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A pgeneral description is developed for processes involving work and two heat reservoirs or three heat

reservoirs in terms of rates for continuous processes or of cycle averages for periodic processes. The
description is applied to heat engines having friction, thermal resistance, and heat losses in order to
determine the maximum power and maximum efficiency of such engines. By use of a geometric

representation the reversible and irreversible parts of a process are separated as the components of a vector.
This leads to the definition of a dimensionless quantity that measures irreversibility and is related in a
complementary way to the traditional concept of efficiency. The new guantity appears to be useful in cases

where efficiency has no well-defined meaning.

. INTRODUCTION

The first goal of traditional thermodynamics was
evaluating how well heat engines perform and how well
they might perform in an idealized limit. The ideal-
ized limit became the reversible Carnot engine, The
corresponding criteria of merit are the capacity of this
engine to convert heat at a high temperature into work
(the efficiency n) and the ratio of actual work performed
to the work that a reversible Carnot engine could per-
form with the same heat input (the effectiveness). This
approach served many useful purposes, but the high de-
gree of idealization of the reversible Carnot engine
puts a serious limit on what it can tell us about how
well real engines might perform. We would like to
have general methods for finding the maximum effi-
ciency and maximum effectiveness for realistic en-
gines operating at finite rates, This series of papers
directs itself to finding such extrema.

We previously investigated the optimal operation of
a simple model® and extended the use of thermodynamic
potentials to quasistatic processes.? The first ap-
proach! involved finding the detailed time dependence
of the various thermodynamic quantities using optimal
control theory. This, of course, is the mast complete
analysis, but the resulting differential equations are
frequently too difficult to solve and in many cases such
detailed information is not needed. Thermodynamic
potentials® offer a more economical way of determining
the maximum work that can be extracted from a given
process without describing how it is to be carried out.

Still, however, one has to solve a differential equation
for each particular process.

In the present paper we develop a formalism which
focuses on processes of energy conversion, treating
the energy conversion system itself as a black box.
The approach we use begins much like the method given
by Keenan® for describing energy availability and work
in real and ideal steady-flow systems. Keenan’s pre-
scription in its simplest form takes the energy conser-
vation equation for a working fluid, which, with neglect
of heat losses and the change of kinetic energy of the
fluid, becomes an equation relating the specific enthal-
py of the fluid at the entrance to the sum of the specific
work and specific enthalpy at the exit. With inclusion
of Kinetic energy changes and real losses, the formula-
tion permits one to evaluate the work done by real
steady-flow and reciprocating systems, their changes
in availability, and their effectivenesses and engine ef-
ficiencies.

We seek a description of a general heat/work pro-
cess based, not on the enthalpies of a working fluid at
different points as Keenan does, but on the heat flows
obtained by the interaction of three heat reservoirs at
three different temperatures Ty, 7,, and 75. This in-
cludes the possibility that one is a work reservoir for
which T'=e, The process can be represented by a tri-
angular diagram as shown in Fig. 1, which we cava-
lierly call tricycles. (The choice of the name is dis-
cussed below.) The basic idea is that a tricycle cannot
itself consume or produce energy, so that conservation

FIG, 1. Decomposition of tri-
cycle (ql, q2s q3) into a reversi-
ble part (with zero entropy
production) and an irreversible
part consisting of heat flow be-
tween reservoirs 1 and 3 un-
coupled from reservoir 2.

The Journal of Chemical Physics, Vol. 66, No. 4, 15 February 1977

Copyright © 1977 American [nstitute of Physics 1571

Downloaded 05 Oct 2004 to 130.225.102.2. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



1572 Andresen, Salamon and Berry

laws govern the heat flows, These laws, applied to cer-
tain classes of tricycles, are used to find the maximum
power output and efficiency for realistic engines. The
triangular pictures have been helpful in clarifying the
decomposition of processes into reversible and irre-
versible parts. In a later section, a geometric inter-
pretation of the tricycle concept is developed to help
quantify the degree of irreversibility of a process.

