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Thermodynamical analysis of a quantum heat engine based on harmonic oscillators
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Many models of heat engines have been studied with the tools of finite-time thermodynamics and an ensemble
of independent quantum systems as the working fluid. Because of their convenient analytical properties, harmonic
oscillators are the most frequently used example of a quantum system. We analyze different thermodynamical
aspects with the final aim of the optimization of the performance of the engine in terms of the mechanical power
provided during a finite-time Otto cycle. The heat exchange mechanism between the working fluid and the thermal
reservoirs is provided by the Lindblad formalism. We describe an analytical method to find the limit cycle and
give conditions for a stable limit cycle to exist. We explore the power production landscape as the duration of the
four branches of the cycle are varied for short times, intermediate times, and special frictionless times. For short
times we find a periodic structure with atolls of purely dissipative operation surrounding islands of divergent
behavior where, rather than tending to a limit cycle, the working fluid accumulates more and more energy. For
frictionless times the periodic structure is gone and we come very close to the global optimal operation. The
global optimum is found and interestingly comes with a particular value of the cycle time.
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I. INTRODUCTION

The theory of quantum mechanics was originally developed
to describe closed systems, governed by a unitary equation of
motion. More recently, the topic of open quantum systems
has been the object of many studies, and different approaches
have been developed for the evolution equation governing such
systems [1]. One of these approaches is the Lindblad formalism
[2]: The quantum system interacts with two larger systems,
called heat reservoirs, which are not perturbed significantly
by the interaction and therefore remain for the whole duration
of the evolution in the thermal equilibrium state, determined
for each reservoir by a single parameter, β, called the inverse
temperature. The effect of this interaction on the smaller
system is taken into account as an additional nonunitary term
in the evolution equation governing its dynamics. Because of
this term the energy is time dependent and its variation is
interpreted as heat exchange.

Within the topic of dissipative quantum systems, it is
possible to find many works about the analysis of models
for quantum heat engines [3–6] and quantum refrigerators
[7,8]. The description of a thermodynamic cycle requires
the combination of the dissipative dynamics, caused by the
interaction with a thermal reservoir, and the unitary dynamics
with an explicitly time-dependent Hamiltonian, that is, the
model for the mechanical work exchange mechanism.

The interest in this topic is partly due to the relation with
the experimental field of atomic and molecular cooling. In
particular, with the use of the quantum refrigerator model it
has been possible to investigate the characteristics and limits
of cooling mechanisms when systems approach absolute zero
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temperature [7]. Here it is of course necessary to use a quantum
description. The analysis of models for a quantum heat engine
is also interesting because of its connection to Finite-time
thermodynamics. This theory deals with a thermodynamic
system which is subject to processes that take place in a
finite amount of time and for this reason must deviate from
equilibrium. Different papers [9–11] within this field analyze
the optimal performance of a heat engine, i.e., the maximum
possible mechanical power that a heat engine is able to supply
when it is driven by finite-time transformations. The quantum
models for heat engines have been studied recently from the
same perspective with very interesting results.

The working medium of these thermodynamic devices is
modeled by a statistical ensemble of noninteracting quantum
systems. They can be spin systems interacting with external
magnetic fields and characterized by a finite number of degrees
of freedom [4,8,12] or quantum particles confined in a position
dependent potential. Because of its convenient properties
the harmonic potential is the example of a potential most
frequently encountered in the literature [5–7].

In this work we focus on a working medium composed
of an ensemble of quantum harmonic oscillators, and we
analyze the time evolution in the Heisenberg picture. We
consider a set of Hermitian operators forming a Lie algebra
which is closed under the equations of motions, for which the
analytical solution can be calculated. In Sec. II G we introduce
an analogy between homogeneous coordinate systems and the
set of operators in the algebra and show how this analogy
leads to a closed-form expression for the limit-cycle solution
and allows us to classify the stability of this solution.

We adopt an optimization perspective and, following
previous works in finite-time quantum thermodynamics [4,5],
we select as objective the total mechanical power averaged
over one cycle of operation. We optimize the total power with
respect to the times allocated for the four different processes
of the thermodynamic cycle. As we explain in Sec. IV B, there
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exist special choices of the time allocated for the adiabatic
processes which lead to frictionless cycles. These special times
are linked with the occurrence of a periodic power landscape
and are relevant to our optimization problem.

II. METHODS

A. The system

The system is an ensemble of independent harmonic
oscillators, governed by the Hamiltonian represented by the
operator Ĥ :

Ĥ (t) = 1

2m
P̂ 2 + 1

2
m[ω(t)]2 Q̂2, (1)

where Q̂ and P̂ are the position and momentum operators,
m is the mass, and ω the frequency of the oscillators. The
frequency ω is the only explicitly time-dependent part of the
Hamiltonian.

