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A new generalization of the Plateau problem that includes the constraint of enclosing a given
region is introduced. Physically, the problem is important insofar as it bears on sintering
processes and the structure of wetted porous media. Some primal and dual characterizations of
the solutions are offered and aspects of the problem are illustrated in one and two dimensions
in order to clarify the combinatorial elements and demonstrate the importance of numerous

local minima.

I. THE PROBLEM AND ITS PHYSICAL REALIZATIONS

We present a physically interesting and largely unex-
plored generalization of the problem of Plateau. Plateau’s
original problem concerns the surface of least area with a
given boundary curve.'™ Its solutions, known as minimal
surfaces, have zero mean curvature and are usually associat-
ed with soap bubbles and wire frames. A well-known gener-
alization is the problem of minimum area with a given
boundary and enclosing a given volume.'* The solutions are
again surfaces with constant mean curvature and are usually
associated with the shape of a liquid—gas interface.

In the present work we introduce still another extension
of this classic problem. The extension arises in the analysis of
sintering processes and again incorporates a volume con-
straint while adding the constraint of enclosing a given re-
gion.

Problem: Given a region () and a positive real number
V', find a region I" with a smooth boundary dT" having the
minimum area such that I" contains Q and has volume V..

Physically, this extension represents the problem of the
shape I of the wetted solid Q. Figure 1 illustrates the point.
Some problems of this sort have been posed and solved,*®
but the general importance of the problem does not seem to
have been previously appreciated and the purely geometric
formulation given above is new.

The primary raison d’étre of this paper rests on the
mathematicians’ traditional criterion of shedding new light
on a classical problem. In addition, we introduce an example
which forms the basis of further calculations’ ' on sintering
processes.

We begin by arguing that this problem indeed represents
the ideal wetted solid. There are two physical interpreta-
tions. In the first, we force the liquid to cover the solid, al-
though perhaps only with an infinitesimal layer. Since the
area of the liquid—solid interface is then fixed and the area of
the gas—solid interface is zero, the total surface free energy
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attributable to the shape of the wetted solid is proportional
to the total surface area of the liquid, which leads to the
conclusion that the shape of I' minimizes such an area. In
this idealization we neglect the effect of layer thickness on
the energies.'*

The second interpretation lies closer to our presently
intended applications. We imagine the liquid and the solid to
be very similar in their physical properties: In fact, we take
them to be identical except for their ability to support a shear
stress. Our motivation comes from surface melting models of
sintering processes.'? In such processes the “liquid” merely
represents a more mobile form of the solid. Specifically, we
assume that the liquid and solid are so similar that the energy
per unit area for the gas-solid and gas-liquid interfaces are
equal, while the liquid—solid surface tension is negligible, i.e.,
O = 0! ( l )
where o,, 0y, and o, are the respective surface tensions
and the subscripts refer to gas, liquid, and solid. Correspond-
ing to a variation in the shape of the total region of liquid and

solid T, the variation dG in total surface free energy is now
the sum

dG =0, dA, + 0, dA\, + 0, dA,,, (2)
where the dA ’s are variations in the areas of the respective

surfaces. Using conditions (1) on the surface tensions, Eq.
(2) becomes

dG =0, (dA, +dA,,) = 0, dAr, (3)

where A is the area of the outer surface of the condensed
phase (solid or liquid) in contact with the gas. Condition

Oy = 0y,

FIG. 1. The shaded solid {2 is wetted with white
“liquid” to form the total object I, within the
heavy outline, which has the given volume V..
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(3), along with o, >0, implies that the minimum surface
free energy coincides with the minimum area for dT’, the
boundary separating I' from the gas.

Our problem is related to classical capillarity prob-
lems.*'* The usual condition for the contact angle 6 is
known as the Young equation:

Ogs

=0y, + 0, cos 6. (4)
When our assumptions on the surface tensions, Eq. (1), are
substituted into Eq. (4), we find that 8should vanish. This is
not surprising in light of the fact that Eq. (4) follows from
the minimization of the total surface free energy given the
relative worths of the areas at the interfaces. Since our for-
mulation counts liquid and solid surfaces equally, the opti-

mal contact angle is zero.

Il. STRUCTURE OF THE SOLUTIONS

While existence and regularity are relatively easy to es-
tablish for our problem,'* in the present development we
entirely ignore such issues. We assume existence and regu-
larity and focus on other, equally interesting aspects. After
deducing some necessary conditions arising from global op-
timality, we turn to combinatorial aspects which follow from
the fact that in general the solutions are far from unique. We
show this to be the case by considering the problem first in
one and two dimensions.

