnetic Bragg peak at Q, except
for the presence of the small gap Ephason at q = Q. In the incommens-
urable case, the free energy is invariant to a change of the phase constant
ϕ in (7.4.7), so that the longitudinal component of the zero-frequency
susceptibility diverges at the wave-vector Q. The corresponding gener-
ator of an infinitesimal phase shift is 1 − iδϕ

∑
j

(
|1 >< 1|

)
j
. If this

generator commuted with the Hamiltonian, a specific choice of ϕ would
break a continuous symmetry of the system, implying the presence of a
well-defined linearly-dispersive Goldstone mode, as discussed in Section
6.1. However, as may be verified straightforwardly, it does not in fact
commute with the Hamiltonian. On the contrary, within the RPA the
longitudinal response contains an elastic contribution, due to the final
term in (7.4.8a), and hence the scattering function contains a diffusive
peak at zero frequency. It is the intensity of this peak which is found
to diverge in the limit q → Q. As q departs from Q, the diffusive re-
sponse at zero frequency rapidly weakens, and the phason mode begins
to resemble a Goldstone mode. The presence of the inelastic phason
mode at the wave-vector Q can be explained as a consequence of the
modulation of the population difference n01(j), which is proportional to
p01. This mode corresponds to an oscillation of the phase-constant ϕ
in (7.4.7), except that the adiabatic condition, which applies within the
RPA as soon as the oscillation frequency is non-zero, constrains n01(j)
to remain constant, without participating in the oscillations. This con-
dition, in turn, gives rise to the restoring force which determines the
frequency of the oscillations. However, if the oscillations are so slow (i.e.
essentially zero in the present approximation) that n01(j) can maintain
its thermal-equilibrium value, there are no restoring forces. In the zero-
temperature limit, n1 vanishes exponentially, in which case n01(j) = 1,
and the diffusive elastic response disappears together with Ephason. The
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gap also vanishes in the other limit when σ → 0, as does the amplitude-
mode energy gap, reflecting the soft-mode nature of the transition in
this approximation. In the above discussion, we have assumed that the
system is incommensurable. In a commensurable structure, the free en-
ergy is no longer invariant to an overall phase shift of the structure, and
the longitudinal susceptibility does not diverge at Q. Because of the
small value of σ8, however, it is close to divergence. The phason-mode
energy gap stays non-zero at T = 0 in the commensurable case, but it
is estimated to be only about 0.03meV at 1kbar.

Even at the lowest temperatures reached in the inelastic neutron-
scattering experiments, quite strong line-broadening of the low-lying lon-
gitudinal excitations was observed in the ordered phase. There are sev-
eral mechanisms which may lead to non-zero linewidths. One possibil-
ity, if the ordering is incommensurable, is a broadening of the excitation
peaks analogous to that illustrated in Fig. 6.3 in Section 6.1.2. How-
ever, the off-diagonal coupling terms, corresponding to γn in (6.1.30), are
here multiplied by σ2, which means that the continued-fraction solution,
although infinite, converges very rapidly without producing linewidth
effects of any importance. The 1/Z-expansion, discussed in Section
7.2, accounts very well in first order in 1/Z for the lifetime effects ob-
served in paramagnetic Pr, as shown in Fig. 7.4. In this order, the
intrinsic-linewidth effects vanish exponentially at low temperature, and
they should be negligible in the temperature range of the ordered phase,
with the important exception that the elastic RPA response acquires a
non-zero width. To first order in 1/Z, δω0 in eqn (7.4.8a) is replaced by
a Lorentzian iΓ/(h̄ω+ iΓ), with 1/Γ 	 n2

01(π/2)Nη(∆), where Nη(E) is
the density of states of the η-polarized part of the excitation spectrum.
Due to the large value of Γ, estimated to be about 1meV, the RPA
predictions for the behaviour of the phason modes near the ordering
wave-vector are strongly modified. Instead of an elastic diffusive and an
inelastic, adiabatic phason mode, the theory to this order predicts only
one mode at zero energy, but with non-zero width, when q is close to
Q. An inelastic low-energy peak develops only at a distance of about
0.03|b1| from Q. The exchange-enhancement factor in the scattering
function causes the width of the Lorentzian near Q to be much less than
2Γ. Formally the width tends to zero when q → Q, but it is more pre-
cisely the intensity which diverges, while strong inelastic tails remain at
q = Q, in accordance with the experimental results.

As was mentioned in Section 7.2, the 1/Z-expansion of the effective
medium theory was extended to second order in 1/Z by Jensen et al.
(1987). The second-order modifications are important here, but not in
the zero-stress case considered in Fig. 7.4, because the low-temperature
energy gap of about 1meV in the excitation spectrum is suppressed by



7.4 MAGNETIC PROPERTIES OF PRASEODYMIUM 369

the uniaxial pressure. The gapless excitation-spectrum in the ordered
phase implies that the linewidth effects are predicted to vary smoothly
with temperature, and to stay non-zero at T = 0, when the second-
order contributions are included. We note that the imaginary part of
the self-energy is now non-zero below the RPA-excitonic band in the
paramagnetic phase, and that it generates an appreciable low-energy
scattering at the ordering wave-vector, just above TN , changing the in-
elastic critical excitation into a diffusive mode of diverging intensity.
Hence a true ‘soft-mode transition’, as found in the zeroth or first order
of 1/Z, is no longer predicted, but the low-energy effect is far too weak to
account for the observed behaviour of the neutron-diffraction satellite.
The inclusion of the second-order effects in the theory clearly improves
the agreement with the experimental results. However, even though the
1/Z2-theory predicts a non-zero linewidth in the limit T → 0, the effect
is so small, at energies below 1meV, that it can be neglected in com-
parison with the contribution due to the scattering against electron-hole
pair excitations of the conduction electrons, discussed in Section 7.3.2.
The importance of this mechanism has been estimated reasonably accu-
rately, and it leads to a linewidth of the order of 0.15meV for the optical
modes close to Q. When all contributions are included, the theory in-
dicates that the amplitude mode should have been observable at q = Q
at the lowest temperatures, in contrast to the experimental results, but
otherwise its predictions are found to agree well with the main features
of the observations.
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PERSPECTIVES FOR
RARE EARTH RESEARCH

During the last three decades, a remarkable transformation has occurred
in our understanding of rare earth magnetism. This development has
been described in the preceding chapters, and we conclude with a short
epilogue, in which we attempt briefly to summarize the status of the
field and the perspectives for future research in it. The close interplay
between experiment and theory is particularly pronounced in rare earth
research. It was measurements on pure materials and single crystals
which stimulated the early development of the subject, but the con-
struction of the standard model pointed the way to more refined and
varied experiments, which in turn required more sophisticated explana-
tions. At the moment, we appear to be in a period where the theory
is in the ascendancy; it is able to account for the great majority of the
observations, and also to suggest a wide variety of new investigations.
Much of the following will therefore be concerned with the indication of
promising directions for experimental study.

However, it is clear that the standard model is indeed a model, and
transforming it into a fundamental theory will require a deeper quan-
titative understanding of the magnetic interactions. The key to such
an understanding lies in the electronic structure. Band structure cal-
culations are able to predict the ground-state properties of solids with
impressive accuracy, and to the extent that comparisons with experi-
mental results exist for the rare earth metals, they are highly successful.
Nevertheless, this comparison between theory and experiment is incom-
plete for even the two most carefully studied examples, Gd and Pr. In
both cases, the Fermi surface has been measured in considerable detail
with the dHvA effect, but even though the general agreement with the
calculations is satisfactory for the larger sheets, the small areas are still
not fully accounted for. These discrepancies point to the necessity both
of more accurate measurements and of first-principles self-consistent cal-
culations, in which the spin–orbit coupling, the exchange splitting, and
the external field are rigorously incorporated. A more complete descrip-
tion of the conduction electrons in Gd would allow further progress in
the computation of the sf exchange, although it would not immediately
solve the most intractable part of the problem, the screening of the ex-
change field of the 4f electrons, which reduces its effect by a large factor.
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The contribution of the spin–orbit coupling in the conduction-electron
gas to the single-ion anisotropy could also be estimated and compared
with the low-temperature experimental results, taking into account the
readily computed dipolar contribution. A knowledge of both the ex-
perimental and theoretical masses on a variety of orbits would allow a
stringent test of the theory of mass-enhancement by the spin waves. The
rich structure in the low-frequency dHvA spectrum of Pr may reflect the
hybridization with the 4f electrons, which presumably gives rise to the
quasielastic neutron-diffraction central peak, and also apparently makes
a contribution to the binding in the light rare earths. An immediate
goal of a first-principles calculation of the indirect exchange in Pr would
be an explanation of the large anisotropy which is revealed by the dis-
persion relations for the magnetic excitations. This would require an
extension of the theory of the influence of the orbital angular momen-
tum on the two-ion coupling to more realistic electronic structures than
the free-electron model which is normally considered. If this could be
accomplished, a first-principles account of the observed scaling of the
exchange with the de Gennes factor in the elements could be envisaged.