The Lagrangian of the system is represented by the operator
L̂:

L̂(t) = 1

2m
P̂ 2 − 1

2
m[ω(t)]2 Q̂2. (2)

Another operator which will be relevant is the correlation
operator Ĉ:

Ĉ(t) = 1
2ω(t)(Q̂P̂ + P̂ Q̂). (3)

Moreover, the annihilation operator â and the creation operator
â† will be considered:

â = 1√
2

[(√
mω√
�

)
Q̂ + i

(
1√
mω�

)
P̂

]
, (4)

â† = 1√
2

[(√
mω√
�

)
Q̂ − i

(
1√
mω�

)
P̂

]
. (5)

The state of the ensemble of systems is represented by
the density operator ρ̂, which is time independent in the
Heisenberg picture.

The expectation values of an operator X̂ at the time t is
given by

〈X̂〉(t) = Tr[ρ̂X̂(t)]. (6)

The expectation value 〈X̂〉 will also be simply denoted by X.

B. Time evolution

We will consider the time evolution of the ensemble of
oscillators using the Heisenberg picture. As it will be explained
in more detail in Sec. II C, when the system obeys canonical
invariance it is possible to use the Heisenberg picture to
calculate the evolution of the expectation values of a finite
set of operators forming a Lie algebra without the necessity to
specify anything else about the state of the system. This allows
us to calculate the mechanical power production, which, as will
be explained in Sec. IV A, is the objective of our optimization
problem.

The equation of motion for an operator X̂ in the Heisenberg
picture can be written as

d

dt
X̂(t) = L∗

H [X̂(t)] + L∗
D[X̂(t)] + ∂

∂t
X̂(t), (7)

where ∂X̂/∂t is the explicit time dependence of the operator,
L∗

H is the superoperator representing the unitary part of
the evolution, and L∗

D is the superoperator representing
the nonunitary part of the evolution which arises from the
dissipative interaction of the system with the heat reservoirs.
The symbol ∗ represents the adjoint of the corresponding
superoperators which govern the evolution of ρ̂ in the
Schrödinger picture.

The unitary superoperator is given by

L∗
H (X̂j ) = i

�
[Ĥ (t),X̂(t)]. (8)

Since during the isochore phases ω is constant, we are
interested in the Lindblad superoperator for the harmonic
oscillator with a time-independent Hamiltonian which is given
by

L∗
D(X̂) = k↓

(
â†X̂â − 1

2

{
â†â,X̂

})
+k↑

(
âX̂â† − 1

2

{
ââ†,X̂

})
. (9)

The two coefficients k↑ and k↓ are known as transition rates.
In order for the detailed balance condition to be obeyed,
the ratio between the transition rates must satisfy k↑/k↓ =
exp(−β�ω), where β = 1/kBT is the inverse temperature.
This requirement still allows us to arbitrarily define the net
transition rate � = k↓ − k↑, also called the heat conductance.

C. Canonical invariance

For the harmonic system a finite set of Hermitian operators
X̂k can be defined so their general evolution can be written in
the closed form,

d

dt
X̂j (t) =

K∑
k=1

ajk(t) X̂k(t) with ajk ∈ R, (10)

which can be written in matrix notation as

d

dt
X̂(t) = A(t) X̂(t). (11)

This property follows from the fact that the operators form
a closed Lie algebra and that the system exhibits canonical
invariance. In the Schrödinger picture the property called
canonical invariance is when an initially canonical form for
the density matrix, ρ̂ = (1/Z) exp(

∑
k βkX̂k), retains this form

at all instants of time. The density operator ρ̂ is completely
parametrized by the time dependence of the coefficients βk(t).

The first requirement for this condition to be satisfied is that
the operators form a closed Lie algebra:

[iX̂h,iX̂j ] = i

K∑
k=1

�hjkX̂k with �hjk ∈ R ∀ h,j,k.

(12)

For adiabatic evolution the second condition is that the algebra
is closed with respect to L∗

H , which is true if the Hamiltonian
operator can be expressed as a linear combination of the
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operators in the set:

Ĥ =
K∑

k=1

ckX̂k with ck ∈ R ∀ k. (13)

For isochoric evolution the algebra must be closed with respect
to L∗

D , and it can be shown [5] that canonical invariance is
satisfied with the Lindblad superoperator defined in Eq. (9).