A. One dimension

In one dimension we are looking for a set I’ which covers
(contains) a given set (), has given length L(I"), and such
that it has the minimum number of endpoints, i.e., such that
the cardinality C = |dT'| is minimum. While this problem is
very easy, it already exhibits highly degenerate solutions
with numerous local minima for even moderately complicat-
ed ). These features introduce the combinatorial consider-
ations which stay with the problem in two and three dimen-
sions. As a concrete one-dimensional example take the
following union of intervals [see Fig. 2(a)]:

O=[-3-2]U[ —1,00U[0.51]U[L52]. (5)
The minimal cardinality C * as a function of length is

undefined, if L <3,
8, 3<L <35,
C*(L) =min|dT'| =46, 3.5<L <4 (6)
4, 4<L <5,
2, 5<L,
while the number of different ways of achieving C * is
1, if Le{3,4,5}
NC*(L))y=42, if L=35 (7
w, if La&{3,3.54,}
The two possible coverings with length L = 3.5 are shown in
Fig. 2(b).
One could further resolve the infinite solution set ob-
tained for other values of L by deriving an expression for its

volume H{C *(L)). Forexample, for L = 4.8 all solutions are
of the form

F'=[—-3—x, —24+x]JU[—1—x,,2+x,], (8)
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with x; >0fori=1, 2, 3, 4 and 2,x; = 0.8, as illustrated in
Fig. 2(c). Generalizing, we see that with the parametriza-
tion (8), the solution set for the given L is always a simplex
x;»0 for i=1,..,C*(L) and Z,;x;, =L —L*, where
L * = min L with the given C *. This simplex has the volume

UC* (L)) = (L —L*)"JC*/(C*~1). (9
Fixing C at some value above C *, the solution sets become
more complicated, at least in part due to the appearance of
local minima. As an example, consider L = 4 and C = 6; one
“locally optimal” solution is given by I' =[— 3,0]
U[0.5,11U[1.5,2], as shown in Fig. 2(d).

B. Two dimensions

The problem in two dimensions is richer. Since a global-
ly optimal solution is also locally optimal, we examine a por-
tion of an optimal configuration for which we may choose a
Cartesian coordinate system in which a suitable portion of
the boundary JI” is given by a smooth curve f(x) on an
interval [x,,x,], with T locally defined by Y<f(x). We
further divide the interval [x,,x,] into subintervals accord-
ing to whether f can have one- or two-sided variations, i.e.,
according to whether f(x) does or does not coincide with the
boundary of ©.!° On intervals where two-sided variations
are available, the local problem is just the classic isoperime-
tric problem"*!%'® of minimizing the length

L@:fZ\II 77 dx (10)
subject to a given area
V=f}(x)dx (11)

and given endpoints. The classical results assure us that the
solutions must be pieces of circles with radius R = 1/4,
where A is the Lagrange muitiplier from the Lagrangian
L =1+ f + Af. Since A is the Lagrange multiplier corre-
sponding to the area constraint, it must also equal the rate at
which perimeter increases per unit change in area.'®'® From
this we can see that a necessary condition for global optima-
lity is that all such circular arcs have the same radius! Note
that this follows from the sign of the first variation, which
transfers some area from one interval to another. While our

o AR e B B s (a

(b)

(c)
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FIG. 2. (a) The one-dimensional region Q given in Eq. (5). (b) Two possi-
ble coverings with length L = 3.5. (c) A generic element from the simplex
of coverings with L = 4.8. (d) A covering with L = 4, which represents
only a local minimum.
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arguments are local, they may be applied to any portion of
drI’; thus we conclude that this boundary is the union of
pieces of df and pieces of circles. We see that such circles
must be tangent to 2 by another local argument. Again
consider a Cartesian coordinate system and an interval
[x,,x,], where the boundary d is given by a function
Y, (x) and dT" makes contact with the dQ in the interval.
The inclusion of Q in T is then expressed by the inequality

S(x)>Yq (x). (12)

Classical arguments on corner conditions with one-sided
variations'® assure us that fis tangent to Y, (x) since L.
cannot vanish.

As a final global condition, we find that the curvature of
the circular arcs on the “wet” portion of JI" (i.e., on the
portion where it is distinct from J2) must be less than the
curvature of the dry portion where JI" and 95 coincide. This
follows from the same first variation argument we used to
conclude that the circular arcs all had to have the same radii.
This tempts us to attempt the construction of an optimal
family of solutions for a given ( and progressively larger
areas V' by “growing” the solutions along the segments of
minimum curvature. While this construction gives locally
optimal shapes, it can fail to take advantage of topological
changes which could improve the objective, i.e., decrease
total perimeter (see Fig. 3).