An accurate knowledge of the electronic structure would also open
the way to a calculation of the source of the other primary interaction,
the crystal field, which is determined by the charge distribution. The
non-spherical terms, which give rise to the higher-l components of the
crystal field, are neglected in the averaging procedure adopted in the
construction of the muffin-tin potential, but both they and the non-
uniformity of the charge distribution in the interstitial regions can in
principle be calculated self-consistently. Such a calculation for Y, for
example, would cast some light on the origin of the crystal-field split-
tings observed in dilute alloys with magnetic rare earths. However, the
main barrier to calculating the full crystal-field Hamiltonian again re-
sides in the other part of the problem, the screening of the fields by the
atomic core and the 4f electrons themselves. This is indeed a formidable
difficulty, but presumably not one which is insurmountable.

A constant theme, running in parallel with the steady improvement
of the standard model, has been the question of the nature of the 4f
states in Ce and its compounds. As has been apparent for some time,
the standard model is not applicable to, for example, α–Ce, as the 4f
electrons are itinerant, make a substantial contribution to the binding,
and must be described by the band model. We have said relatively
little about mixed-valent Ce compounds, primarily because they lie out-
side the main scope of this book, but also because the subject is in a
very rapid state of development, making any kind of meaningful sum-
mary both difficult and ephemeral. Nevertheless, there is no question
that the study of the magnetic properties of these materials, and of the
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related actinide compounds, and of the possible connection between
magnetism and superconductivity in heavy-fermion systems, is one of
the most fruitful areas of research in solid state physics, and one in
which great progress can be anticipated in the next few years.

We have emphasized the efficacy of neutron scattering for the ex-
perimental study of rare earth magnetism, but macroscopic measure-
ments provide an invaluable complement. The macroscopic magnetic
properties are frequently very sensitive to impurities, and many of the
parameters on which we rely for comparison with theory were measured
on crystals substantially less pure than can be prepared today. The mea-
sured value of the conduction-electron polarization in Gd, for instance,
increased significantly with crystal purity. The magnetic moment of the
conduction-electron gas is an important quantity, which gives valuable
information on the exchange interaction with the 4f electrons, but since
it is typically an order of magnitude smaller than the ionic moment,
its accurate determination is not straightforward, either in the para-
magnetic or the ordered phases, and the values of Table 1.6 could in
many cases be improved upon. The anisotropy parameters, describing
the angular dependence of the free energy in a field, are also difficult to
determine precisely, paradoxically because they are frequently so large
in the rare earths. It may consequently be very difficult to pull the mo-
ments out of the easy direction, and the torque on a crystal in a field can
be huge. Apart from the question of sample purity, many of the values
in the literature therefore suffer from substantial uncertainties for tech-
nical reasons. The same may be said for the multifarious magnetoelastic
parameters, which characterize the dependence of the free energy of the
magnetic systems on the lattice strain. The temperature dependence
of this free energy is reflected in the heat capacity, which therefore in
principle contains useful information on the energetics of magnetic ma-
terials. However, the unscrambling of the nuclear, lattice, magnetic and
electronic components may be a formidable task, and small amounts of
impurity may make the results essentially useless. Nevertheless, it would
be worthwhile to attempt to improve upon the accuracy of the available
measurements, and the effect of an external magnetic field on the heat
capacity could be pursued further, since the few studies which have so
far been made have been very informative.

It was the revelation by neutron diffraction of the exotic magnetic
structures of the rare earths which initiated the revolutionary progress of
the 1960s, and since that time countless studies have been performed of
the patterns of the ordered moments. It is therefore remarkable that so
much remains to be done. The temperature dependences of the struc-
tures of the heavy rare earths have been determined in great detail,
although there is still scope for further study of some phases, for in-
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stance in the intermediate temperature-range of Er. However, the effect
of other external constraints, especially magnetic fields and pressure,
have only been cursorily investigated. It is apparent, for instance, that
a variety of helifan and analogous structures may be produced by ap-
plying a field to periodic structures, especially if the interactions are
adjusted by taking advantage of the almost perfect mutual solubility
of the elements. Apart from their intrinsic interest, measurements of
the resistivity may provide a very sensitive method for determining the
complex phase diagrams which frequently arise in a magnetic field. The
same may be said of the lattice strain, and of the elastic constants (Bates
et al. 1988). Since the magnetoelastic effects in the rare earths are so
pronounced, external pressure or uniaxial stress can have a profound
effect on the stability of different magnetic states, as the few examples
which have been examined have demonstrated. The light rare earths
remain a largely unexplored terrain. The more that is learned about the
magnetic structures of Nd, the wider loom the areas which remain to be
investigated. Our understanding of γ–Ce is still at a rudimentary stage,
nor is the magnetic structure of Sm by any means completely resolved.
Although its crystal structure is complicated, and neutron experiments
require isotopically enriched samples to circumvent the large absorption
in the natural state, there is no fundamental obstacle to attaining a
more detailed description of the configurations of the moments under
different conditions than we have at present. The form factor is partic-
ularly interesting and unusual, and the theoretical understanding of its
variation with κ is still incompete. A dhcp phase can also be stabilized
in Sm; a comparison of its magnetic properties with those of the more
common allotrope would further elucidate the relation between the crys-
tal structure and the magnetic interactions. The magnetic structures of
films and superlattices constitute a field which has only existed for a
few years, and is in the process of rapid expansion. There appear to be
unlimited possibilities for fabricating new systems, and for discovering
new forms of ordering.

The mean-field theory, in conjunction with the standard model,
has proved to be ideally suited for explaining the general features of
the magnetic structures in terms of the interactions. Furthermore, de-
tailed self-consistent calculations provide an accurate description of the
arrangement of the moments determined by neutron diffraction and
macroscopic measurements, under specified conditions of temperature
and field, and also give a good account of the variation of the macro-
scopic anisotropy and magnetostriction parameters with the magnetiza-
tion. Although the crystal-field parameters are adjusted to fit, for ex-
ample, the low-temperature magnetic properties, they are not normally
thereafter varied in the calculation. The indirect-exchange interaction
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must be taken as explicitly temperature dependent, but its variation
is constrained to be consistent with the excitation spectrum. Only in
the vicinity of the critical temperature does the mean-field theory fail
seriously in the rare earths. Apart from this, the most severe challenge
which has so far been presented to the theory is the explanation of the
manifold structures of Nd in terms of a set of fundamental interactions.
This challenge has not yet been fully met, but this is probably more due
to an incomplete knowledge of the interactions than to any fundamental
limitation of the method.

The random-phase approximation, which is a time-dependent ex-
tension of the mean-field method, provides a similarly powerful theoret-
ical technique for treating the excitations. It is also quite general, but
the results usually have to be obtained by numerical means. The linear
spin-wave theory is an attractive alternative when the low-temperature
moment is close to its saturation value, since it may be treated analyti-
cally, may readily be made self-consistent, and allows the identification
of the combinations of parameters which determine the essential features
of the excitation spectrum. The corrections to the theory may be com-
puted systematically as an expansion in 1/J , and considerable progress
has been made in the calculation of such higher-order terms. Experimen-
tal investigations of the finite lifetime effects which appear in the third
order of 1/J , due to the magnon–magnon interactions, have so far been
limited. The theory of this effect is well established for the Heisenberg
ferromagnet, but it remains to be combined with the 1/J-expansion in
the anisotropic case.