Il. DEFINITION OF A TRICYCLE

A tricycle represents the interaction of three heat
reservoirs at temperatures T,, T,, and T; with the cor-
responding heat flows ¢, ¢,, and g; all taken to be posi-
tive for heat leaving the system. The rate of heat ex-
change ¢; may either be thought of as an instantaneous
value ¢,=d@Q,/d! or asan average over acycle ¢;=Q,/AL.
The differential form is appropriate to continuous
systems such as turbines, and the difference form, to
systems that cycle mechanically so that At is the period
and @; is the ith heat flow per cycle. In either case the
system returns to its original state, so that

G+ G2+ q3=0. (1)

In this sense, the energy conversion system, whether
continuous or periodic, is cyclic; and therefore its
representation as a triangle is given the name “tri-
cycle.” The rate of entropy production in the process
is, like heat flow, either s=dS,,.4/dt or AS,.4/Al; and
the rate of entropy production—continuous or cycle-
averaged—is:

S=qiTi+ @sTe+ 3T3 =0, (2

where we define 7;= T';'. A work reservoir has 7=0
and thus produces no entropy. Most systems of inter-
est will correspond to one 7T equal to zero; however,
the absorption refrigerator is an example for which all
three 7’s are nonzero.

Any tricycle fulfilling Egs. (1) and (2) represents a
physically possible process. To further analyze the in-
teraction we want to decompose it into its reversible
and (totally) irreversible components, The former is
unambiguously defined by s =0, but there is a degree of
choice about the meaning of “the amount of irreversi-
bility. ” One such choice is presented in Fig, 1, where
¢, (s, and gy is decomposed into the reversible ¢q,, g,
and q,, and the irreversible heat flowfrom 7,to 74 (g,=0).
Others, in particular one totally symmetric in the three
reservoirs, are presented in section 4. Although the
temperatures are free to vary within the bounds of Eq.
(2), it may be useful to visualize the tricycles with 7,
<T,<T3 or equivalently Ty > T, > T;. In that case a tri-
cycle with g, > 0 is a refrigerator or heat pump, one
with ¢,<0 and 7, =0 is a conventional heat engine.

With the decomposition of Fig. 1 it is easy to derive:

4/ (T3 = 1) = q,/ (1 = Ty = q. /(T2 = 7)) ()
Ga==qs= Q1+ a3 = ) /(13- 1))

and
s=qy(1y = Tg) + golTy— 73) . (4)

: Thermodynamics in finite time

ill. EXAMPLES OF WORK-HEAT-HEAT TRICYCLES

Of the three originally independent variables g, ¢z,
and ¢;, one may be fixed through Eq. (1), another one
by defining a functional form for the losses ¢, and the
last degree of freedom will then specify the extent of
the process. In this section we look at tricycles where
side 1 is a work reservoir, so that 7,=0, and we re-
label g, =w. We will apply different expressions for ¢,
representing friction, heat leak, and thermal resis-
tance, and derive the maximum power w and efficiency
n=w/{~ ¢,) that can be obtained from these tricycles.

A. Friction and heat leak

We define the losses to be
4;= g3+ qp (5)

where the coefficient of friction o >0, and ¢, is a rate-
independent heat leak from 7; to 7; which tends to speed
up the most efficient operation of the tricycle. The
quadratic friction term corresponds to a thick layer of
fluid lubricant between sliding surfaces.* Other forms
apply for thin lubricant layers and for dry surfaces.
The power is w=q, - q;. We set its derivative with re-
spect to g, equal to zero to find the maximum power:

w=(1/4a) - g5 , (6)
obtained for:

-1 7

“ 3a -1 ()
Maximizing the efficiency gives two solutions:
Ty —Ta
n=i—2 (1:2vdg,) , (8)
3
for
cy—Ta. [H
N I
and

w==-2g% [, C)

with the upper signs for a heat pump and the lower
signs for a heat engine,

B. Thermal resistance

Let us for a moment drop the black box restriction
of the tricycle and look inside it. We assume that it is
composed of another tricycle—dashed in Fig., 2—con-
nected to the outer reservoirs at 7, and 73 through ther-
mal resistances p, and ps, so that its actual operating
temperatures are:

T{ = Tl(= OO) )
T3=Te-q2Pz (10)
T3=Ts~qsps -

We now decompose the tricycle into reversible and ir-
reversible internal tricycles as in Fig, 2 to find the re-
versible parts:
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FIG. 2. Tricycle with thermal
resistances p; and pg between
reservoirs 2 and 3 and an in-
terior tricycle (dashed). The
interior tricycle is decomposed
into its reversible and irre-
versible parts in analogy to

9o == a2+ Tsq2/ (T2 = ¢20) ,

4G5=qz=qy ; (11)
and

4= = T3q2/ (T2 = q2p) ;
and the irreversible parts:

45= == G+ g2~ T3q2/(To ~ q20)
where,

P=pPz+ps3 . (12)

Decomposition of the same outer tricycle according to
Fig. 1 and Eq. (3) yields:

qszqc+qf=q7+ qe >
or
qf=qc+(qu"qa) ’

which means that the ‘“uncaptured work ” arising from
the thermal resistance is:

T. F
- =___$._QZB__ 13
e AT, Ty-ap 1)

This quantity must be positive to have physical signifi-
cance, which requires that:

AT§q2p<T2 ° (14)

Using the expression (13) for the loss term ¢, gives
a maximum power output of:

P TV}, (15)
for
AT =T, -VT,T; . (16)

These results are identical to the ones obtained in an
analysis® of a Carnot engine with finite heat conductance
to its reservoirs. However, some care must be exer-
cised in the comparison, since the Carnot engine de-
scribed by Curzon and Ahlborn only absorbs and dis-
charges heat through the thermal resistances in the re-
spective half-periods of its cycle, whereas Egs. (10)
imply that the coarse-grained tricycle assumes con-
stant heat flow, or that p, and p, are ¢ffective values of
the conductances that permit the actual heat flows to be
represented by an equivalent constant flow. Conse-
quently the values of p, and p; must be twice those used
in Ref. 3 in order to produce the same losses.

Maximum efficiency is obtained for the value of ¢,

Fig. 1.

for which

d’*’?/d42= -PTS/(Tz - Qaﬂ)z

equals zero. No such finite, nonzero ¢, exists. The
efficiency increases monotonically, as g3 -0, just as
intuition suggests.

C. Friction, heat leak and thermal resistance

Combining the terms (5) and (13) which together rep-
resent the difference between ideal and real work, we
obtain an accurate description of real heat machines
with their frictional losses, constant heat losses, and
resistance to heat transfer, The power, continuous or
average depending on the system, is

T—T—qp>2 Ty =1 Ty qip

_ 2= 13—4dp 2_da—1s 3 2P __
w=-a qs - qp + qo «
( Ty-qzp 2 Ty 2Ty To=qap 0

(17)
The extrema of Eq. (17) are located at:
ap.Tex VTeTy , and (18)
Hev+ Ty =T 7V (v+ Ty + T5) 2 =4T,T, ],

where
v=p/2a, (19)

as substitution of (18) in (17) shows. (Direct deriva-
tion of the extrema of (17) is a rather lengthy exercise,
not recommended for the casual reader.)

A contour diagram of —pw(v,AT) for T,=9, Ty=1 and
ATy=qup =0 is shown in Fig. 3 with the curves of maxi-
ma and minima drawn in heavy solid and dashed lines
respectively. The physical region, AT<T,, is divided
into a frictionally dominated region for v > - (yT,
-VT;)? with two maxima and a minimum, and a resis-
tively dominated region for v <= (VT ~ v T5)? with one
maximum, Furthermore, the two maxima have the
same value. Calling the four roots (18} AT, , .. We
have AT, always nonphysical, and

- pw(AT,) = - pulAT,)=ATy~3v , (20)

so the same extremal power output may be obtained
with two different expenditures of heat input and thus at
different efficiencies. The extremum —pu{AT,) (and
thus w) is a monotonically decreasing function of v, so
no global maximum of w exists for finite a.

