Klassisk kaos

Deterministiske bevægelsesligninger kan under visse omstændigheder udvise løsninger som er "uforudsigelige", dvs. løsninger der opfører sig *kaotisk*:

Et system er integrabelt, hvis bevægelsesligningerne kan løses eksakt ("den harmoniske oscillator"). Ikke-integrable ligninger kan løses tilnærmelsesvis vha. "perturbationsregning", hvis de **ikke-lineære** afvigelser fra et eksakt tilfælde er "små".

Eksempler på kaotiske systemer: Dryppende vandhane.– Tvungen svigning af pendul med gnidning: $\ddot{\theta} + \nu \dot{\theta} + \sin \theta = g \sin(\omega t)$

Periodisk bevægelse

Et Hamiltonsk system (ingen dissipation, H = T + V = E), som er bundet til et begrænset område af det 2n dimensionale faserum kan (til 1. tilnærmelse) beskrives som et system af n ukoblede harmoniske oscillatorer (Taylor-rækkeudvikling til 2. orden i "små svingninger"). Evt. (lineære) koblinger kan transformeres væk ved et passende valg af koordinater ("egenvektorer").

Ved en skala-transformation $(q_i, p_i) \mapsto (q_i(\frac{1}{2}m_i\omega_i^2)^{-1/2}, p_i(2m_i)^{1/2})$ bliver banen for den *i*te harmoniske oscillator en cirkel, $q_i = \sqrt{E_i}\sin(\omega_i t + \alpha_i), \quad p_i = \sqrt{E_i}\cos(\omega_i t + \alpha_i).$ Det *i*te bidrag til faserumsvolumnet er πE_i , eller virkningsintegralet $J_i \equiv \oint p_i dq_i = \pi E_i.$

 (q_1,q_2) i tilfælden
e $\omega_1/\omega_2=6$ og 6.0633. Figuren i første tilfælde er et eksempel på en
Lissajous figur.

Eksempel med n=2: Banen er bundet til en 2-dimensional (E_1,E_2) torus-overflade i det 4-dimensionale faserum. Figuren til venstre viser tilfældet $E_1>E_2,\,\omega_2>\omega_1.$

Hvis de to frekvenser er **kommensurable**, dvs. at forholdet ω_1/ω_2 er et rationalt tal r/s, gentages banen periodisk, $T = 2\pi r/\omega_1 = 2\pi s/\omega_2$, hvor r og s er hele tal uden fælles faktorer.

Er frekvensforholdet irrationalt fås en "kvasiperiodisk" bane, dvs. banen vil på senere tidspunkter komme vilkårligt tæt på startpunktet.

Perturbationer og KAM-teoremet

Hamiltonfunktionen er ikke-integrabel: $H = H_0 + \Delta H$, hvor H_0 er integrabel. Benyt Hamilton-Jacobi teorien til at transformere til koordinater (\mathbf{Q}, \mathbf{P}) , hvor $H_0 \mapsto K_0 = 0$ og $\Delta H \mapsto \Delta K(\mathbf{Q}, \mathbf{P})$. Antag $\mathbf{Q}(t) = \mathbf{Q}(0) + \Delta \mathbf{Q}(t)$ og tilsvarende for $\mathbf{P}(t)$ og løs bevægelsesligninger til 1. orden i de "små" tidsafhængige korrektioner (1. ordens perturbationsregning). Processen kan evt. gentages eller man kan løse bevægelseligningerne til højere orden, hvis man ønsker at forbedre løsningen.

Poincaré analyserede tre-legeme problemet. Det er ikke integrabelt og kan udvise kaotisk opførsel. På trods af dette kan et ikke integrabelt system, som f.eks. vores planet-system, have stabile, regulære bevægelser. Betingelserne for at dette er tilfældet blev opstillet af A. Kolmogorov, V.I. Arnold og J. Moser, i det såkaldte KAM teorem:

a) Perturbationen ΔH skal være lille.

b) Systemets egenfrekvenser ω_i skal være inkommensurable.

Betingelserne er opfyldt for Jorden men ikke for asteroiderne i asteroidebæltet mellem Saturn og Jupiter. At betingelse b) er vigtig fremgår af at der er ingen asteroider i områder, hvor omløbstiden resonerer med Jupiters omløbstid, dvs. hvor ω (asteroide) er kommensurabel med ω (Jupiter), de såkaldte *Kirkwood-gab*.

Minimumsbetingelse for kaos: Ulineære første ordens differentialligninger med tre uafhængige variable.

Bemærk at en anden ordens differentialligning i en uafhængig variabel kan altid omskrives til to første ordens differentialligninger med to uafhængige variable (sammenlign med Lagrange og Hamiltonligningerne).

Attractors

Hvis bevægelsesligningerne indeholde dissipative led vil banerne i faserummet bevæger sig hen mod en "attractor", som kan være et punkt, "fix-punkt", eller en d_A -dimensional overflade, "limit cycle", i faserummet. Et fix-punkt kan betragtes som en limit cycle med dimensionen $d_A = 0$.

x

1) Dæmpet pendulsvingning: $\ddot{\theta} + \nu \dot{\theta} + \sin \theta = 0$ Eksempel $\theta(0) = 1$, $\dot{\theta}(0) = 0$, $\nu = 0.1$ 2) Van der Pol: $m\ddot{x} - \epsilon(1 - x^2)\dot{x} + x = 0$. For små $\epsilon < 0.1$ er limit cycle en cirkel med radius 2 (ikke 1 som antydet i lærebogen). For store ϵ deformeres cirklen.