The RPA theory has the merit of providing the leading-order re-
sults for the excitation spectrum in the systematic 1/Z-expansion. This
expansion is particularly well-suited for the rare earth metals, as it takes
advantage of the large value of the effective coordination number Z, due
to the close packing and the long range of the indirect exchange. Except
in the immediate vicinity of a second-order phase transition, where any
perturbation theory will fail, it seems capable of giving a rather satis-
factory account of the many-body correlations even in the first order
of 1/Z, if there is a gap in the excitation spectrum, as demonstrated
by the example of Pr. The usefulness of the theory in this order is
much improved by the fully self-consistent formulation presented in Sec-
tion 7.2. However, a substantial effort is still required to calculate the
1/Z-terms in systems with more complicated single-ion level schemes
than those considered there. Furthermore, in spin-wave systems, or sys-
tem with gapless excitations, (1/Z)2-corrections are important for the
linewidths. We can however conclude that the 1/Z-expansion indicates
quite generally that the (1/Z)0-theory, i.e. the RPA, should be a good
first-approximation in the low-temperature limit.
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The study of the excitations by inelastic neutron scattering has pro-
vided diverse and detailed information on the magnetic interactions. A
glance at the dispersion relations of, for instance, Gd, Tb, and Pr im-
mediately reveals the relative importance of the exchange and crystal
fields in these elements. Careful measurements as a function of tem-
perature and external fields, combined with a systematic analysis, yield
an abundance of knowledge about these and other interactions. Further
information is contained in the neutron-scattering intensities, though
these have so far been relatively little utilized. However, in some cases,
relative intensities have allowed a discrimination between different mod-
els, and if the difficult experimental problems can be overcome, absolute
intensity measurements could provide a valuable supplement to the en-
ergies and lifetimes. The philosophy adopted in analysing measurements
of excitation spectra has generally been to use the simplest theory and
set of interaction-parameters which can provide a satisfactory fit to the
experimental results available at any particular time. The anisotropic
exchange may, for example, be subsumed in effective isotropic exchange
and crystal-field parameters, so that it is necessary to treat such quan-
tities with caution when comparing with values deduced from different
kinds of measurements, or from a fundamental theory.

The excitations to which the greatest efforts have been devoted are
the spin waves in the heavy rare earths. Gd, with negligible anisotropy,
is the simplest example and the dispersion relations have been carefully
measured over a range of temperatures, in an isotopically pure sample.
The lifetimes have also been studied, but not as a function of wave-vector
at low temperatures, which would allow an examination of the scattering
by the conduction electrons, without the interference by the magnon–
phonon interaction which partially disturbed the experiments on Tb.
Gd would also be the prime candidate for a detailed comparison with a
realistic theory, using the calculated band structure and measured Fermi
surface rather than the free electron model. The isotropy of the exchange
could be examined, to within the limitations of the experimental resolu-
tion, by applying a magnetic field, and a study of dipolar effects at long
wavelengths might also be possible. Despite the attention which has
been devoted to elucidating the excitation spectrum of Tb, a number of
questions remain. The relative importance of single- and two-ion contri-
butions to the macroscopic anisotropy and spin-wave energies could be
further clarified by more precise measurements in a field, taking full ac-
count of the influence of the dipolar coupling at long wavelengths. The
origin of the hard-axis axial anisotropy, and the discrepancy between
the macroscopic and microscopic hexagonal anisotropy, could thereby
be further investigated. The study of the magnon-phonon interaction,
which has earlier provided some fruitful surprises, could profitably be
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extended to other branches, and the magnon energies should be mea-
sured in a single-domain crystal, in order to establish whether the modi-
fication of the hexagonal symmetry by the magnetic ordering is reflected
in the dispersion relations. It would be interesting to extend the mea-
surements of Nicklow et al. (1971b) on ferromagnetic Dy, and subject
it to an equally rigorous investigation, since the anisotropy parameters
are rather different from those in Tb, but its large hexagonal anisotropy
restricts the range of measurements in a field. Studies of ferromagnetic
Ho are even more constrained.

When the moments vary with position in a periodic structure, the
excitations become less amenable to study and the available informa-
tion on them is relatively sparse. Eu corresponds to Gd in the role of an
isotropic model system, but with a simple helical rather than a ferromag-
netic structure. It is unfortunate that its intractable neutron properties
(even the more favourable isotope absorbs inconveniently strongly) have
so far precluded any measurements of the spin waves. It would be par-
ticularly interesting to investigate the mode of wave-vector Q, whose
energy is determined by the small anisotropy, and its dependence on
magnetic field. It is energetically favourable for the plane of the helix to
rotate so that it is normal to the field direction, and this would be ex-
pected to occur via a soft-mode transition analogous to that observed in
Ho at low temperature, with a similarly decisive influence of the dipo-
lar interactions. Apart from Pr, to which we return shortly, the only
observations of inelastic neutron scattering in the light rare earths are
preliminary studies of crystal-field excitations in the longitudinal-wave
structure of Nd by McEwen and Stirling (1982). It may be an advan-
tage to apply to these complex systems a magnetic field large enough to
induce ferromagnetic ordering, in order to decouple the complications of
periodic ordering from the problems of the interplay of crystal-field and
exchange interactions in the excitation spectrum.

A number of reasonably complete studies of the spin waves in the
c-direction have been made in incommensurable periodic phases of the
heavy rare earths, notably in the helical structure of Tb90Ho10 and the
conical phase of Er. The former is a good example of how the mutual
solubility of the rare earths can be utilized in modifying the magnetic
properties in a convenient manner, in this case by extending the tem-
perature range over which the helix is stable. The effect of varying the
temperature has only been cursorily explored, however, and lifetimes
and field effects have not yet been investigated. Experimental spectra
for the longitudinal-wave structure of Er bear little resemblance to the
predictions of the theory, and both will presumably have to be improved
before they can be expected to converge. A fairly good understanding
has been attained of the excitations in the commensurable spin struc-
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tures of Tm and Ho, and the first effects of spin slips in introducing new
energy gaps within the zone have been observed in the latter. However,
no experiments have yet been carried out on the spin waves in the helifan
and fan structures which may be induced by a magnetic field, nor has
the soft mode which should accompany a second-order transition from
the latter to the ferromagnet been observed.

Such is the richness of the excitation spectrum of Pr that a num-
ber of experiments of fundamental importance remain to be performed,
despite the considerable efforts which have already been devoted to this
unique element. The magnetic excitons on the hexagonal sites and their
relationship to the process of magnetic ordering are well understood,
and the anisotropic exchange, magnetoelastic, and crystal-field inter-
actions have been measured with unprecedented accuracy. The |3s >
level has not yet been detected directly, however, and a further study
of the lifetimes of the long-wavelength acoustic modes as a function of
magnetic field would give detailed information about their interaction
with the conduction electrons. The excitations on the cubic sites are
much less precisely described, and even though they are of lesser signifi-
cance, a full characterization of their energies and the underlying inter-
actions is essential for the explanation of the temperature dependence
of the magnetic properties. In particular, a measurement of the missing
branch of excitations polarized in the c-direction, its possible splitting
from the branches polarized in the plane, and of the field dependence
of the energies, would help to determine the remaining magnetoelastic
and crystal-field parameters, especially B0

2(c) which is usually assumed
to be zero, but is likely to be as large as the corresponding parameter
on the hexagonal sites.

