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a b s t r a c t

Coherent control of self-contained quantum systems offers the possibility to fabricate
smallest thermal transistors. The steady coherence created by the delocalization of elec-
tronic excited states arouses nonlinear heat transports in non-equilibrium environment.
Applying this result to a three-level quantum system, we show that quantum coherence
gives rise to negative differential thermal resistances, making the thermal transistor
suitable for thermal amplification. The results demonstrate that quantum coherence
facilitates efficient thermal signal processing and can open a new field in the application
of quantum thermal management devices.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A thermal transistor, like its electronic counterpart, is capable of implementing heat flux switching and modulating.
he effects of negative differential thermal resistance (NDTR) play a key role in the development of thermal transistors [1–
]. Classical dynamic descriptions utilizing Frenkel–Kontorova lattices conclude that nonlinear lattices are the origin of
DTR [7–11]. Ben-Abdallah et al. introduced a distinct type of thermal transistors based on the radiative heat transfer
f thermal photons between two bodies [12–15]. Joulain et al. first proposed a quantum thermal transistor with strong
oupling between the interacting spins, where the competition between different decay channels makes the temperature
ependence of the base flux slow enough to obtain a high amplification [16]. Zhang et al. predicted that asymmetric
oulomb blockade in quantum-dot thermal transistors would result in a NDTR [17]. Stochastic fluctuations in mesoscopic
ystems have been regarded as an alternate resource for the fast switching of heat flows [18].
Recent studies showed that quantum coherence exhibits the ability to enhance the efficiency of thermal converters,

uch as quantum heat engines [19–21] and artificial light-harvesting systems [22,23]. Interference between multiple
ransitions in nonequilibrium environments enables us to generate non-vanishing steady quantum coherence [24,25].
vidence is growing that long-lived coherence boosts the transport of energy from light-harvesting antennas to photo-
ynthetic reaction centers [26,27]. The question arises whether quantum interference and coherence effects could also
nduce nonlinear heat conduction and enhance the performance of a thermal transistor.

Scovil and Schulz-DuBois originally proposed a three-level maser system as an example of a Carnot engine and applied
etailed balance ideas to obtain the maser efficiency formula [28]. Because the controlled (output) thermal flux is normally
igher than the controlling (input) thermal flux, a thermal transistor is able to amplify or switch a small signal. The
mplification factor must be tailored to suit specific situations. The Scovil and Schulz-DuBois maser model is not applicable
or fabricating thermal transistors, owing to the fact that its amplification factor is simply a constant defined by the
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aser frequency relative to the pump frequency [29,30]. However, the coherent excitation-energy transfer created by
he delocalization of electronic excited states may aid in the design of powerful thermal devices. Coherent control of a
hree-level system (TLS) provides us a heuristic approach to better understand the prime requirements for the occurrence
f anomalous thermal conduction in quantum systems.
In this paper, we design a quantum thermal transistor consisting of a TLS coupled to three separate baths. The

ynamics of the system is derived by considering the coupling between the two excited states. Steady-state solutions
ill be used to prove that the coherent transitions between the two excited states induce nonlinearity in nonequilibrium
uantum systems. Further analysis shows that quantum coherence gives rise to a NDTR and helps improve the thermal
mplification.

. Model and principles

.1. The three-level system (TLS)

Fig. 1 shows the TLS modeled by the Hamiltonian HS as

HS =

∑
i=0,1,2

εi |i⟩ ⟨i| + ∆(|1⟩ ⟨2| + |2⟩ ⟨1|), (1)

here ε1 (ε2) gives the energy level of the excited states in the molecules |1⟩ (|2⟩), ε0 denotes the energy of the ground
tate |0⟩ and is set to zero, and ∆ describes the excitonic coupling between states |1⟩ and |2⟩. For the models of biological
light reactions, ∆ occurs naturally as a consequence of the intermolecular forces between two proximal optical dipoles
[23,31]. In the presence of the dipole–dipole interaction, the optically excited states become coherently delocalized.
|+⟩ = cos θ |1⟩ + sin θ |2⟩ and |−⟩ = sin θ |1⟩ − cos θ |2⟩ are the usual eigenstates diagonalizing the subspace spanned by
|1⟩ and |2⟩ with tan 2θ = 2∆/(ε1 − ε2).

The absorption of a photon from the emitter (E) causes an excitation transfer from the ground state |0⟩ to the state |1⟩,
whereas phonons are emitted into the base (B) by the transitions between |1⟩ and |2⟩. The cycle is closed by the transition
between |2⟩ and |0⟩, and the rest of the energy is released as a photon to the collector (C). The Hamiltonians of the emitter,
collector, and base are Hi =

∑
k ωika

†
ikaik (i = E, C , and B), where a†

ik (aik) refers to the creation (annihilation) operator of
the bath mode ωik. The TLS couples to the emitter and the collector, each constituted of harmonic oscillators, via coupling
constants gEk and gCk in the rotating wave approximation, where the corresponding Hamiltonians are formally written
as HSE =

∑
k

(
g†
EkaEk |0⟩ ⟨1| + h.c.

)
and HSC =

∑
k

(
g†
CkaCk |0⟩ ⟨2| + h.c.