The basis of canonically invariant Hermitian operators is
not uniquely defined; for example, one possible choice is
{X̂j } = {Q̂2,P̂ 2,Q̂P̂ + P̂ Q̂,1̂}. In this work, we adopt another
choice which is commonly found in the literature:

{X̂j } = {Ĥ ,L̂,Ĉ,1̂}. (14)

Since the evolution equation is linear, the general solution can
be expressed as

X̂(t) = U(t) X̂(0), (15)

where the matrix U is the evolution matrix and satisfies the
linear differential equation

d

dt
U(t) = A(t)U(t) (16)

with the initial condition U(0) = 1.

D. The Otto cycle

The ensemble undergoes a thermodynamic cycle composed
of four branches. To avoid the mathematical difficulties of
considering a time-dependent Hamiltonian at the same time
as the dissipative evolution, the Otto cycle is chosen for
which heat transfer and mechanical work transfer never occur
simultaneously. One complete thermodynamic Otto cycle is
composed of the following four processes in order:

(1) Hot isochore: The system, whose frequency is equal
to ωH , is coupled to the hot heat reservoir whose inverse
temperature is denoted by βH . The heat conductance is equal
to �H .

(2) Expansion adiabat: The frequency of the system
changes from ωH to ωC with no connection to any of the
heat reservoirs.

(3) Cold isochore: The system, whose frequency is equal
to ωC , is coupled to the cold heat reservoir whose inverse
temperature is denoted by βC . The heat conductance is equal
to �C .

(4) Compression adiabat: The frequency of the system
changes from ωC to ωH with no connection to any of the
heat reservoirs.

The durations of the four processes are denoted respectively
by τH , τHC , τC , and τCH , making the duration of a complete
cycle τ = τH + τHC + τC + τCH . The following relations
need to be satisfied by the choice of parameters: βC > βH

and ωC < ωH .
Similarly, the evolution matrices for the four branches

are denoted respectively by UH , UHC , UC , and UCH . The
evolution matrix U(τ ) for one cycle can then be factorized as
U(τ ) = UCH UCUHCUH .

E. Adiabat dynamics

During the adiabatic processes the parameter ω is time
dependent and therefore the energy 〈Ĥ 〉 of the system may
vary. This energy variation is interpreted as the work exchange
of the system. However, part of this work is associated with a
change in the probability distribution among the energy levels
and to the concept of quantum friction [4,13].

There are many possible choices for the time dependence
of the frequency ω(t), the three following examples being
the simplest: (i) linear evolution for which ω̇ is constant; (ii)
exponential evolution for which the relative rate of change
(also called nonadiabatic parameter), λ = ω̇/ω, is constant;
and (iii) Shortcut To Adiabaticity (STA) evolution for which
the dimensionless adiabatic parameter, μ = ω̇/ω2, is constant.
This choice may be critical since a particular time dependence
of ω could lead to an equation that can be solved analytically.
As explained in Ref. [7], this useful property is satisfied for
choice (iii) for which μ is constant. Even though it would
not make a substantial difference to choose one or the other
when a numerical method is employed for the integration of
the evolution equations, we used the time dependence with
constant μ for our simulations. In this way, the properties of the
harmonic solution can be employed to predict the qualitative
behavior of the power landscape and provide a useful starting
point for the optimization problem; μ is zero during isochore
phases.

The evolution of X can be calculated from Eq. (7) without
the dissipative term L∗

D by considering the appropriate ω time
dependence and calculating the various commutators between
the operators. This leads to the following equation:

d

dt

⎛
⎜⎝

H

L

C

1

⎞
⎟⎠ = ω(t)

⎛
⎜⎝

μ −μ 0 0
−μ μ −2 0
0 2 μ 0
0 0 0 0

⎞
⎟⎠

⎛
⎜⎝

H

L

C

1

⎞
⎟⎠. (17)

For this choice of evolution the evolution matrix Uadiabat from
the initial to the final instant of the branch can be calculated
analytically [7].

The energy variation Ptot = dH/dt during the adiabat
branches is interpreted as the mechanical work exchange rate.

F. Isochore dynamics

During the isochoric processes the Hamiltonian does not
depend explicitly on time. The dissipation mechanism is
included as the nonunitary term L∗

D visible in Eq. (7) and
defined in Eq. (9). The evolution for the isochore branch can be
expressed in terms of Heq = (�ω/2)coth(β�ω/2), the thermal
equilibrium energy corresponding to the inverse temperature
β. As will be clear, its value is also the long-time limit of H .