The magnetically ordered state in Pr provides a new set of chal-
lenges. The mechanism of ordering by different perturbations requires
further investigation. The neutron-diffraction studies of the hyperfine-
coupling-induced collective state should be taken to lower temperatures,
and the electronic and nuclear components on the different sites disen-
tangled. The excitations of this state would also naturally be of interest.
The influence of magnetic impurities, such as Nd and Er, could be clari-
fied by further inelastic-scattering experiments in a field. The energy of
the |+ 1> state on the hexagonal sites of Pr can be reduced by a mag-
netic field in the c-direction, which should affect the quasielastic central
peak and precursor satellite. The precise nature of these unusual scat-
tering phenomena is still a mystery, which further measurements under
different constraints, especially of external pressure, could help to un-
ravel. The application of a uniaxial pressure in the a-direction creates in
effect a new magnetically ordered element, and one with very interesting
properties. Many informative results have already been obtained from
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this phase, but the full characterization of the excitations as a function
of the strain, temperature, and field is clearly a major enterprise. Of
immediate interest would be a renewed effort to observe the amplitude
mode, which should be visible at low temperatures.

Despite the impressive range of information which has been attained
by accurate measurements of the magnetic structures and excitations
under various external conditions, the investigation of the two-ion inter-
actions which supplement the dominant isotropic RKKY exchange is by
no means complete. Low-symmetry two-ion couplings are clearly impor-
tant in Pr and Nd. In addition to the anisotropic contribution K(ij) in
(2.1.41), which accounts for the stability of the longitudinal ordering of
the moments and the splitting of the doublet-excitations in Pr, a further
term must be included to explain the c-axis moments on the cubic sites
in Nd, which are induced by the ordered basal-plane moments on the
hexagonal sites. In the heavy rare earths Tb and Er, there is indirect but
weighty evidence that anisotropic interactions are essential for explaining
the excitation spectra. The strong optical-phonon – acoustic-magnon in-
teraction in the c-direction of Tb is of fundamental significance, since it
reveals that the spin–orbit coupling of the conduction electrons results
in a spatially varying deviation between the direction in which their
spins are polarized and that of the ferromagnetic ionic moments. The
spin–orbit coupling may also be important for explaining the possible
occurrence of interactions, such as the example given in (2.1.39), which
reflect the reduced three-fold symmetry of the c-axis in the hcp lattice.
Indications that this kind of coupling is present in Ho have appeared in
the possible detection by Cowley and Bates (1988) of a modulated c-axis
moment in the commensurable helical structures, and the unusual sta-
bility of the Q = π/2c-structure around 96K (Noakes et al. 1990). The
c-axis moments should alternate in sign between each pair of planes in
the spin-slip structures of Fig. 2.5, being zero on the spin-slip planes, so
thatQc = 2π/c−3Q = π/c in the twelve-layered zero-spin-slip structure.

The aforementioned mutual solubility of the rare earth elements
gives unlimited possibilities for fabricating systems with adjustable mag-
netic properties. Dilute alloys of magnetic ions in non-magnetic hosts
such as Y have proved particularly interesting, largely because the crys-
tal fields may be studied in the absence of the exchange interaction and
its possible anisotropy. The crystal-field levels have primarily been deter-
mined by measurements of the magnetic moments, but further neutron-
scattering studies, which are possible with modern experimental tech-
niques even in very dilute systems, would be even more enlightening,
especially in a magnetic field. These systems can also be effectively
investigated by the straightforward means of measuring the electrical
resistivity as a function of temperature and field, and comparing with
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the pure solvent element. As the concentration is increased, magnetic
ordering is observed at correspondingly higher temperatures. Because
of the long range of the indirect exchange interaction, all systems of rare
earth Kramers-ions in Y which have so far been studied order in the c-
direction at sufficiently low temperatures, although there may be some
disorder in the plane (Caudron et al. 1990). It would be interesting to
examine by neutron diffraction even more dilute systems, to clarify the
mechanism by which the moments are aligned. As the concentration
of heavy rare earths in Y is further increased, the alloys change rather
rapidly from crystal-field to exchange-dominated systems. This process,
and especially the transition from crystal-field to spin-wave excitations
(Wakabayashi and Nicklow 1974), deserves detailed examination.

The potentiality for adjusting the interactions to fabricate concen-
trated alloys with novel magnetic properties is restricted only by the
imagination. The Ho-Er system is a good example, in which the rich-
ness of the phase diagrams of the two constituents, and the competing
crystal-field anisotropies, give rise to a great variety of structures, es-
pecially in a magnetic field. The excitations of such binary alloys have
only been investigated to a limited extent. The most systematic studies
have so far been those on Tb alloys, which are well described by the av-
erage crystal or virtual crystal approximations. It would be interesting
to examine a system in which lifetime effects are sufficiently pronounced
to allow a comparison with the predictions of the coherent potential ap-
proximation; Pr alloys may be good candidates in this context. It would
also be informative to investigate the behaviour of light rare earths dis-
solved in the heavy elements, and vice-versa. Preliminary studies have
been made of Er in Pr, and Pr in Tb would be a natural choice for a
complementary system. We have only peripherally discussed compounds
of rare earths with other elements, but they may possess novel and inter-
esting properties. Of particular significance are compounds with mag-
netic transition metals, such as ErFe2 (Clausen et al. 1982) and HoCo2

(Castets et al. 1982), which display a striking interplay between itin-
erant and localized magnetism. As mentioned earlier, Ce compounds
constitute a field of magnetism in themselves. Their properties vary
from highly localized magnetism, often with very anisotropic interac-
tions, through mixed-valent systems with heavily quenched moments,
to non-magnetic heavy-fermion superconductors. They are thus ideally
suited for investigations of the limits and breakdown of the standard
model.

It is a vain ambition for any authors to aspire to write the last word
on any subject; there is always more to say. We have rather attempted
to summarize the present state of knowledge and understanding of rare
earth magnetism, and indicate some directions for future research. It is
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sometimes argued that, since the standard model with suitably chosen
interaction parameters accounts so well for the overwhelming majority
of the magnetic properties, the field is essentially closed and no problems
of fundamental interest remain, apart from the question of determining
the parameters from first principles, and of possible failures of the model.
This statement is however no more or less true or relevant than the as-
sertion that the Schrödinger equation, or perhaps the Dirac equation,
solves all of the basic problems of chemistry. The interesting and fun-
damental physics is to be found in the manner in which the interactions
express themselves under different circumstances. The same model ap-
plied to Pr and Tb gives very different, if equally striking, behaviour. A
sufficiently careful examination of any rare earth system will inevitably
produce surprises, puzzles, and ultimately deeper understanding. In the
last few years, this process has been clearly exemplified by the structures
and excitations of Ho, which were formerly believed to be essentially un-
derstood, and not particularly interesting. We are therefore confident
that, when the time comes to present another review of this subject, it
will contain physical principles and phenomena which are scarcely hinted
at in this book.
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Kornstädt, U., Lässer, R., and Lengeler, B (1980). Phys. Rev. B 21,
1898.

Korringa, J. (1950). Physica 16, 601.

Kubo, R. (1957). J. Phys. Soc. Japan 12, 570.

Kubo, R. (1966). Rep. Prog. Phys. 29, 255.

Lage, E.J.S. and Stinchcombe, R.B. (1977). J. Phys. C 10, 295.

Lang, J.K., Baer, Y., and Cox, P.A. (1981). J. Phys. F 11, 121.

Lantwin, C.J. (1990). Thesis. Department of Theoretical Physics, Uni-
versity of Oxford; and Z. Physik B 79, 47.

Larsen, C.C., Mackintosh, A.R., Bjerrum Møller, H., Legvold, S., and
Beaudry, B.J. (1986). J. Magn. Magn. Mater. 54-57, 1165.

Larsen, C.C., Jensen, J., and Mackintosh, A.R. (1987). Phys. Rev. Lett.
59, 712.

Larsen, C.C., Jensen, J., Mackintosh, A.R., and Beaudry, B.J. (1988).
J. Phys. (Paris) 49, C8-331.

Lawson, A.W. and Tang, T.-Y. (1949). Phys. Rev. 76, 301.

Lea, K.R., Leask, M.J.M., and Wolf, W.P. (1962). J. Phys. Chem. Solids
23, 1381.



REFERENCES 389

Lebech, B. and Rainford, B.D. (1971). J. Phys. (Paris) 32, C1-370.