In fact, the physically realized state for a wetted porous
medium depends in detail on the fill-drain history of the
sample. Accordingly, it is of as much interest to give the
density of states at a certain energy and volume as to give the
shape which realizes the absolute minimum of the energy at
the volume.

C. Three dimensions

The situation in three dimensions is very similar. We
again turn first to the local problem, which has been well
studied and for which standard arguments guarantee exis-
tence and regularity.’* Using a coordinate system, we focus
on a portion of dI" such that this boundary is defined by a
function z = f{x,y) and T is locally defined by z<f(x,y) for
(x,y) in an interval I = [x,,x,] X [y,,4>]. On this interval
the problem becomes the well-known obstacle problem with
a constraint. We again divide into subregions according to
whether or not fcoincides with Q. On subregions where fis
distinct from €}, we are allowed two-sided variations. The
problem is then one of minimizing

A = [ JTHTTF 75 drdy (13)
I
subject to the constraint of the given volume
Vr =ff(x,y) dx dy, (14)
I

where £, and f, are partial derivatives of fwith respect to x
and y. This gives the Lagrangian

L=1+f2 4124 Af (15)

whose extremals are surfaces with constant mean curvature:
k= (1/R,+ 1/R))/2 =4, (16)

where R, and R, are the radii of curvature in two conjugate
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FIG. 3. The shaded solid is wetted by black “liquid” of the same mean cur-
vature in both panels, but the difference in liquid volume is due to the past
history of the system: dry in panel (a) and wet in panel (b).

directions and A is again the Lagrange multiplier corre-
sponding to the volume constraint. As before, A represents
the rate at which surface area must increase per unit increase
in volume; thus the global solution must consist of pieces of
0 and pieces that are surfaces of constant mean curvature
tangent to df). By the same first-order variational argument
employed above, we find that the mean curvature of all these
pieces must be the same and it must be greater than the mean
curvature anywhere on the portion of dT" which coincides
with dQ). The tangency of f where it again meets dQ follows
by standard results on one-sided variations.

Physically, we can understand the solutions as puddles
forming on the solid skeleton provided by ). The fact that all
the puddles have the same mean curvature results from the
familiar equation®®?!

Pl_P2=20'7f—, (17)

which relates the pressure drop p, — p, across an elastic sur-
face to the surface tension o and mean curvature « of the
surface. The constancy of « then follows from the equilibri-
um condition that the liquid pressure be the same in all the
puddles.

To gain further physical insight, we introduce a dual
realization of our problem. We again consider £ to be the
solid skeleton, but rather than covering ) with a given vol-
ume V. — ¥V, of liquid which wets the surface, we cover it
with an elastic skin with constant surface energy density o
and envision pumping a gas at a given pressure p, into the
compartment between () and the skin while fixing the exter-
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nal pressure at a level p, which is sufficiently large to guaran-
tee that the elastic skin is everywhere pressed firmly against
the solid when p, = 0. We will refer to this problem as the
bean-in-a-bag or “Christo” problem. It is clear from this
model, which involves pockets of gas, that the separation of
the elastic skin will occur first from points of large mean
curvature , thereby reducing the surface area the most. In
fact, the Christo problem helps by providing a physical real-
ization of a dual in which the givens are Q and «,;, . In this
dual formulation, the problem is to find the region I" with the
minimum volume which contains () and whose mean curva-
ture is everywhere greater than or equal to «,,;, . Achieving a
given ;. requires pumping the gas under the elastic skin
with a given pressure p, = p, — 20k,,,,- We could also char-
acterize the problem by asking for the smooth surface con-
taining ( and volume V- which has the largest value of the
minimum mean curvature.

D. Two properties

We conclude this section with two general and yet pow-
erful properties of the class of solutions. We will refer to the
first of these as the layering property: Let T be a solution to
the problem given Q, and ¥ and let 0, CQ,CT; then I is
also a solution to the problem given €2, and V.

The proof is immediate. The layering property derives
from the fact that when some of the liquid covering a wetted
solid freezes, its freezing does not affect the shape of the
liquid above it, i.e., of the new wetted solid (assuming that
the liquid does not change its volume upon freezing).

