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A geometric approach which defines distance between equilibrium states has proved useful in 

the physical sciences. The notion is applicable to any system which exhibits optimizing behavior 

and which does not adjust its states instantaneously to exogenous shocks. In this paper this 

geometry is used to analyze an economic system perturbed out of equilibrium by discrete or 

continuous shocks in order to establish in-principle limits to welfare gains generated by 

adjustments. The geometry is defined by the second derivative of the utility function which is used 

as the metric matrix. The minimum net gain in utility due to adjustment is proportional to the 

square of the distance traversed as measured in this geometry. An integrated welfare loss 

measuring the welfare losses due to the non-instantaneous response is defined. Finally, the 

geometry of the Cobb-Douglas utility function is explored. 

Key words: Geometric economics; welfare gains; adjustment. 

I. Introduction 

Recent developments in thermodynamics (Salamon and Berry, 1983) as well as in 

I he theory of communication (Flick et al., 1987) have demonstrated the feasibility 

of defining the notion of distance’ between two equilibrium states in a comparative 

statics framework. Rather than being restricted to its traditional role in the analysis 
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’ Our use of ‘distance’ is not to be confused with the distance function defined as the dual of the cost 

tunction discussed in Deaton (1979). 
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of stability, the quadratic form associated with the second derivative matrix of the 
objective function is used to define a metric structure on the set of equilibrium 
states. The length corresponding to a time evolution has important implications for 
the accompanying losses. In thermodynamics these losses are measured by the en- 
tropy produced or by the loss of available work. In communications theory these 
losses are measured by the extra number of bits which need to be transmitted 
through a communication channel. In general the metric structure can be used to 
measure losses associated with the inability of a system to adjust instantaneously to 
exogenous shocks. 

Consider a system whose equilibrium states optimize some objective function. By 
the conditions of optimality, a slight displacement from equilibrium will leave the 
objective function unchanged to first order. Thus, a good measure of the loss 
associated with disequilibrium is given by the second order contribution to the 
change in the objective function. This loss may equivalently be viewed as the incen- 
tive to equilibrate. Now consider a specific path traversed by a system in its space 
of equilibrium states. We view such a path as a sequence of equilibrations (not 
necessarily discrete). The Cauchy-Schwarz inequality relates the square of the 
length of the path to the sum of the potential gains for equilibration along the path. 

We apply this mathematical construct to the problem of measuring the welfare 
gains of an optimizing consumer moving along a sequence of equilibrium states. We 
employ the consumer surplus as our welfare measure, although Hicksian measures 
could also be derived. For small changes, to be sure, these various measures will 
agree to the order of the calculations.2 We show that the metric structure for the 
consumer is related to the gains in consumer surplus which accrue due to equilibra- 
tion subsequent to exogenous shocks, either discrete or continuous. We explore ap- 
plications of this metric structure including a measure of integrated welfare loss due 
to finite rate equilibrations. 

2. The metric structure defined by the utility function 

The concavity of utility as a function of the different quantities consumed 
guarantees that the negative of its second derivative matrix, denoted by D2U, is 
positive definite. The smoothness of this utility function guarantees that D2U is 

’ In order to calculate losses in welfare using compensating or equivalent variation as measures, one 

would use a metric based on the second derivative of the expenditure function. Since part of our motiva- 

tion is to illustrate the use of the metric structure we use the consumer’s surplus to keep the arguments 

easy to follow. Samuelson (1983), while acknowledging the illustrative importance of the notion of con- 

sumer’s surplus, prefers the Hicksian exact measures. Several authors recently argued that under certain 

circumstances consumer’s surplus is an acceptable measure of changes in welfare. Such circumstance% 

include the case where price changes come about through supply shocks or when the marginal utility 01' 

income is constant. Even when these conditions do not hold, consumer’s surplus approximates the Hick- 

sian measures (Dixit and Weller, 1979; Willig, 1976; Hausman, 1981; Seade, 1978; Ebert, 1984). 
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~~\mmetric. If one views the equilibrium states of an economy as a manifold with 

< ~~~dinates given by the commodity bundle Q = (ql, q2, . . . , q,J consumed, then 

I ).‘C! has the properties required of a Riemannian metric on this manifold. It can 

I\ICI~ be used to define a scalar product (we omit indication of transposes) 

A-B=AD2UB (1) 

,tnd the length of a market velocity Q 

IlQll = m 
I ising this metric, paths Q(t) on this manifold have the length L given by 

r,. * . 
L = J’QD’UQ dt. 