The evolution of X, which can be derived from Eq. (7) by
calculating the various commutators and anticommutators, is
expressed by the following equation:

d

dt

⎛
⎜⎝

H

L

C

1

⎞
⎟⎠ =

⎛
⎜⎝

−� 0 0 +�Heq

0 −� −2ω 0
0 +2ω −� 0
0 0 0 0

⎞
⎟⎠

⎛
⎜⎝

H

L

C

1

⎞
⎟⎠. (18)

The evolution matrix U isochore from the initial to the final instant
of this branch can also be calculated analytically [7].
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The energy variation Q̇ = dH/dt during the isochore
phases is interpreted as the heat exchange rate.

G. Limit cycle

The evolution is periodic with period τ . This is expressed
by the equation A(t + τ ) = A(t), which is satisfied by the
matrix A introduced in Eq. (11), independently of the choice
of a basis on the Lie algebra. The evolution matrix U will then
satisfy the property U(t + τ ) = U(t)U(τ ).

Since the expectation value of 1̂ is always 1, it is insightful to
consider the analogy with homogeneous coordinate systems.
We will denote with the symbol ˜ the 3 × 1 vectors and 3 × 3
matrix blocks acting on the first three variables H , L, and C.
In this notation, the evolution equation is written as

A(t) =

⎛
⎜⎝ Ã(t) B̃(t)

0 0 0 0

⎞
⎟⎠, (19)

which results in an evolution matrix of the form

U(t) =

⎛
⎜⎝ Ũ(t) C̃(t)

0 0 0 1

⎞
⎟⎠. (20)

The 3 × 3 matrix Ũ is the linear part of the evolution; the
vector C̃ can be interpreted as a translation in the space of the
first three variables.

For a single cycle evolution we have

X̃(t + τ ) = Ũ(τ )X̃(t) + C̃(τ ), (21)

which leads to the following solution for a stationary point X̃
0

at the time t = 0:

X̃
0 = Ũ(τ )X̃

0 + C̃(τ ) = [1̃ − Ũ(τ )]−1 C̃(τ ). (22)

Consequently, the only requirement for the existence of a
stationary solution is the invertibility of 1̃ − Ũ(τ ).

As is pointed out in Ref. [6], the stationary solution is not
necessarily a stable equilibrium solution. For the evolution
equations under consideration, a stable equilibrium point X̃

0

also satisfies the following requirement for an arbitrary initial
state X̃(0):

lim
n→+∞ X̃(nτ ) = X̃

0
. (23)

The evolution equation for n cycles can be factorized in the
following form:

X̃(nτ ) = Ũ
n
(τ )X̃(0) +

n−1∑
k=0

Ũ
k
(τ )C̃(τ ). (24)

It is evident that, in order for the equilibrium solution to be
independent of the initial state, the following equation must be
satisfied:

lim
n→+∞ Ũ

n
(τ ) = 0̃. (25)

This is true if and only if the moduli of all the eigenvalues
of the matrix Ũ(τ ) are strictly smaller than 1. This also implies

that the geometric series generated by Ũ(τ ) is convergent and
the limit is given by

lim
n→+∞

n−1∑
k=0

Ũ
k
(τ ) = [1̃ − Ũ(τ )]−1. (26)

This finally proves Eq. (23). If at least one of the eigenvalues
of Ũ(τ ) has a modulus greater than or equal to 1, then Eq. (23)
can be satisfied only for a particular choice of initial condition
X̃(0) belonging to a subspace of dimension smaller than 3.

This condition on the eigenvalues of Ũ(τ ) does not seem to
have been appreciated before. It is quite important as we find
regular instances of time allocations for which it is violated
and the system energy diverges with time [white regions of
Fig. 3(a)].

The present method allows us to determine analytically
the equilibrium solutions and to classify their stability with
certainty. Reference [6] presented the possibility of obtaining
an analytical expression for the limit cycle going through the
geometric series [Eq. (26)], but we find our procedure using
the evolution matrices more transparent and straightforward.

Even though here we chose a time dependence of ω for
which the analytical solution is available, the limit-cycle
method can be useful also in other cases. If, in a different
case, the analytical solution is not available, then it is possible
to numerically integrate Eq. (16) for one cycle and apply the
same procedure to calculate the equilibrium points from the
matrix U(τ ).

In our case the analytical solution to the equation of
motion exists and we compute the analytical expression of
the limit-cycle solution X̃

0
, employing symbolic computation

techniques. However, since these expressions are very long
and not particularly insightful, they will not be presented here.