Lebech, B., McEwen, K.A., and Lindg̊ard, P.-A. (1975). J. Phys. C 8,
1684.

Lebech, B., Rainford, B.D., Brown, P.J., and Wedgwood, F.A. (1979).
J. Magn. Magn. Mater. 14, 298.

Legvold, S. (1961). In Rare Earth Research (ed. E.V. Kleber) p. 142.
Macmillan, New York.

Legvold, S. (1972). In Magnetic Properties of Rare Earth Metals
(ed. R.J. Elliott) p. 335. Plenum Press. London.
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Magnetic structures and excitations
in rare earth metals

Jens Jensen

Niels Bohr Institute, Universitetsparken 5, 2100 Copenhagen, Denmark

Abstract

The recent development within the studies of magnetic structures and
excitations in the rare earth metals is reviewed. The fine resolution ob-
tainable in x-ray synchrotron experiments led to the discovery of a num-
ber of commensurable magnetic structures in Ho and Er which helped
renew interest in these long-period, helically or cycloidally, modulated
structures. Shortly after, the helifan phases in Ho were established and
effects due to trigonal couplings were detected in Er and Ho. The de-
velopment of the technique of molecular-beam epitaxy has allowed the
fabrication of superlattices and alloys of rare earth metals. One of the
important discoveries made possible by the use of this technique is the
isolation of a pentacritical point in the magnetic phase diagram of the
Ho-Er and Ho-Tm alloys. The investigation of the magnetic structures
in the two light rare earth metals Nd and Pr gives rise to a number of
challenging problems, because of the complexity of the different struc-
tures and, in Pr, because of the low value of the Néel temperature (50
mK). The extra excitation branch observed a couple of years ago, in the
paramagnetic phase of the singlet-ground-state system Pr at small wave
vectors, still awaits a full explanation.

A.1 Introduction

The two dominant magnetic couplings in the rare earth metals are the
single-ion anisotropy term due to the crystalline electric field acting on
the magnetic 4f -electrons, and the Ruderman-Kittel-Kasuya-Yoshida
RKKY-exchange interaction by which the localized 4f -moments on dif-
ferent ions are coupled indirectly through the polarization of the con-
duction electrons. To a first approximation, the indirect exchange leads
effectively to a Heisenberg Hamiltonian for the coupling between the
4f -moments, when assuming the conduction electrons to behave as free
electrons. The conduction electrons at the Fermi surfaces of the rare
earth metals are predominantly d-electron-like, and orbital impacts on
the exchange coupling introduce anisotropic two-ion interactions in the
magnetic Hamiltonian. It is difficult to separate two-ion anisotropy ef-
fects from those due to the single-ion crystal-field terms. However, the
indications are that the coupling between the different moments in the
rare earth metals involves a great variety of anisotropic two-ion interac-
tions in addition to the isotropic Heisenberg interaction [1,2].
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The heavy rare earth metals are all hexagonal close-packed, and the
magnetically ordered phases of the 4f -moments found in these metals

are either ferromagnetic or the moments are antiferromagnetically mod-
ulated along the c axis. In the latter structures, the individual hexagonal
layers are uniformly magnetized in a direction which changes from one

layer to the next. The basic arrangements of the moments in these sys-
tems were determined by neutron-diffraction experiments by Koehler

and his colleagues during the 1960s [3].
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Fig. A.1. The exchange coupling [J (q)−J (0)]/(g−1)2, with q parallel
to the c axis, determined experimentally in the magnetic heavy rare earth

metals (after Ref. [6])

The first inelastic neutron-scattering experiment was carried out on

ferromagnetic terbium in 1966 [4]. During the next two decades, similar
measurements of the spin-wave energies in the other heavy rare earth
metals were performed [5,1], and one main result is shown in Fig. A.1.

The exchange interaction, J (q), is proportional to the magnetic suscep-
tibility of the conduction electrons, and should according to the simple

RKKY theory scale as (g − 1)2. The metallic properties of the heavy
rare earth metals are very similar; nevertheless, the results shown in Fig.
A.1 indicate a pronounced variation of the exchange coupling in the c
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direction with atomic number. The magnitude of the peak, which stabi-
lizes the observed periodic magnetic structures, increases monotonically
through the series. Here we shall be concerned mostly with the three
heavy rare earths, Ho, Er, and Tm, in which a rich variety of different
antiferromagnetically ordered phases have been detected.

The two “normal” light rare earths, Pr and Nd, are double hexago-
nal close-packed (dhcp) with an ABAC stacking sequence of the hexago-
nal layers, which has two non-equivalent sites. The nearest surroundings
of the A sites is close to be fcc like, whereas the local surroundings of
the B and C sites has hcp symmetry. The difference in lattice structure
implies that the RKKY coupling in Pr and Nd does not have its maxi-
mum in the c direction, but at a wave vector lying in the basal plane at
about 0.13 a∗. The (g−1)2-scaling of the RKKY coupling means that it
is weak in Pr and Nd in comparison to the crystal-field splittings. Due
to the Kramers degeneracy of the ground state the moments in Nd order
at about 20 K, whereas Pr is a singlet-ground-state system in which the
RKKY coupling is smaller than the threshold value required for induc-
ing a magnetic ordering. This system eventually orders at about 50 mK
because of the hyperfine interaction to the nuclear spins.

A.2 Long-period magnetic structures in the heavy
rare earth elements

Tb, Dy, Ho are easy-planar magnets in which the moments order in
a helical structure at TN . At lower temperatures, Tb and Dy become
basal-plane ferromagnets, whereas the ordered moments in Ho change
into a cone structure at low temperatures, with a small ferromagnetic
component along the c axis superimposed on the helical arrangement in
the basal plane. In Er and Tm the c axis is the easy axis, which im-
plies that they order in a longitudinally polarized structure where, just
below TN , the c component of the moments is sinusoidally modulated.
In Tm there is a lock-in transition to a seven-layered structure and, in
the low temperature limit, the c component saturates, being positive for
four layers followed by three layers in which it is negative. The ten-
dency towards a minimization of the variation of the magnitudes of the
moments, which becomes more pronounced the lower the temperature,
results in the case of Er in a phase in which one of the basal-plane com-
ponents is non-zero, leading to an elliptic cycloidal structure. At the
lowest temperatures, the cycloid is replaced by a c-axis cone structure.

The observation of long-period structures commensurable with the
lattice, which was made in the high-resolution synchrotron x-ray experi-
ments on Ho [7] and Er [8] by Gibbs and co-workers, has renewed interest
in the magnetic ordering in these systems. In the low-temperature limit
of Ho, the ordering wave vector locks in to 1

6c
∗ [9], corresponding to
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a period of twelve hexagonal layers. The hexagonal anisotropy in Ho
causes the helical component of the moments to bunch around the easy
b axes. In the twelve-layered structure, the moments of the different
layers bunch pair wise about successive easy directions making angles of
about ±5.8◦ with the nearest b axis. As the temperature is increased,
the ordering wave vector becomes longer and commensurable structures
with different periods are derived from the twelve-layered structure by
replacing one or more of the pairs in a period with a single layer where
the basal-plane moment is along the easy axis, forming the so-called
“spin-slip” structures [7]. The formation of the spin-slip structures was
confirmed by high-resolution neutron diffraction experiments performed
on large crystals on a triple-axis spectrometer, allowing the observation
of peaks of up to 4 orders of magnitude smaller than the main ones [10].

In the presence of an external field new magnetic structures appear
in Ho as detected in resistivity measurements [11-13], in x-ray experi-
ments [14], and in neutron diffraction experiments [9,15,16]. As the field
applied perpendicular to the c axis of the helical structures is increased,
the helix first distorts, giving rise to a moment along the field, and then
undergoes a first order transition to a fan structure, in which the mo-
ments oscillate around the field direction. A further increase in the field
reduces the opening angle of the fan which, in the absence of hexag-
onal anisotropy, goes continuously to zero. The hexagonal anisotropy
causes the transition to the ferromagnet to be of first order or, if it large
enough, eliminates the fan phase. A detail mean-field analysis of the
transition between the (distorted) helix and the fan [17] has shown that
long period combinations of the two structures, “the helifans”, may ap-
pear as intermediate phases, in accordance with experimental findings
in the case of Ho. Experiments on Dy do not show any indications of a
helifan phase [18] consistent with mean-field analyzes which in this case
predicts the helifan phases to be unstable. The magnetic structures in
Er with a field applied in the basal plane have been studied by Jehan et
al. [19], who followed the transformation of the cycloidal structure into
different fan-like structures.