The layering property hints at a universality of structure
among solutions to the problem which we pursue a little
further here. To see this we define an equivalence relation on
the family of solid skeletons. Formally, we say that (), is
equivalent to (), at volume ¥V and write

O, =0, (18)

provided that there exists a region I" which solves the wetted
solid problem with Q},, ¥ as data and, also, the problem with
,, Vas data. That is to say that by the time we have covered
up , or ), toalevel ¥, their distinctive jagged features have
been covered over by the puddles. This leads to something
resembling ultrametricity among the set of states containing
a skeleton Q, and having a given volume. The associated
“distance” can be thought of as the total fill-drain volume
needed to reach 2, from (2,.

As the final property, we mention scale invariance. Spe-
cifically, let I" be a solution of the problem for (2 and ¥ and
let u be a scale factor for the map sending (x,,z) to
(ux,uy,uz) in some coordinate frame. Then the region uI’
solves the problem for given ©€) and u°V.

Ili. APPLICATIONS

Because of its relation to porous media and sintered ma-
terials, the case where () is a lattice of packed spheres is of
great interest.>'® For values of V. near ¥, solving the
problem is equivalent to locating the puddles in the necks
surrounding the points of tangency between spheres. Pud-
dling grows until the liquid or mobile “phase” attains a vol-
ume V, = V. — V at which these puddles first come into
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contact. For a lattice of identical spheres, the “liquid” layer
becomes connected at this stage, while patches of solid JQ
still show through. In the next stage, I'" has a surface of con-
stant mean curvature with the topology of a three-dimen-
sional lattice: We may suppose for the present that it belongs
to the recently announced class of periodic complete sur-
faces of constant mean curvature.?? Once the given volume
¥V, increases considerably beyond this value, the solution "
begins to include filled pockets delineated by four spheres in
mutual contact. Note that the Christo representation no
longer works in the regime where pockets become filled.
While there are many equivalent ways of filling such pockets
for identical spheres, the order in which the pores are filled in
a real porous material can make small differences and create
many local optima. Finding the global optimum is then a
problem of the modern “‘programming” sort and probably
best attacked by methods such as simulated annealing.?
Since the state of the real physical system is to a large extent
dependent on its fill-drain history rather than on the true
minimum of the free energy, the global optimum is again of
secondary interest to counting the number of states at a cer-
tain level of suboptimality.

While we have referred to our problem as the problem of
the wetted solid, it is important to note that our “liquid”
merely represents mobile pools of material which can be re-
distributed along the surface of the solid. Realizations of
interest include sintered materials, wetted porous media,
and precipitates from saturated solutions. Nonetheless, in
pursuing the example of the structure of a wetted collection
of packed spheres, it is convenient to make intuitive argu-
ments which treat the material that has been transported to
the “necks” as though it were a liquid. That is not to say that
this pool of material is a liquid; it is only to say that it is able
to respond to surface tension forces (surface free energy dif-
ferences) faster than the rate at which new material is sup-
plied or transported to the mobile pool. This is certainly
valid for sufficiently small neck sizes. It is also an excellent
approximation even for large neck sizes for materials that
respond quickly to local surface tension. One case in which
this is likely is precisely that of a liquid surface.?* Searching
for conditions that give rise to surface melting was in fact the
original motivation for investigating this class of problems.
The possibility of a solid skeleton coated by a liquid that is
identical to the solid in all ways except for its ability to sup-
port a shear stress was instrumental in the isolation of the
zero-contact-angle case of the classical theory for the distri-
bution of liquids on a solid.

Applications typically involve a one-parameter family
of such problems. For the case of sintering, £} evolves as
sintering progresses. For another class of problems, the fam-
ily of solutions is indeed well parametrized with (2 as the
solid matrix which does not change as V. increases and de-
creases. This could represent the growing together of precip-
itated particles immersed in a saturated solution which fills
the pore spaces or the equilibrium structure of a liquid which
wets a porous medium.

IV. TWO IDENTICAL SPHERES—AN EXAMPLE

We illustrate the above discussions with an example in-
volving two identical spheres in point contact. This example
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y=1(x)

/\

FIG. 4. Notation used for the example of two touching unit spheres, with a
small amount of “liquid” filling the neck between them.

is the building block for treating a lattice of spheres in the
regime before the puddles in the different necks touch each
other. The rotational symmetry of the example allows the
problem to be characterized using surfaces of revolution,
thus reducing the associated partial differential equations to
ordinary differential equations. Rotationally symmetric sur-
faces of constant mean curvature are known as Delaunay
surfaces and have been extensively studied.?>"">* The prob-
lem of fitting them to enclose a given volume around an
evolving skeleton € represents a new twist appropriate to
applications of sintering processes. The one-parameter fam-
ily of {¥’s we consider is where the spheres gradually get
smaller, releasing progressively more volume into the mobile
pool.