III. THERMODYNAMICS

A. Heat and work

The energy exchange of the system with the exterior
through the different mechanisms is always given by the
variation of the expectation value, 〈Ĥ 〉, of the Hamiltonian
operator. However, in the context of the quantum heat engine
it is necessary to analyze this energy exchange contribution
more in detail. We introduce the number operator, denoted by
N̂ , which satisfies the following relation involving ω and Ĥ :

Ĥ = �ω

(
N̂ + 1

2

)
. (27)

The total energy exchange rate d〈Ĥ 〉/dt can always be
expressed in terms of N = 〈N̂〉 and ω:

d

dt
〈Ĥ 〉 = �

d ω

dt

(
〈N̂〉 + 1

2

)
︸ ︷︷ ︸

∝ ω̇

+ �ω
d

dt
〈N̂〉︸ ︷︷ ︸

∝ Ṅ

. (28)

During the isochoric processes the frequency ω is constant
and the first term of the right-hand side of Eq. (28) is zero: All
the energy variation can be interpreted as heat exchanged with
one of the thermal reservoirs.

It can be shown that during the adiabatic processes the
two terms on the right-hand side of Eq. (28) correspond,
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FIG. 1. Left panel: Three example cycles are used to illustrate the three contributions to the energy exchange rate. Positive contributions,
i.e., entering the system, are patterned with lines with positive slope and negative contributions are patterned with lines with negative slope.
Right top panel: The contributions to the energy exchange rate are plotted as functions of time. The total exchange rate is indicated by the black
line. Right bottom panel: Energy entropy and von Neumann entropy are plotted as functions of time. The von Neumann entropy is always
smaller than the energy entropy and the difference decreases during the dissipative processes.

respectively, to the first two matrix entries of Eq. (17):

+ ω(t)μH = �
d ω

dt

(
N + 1

2

)
and

−ω(t)μL = �ω
d

dt
N. (29)

Following other authors [4,5], we distinguish between these
two different contributions to the total power being exchanged
with the system during the adiabatic processes. The first
contribution is the external work while the second contribution
is often called frictional work. As is pointed out in Ref. [5], this
latter contribution to the total power is analogous to friction in
the sense that it reduces the power, is zero when the motion is
infinitely slow, and increases with speed.

The energy exchange mechanisms can be interpreted
geometrically by plotting the cycle trajectory as a function of ω

and (N + 1
2 ). Three different limit cycles are shown in Fig. 1(a)

and labeled by the letters A, B, and C. We decided to use three
separate examples to illustrate the geometrical interpretation
of the different energy exchange contributions, since using a
single example would have made the figure more difficult to
understand. For each case the cycle is subdivided into its four
branches which are plotted in different colors. The shaded
areas correspond to different energy exchange contributions.

The heat exchanged during the isochoric process is
highlighted in orange for cycle C. Positive contributions
are patterned with lines with positive slope and negative
contributions are patterned with lines with negative slope.
The frictional contribution to the total work is highlighted
in black for cycle B. The net external work is highlighted
in green for cycle A. As can be seen from Eq. (28), the
external work exchanged during each adiabat process is equal
to the area between the corresponding curve segment and the
frequency (ω) axis. However, the interval of the omega axis

spanned during the expansion adiabat is equal to the interval
spanned during the compression adiabat, and the external
work has opposite sign for the two processes. For this reason
the contributions to the net external work due to the region
not enclosed by the cycle curve cancel each other and the
corresponding area is not shaded in example A of Fig. 1(a).
This argument cannot be applied to the heat exchange and the
frictional work, since the intervals of the N axis differ: The
contributions due to the region not enclosed by the cycle curve
do not cancel perfectly (examples B and C).

For limit-cycle trajectories energy conservation implies that
the net heat exchanged during a cycle is equal in value and
opposite in sign to the net total work exchanged. The same
color code is applied to the top panel of Fig. 1(b), where the
different energy exchange rates are plotted as functions of
the time t for one example limit cycle. The thick black line
represents the total energy exchange rate at any given moment.

The two contributions to the energy exchange can also be
computed from the density operator ρ̂ by expanding it over
the time-dependent basis of the eigenstates of the Hamiltonian
operator Ĥ . Once ρ̂ has been written in this form, the diagonal
elements, Pn, of the matrix expansion correspond to the
probability of occupation of the energy levels. The diagonal
elements of Ĥ , denoted by εn, are the eigenenergies. The total
energy is then expressed by the sum H (t) = ∑

n Pn(t)εn(t),
and the following expression can be used to separate the two
different contributions to the total power Ptot:

Ptot(t) = d

dt

∑
n

Pn(t)εn(t)

=
∑

n

Ṗn(t)εn(t)

︸ ︷︷ ︸
Frictional

+
∑

n

Pn(t)ε̇n(t)