The region around the point where the three roots
AT, ,q coalesce is very flat, viz., to second order in
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14 | T -
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0 9 [ 6 7 2 10 =20 80 A FIG. 3. Contour map of —pw
L - ;—"f of (17) as a function of relative
0B Il i friction (v =p/2a) and heat ex-
] change rate with reservoir 2
=2 (AT =pg,) for a work-heat-heat
8 -10 5 tricycle with friction and ther-
mal resistance. The figure is
AT = drawn for reservoir tempera-
6 \ - tures To=9 and T3 =1, in ar-
// ol -2-10| D bitrary units. The heavy lines
= 3 = indicate singularities and maxi-
4 : % ma (full line) and minima
. = (broken line), Eq. (18). The
o 2 m region of v near zero is the
= frictionally-dominated region
with two real and equal maxi-
ma, and the region of larger
0 0 — negative v is the resistance-
= -9 e dominated region with only a
2|0 ||5 llo é 2 O“-"“ single maximum.
vV
variations around the bifurcation point (v, AT)y= [~ (V T, +20T3AT, =0, (22)

—\/'T:’._)z, Tz -V Tsz}:

z? v v? u? » v
-po (1) oo 5 (1-5)

(21)
with

(v, AT) = (v, AT), + (v, %) ,
and
L e

In order to give the dimensionless quantities in Fig.
3 more physical meaning let us make each tempera-
ture “unit” equal to 300°K, so 7,=2700K and Ty
=300°K. At the point (v,AT), a thermal resistance of
—1°/kW, a reasonable value for heat machines of the
100 kW class like car engines, and frictional coeffi-
cient a=4.167x10™ kW ™ produces a power output w
=600 kW at a heat consumption of ¢, =~ 1800 kW, and
therefore at the efficiency n=0.33. Twice as large
friction, a=8.333x10™ kW™, makes the machine op-
erate in the frictionally dominated region where the
maximum power output 2 =300 kW can be obtained at
either of the heat consumptions g, = - 706 kW or ¢,
= - 2294 kW with corresponding efficiencies 7=0.42
and 0.13. In the thermal resistance dominated region,
where only one maximum exists, a frictional coeffi-
cient &=2.083x10™ kW™ allows a maximum w = 1200
kW at g, =— 1800 kW and n=0.67.

Whereas finding the extrema (18) of the power output
involves solving a quartic equation, the extrema of the
efficiency are located at the roots of the quintic:

AT® — 3T,AT* — [20(Ty+ ATy) - (3T3 ~ 2T, Ty ~ ATH]AT?

+ Tp[20(Ty+ 3ATy) — Ty — Tg)2JAT? - 6UT3AT AT

which we have been unable to solve analytically. In-
stead contour diagrams of 7{v, AT)=w/(~ g;) are plotted
in Fig. 4 for T, =9, Ty=1, and ATy=0 and - 1. For
heat engines (AT >0), small losses correspond to
large 1 (n—1) and for heat pumps (A7<0), to numeri-
cally small 5 {n—-+0). (The coefficient of refrigerator
performance® is ¢;/g, =0 ~1.) When AT =0, there
are no losses which encourage a fast process, and the
best efficiency is n=7""=0. 89 for an infinitely slow
process at AT=0, When there are heat leaks, AT¢#0
creates a singularity at AT =0, and the heat engine re-
gion of the contour map is very similar to what was
found in the power contour plot with two maxima and a
minimum discernible in the frictionally dominated re-
gion v > - 4 and only one maximum in the resistive re-
gion v < —4, Heat pumps display only one minimum
over the entire interval, which makes (17'1 —1) a maxi-~
mum,

1V. GEOMETRIC INTERPRETATION

Mathematically, a tricycle is an ordered triple of
real numbers q=(q,, gz, g5), satisfying the equations

2.4;=0, and Q_7,q;=0.