J 

(2) 

(3) 

Note that this integral is independent of the parameterization of the path Q(t) and 

IS a quantity dependent only on the sequence of equilibrium states. The associated 

Ilotion of distance between two states is then defined to be the length of the shortest 

c‘urve connecting them. 

3. A series of small discrete shocks 

We consider the case of a price-taking consumer in a market with n commodities. 

Initial equilibrium is disturbed by a shock affecting some subset of the commodities. 

‘The source of the shock is immaterial. It could be induced by such factors as 

technological or institutional change, changes in market structure, or the discovery 

of resources. Some supply curves might be shifted down, some up. Adjustment 

takes time because of some friction in the system. The consumer, for instance, might 

be locked into a long range contract in some markets. In addition, it might take time 

to process information, or because of uncertainties costly information would not be 

acquired immediately. The process of adjustment would, however, begin im- 

mediately. Once adjustment is complete and equilibrium is reached, the sum of the 

areas of the consumer surplus triangles is a measure of the deadweight losses that 

accrue due to the fact that the adjustment was not instantaneous. We assume that 

the total time interval under consideration is sufficiently small that the discount rate 

is negligible. As a consequence we disregard the discounting of utilities over time 

in the summation of the welfare losses.3 

3 We have decided, for purposes of simplicity, to leave the discounting of welfare over time out of 

consideration. It would add little conceptually to the problem and would only make its solution more 

difficult and the results more opaque. In order to disregard it we have assumed that the duration of the 
process is short relative to the discount rate. To reach the geometrically significant quantities from an 

expression for the accrued welfare gains including the discount rate, one could apply the mean value 

theorem to remove the exponential term representing this discount from the integrands (summands) 

representing such gains. The same results follow with the inclusion of an extra term which discounts the 

total accrued gains to some mean time during the process. 
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Fig. 1 depicts the consumer surplus caused by the change from equilibrium point 
(QO, PO) to (QW, Pm). Assuming that the shock is small, the total welfare gain due 
to the adjustment is given by 

w= s Qm (P(Q)-Pa) dQ=dPdQ/2, (4) 
Qo 

where P(Q) is taken along the ordinary demand curve. Qm and P, represent the 
equilibrium values at t = 00 in the absence of new perturbations. Since pP= aU/aQ, 

where p is the Lagrangian multiplier which is the marginal utility of income, and 
U is the aggregate utility function, we have ,uAP=D2UAQ. Thus 

W=AQD2UAQ/2p. (5) 

The numerator may be interpreted as the square of the distance between the initial 
and final equilibrium states (cf. equation (3)). 

The significance of the geometry emerges when we consider a series of K discrete 
shocks and subsequent adjustments AQk, k= 1, . . . ,K. The total welfare gain is 
then given by one half of the sum of the squares of the steps along the path Q(t): 

W= 2 AQkD2UAQk/2p= f (ALk)2/2p. (6) 
k=l k=l 

By the Cauchy-Schwarz inequality we get 

W> 
( > 

i A& 2/2pK=L2/2pK. (7) 
k=l 

Thus, the welfare gain due to the adjustment process is bounded by 1/2pK times 
the square of the length of the path along which the small steps AQ are taken. Equa- 
tion (7) holds with equality only for the case where all the AL’s are equal, i.e. when 
each of the shocks moves the supply curve the same distance. Note that this 
measures the minimum gain due to complete adjustment or, in other words, the 
deadweight loss which would obtain in the absence of movement toward the new 
equilibrium. This quantity therefore is the incentive to adjustment. 