︸ ︷︷ ︸
External

. (30)
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FIG. 2. Different example cycles are used to illustrate the different possible categories of solutions. The cycle trajectories are plotted as
functions of ω and (N + 1

2 ). Left panel: The trajectory labeled by B is a normal enginelike cycle which provides a positive net power. The thin
black rectangle is the reversible (long-time limit) cycle, touching the hot and cold reservoirs at two corners. For the trajectory labeled by A the
heat transfer during the hot isochoric process has the opposite sign (out of the system), resulting in negative power produced. These kinds of
cycles are indicated in Figs. 3, 5, and 6 by the color gray. Right panel: A trajectory, starting at the lower right marked “1st” is winding its way
upward. Thus the system is not able to converge to a limit cycle. These kinds of trajectories are indicated in Figs. 3, 5, and 6 by the color white.

According to the adiabatic theorem, the frictional contribution
of the work converges to zero in the quasistatic limit, i.e., when
the time allocated for the adiabatic process is very long.

B. Entropy

Many thermodynamic quantities are uniquely defined by
the value of X = (H,L,C), and closed-form expressions can
be derived. The more relevant definitions for the case of the
quantum heat engine are the von Neumann entropy and the
energy entropy.

The von Neumann entropy SvN is defined as

SvN[ρ̂] = −Tr[ρ̂ log(ρ̂)]. (31)

The energy entropy is defined in term of the occupation
probabilities Pn of the energy levels of the Hamiltonian Ĥ

as

SĤ = −
∑

n

Pn log(Pn). (32)

FIG. 3. The total power P tot is plotted on the (τH ,τC) plane. The power landscape exhibits a periodic structure with a period equal to π/ωH

in the τH direction and to π/ωC in the τC direction. The left panel shows the case of short adiabat times, τHC = τCH = 0.08, where cycles
which do not produce a positive total power occur more frequently than for intermediate adiabat times, τHC = τCH = 0.227, shown in the right
panel. Maximum power is produced at the intersection of the dashed lines. The color scheme is explained in Se. IV A.
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We calculate SvN and SĤ from the values of H , L and C,
as explained in Ref. [5]. Different characteristics of the time
dependence of these entropies can be theoretically predicted.
The von Neumann entropy is a lower limit with respect to
the entropy of any operator, including Ĥ . During adiabatic
processes the von Neumann entropy is expected to remain
constant while the energy entropy may vary if the process is
not in the quasistatic limit. For an isochoric process the density
operator is expected to converge to the thermal equilibrium
state which is diagonal in the energy basis. For this reason the
difference between SvN and SĤ is expected to decrease during
the dissipative dynamics. This phenomenon is an effect of the
decoherence mechanism which is also linked with the decrease
of the amplitude of the oscillation of L and C. Moreover,
during the cooling isochore the von Neumann entropy should
decrease. In the bottom panel of Fig. 1(b) the von Neumann
entropy and the energy entropy are plotted as functions of time
for a complete cycle of the engine. All the features described
above may be observed in this graph.

IV. RESULTS

A. Optimization setup

The objective of the optimization problem that is most
studied in the literature in the context of quantum heat engines
is maximization of the average total power with respect to
the choice of the four times allocated for the four different
branches of the thermodynamic cycle. The total power P tot

is defined as the net energy exchanged during the adiabatic
processes divided by the total duration of one cycle,

P tot = −Wtot

τ
= − 1

τ

∫
adiabats

dH

dt
dt. (33)

The minus sign is introduced because we are interested in
maximizing the power extracted from the system. In the results
we will show in this section, such as Figs. 3, 5, and 6, the total
power P tot is indicated by the color according to the color map
shown on the side of the figure. Further, the different solutions
can be classified in categories depending on their behavior
with respect to the objective function. Some special cases are
illustrated in Figs. 2(a) and 2(b) by the cycle trajectories as
functions of ω and (N + 1

2 ).
(1) Normal enginelike trajectories: The color of the power

landscape in Figs. 3, 5, and 6 indicates the value of total power
produced, ranging from blue (low power) to red (high power).
An example of such a cycle corresponds to the trajectory
labeled B in Fig. 2(a).

(2) Trajectories for which the heat transfers during the
isochoric processes have the correct sign (into the system on
hot isochores and out of the system on cold isochores), but net
total power has the opposite sign, are indicated in Figs. 3, 5,
and 6 by the color black.

(3) Trajectories for which the heat transfer during at least
one of the isochoric processes has the opposite sign are
indicated in Figs. 3, 5, and 6 by the color gray. An example of
such a cycle corresponds to the trajectory labeled A in Fig. 2(a).