Such ordered triples lend themselves naturally to geo-
metric interpretation in which each point of a 3-dimen-
sional g-space corresponds to a process. The geo-
metric picture in turn suggests new ways to examine
the physics it describes. One of these is a way to de-
scribe the irreversibility of a process, as we shall

see, which requires that we examine the concept of dis-
tance in g-space. Moreover geometrization is sug-
gestive of ways to treat systems with several reser-
voirs or even a continuously varying heat bath tempera-
ture, such as Rankine or Otto cycles, which we hope to
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FIG. 4. Contour maps of the efficiency 7 as a function of relative friction (v =p/2c) and heat exchange rate with reservoir 2
(AT = pg,) for a work-heat-heat tricycle with friction, thermal resistance, and constant heat leak g =AT¢/p: (a) AT,=0, sothe
maximum efficiency is that of the reversible Carnot engine; (b) AT,=-1, which yields contours much like those of Fig. 3. How-
ever, unlike the extremal work, the extremal efficiency has a fifth root in the heat pump region of AT, The heavy lines indicate

singularities and maxima (full line) and minima (broken line). The extrema drawn are estimated solutions of Eq. (22).

voir temperatures are the same as for Fig. 3, T,=9, Ty=1.

examine in the future, Meanwhile, we concentrate on
the 3-dimensional (g, g3, ;) space and 2-reservoir
heat/work or 3-reservoir heat processes.

In order to define distance in this space, one must
first adopt a metric.” Nothing in the mathematics of
this space defines a natural metric, but the physics
makes some choices particularly useful., In general,
the metric ¢, restricted here to be diagonal, appears
in the scalar product of vectors a and b, thus:

b=y, b (23)
T Ci
where c is undetermined for the time being., The
length of a vector is as usual:

a=lal=(a-a)/?, (24)
and L denotes an orthogonal vector a‘la.

The energy conservation Eq. (1) defines a plane
which, for convenience, we call the g-plane. Similar-
ly, the locus of zero entropy production is the s-plane
for which Eq. (2) is an equality. The representative
point of a reversible process must satisfy both 3 q,;=0
and s=3 7;4; =0, and thus lie on the intersection of the
two planes which define a reversible line v with unit di-
rection vector:

d, =6/, (25)
where:
0=(T3— T3, 4= T35, T2—T1) (26)

with components equal to differences of inverse tem-
peratures. Since a spontaneous process has a positive
entropy production, all physical tricycles will be rep-
resented by points on that half of the g-plane lying
above the s-plane (see Fig. 5).

The reser-

Decomposition of ¢ into its reversible and irreversi-
ble components:

q=9,+9,, (27
gives:
3
q,= (qr' dr) dr :z (’q—ieo_') 6% y (283)
i=1 i

9,=q- [E (q‘Tg‘ﬂ@‘zG, (28b)

i

which, of course, depend on the metric chosen. A use-
ful dimensionless measure of the irreversibility of the
process is the quantity we call the drive:

6=-§=[1—(Q‘9)2/q292]1/2,
[ Caibi/e)? T2
- [‘ <zq%/ci><ze%/c,->] ’ (29)

which is the length of the irreversible part of ¢, rela-
tive to the total length of g, The drive is zero for a
reversible process, and unity for a process containing
no reversible component q,. The length of q and its
components depend on the metric, so the vector q; does
also. Hence there is no invariant (metric-independent)
meaning to “totally irreversible.” However, we shall
see that the extrema of 6 for the friction-heat leak-re-
sistance problem occur at the values of AT that solve
(22), which themselve are invariant,

Any metric of the form:

01/¢1=03/cy#63/cs (30)
yields:
i — 61 2&
a,;=q-(gs/05)6 = (11‘426_ » 0, g5—az 0.) (31)
2 2
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physical
half-plong

which is identical to the decomposition arbitrarily
chosen in Fig. 1. This is shown as the dotted vectors
in Fig. 5. The inequality of 8,/c, in Eq. (30) is neces-
sary to keep q, from vanishing. A more desirable de-
composition would be one that does not single out one
component, such as g, above, but treats all heat ex-
changes on an equal footing. One such metric is:
c=C(63%, 63,69 , (32)

with:
c:<z e%)/snez . (33)

In this metric the reversible part of the vector ¢ has
length

(34a)

CIT:'L\/%—G-;_% 2o (a/6))
while the irreversible part and the drive take on the
simple forms:

q7=$ (34b)
and

6=s/q.