Fig. 1. The consumer surplus caused by the change from equilibrium point (40.~0) to (400.Pm). 
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4. Irlttgrated welfare loss 

I (*I us suppose that the market adjustment occurs over time in such a way that 

t.lll~~iit~rium is not reached during one period. Gains, to be sure, do accrue due to 

11.11 ~i;~l adjustment, but there exists a potential gain which is forgone on account of 

t 1~. hw adjustment. This forgone gain can be integrated over time until equilibrium 

I>- II II imately reached. We call this forgone consumer’s surplus ‘integrated welfare 

II )‘,\ ,, I: 

09 Qs&) 
I= 

i’s 
F’(Q) -~,(OldQd~. (8) 

0 Q(t) 

\\ !lcreas the welfare gain W is the incentive to adjustment, I is the total amount 

\\ hich could have been saved if the consumer had responded to the changes instan- 

t .I rlcously. For the special case of a sequence of small discrete shocks in which each 

.~(li ttstment lags the shock by exactly one period, I is numerically equal to JV. 

5. Dynamics of the adjustment process 

‘l-he choice of a model for the dynamics of the adjustment to the shock becomes 

c.\scntial when one considers adjustment in finite time. In his study of dynamics in 

c.conomic equilibrium theory, Smale (1976) adopts the following form for the rate 

01‘ adjustment of prices P to equilibrium: 

DZ(P) dP/dt = -M(P), (9) 

where DZ(P) is the matrix of first partial derivatives of the excess demand 2, and 

A is a constant with sign A = sign(det[DZ]). Equilibrium prices P, satisfy 

dP,/dr = Z(P,) = 0. 

Instead of the prices, we prefer to work with the conjugate variables Q. Then the 

excess demand is replaced by the excess prices P-P, so that the conjugate form of 

equation (9) is 

RdQ/dt=P-P,, (11) 

where we have included A in the matrix R. This rate equation states that the con- 

sumption of commodities changes at a rate proportional to the potential savings, 

i.e. to the amounts by which prices differ from their equilibrium values.4 This can 

Aso be obtained by a linear expansion of a general dynamical law 

dQ/dt =F(P, P,), (12) 

with the property that F(X, X) = 0 for any X, and where R- ’ is the Jacobian 

’ See, for example, Smale (1976), Gondolfo (1971), Siebrand (1979), Fisher (1983), or Beach (1957). 
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matrix of F with respect to P evaluated at P,. As before, pAP= D2UAQ so that 
equation (11) becomes 

dQ/dt=/C’R-‘D2U(Q-QQ,). (13) 

The solution to this equation is a sum of exponential decays for the components of 
Q - Q_ along the eigendirections of R- ‘D2 U. Although most of the derivations 
below are based on this specific form of the adjustment mechanism, the result de- 
pend only on a single parameter /? extracted from this dynamics which could formal- 
ly be introduced without the dynamical law in (11). (See discussion in Section 7.) 
If the adjustment process can be assumed slow then, for this dynamics, l/p is the 
smallest eigenvalue of p”- ‘R- ‘D2U. j3 is the largest lag (relaxation) time of the 
system. 

6. One large shock 

Let us consider I for one large shock subject to the assumption of linear demand 
curves P(Q) = a + bQ. Then D2U=pb so, by equation (5), 

W= WWQ - QmJb(Q - Qod. (14) 

Integration of (11) yields: 

Q(t)=Qco+(Qo-QcD)exp(~-‘R-‘D2Uf) 

when R- ‘D2U is a constant. When substituted into (8) this yields: 

(1% 

I= (/~/4)(Qo - QoMQo - Qah. (16) 

This equation states that the integrated welfare loss during the adjustment is propor- 
tional to the square of the shock times the matrix of the relaxation. Though the ex- 
act forms of (14) and (16) depend on the dynamics in (1 l), their general content is 
robust. 

7. Continuous shocks 

In an economy subject to continuous shocks (P,, Q_), which pull the market 
forward, stay ahead of (P(t), Q(t)). This has the effect of keeping the consumer 
moving toward the ever changing (P,, Qm) without ever reaching it.’ The 
associated welfare gain is 

w= 
s 

QI 
(P - P,)dQ = 

s 
’ (/3/p)(dQ,dt)D2 U(dQ/dt)dt, (17) 

Qo 0 

’ For a previous discussion of dynamics in which the market lags equilibrium in a similar fashion XC 

Arrow (1960). 
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P= 
,@--P,)dQ/dt 

(dQ/dt)D2U(dQ/dS) ’ 
(18) 

\llljlying the mean value theorem and the Cauchy-Schwarz inequality to the last in- 

~c.rrlal in (17) we obtain: 

W= <P//A> ‘(dQ/dt)D2U(dQ/dt)dtt (p/&L2/Z-, 
s 

(19) 

\i IICI.C ( e ) indicates me& value, and T is the total time elapsed. Note that L, the 

I~.II$ h of the traversed path, is an equilibrium quantity, Tis a constant, and the only 

I t IIC of any specific dynamical model is to provide a mean value of p/p. 