3) "Strange attractors" er attractors med en ikke-heltallig *fraktal* dimension.Et eksempel er "Lorenz strange attractor".

$$\begin{split} \dot{x} &= \sigma(y-x) \\ \dot{y} &= x(r-z) - y \\ \dot{z} &= y - bz \end{split}$$
 Ex.: $\sigma &= 10 \\ r &= 28 \\ b &= 8/3 \end{aligned}$ Fractal dimension: $d_A \simeq 2.06$

Poincaré afbildning

Poincaré afbildning: Skæringspunkterne mellem en banekurve og et plan i faserummet (f.eks. $x-p_x$ planet). For en periodisk bevægelse vil det blive en lukket kurve. Eksemplet nedenfor (bogen) viser en planetbane med en periodisk præcession (pga. påvirkning fra andre planeter).

Ellipsebaner i konfigurationsrummet.

Poincaré af
bildning: Skæringspunkter mellem banekurven i faserummet og
 $x\!-\!p_x$ planet.

Bifurkation (periodefordobling)

Tvungen svigning af pendul med gnidning: $\ddot{\theta} + \nu \dot{\theta} + \sin \theta = g \sin(\omega t)$

Opfylder minimumsbetingelserne for kaos:

3 uafhængige første-ordens variable θ , $\dot{\theta}$, $\phi = \omega t$ og ligningen er ulineær pga. sin θ . Eksempel: $\nu = 0.5$, $\omega = 1$ (resonans), $\theta(0) = 0$, $\dot{\theta}(0) = 1.5$

Bifurkation (ii) – Den logistiske ligning $x_{n+1} = a(1-x_n)x_n, \quad 0 \le x \le 1$

$$\begin{split} \text{Fix-punkt: } x_{n+1} &= x_n = x_\infty \quad \Rightarrow \quad x_\infty = a(1-x_\infty)x_\infty \quad \Rightarrow \quad x_\infty = \frac{a-1}{a}, \qquad a \geq 1 \\ \text{Stabilitet:} \\ x_n &= \frac{a-1}{a} + \delta \Rightarrow x_{n+1} = \frac{a-1}{a} + (2-a)\delta + \mathcal{O}(\delta^2) \Rightarrow |2-a| < 1 \quad \text{eller} \quad 1 < a < 3 \\ \underline{a > 3} : \\ a &= 3.2: \quad (\text{for } n \gg 1): \qquad \mathbf{x}_n = 0.513045, \quad x_{n+1} = 0.799445 \quad (x_\infty = 0.6875) \\ a &= 3.5: \quad x_n = 0.5009, \quad x_{n+1} = 0.8750 \quad x_{n+2} = 0.3828, \quad x_{n+3} = 0.8269 \\ \text{Feigenbaum punkt (kritiske værdi for kaotisk løsning): } a_\infty = 3.5699456 \dots \end{split}$$

3

Bifurkation (iii) Feigenbaum træ

Universalitet: "Vejen til kaos" Bifurkationspunkter: (a_b, x_b)

$$\delta = \lim_{b \to \infty} \frac{a_b - a_{b-1}}{a_{b+1} - a_b} = 4.6692016...$$
$$\alpha = \lim_{b \to \infty} \frac{x_b - x_{b-1}}{x_{b+1} - x_b} = 2.50290787...$$

Feigenbaumtræet udviser en fraktal struktur, dvs. selv-ligedannethed eller *Selvsimilaritet*.

Fraktaler og dimensionalitet

Målestok med længden a:

(i) Et liniestykke (d = 1) med længden L opdeles i $N(a) = \frac{L}{a}$ bokse. (ii) Et kvadrat (d = 2) med sidelængderne L opdeles i $N(a) = \left(\frac{L}{a}\right)^2$ bokse. osv, eller generelt $N(a) = \left(\frac{L}{a}\right)^d \Rightarrow d = (\lim_{a \to 0}) \frac{\log N(a)}{\log(L/a)}$

Fraktal eller $\mathit{Hausdorff}$ dimension d_F

(a) Cantor-sæt: Den midterste trediedel af hvert liniestykke fjernes:

$$a = \frac{L}{3^n}, \quad N(a) = 2^n$$

$$d_F = \frac{\log 2^n}{\log 3^n} = \frac{\log 2}{\log 3} = 0.6309$$

(b) Sierpinski tæppe: Siderne i hvert kvadrat tredeles og det midterste fjernes:

$$a = \frac{L}{3^n}, \quad N(a) = 8^n$$

$$d_F = \frac{\log 8^n}{\log 3^n} = \frac{\log 8}{\log 3} = 1.8928$$

Fraktaler og dimensionalitet (ii)

Von Koch's snefnug:

Dimensionalitet:

$$a = \frac{L}{3^n}, \quad N(a) = 4^n$$
$$d_F = \frac{\log N(a)}{\log(L/a)} \text{ eller}$$
$$d_F = \frac{\log 4^n}{\log 3^n} = \frac{\log 4}{\log 3} = 1.2619$$

Eksempelvis: Norges kystlinie: $d_F\simeq 1.4,~$ Englands kystlinie: $d_F\simeq 1.2$

Mandelbrot sæt

$$z(0)=z, \quad z(n+1)=z^2(n)+z(0), \quad n=0,1,\ldots$$

ztilhører Mandelbrot sættet, hvis
 $|\boldsymbol{z}(n)| < B$ for alle n.

Farverne, uden for Mandelbrot-sættet, er afstemt af for hvilket værdi af n, $|z(n)|>B=\sqrt{5}$

Mandelbrot sæt II

11.12