(4) Trajectories for which the system is not able to converge
to a limit cycle are indicated in Figs. 3, 5, and 6 by the color
white. This behavior corresponds to the cases for which at
least one of the eigenvalues of the matrix Ũ(τ ) defined in

Eq. (20) has norm greater than or equal to 1. An example of
evolution over the time span of several cycles can be seen in
Fig. 2(b). It may be noticed how N increases with time instead
of exhibiting the expected cyclic behavior.

All the data points of the power landscapes shown in Figs. 3,
5, and 6 have been computed analytically using the techniques
described in Sec. II and, in particular, the method illustrated
in Sec. II G, which allows us to determine the closed-form
expression of the limit cycle and classify its stability.

In order to be able to compare the different results of this
section, the values of the engine parameters are kept constant
for all the simulations that will be presented:

ωH = 30, ωC = 15, βH = 0.008, βC = 0.03,

�H = �C = 0.7, m = 1 (34)

The adiabatic dynamics using a constant dimensionless pa-
rameter μ was used throughout. Further, we decided to adopt
the convention that � and kB are both equal to 1.

Figures 3(a) and 3(b) already present several peculiarities of
the P tot(τH ,τC) power landscape. In both cases one observes a
periodic structure superimposed on a slowly varying behavior.
In the next section we will examine more in detail the
occurrence of the periodic structure. Another interesting
feature is that in both cases the power drops to zero when
either τH or τC goes to zero. Since the power is equal to the
total work divided by the total cycle time, it converges to zero
also in the limit of long allocated times. This feature will be
visible in the following figures which cover a larger area of the
(τH ,τC) plane. By comparing Fig. 3(a) with Fig. 3(b), we notice
that the occurrence of normal enginelike cycles with positive
power is more frequent for intermediate adiabat times than it
is for short adiabat times. The white areas corresponding to
conditions where it was not possible to achieve a closed limit
cycle dominate at the very short times. These are strongly
driven dissipative systems for which the isochore times are
simply too short to obtain the necessary heat transfers, and an
increasing amount of work is delivered to the system during
the adiabats in an attempt to force the desired heat transfers.
The excess energy builds up in the working fluid, making
closure of the cycle impossible. Such divergence has not been
reported previously for any quantum heat engine. The quantum
mechanical origin of this periodic divergence is discussed in
an upcoming article.

B. Frictionless cycles

We start the analysis of finding the optimal sets of times by
considering a special class of solutions for which the system
starts each of the four steps of the thermodynamic cycle in
the completely noncoherent thermal state characterized by
〈L̂〉 = 〈Ĉ〉 = 0. This feature can be predicted by considering
the analytical solution Uadiabat of Eq. (17), as described in
Ref. [7]. The requirement that 〈L̂〉 = 〈Ĉ〉 = 0 at the beginning
of each step is related to the evolution matrices of the adiabatic
processes. In particular, the matrix elements U adiabat

CH and
U adiabat

LH connecting the operators L̂ and Ĉ with the Hamiltonian
Ĥ have to be zero at the final instant of each adiabatic process.
This results in a condition on the duration of the adiabatic
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FIG. 4. Two limit-cycle trajectories plotted in the (H,L,C) space. The times allocated for the isochoric processes are τH = τC = 0.3. Left
panel: Adiabat times τHC = τCH = 0.4. Right panel: A frictionless trajectory with adiabat times τHC = τ2, τCH = τ1. One notices that the
values of L and C remain zero during both isochores for this frictionless trajectory.

processes which are then limited to a discrete infinite set τn:

τn = 1

2

[
ξ 2 +

(
2nπ

γ

)2
]1/2

with ξ = ωf − ωi

ωf ωi

and

γ = ln(ωf /ωi)

ξ
. (35)

Note that the values of τn are invariant with respect to exchange
of initial frequency ωi and final frequency ωf , leading to the
same result for both adiabatic processes. In our examples, the
hot and cold frequencies are respectively equal to 30 and 15,
leading to the following values for the first solutions: τ1 ≈
0.152 and τ2 ≈ 0.303.