I‘he significance of p may be seen without recourse to dynamic models. /3 is a ‘lag 

I II IIC’ between the economy at Q and its instantaneous state of equilibrium at QoD. 

I o see this note that if P-P, is small, then it can be replaced by D2U(Q - Q&p. 

I \Ir.thermore, if we consider the fact that at time to the economy at Q is heading 

I (award the instantaneously perceived Qoo, it is reasonable to assume that QoD(to) is, 

I (1 I his same approximation, the same as Q(to+ y) for some y. Expanding Q as a 

I llnction of t linearly about to we get 

Q&o) = QUO+ Y) = QUO) + NQW,, - (20) 

I’rorn (18) we see that p= y. In general, however, (20) need not be satisfied unless 

f,J,,,(to) lies along the line through Q(to) in the direction (dQ/dt),. While this will 

Ilold for sufficiently small y, the equality of p and y follows also from requiring that 

(70) holds with the left-hand side replaced by the perpendicular projection of 

!J,,(to) onto this line, as shown in Fig. 2. ‘Perpendicular’ here means relative to the 

I ig. 2. The perpendicular projection of the instantaneous state Q_(to) onto the tangent line to the time 

evolution at to. p can be interpreted as the lag time between the state of the economy and its instan- 

I;tneously perceived equilibrium, i.e. the projection of the equilibrium state onto the direction of move- 

lllent of the economy. 
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scalar product defined by the metric D2U. This may be seen by expanding 

Qce Go) - QUO) as a multiple of (dQ/dt),, and a vector perpendicular to (dQ/dt),,,. 
p is thus generally seen to be the lag time between the state of the economy and the 
projection of the state with which it is trying to equilibrate onto the direction of’ 
movement of the economy. This projected state may be viewed as the state 01’ 
minimum welfare loss which the consumer could reach if he were constrained to the 
line of his instantaneous velocity, i.e. the state of ‘equilibrium’ subject to the effec- 
tive instantaneous constraints imposed by the direction of the tangent to his curve 
of evolution in the space of Q’s. In this sense /? is always a lag time between the 
present state of the economy and the state of ‘equilibrium’ subject to the instan- 
taneous effective constraints but otherwise independent of the dynamics. 

We now examine p for the dynamics described in Section 5. Here p is given by 
a Rayleigh quotient: 

P= 
,u(dQ/dt)R(dQ/dt) 

(dQ/dt)D2U(dQ/dt) 
(21) 

and thus p//3 must, at each instant, lie between the largest and smallest eigenvalues 
of R- ‘D2 U as claimed in Section 5. Furthermore, since for a slow process only the 
last component of (Q- QcD) is of appreciable size, p/p then equals the smallest 
eigenvalue of R - ’ D2 U. 

Summarizing the results of this section, we showed that the welfare gains to ad- 
justment for a continuous shock are bounded by the square of the length of the path 
Q(t), multiplied by a mean lag time between the instantaneous states of the con- 
sumer and his instantaneous states of equilibrium, divided by the product of the 

total time for the process and the marginal utility of income. 

8. The geometry of the Cobb-Douglas utility function 

We consider the case of a consumer whose tastes are described by the 
Cobb-Douglas utility function, 

U(X, y,z)=XOybzC, (22) 

and discuss the geometry of the space of Q = (Q = (x, y, z); Z= constant); for 
simplicity6 we will take z = 1. The curvature associated with the Riemannian struc- 
ture on this space is zero. This implies the existence of a local isometry of this 

manifold into the Euclidean plane. In fact, a global isometry can be constructed IO 

6 Since the second derivative of U is not strictly positive definite but possesses a direction V, for which 

VD’UV=O, we will hold one of the quantities (z) constant. On this subspace D2U is indeed posilicc 

definite. Movement along the direction V corresponds to scaling the system and has an associated lengl h 

of zero. 
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t 11~. Kiemann surface of the natural logarithm of a complex variable, where each 

%.IIcT~ is given the Euclidean metric (Fig. 3).’ 