By the scaling property, it is sufficient to solve the prob-
lem of two unit spheres in point contact and then scale the
results. By symmetry, we may limit our view to the first
quadrant. We use the notation of Fig. 4 for the curve
» = f(x), which is the generator for the surface in the region
of the neck, and let

y=yo(x)=J1—(x=1)2
for y on the circle which defines dQ.
To find the shape of the fluid, we set up the calculus of
variations problem to minimize the surface area subject to a
fixed volume constraint. Formally, we ask for £, which mini-
mizes the surface area

(19)

X, 2
A=2r7 f\/1+f’2dx+21rfym/l+y§12dx (20)
0 X,
subject to constrained total volume
Xy 2
V=m fzdx—f—vf ¥y dx 2n
(4] X,

with f"(0) = 0. The conditions for the point x,, where the
boundaries " and 9N join, are f(x,) =y, (x,) and
f'(x;) =y, (x,). This yields the Lagrangian

L=fV1+/?+if% (22)
Letting
H=L— f'aif][; — const, (23)

we have the Euler-Lagrange equation'¢-'*
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2
PN N —
x (H+Af%)

where H and A are constants which must be determined from
the boundary conditions. While Eq. (24) can be integrated
to give fin terms of elliptic functions,?® the evaluation of f
corresponding to a situation of interest is more easily
achieved numerically. Useful methods for calculation are
discussed in Ref. 8. Here we mention only that the family of
solutions is obtained most conveniently in terms of x, and
that it necessitates some shooting method?’ for most ways of
specifying the data for the problem. A solution with unit
radius can be scaled to radius R to give f3 (x) = Rf(x/R),
which satisfies Eq. (24) with Hy = RHand A, =A /R and
leads naturally to x,, = RX, and volume V- = R 3V,.

Note that the Euler-Lagrange equation (24) is com-
pletely independent of y,, . The solution depends on 2 only
through the boundary conditions and in fact, it is satisfied
for any solid of revolution with constant mean curvature,
i.e., any Delaunay surface. The fact that the Lagrange multi-
plier A coincides with the mean curvature « can be seen by
applying the formula for the mean curvature of a surface of
revolution generated by y = f(x) revolved about the x axis?%;

(24)

_— 1 fll l
= —=I 25
T [1 +f* )

By inserting Eq. (24), Eq. (25) becomes x = A.

It is interesting to note that the importance of Delauney
surfaces have not been previously recognized in sintering
studies, although an instance of them can be found in a pre-
vious study of porous media.’

The building block of two hard spheres in the small neck
regime can be used to treat random or close packed arrays of
spheres with known distributions of radii. The new aspects
are again combinatorial.

V. CONCLUSIONS

In this paper we have introduced a new modification of
the problem of Plateau. Assuming existence and regularity,
we used standard results concerning the local version of the
problem to deduce new global conditions. While these con-
ditions become obvious after some reflection, they are suffi-
cient to assemble global solutions for many physically inter-
esting examples. We also sketched a method for obtaining
the solution in a radially symmetric example important for
sintering processes.

Our approach provides a realistic model of wetted po-
rous media and is of particular importance for the under-
standing of sintered materials. To invoke the present solu-
tions for a wetted solid, we have to ignore the nonideality in
the form of a thickness-dependent free energy responsible for
the disjoining pressure of Deryaguin.?**° Qurs is a particu-
larly appropriate model for the sintering processes in which
some sort of enhanced surface mobility or surface melting
occurs, but the formation of the melted layer is the slow
variable. The present model should work very well under
such conditions. In particular, it is a much better approxima-
tion to reality than the traditional models such as the circle
approximation for f(x) advanced by Kuczynski®! in the
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1950’s and used widely since. Our model differs by as much
as 200% relative error (for small neck sizes!) and agrees
better with experiment.”'

The present approach stresses the importance of com-
binatorial methods, local minima, and density of solutions,
rather than the absolute minimum. Work in this area has
drifted away from an interest in the detailed shape of the
surface to models for the value of the thermodynamic poten-
tial of the liquid covering .%%3® There remains important
information to be gained from microscopic details which can
supplement macroscopic phenomenology, including models
of thermodynamic potentials.
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