The symmetry of the hexagonal close-packed lattice of the heavy
rare earth metals allows the presence of magnetic two-ion interactions
with only three-fold symmetry around the c axis [1]. These so-called
trigonal terms manifest themselves only under certain conditions, for
instance they cancel out in the ferromagnetic case. To first order their
contribution to the free energy is

∆F ∝
∑
p

(−1)pJ‖J
3
⊥ cos(3φp). (A.1)

where J‖ and J⊥ are the components of the magnetic moments parallel
and perpendicular to the c axis, respectively, and φp is the angle which
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the basal-plane moments in the pth layer make with the a axis. Its
change of sign from one layer to the next implies that the double-zone
representation in the c direction ceases to be valid if this term is impor-
tant. The first example of a trigonal coupling found in the heavy rare
earths was the strong coupling between acoustic magnons and optical
phonons propagating along the c direction in the ferromagnetic phase of
Tb [2,20].

The high-resolution synchrotron x-ray studies of the intermediate
cycloidal phase of Er by Gibbs et al. [8] indicated the presence of a
number of long-period commensurable structures, which they explained
to be regular arrangements of 3 or 4 layers of moments with an alter-
nating positive or negative component along the c axis. The 7 layered
or (43)-structure observed close to 50 K, thus comprises 4 hexagonal
planes of moments with a positive c-component followed by 3 planes
of moments with a negative c-component. As the temperature is low-
ered more and more triplets are replaced by quartets, until the system
just above TC only consists of quartets, which is the (44)-structure with
q = 1

4c
∗. Cowley and Jensen [21] were able to determine the inten-

sities of most of the harmonics in the commensurable structures of Er.
The neutron-diffraction results were compared with the intensities of the
corresponding structures predicted by a mean-field model. This compar-
ison confirmed that the basic feature of the commensurable structures
is the one proposed by Gibbs et al. Unexpectedly, the neutron experi-
ments also showed the presence of scattering peaks along the c axis at
±(2n+ 1)q +mc∗ for odd integer values of m. These indicate that the
magnetic structures depend on the two orientations of the hexagonal
layers in the hcp lattice, implying that the structures are distorted by
trigonal couplings. The resulting structures are “wobbling cycloids”, in
which there is a b-axis moment perpendicular to the cycloidal a–c plane,
oscillating with a period different from that of the basic structure. This
means that, for instance, the (43)-structure should rather be denoted
as the 2(43)-structure as it only repeats itself after each 14 layers. In
the case of Ho, the trigonal couplings have a weak, second order, effect
on the helical structure. The application of a field in the c direction
enhances the structural distortions due to the possible trigonal interac-
tions and by analyzing various experiments, Simpsons et al. [22] were
able to establish that these couplings are also of significance in Ho.

The tendency for the period of the magnetic ordered structures in
the rare earths to lock into values which are commensurable with the
lattice, is determined by a complex interplay between the exchange cou-
pling and the magnetic anisotropy terms. The commensurable spin-slip
structures detected in Ho at low temperatures by Gibbs et al. [7] are
explained by the large basal-plane six-fold anisotropy. This hexagonal-
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anisotropy energy and thus the bunching effect rapidly declines with the
magnetization M , approximately like M21, and the commensurable ef-
fects deriving from this anisotropy term should decrease when applying
a field along the c axis. Nevertheless, neutron diffraction measurements
indicate a strong increase with field of the lock-in of the 8 layered spin-
slip structure at about 100 K [23] and of the 10 layered structure at
about 40 K [24]. At 100 K the hexagonal anisotropy energy is so small
that it only gives rise to a bunching of the order of a tenth of a degree
and the spin-slip model of Gibbs et al. no longer applies. In comparison,
the trigonal anisotropy energy decreases with a much lower rate with the
magnetization (likeM7) and increases linearly with a c-axis field, as long
as the c-axis moment is small, see Eq. (A.1). A mean-field analysis of the
stability of the different commensurable structures in Ho has been car-
ried out [25]. The model calculations show that the trigonal coupling is
capable of explaining both observations. It was predicted that the width
in temperature of the lock-in of the 8 layered structure should increase
strongly, if the magnetic field is applied in a direction making a non-zero
angle θ with the c axis, being proportional to

√
θ at small angles. As

shown in Fig. A.2 this prediction has been confirmed by Tindall et al.
[26]. The experimental lock-in is not as strong as predicted in the middle
of the interval (it is weaker by a factor of 0.6 in the helix). However,
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Fig. A.2. The experimental results (solid circles) of Tindall et al.

[26] show the lock-in temperature width of the 8 layered structure versus
the angle θ of the applied field of 26 kOe in the c–b plane of Ho. The
lines show the theoretical results obtained from the mean-field model
calculations [25] with (solid lines) and without (dotted lines) the trigonal

coupling.
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the over-all behaviour is very similar to that predicted when including
the trigonal coupling determined from the low-temperature experiments
[22], and contrast strongly with the behaviour expected when this cou-
pling is neglected. Incidentally, the lock-in effect calculated in the case
where the trigonal coupling is neglected, is due to the Zeeman energy.

The period of some of the commensurable structures observed in
Ho and Er are remarkably long, as for instance the 2(444443) structure
in Er with a repeat length of 46 hexagonal layers, and it is clear from
the experiments that some disordering and hysteresis effects may occur
noticeably at low temperatures. The neutron-diffraction experiment of
Cowley et al. [27] shows that Ho may contain several domains with
different spin-slip structures below 40 K. The regularity in the spacing
of the spin-slip layers in the low-temperature spin-slip structures in Ho
may be distorted. The x-ray diffraction measurements by Helgesen et
al. [28] indicate that this is the case. They have observed a reduction
of the longitudinal correlation length between 40 and 20 K by a factor
of three, a reduction which is partly removed, when the spin-slip layers
disappear at the lock-in transition to q = 1

6c
∗ at about 20 K. In the

alloy Ho0.9Er0.1 the 7
36c

∗ structure is stable at the lowest temperatures,
and Rønnow [29] has observed that the widths of the neutron diffraction
peaks in this phase are much larger for the higher harmonics than for
the first one. The 7

36c
∗ spin-slip structure consists of alternating two

and three pairs of layers between the spin-slip planes, (2212221), and
Rønnow has found that a structure in which the succession of the two
sequences 221 and 2221 is completely random, predicts a diffraction
spectrum close to the observed one.

A.3 Magnetic excitations in the heavy rare earth
metals

The magnetic excitations in the heavy rare earths are in most cases well-
defined spin waves at low temperatures [1]. Although Tm belongs to the
heavy elements of the rare earth series the RKKY-exchange interaction,
being proportional to (g − 1)2, is weak compared to the crystal-field
anisotropy energies. This implies that crystal-field excitations are im-
portant in Tm at elevated temperatures, both below and above TN . In
the low-temperature spin-wave regime the weakness of the exchange cou-
pling implies that the bandwidth of the spin-wave spectrum, of the order
of 2 meV, is small compared to the energy gap of approx. 8.5 meV [6,30].
One consequence of this is that the possible incommensurable broaden-
ing of the excitations occurring in the quasi-periodic regime (above 32
K), discussed for example by Lovesey [31], is of no importance in Tm.
Using the infinite-continued-fraction formulation for the response func-
tion [1] the expansion rapidly converges in the case of Tm, because



412 APPENDIX

J (q) is weak, and the response function becomes largely independent
of whether the ordering is commensurable or not.