This metric measures distance in entropy units.

(34c)

This 3-dimensional representation (actually 2-dimen-
sional since q must be on the physical half plane) of any
tricycle is a convenient way of visualizing a heat pro~
cess, with the drive as a generalized inefficiency.

V. APPLICATION OF METRIC

The analysis of power and efficiency for work-heat-
heat tricycles in section 2 was independent of metric.
In this section we will use the geometric representa-
tion to elaborate on these examples, We include an un-
specified uncaptured work f so that:

w=-13}§—73qa—f, S=fTg o (35)

Going back to the general metric for a moment we find
from Eq. (28) that:

reversible

FIG, 5. The (g1, q9, q3)
space, with the planes defined
by conservation of energy and
zero entropy production. Real
processes lie on the “physical
halfplane” indicated, with the
reversible limit given by the
intersection of the two planes.
Two decompositions of a gen-
eral tricycle q into its rever-
sible and irreversible com-
ponents are shown, The drive
is defined as the ratio of the
length of the irreversible
component gy to the total
length of q, the vector repre-
senting the real process.

ai=s /[ Erte, - QIEl) " (36:)
qr=§% [%(Z%?)N(%-%:)] , (36b)

which says that for all metrics ¢; is proportional to s
and ¢, is linear in s, so for increasing f the point g
will describe a straight half-line from the reversible
line back towards the heat pump region. Metric (32) is
seen to be exactly the one which simplifies Eqs. (36) to:
a;=s, (37a)
__sign(r, - 75) [3¢aTa(Ts = )+ {73 =27,)] ,  (37b)

qr (——-gzoi
-1
q%= 3 z[(Zﬁ) [g26:172(T5 — 275) — s(8%+ 73)] 2
2

6%+ 7

.+ qloir } . (@70)

Here, as well as in Eqgs. (36), the loss term enters
only through its accompanying entropy production.

The most nearly reversible process is obtained when
the drive 5, Eq. (29), is at its minimum which happens
when:

ds (36%/c)? (ds S)

dgs  q%6%73[3 75%c, - " Tacf)z/E 01]172 dqs 2~

X[‘Izz 0%/c;+s(i—i —%‘:)}o, (38)

which is satisfied when:

s ds
s ds 39a)
q2 dqy (

or
_s_:_e’{/c1+r§/ca+75/03 . (39b)
qz 61/¢; — o/ ¢y

Introducing the full friction, heat leak and thermal re-
sistance losses from Eq. (17), Eq. {39a) becomes iden-
tical to Eq. (22), the quintic equation defining the op-
timal efficiency in section C. Minimization of the
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drive is thus equivalent to maximizing the efficiency 7,
irrespective of metric., The relation between § and 7
for an arbitrary metric is: )

1-52

{W[CIITS = "'z(‘f'I1 + ¢+ calrg+ c;172}2

Tl et et (=P [efN g = T+ 3 r R4 et rE]

(40)
For metric of Eq. (32), this simplifies somewhat to:

e ilry =)t =gt 31
I ORI LT L @D

When n—-n"", 6 -0 independent of metric, but when

n-0, 6 approaches a value that depends on the metric.

As has been shown in this section, the geometric
representation of tricycles is a powerful tool for ob-
taining information about a general class of heat pro-
cesses, especially when the equations are not simpli-
fied by the presence of a work reservoir. In that case
the drive offers a natural way to extend the traditional
concept of efficiency in a complementary way closely
related to the entropy production,
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