:\ direct calculation shows the metric to be given by 

- D2 Ux, ~1 = 
a( 1 - a) U/x2 - ab U/xy 
_ abU,xy 

b(1 - b)U/y2 1 ’ (23) 

\\ IICW we have used [x, y] to indicate the coordinates in which the metric is express- 

,-,I. Other coordinates may be more suited to the intrinsic geometry. Indeed, if the 

1 I jcbrdinates 

u=x”yb=U; u=y/x 

.IIC’ used, the matrix is seen to take the diagonal form: 

(24) 

-D2U[u, u] = (l/u)(l -a- b)/(a+ b) 0 
o 

ab/(a + b)(u/u2) 1 . 
(25) 

\\‘c caution that the entries in the matrix in (25) are no longer second derivatives 

I )I U. In fact, if we temporarily denote the matrices in (23) by M and in eq. (25) 

Ilv A?, then A? is obtained from it4 by means of the transformation 

A?= JiWJ, (26) 

u here J is the Jacobian matrix a(x, y)B(u, u) and J’ is its transpose. 

i:quation (25) may be rewritten as an equation for the line element on the space Q: 

ds2 = (1 - a - b)/(a + b)( 1 /u)dU2 + ab/(a + b)(U/u2)du2 (27) 

I his is seen to take the form 

ds2 = dr2 + r2 de2 

I 1 I the usual Euclidean metric under the variable change 

r=26(1-a-b)/(a+b)u; 8= 1/21/ab/(l -a-b) In u. 

(28) 

(29) 

I IS. 3. An illustration of the geometry of the set of the Cobb-Douglas utility function. Locally, the SW- 

I.ICC is a plane although an infinite number of planes need to be spliced together for the entire surface. 

’ For a mathematically similar example in another discipline see the discussion of the geometry of the 

l~lcal gas in Nulton and Salamon (1985). 
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Thus, the space is locally isometric to the Euclidean plane. 
Because there are in principle no boundaries on the value of In(u), values of 0 

which differ by multiples of 271 correspond to different points in the space. Fig. 3 
suggests the topology of this space by showing the portion corresponding to 
- 27r I 8 I 27~ and 0 < TI 1. Sets of states with selected values of 19 are shown as rays. 
Because of the multisheet nature of this space the distance between two points 
(xi, yl) and (x2, y2) equals the usual expression 

d[(+,_G (~21~2)1=1/(~~-~1)~+(~2-~1)~ (30) 

only if 16, - S2( I 71. For larger angular separations the shortest curve always goes 
through (0,O) and 

d[(x,,y,), (X2,~2)1=65-3+~. (31) 

These formulas for distance are useful particularly when the actual path Q(I) 
traversed by the economy is not known. In this case the distances between the initial 
and final states Q can be used in place of the length of the unknown path to give 
valid bounds for W and I. 

9. Conclusions 

The purpose of this paper is to demonstrate the existence of natural metric struc- 
tures on the equilibrium states of economic systems. As a first economic applica- 
tion, we have shown how the distances on the static demand surface can facilitate 
the calculation of welfare gains which accrue to a price-taking consumer as a consc- 
quence of moving toward equilibrium. Were the consumer not a price-taker, the 
welfare gain due to adjustment becomes the sum of the gain due to the curvature 
of the utility function, U, via D2U and a similar term due to the curvature of the 
production function, S, via D2S. 

The non-instantaneous adjustment of the market leads to the introduction of the 
integrated welfare loss, I, which measures the total potential benefits not reaped 
from the evolution of the market due to finite-time response. 

Finally, the geometry defined from the Cobb-Douglas utility function was shown 
to have zero curvature, and the natural coordinates were found in which the metric 
D2U is diagonal and the distances between states is therefore easy to calculate. 

Though the results of the present paper are only preliminary, two conclusions 
nonetheless emerge: 

(1) The inclusion of a single-parameter model of a dynamic response by a con- 
sumer to an exogenous perturbation can give useful and robust information about 
the response. 

(2) A geometric picture of economic quantities based on the Riemanniart 
geometry defined using the second derivative of the utility function can yield in- 
principle bounds on welfare gain. Such bounds can be obtained with only limited 
computational effort. 
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