In Ref. [6] a complete RPA-theory for the magnetic excitations in
Tm is developed. This theory accounts for the periodic magnetic order-
ing of the moments and for the interaction of the magnetic excitations
with the phonons. Since the magnetic periodicity is seven times that of
the lattice along the c axis, the spin waves are split into seven closely
spaced energy bands. Because of the weak dispersion it was not possi-
ble to resolve experimentally the seven branches, instead, the calculated
scattering function as a function of wave vector was compared directly
with the experimental inelastic neutron-cross-section. A similar investi-
gation of Er in its linearly polarized phase has been conducted by Nick-
low and Wakabayashi [32]. The exchange coupling is relatively larger in
Er than in Tm in comparison with the crystal-field splittings. However,
the modifications of the spin waves in Er, due to the population of the
different crystal-field levels, are important and dominate the possible
effects caused by the quasi-periodic modulation of the magnitude of the
moments.

The modulated (43)-structure in Tm is changed into a ferromag-
netic structure when applying a c-axis field of more than 28 kOe. The
model developed in Ref. [6] predicts this field to be about 42 kOe. Mea-
surements [33] have later shown that there is a large change of the c-axis
lattice parameter of about 0.7% at the transition, and the extra magne-
toelastic energy gained in the ferromagnetic phase is able to explain the
discrepancy. The spin-wave energies in the ferromagnetic phase of Tm
have been measured [34]. The comparison with the excitations seen in
the zero-field phase shows that both the crystal-field energy gap and the
exchange coupling in the c direction is rather strongly modified at the
transition. These changes must be the consequences of the disappear-
ance of the superzone energy gaps and of the large shift in the c-axis
lattice parameter.

The transport properties and among them the electrical resistivity
of the rare earth metals were studied in many details during the 1960s,
see for instance the review by Legvold [35]. The RKKY-coupling leads
to a scattering of the electrons against the magnetic excitations. In addi-
tion, the effective number of conducting electrons is affected by the mag-
netic ordering. Particularly in the antiferromagnets, where the periodic-
ity of the magnetic system introduces new zone boundaries with energy
gaps in the conduction bands at the intersections. This so-called “su-
perzone” effect was proposed by Mackintosh [36] and the theory worked
out in detail by Elliott and Wedgwood [37]. The results shown in Fig.
A.3 are from a recent study of the electrical resistivity in Tm [38]. They
give a clear illustration of the superzone effect by comparing the c-axis
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Fig. A.3. The c-axis resistivity in Tm at zero field and in a field of 4 T
applied along the c axis. The solid lines show the calculated results, and
the dashed line indicates the quadratic rather than linear dependence on

magnetization of ρ(B,T ) just below TN (after Ref. [38]).

resistivity obtained in the modulated, zero-field, phase with the one ob-
tained in the ferromagnet. The superzone effect vanishes in the latter
case and the c-axis resistivity in the low temperature limit is increased
by a factor of 3.7 by the superzones in the zero-field phase correspond-
ing to a reduction of the projection of the Fermi-surface on the plane
perpendicular to the c-axis by 73%. The theoretical curves in Fig. 3
show that the resistance in Tm behaves in a way which is consistent
with the RPA model developed by McEwen et al. [6]. A similar work
on Er is in progress. According to model calculations [1] the cone phase
in Er below 20 K is suppressed, when applying a hydrostatic pressure of
about 2.5 kbar. Neutron-diffraction measurements at 11.5 and 14 kbar
[39] show that the cycloid is indeed stable at 4 K at these values of the
pressure. The resistivity of Er has been measured as a function of hy-
drostatic pressure [40]. The change of the magnetic phase from the cone
to the cycloidal structure is observed to occur between 1 and 3 kbar. It
is found that the superzone effects are a factor of 2–3 stronger in the
cycloidal phase than in the cone. The combination of the calculated scat-
tering rate with the Elliott-Wedgwood theory for the superzone effects
accounts for most of the observations made in Er; except that the c-axis



414 APPENDIX

resistivity in the intermediate phase at ambient pressure is somewhat
smaller than predicted.

A.4 Films and superlattices of rare earth metals

The technique of molecular beam epitaxy (MBE) was utilized for
producing the first superlattices of rare earth materials, Dy/Y [41] and
Gd/Y [42], in the middle of the 1980s. Since then, a large number
of different rare earth superlattices has been studied using x-ray and
neutron-scattering techniques. Recent reviews are given by Majkzak
[43] and by Cowley [44]. One of the central concerns in these systems
is whether the magnetic ordering of one of the constituents is coherent
over many bilayers or not. Some rare earth superlattices have coher-
ent magnetic structures even when the magnetic layers are separated
by non-magnetic layers of more than 40 atomic planes, as for instance
Dy/Y, Ho/Y, and Ho/Lu. In the Pr/Ho or Nd/Y superlattices, or in
the Ho/Sc case the magnetic coherence length is of the same size as the
thickness of the magnetic layers. In the latter systems the lattice mis-
match is important, and the same may be the case in films of a rare earth
metals, where the mismatch may occur between the rare earth and the
substrate on which the film is grown, see for instance the discussion of
the Er thin films in Ref. [45,1]. The magnetoelastic effects are important
for the transition to the cone phase in Er, or for the transition to the
ferromagnet in Dy, but, in general, the magnetoelastic interactions are
weak in comparison with the other magnetic couplings, and the films
behave in most respect like the corresponding bulk materials.

The MBE-technique may be used for producing well-defined films
of alloys, which has been utilized in an investigation of the HoxEr1−x

[46] and HoxTm1−x [47] alloy systems. Ho is an easy planar system
whereas Tm and Er are both easy c-axis systems. This implies a penta-
critical point in the both phase diagrams where the different anisotropy
energies compensate each other. At this point, the plane in which the
ordered moments are lying may rotate freely and five distinctly different
phases are coexisting. The five phases are the paramagnetic, the lon-
gitudinally polarized, the cycloidal, the tilted cycloidal/helical, and the
helical phase.

The experimental results obtained from neutron diffraction mea-
surements are shown in Fig. A.4. In the case of the Ho-Er alloy system
the results are supplemented with results obtained from bulk measure-
ments at x = 0.5, 0.9 and 1.0 [29]. The topology of the phase diagrams
was established from a Landau expansion by Cowley et al. [46]. Here, the
theoretical lines are determined using the general mean-field models of
the pure systems, Ho, Er, and Tm, known from previous investigations.
The results for the different alloys are obtained using the virtual crystal
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lines in the HoxEr1−x case indicate that these transitions are predicted to

be of first order.

approximation, and the RKKY coupling, scaled with the appropriated
(g−1) factors, is considered to be determined by an averaged conduction-
electron gas. This procedure leaves no free parameters for determining
the phase lines for x different from 0 or 1. In the case of Er, the model
is not developed so to predict accurately the first-order transition to the
cone [1], and the dashed line indicating this transition in the HoxEr1−x

phase diagram is not the result of the calculations but a line through
the points. The measurements shown in Fig. A.4 demonstrate for the
first time the occurrence of the tilted helix, most clearly in the case of
HoxTm1−x, which was advanced in 1972 by Sherrington [48] in relation
to the phase diagram of pure Ho. The transition between the cycloid and
the tilted cycloid, at which the plane of the cycloidal structures starts
to tilt away from the c axis, is not isolated in the present experiments.
A detection of this transition by neutron diffraction would require a
preparation of the sample so to create a preferred orientation of the a–c
cycloidal planes.



416 APPENDIX

A.5 Structures and excitations in the light rare
earths Pr and Nd

The magnetic structures in Nd have been studied extensively for more
than 30 years [49-58]. The hexagonal B and C sites and the cubic A
sites in the dhcp structure have different magnetic properties. The Néel
temperature is 19.9 K, and below this temperature the moments on the
hexagonal sites are ordered in a longitudinally polarized single-q struc-
ture with q ≃ 0.14 a∗ [50]. The moments on the B and the C sublattice
are antiparallel, and a small moment in predominantly the c direction is
induced on the cubic sites. The transition is weakly discontinuous [51],
and only about 0.8 K below TN there is a new first-order transition to a
structure, in which two of the three different single-q domains combines
into a double-q structure [52]. At 8.3 K there is a transition to a triple-q
phase, in which a single-q ordering of the moments on the cubic sites
at a different q ≃ 0.18 a∗, is superimposed on the double-q structure
of the hexagonal moments. Finally, the low temperature phase, below
6.3 K, is a complex quadruple-q structure [53] with two ordering wave
vectors associated with each of the two sublattices. Thermal expansion
measurements [54] indicate one more transition at 5.8 K, and it is sug-
gested that the q-vectors of the cubic moments may start to tilt out of
the basal plane below this temperature, but the anomaly may also be
the result of a lock-in transition to a commensurable structure.