Figure 4(b) shows one example of this class of solutions,
plotted in the three-dimensional space (H,L,C), which can
be compared to the general trajectory shown in Fig. 4(a). As

expected, at the beginning of each step of the example of
Fig. 4(b) the expectation values of L̂ and Ĉ are zero and
they remain zero during the whole duration of the isochoric
processes. The values of the two adiabat times do not have
to be equal; this example corresponds to the choice τHC = τ2

and τCH = τ1, (with τH = 0.3 and τC = 1.13).
The fact that the expectation values L and C remain zero

for the whole duration of the isochoric processes implies
that the solution will not exhibit a periodic dependence with
respect to τH and τC . The total power P tot landscape on the
(τH ,τC) plane for a choice of adiabat times that satisfy this
condition (τHC = τ2 ≈ 0.303, τCH = τ1 ≈ 0.152) is plotted
in Fig. 5(b). As can be seen, the appearance of the power
landscape with respect to the isochore times is smooth and
slowly varying, and all limit cycles close (there are no white
areas).

FIG. 5. The total power P tot is plotted on the (τH ,τC) plane. Left panel: The power landscape corresponding to a general choice of adiabat
times, τHC = τCH = 0.4, and therefore exhibiting the periodic structure. Right panel: The power landscape corresponding to adiabat times
resulting in frictionless cycles, τHC = τ2, τCH = τ1. These do not exhibit the periodic structure. The optimal points are visible at the intersection
between the black dashed lines. The color scheme is explained in Sec. IV A.
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FIG. 6. Left panel: The total power P tot is plotted on the (τHC,τCH ) plane of adiabat times for the isochore times τH = τC = 1.24. One
notices the periodic structure determined by the set of times τn defined in Eq. (35) and drawn as the grid in dotted line. Right panel: The optimal
values Popt

tot with respect to the adiabat times τHC and τCH plotted as a function of τH and τC . The optimal point of this plane is thus the global
maximum. The color scheme is explained in Sec. IV A.

This can be compared with the result for a choice that
does not satisfy this condition (τHC = τCH = 0.4). The same
region of the (τH ,τC) plane is plotted for this case in Fig. 5(a).
The appearance of the landscape is characterized by a strong
periodicity with respect to τH and τC superimposed on a slowly
varying behavior already visible in the previous case. The
evolution equations predict that the period of the oscillations
in the τH and τC directions are, respectively, equal to π/ωH

and π/ωC . The optimal total power point is visible in both
figures at the intersection between the black dashed lines.

The total power P tot exhibits a periodic structure also when
plotted as function of the adiabat times τHC and τCH , as is seen
from Fig. 6(a). In this case the periodic structure is determined
by the set of times τn, defined in Eq. (35). It is also important
to notice that there actually is a unique point of the grid with
maximum power production and that it is located extremely
close to the frictionless point τHC = τCH = τ1, but not exactly
on it, at slightly shorter times. This result indicates that the
maximum net power is achieved with a trajectory that is not
perfectly frictionless, but the (slight) frictional loss is balanced
by a faster rate of operation and thus larger power.

The last result of our optimization study is illustrated in
Fig. 6(b). The total power P tot is optimized with respect to the
adiabat times τHC and τCH for different combinations of τH

and τC :

Popt
tot (τH ,τC) = max

τHC,τCH

[P tot(τH ,τHC,τC,τCH )]. (36)

The optimized values of power Popt
tot are then plotted as a

function of τH and τC . The optimal point on this plane, visible
at the intersection between the black dashed lines, is thus
the globally optimal point with respect to our optimization
problem. Since in Fig. 6(a) we selected the same isochore
times of the global maximum, the optimal point of this plane
is also the global optimum. Note that in both cases the global
optimum is an interior point, i.e., there is an optimal total cycle
time τ . At short times friction becomes too large and there is

not enough time to recover it, while at long times the turnover
of the engine is too slow.

V. CONCLUSION

We investigated the behavior of a quantum Otto cycle whose
working medium is composed of an ensemble of harmonic
oscillators. We introduced an analogy between our system
state vector and homogeneous coordinates which allowed us
to employ exclusively analytical methods for the calculation
of each limit-cycle solution, as well as for the classification of
its stability.

As is traditional in the field of finite-time thermodynamics,
we adopted an optimization point of view: We addressed the
problem of extracting the maximum amount of power output
from the quantum engine by selecting the times allocated for
each of the four branches of one cycle. An interior global
maximum power point is located for a given total cycle time τ .
Particularly for short time cycles, it is necessary to be careful
in the selection of meaningful cycles in relation to the goal of
power optimization. For some cycles the frictional contribution
dominates the behavior, preventing the system from reaching
a limit cycle or leading to cycles characterized by a negative
power output.

We draw a link between the special frictionless trajectories,
which can be obtained by careful selection of the times
allocated for the adiabat processes, and the appearance of the
power landscape when plotted as a function of the allocated
times. These special trajectories are a useful starting point to
solve our optimization problem since the global optimum lies
close to one of these.
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