The behaviour of the transition between the single- and double-q
structure is consistent with a mean-field analysis [55]. In the double-q
phase, the moments corresponding to each of the two q-vectors rotate
progressively towards each other as the magnetization increases. A nu-
merical estimate [1], which predicts the transition to occur at about 0.9
K below TN , indicates that the angle between the moments and their
nearest b axis should be about 12◦ at maximum (8 K), corresponding
to an angle of 96◦ between the two directions of the moments. The ro-
tation of the moments is estimated to be accompanied by a rotation of
the q-vectors by an angle that is smaller by a factor of about three, in
accordance with the observations. It is worth noting that the reason for
the rotation of the moments, and for the stability of the double-q struc-
ture in comparison with the single-q structure, is the change in entropy
[1,55]. The small value of the magnetization implies that the sixth-order
hexagonal anisotropy is of no importance close to the transition, which
is in contradiction with the proposal made in Ref. [56].

Lebech et al. [57] have examined whether the different multiple-
q structures in Nd may be commensurable with the lattice. Their
neutron-diffraction experiments show clear lock-in effects in the low-
temperature phases below 8.3 K. In the high temperature phases they
suggest the presence of a series of two-dimensional higher-order com-
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mensurable structures, where the magnetic unit cell is rotated a certain
angle around the c axis relatively to the crystallographic unit cell, so
that commensurable structures are formed although each of the two
basal-plane components of q appears to be incommensurable. The high-
resolution measurements of the ordering wave vector made by magnetic
x-ray diffraction [58] indicate a smooth variation of q between 11.5 K and
TN . The absence of lock-in effects in this experiment may be the result
of the close spacing of the large number of higher-order commensurable
structures. It does not necessarily indicate that the lock-in energies of
the epitaxial structures proposed by Lebech et al. are negligible.

Pr have the same dhcp lattice structure as Nd, and the magnetic
two-ion interactions seem to be very similar in the two metals. The
ground state of both the cubic and the hexagonal ions in Pr is a singlet,
and the maximum value of the exchange coupling is about 92% of that
required for inducing a magnetic ordered state on the hexagonal sites.
The coupling is close to the threshold value and small modifications,
like a uniaxial pressure of about 0.7 kbar or the introduction of a small
percentage of Nd ions, may change the situation [1]. Without external
disturbances, magnetic ordering is produced via the hyperfine interac-
tion between the 4f -electrons and the nuclear spins, and heat capacity
measurements [59] indicate the Néel temperature to be 42 mK. As in Nd,
the moments on the hexagonal ions in Pr order in a longitudinally po-
larized structure with q = 0.13 a∗, possibly accompanied by an induced
moment along the c axis on the cubic ions. It is not yet known, whether
the structure just below TN is a single- or triple-q structure, or whether,
like in Nd, there is a transition between a single- and double-q structure
at a lower temperature. The ordered phase has recently been studied by
neutron diffraction [60,61] well below TN . The value of the first harmonic
of the moments is determined to be 0.54 µB at 10 mK, when assuming
an equal population of domains, and as shown in Fig. A.5 it was found
that the antiferromagnetic phase is quenched, when applying a field of
about 4.2 kOe along an a direction. These numbers may be compared
with the results derived from the MF/RPA-model presented in Ref. [1],
which are shown by the solid line in Fig. A.5. The calculated moment is
0.63 µB and the critical field is 5.4 kOe at 10 mK. Both values are larger
than the experimental ones, although the exchange coupling is adjusted
so that the energy gap in the excitation spectrum at the ordering wave
vector has the right value, in which case the model correctly predicts
TN = 43 mK (using A = 4.394 meV). The discrepancies indicate that
the single-site fluctuations [1] may be important in the determination of
the field dependence of the ordered moment.

Most of the magnetic properties of Pr are well understood in terms
of the MF/RPA-model, if including the leading-order corrections due
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conditions. The experimental results indicate that domains are formed
in the field experiment below 2 kOe. The solid line is the variation
predicted by the MF/RPA model for Pr [1], and the dashed line indicates

the experimental variation.

to the single-site fluctuations in the description of, for instance, the
linewidth of the magnetic excitations [1,62]. However, there are two
phenomena in Pr which the “standard model” cannot easily explain.
One is the broad quasielastic or central peak which appears at about
13 K as a ring in reciprocal space around Γ, which is perpendicular to
the c axis and has a radius |q| ≃ 0.1 a∗, see the discussion in Ref. [1].
The other phenomenon is the two extra excitations observed a couple of
years ago, hybridizing at small wave vectors with the normal magnetic
excitations which propagate on the hexagonal and on the cubic sites in
the paramagnetic phase [63]. At 4.2 K the linewidth of the extra exci-
tations shows a sharp drop when applying a field of about 15 kOe along
the a axis. The quasielastic peak disappears [61] at this field (at 1.8 K)
suggesting a connection between the two phenomena. The coincidence
might be accidental, though it is proposed that both phenomena may
involve a weak hybridization of the 4f electrons with the conduction
electrons. Another proposal made recently [64] is that the quasielastic
peak is due to transverse fluctuations locked to the critical longitudinal
fluctuations in a kind of a spin-slip configuration. However, this theory
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involves a number of postulates in the analysis of the dynamics, and it is
inconsistent with the dominance of the quasielastic peak above 4 K. In
addition, the excitation spectrum indicates that the transverse fluctua-
tions are centered around |q| ≃ 0.07 a∗, not 0.1 a∗, and should be much
weaker than the longitudinal ones in the critical regime. The energy
difference between, for instance, the dhcp and the Sm-structure is small,
and stacking faults in the ABAC-sequence of hexagonal layers along the
c axis may occur relatively frequently. In case two layers, B and C, with
local hcp symmetry happen to be neighbours, the effective J (q) within
the two layers is probably increased. An increase by 23% would cre-
ate a double-layered magnetic system with an estimated MF transition
temperature of 14 K, a zero-temperature moment of 1.9 µB/ion, and a
critical a-axis field of 14 kOe at 1.8 K. These numbers indicate that a
distribution of hcp double-layers with a density of about one per 1000
layers, is a promising candidate for explaining the quasielastic peak in
Pr. Although new normal modes would be associated with such a partial
ordering, their intensities are probably all too weak to be able to explain
the extra modes observed in Pr.

A.6 Conclusions

The rare earth metals display a large number of fascinating and exotic
magnetic ordered structures, helifans, spin-slip and other commensu-
rable structures, multiple-q structures, and distorted structures induced
by trigonal couplings. The RKKY-interaction is of long range and ex-
cluding the critical properties, the MF- and RPA-theories reasonably
account for many of the properties of these systems. The parameters
in the magnetic Hamiltonian are adjustable. It would be desirable to
calculate these parameters from first principle, and some progress has
been made recently [65]. Many aspects of the band properties of the con-
duction electrons, in the regime where the 4f -electrons may be treated
as localized core electrons, are well understood, see e.g. Ref. [1]. This
may be utilized for calculating the change of the projected Fermi-surface
areas due to the magnetic modulated moments in Tm and Er, as to be
compared with the large reductions indicated by the resistivity mea-
surements. A first-principle calculation of the RKKY interaction is a
demanding task, however, a large amount of experimental data is avail-
able, and it would be valuable to get more theoretical insight into the
behaviour of the RKKY interaction both in the homogeneous bulk sys-
tems and in the inhomogeneous superlattices.
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