)
, respectively. The output of the Scovil–Schulz-

DuBois maser is a radiation field with a particular frequency, provided there is population inversion between levels ε1 and
ε2. In this study, the two excited states are coupled with a thermal reservoir, namely, the base. The interaction Hamiltonian
of the system with the base is described by

HSB = (|1⟩ ⟨1| − |2⟩ ⟨2|)
∑
k

gBk
(
aBk + a†

Bk

)
. (2)

For a finite coupling ∆, the base modeled by Eq. (2) induces not only decoherence but also relaxation [32]. Here, we
consider that the excited states are coupled to the base via diagonal interaction, which describes, for instance, the
interaction between a localized crystal defect and the lattice phonons field [33]. This type of the system-bath interaction
has been widely applied in studying the processes of phonon-assisted excitation transfer [34,35], nonequilibrium energy
transfer [36], and photosynthesis [37]. The base behaves like a pure-dephasing reservoir acting on the quantum system.
Eq. (A.4) in Appendix A will prove that the coherence described by the off-diagonal element of the density matrix of the
system is closely related to the dephasing rate. In Fig. 5, we show that the increase of the dephasing rate induces the loss
of steady coherence. Transport of thermal energy between the system and the base emerges with the help of the excitonic
coupling ∆. The counterintuitive effect of the energy exchange between the two excited states and the dephasing bath
becomes evident when the system operator coupled to the base is replaced by

|1⟩ ⟨1| = cos θ cos θ |+⟩ ⟨+| + sin θ sin θ |−⟩ ⟨−|

+ sin θ cos θ (|+⟩ ⟨−| + |−⟩ ⟨+|) (3)

and

|2⟩ ⟨2| = sin θ sin θ |+⟩ ⟨+| + cos θ cos θ |−⟩ ⟨−|

− cos θ sin θ (|+⟩ ⟨−| + |−⟩ ⟨+|) . (4)

The first two operators in |1⟩ ⟨1| and |2⟩ ⟨2| describe the pure dephasing of a two-level system, whereas the third term
leads to the energy exchange between the system and the base with an effective coupling proportional to the product
sin θ cos θ , i.e.,

HSB−eff = 2 sin θ cos θ (|+⟩ ⟨−| + |−⟩ ⟨+|)
∑

gk
(
ak + a†

k

)
. (5)
k

2
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Fig. 1. Schematic illustration of the quantum thermal transistor composed of a three-level system (TLS) interacting with three baths: its ground
tate |0⟩ and excited state |1⟩ (|2⟩) are coupled with the emitter (collector); the excited states |1⟩ and |2⟩ are diagonal-coupled with the base; and
he coupling strength between |1⟩ and |2⟩ is characterized by ∆.

n reality, the TLS can be realized in the photosynthesis process. The pumping light, taking the sunlight photons for
xample, is considered as the high temperature emitter. The collector is formed by the surrounding electromagnetic
nvironment which models the energy transfer to the reaction center. The base provides the phonon modes coupled
ith the excited states [30,38].

.2. Evolution equation for the density operator of the TLS

The TLS becomes irreversible due to the interaction with its surrounding environment. In the following derivation,
he interactions HSE , HSC , and HSB are considered to be weak enough such that the thermal states of the baths are
naffected by the TLS. Using the Born–Markov approximation, which involves the assumptions that the environment is
ime independent and the environment correlations decay rapidly in comparison to the typical time scale of the system
volution [39], we get the quantum dynamics of the system in h̄ = 1 units, i.e.,

dρ
dt

= −i[HS, ρ] + DE[ρ] + DB[ρ] + DC [ρ]. (6)

The operators Di[ρ] (i = E, B, and C) denote the dissipative Lindblad superoperators associated with the emitter, base,
and collector (Appendix A, Eq. (A.1)), which take the form

Di[ρ] =

∑
v

γi (v)

[
Ai (v) ρA†

i (v) −
1
2

{
ρ, A†

i (v) Ai (v)

}]
, (7)

where v = ε − ε′ is the energy difference between the two arbitrary eigenvalues of HS , and Ai (v) is the jump operator
associated with the interaction between the system and bath i. Considering a quantum bath consisting of harmonic
oscillators, we have the decay rate γi (v) = Γ i (v) ni (v) for v < 0 and γi (v) = Γi(v) [1 + ni(v)] for v > 0, where Γi (v)

labels the decoherence rate and is related to the spectral density of the bath, and Ti is the temperature of bath i. The
thermal occupation number in a mode is written as ni(v) = 1/

[
ev/(kBTi) − 1

]
. The Boltzmann constant kB is set to unity in

the following.

2.3. Coherence induced nonlinearity and thermal transistor effects

The steady-state populations and coherence of the open quantum system are obtained by setting the left-hand side of
Eq. (6) equal zero. Then the steady state energy fluxes are determined by the average energy going through the TLS, i.e.,

.

E(∞) =

∑
i=E,C,B

Tr{HSDi[ρ (∞)]} = JE + JC + JB = 0, (8)

which complies with the 1st law of thermodynamics. The heat fluxes JE , JC , and JB are defined with respect to their own
dissipative operators. Thus,

JE = −ΓE (ε1) (nE + 1)
[
ε1

(
ρ1 −

nE

nE + 1
ρ0

)
+ ∆ℜ (ρ12)

]
= JE1 + JE2, (9)

JC = −Γ C (ε2) (nC + 1)
[
ε2

(
ρ2 −

nC

nC + 1
ρ0

)
+ ∆ℜ (ρ12)

]
= JC1 + JC2, (10)
3
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JB = −ΓB (ω) sin2 2θ (2nB + 1)[
ε1 − ε2

2
(ρ1 − ρ2)

+

√
(ε1 − ε2)

2 /4 + ∆2

2nB + 1
+ 2∆ℜ (ρ12)] = JB1 + JB2. (11)

he three heat fluxes are no longer linear functions of the rate of the spontaneous emission, indicating that the symmetric
roperty is closely related to the base induced coherence of the excited states. In Eqs. (9)–(11), each heat flux is divided
nto two categories. The terms Ji2 (i = E, C, B) are connected to the coherence in the local basis, i.e., ℜ (ρ12) (the real part
f ρ12). Ji1 is the remainder components depending on the populations of the TLS.
The thermodynamics of a TLS was originally proposed by Scovil and Schulz-DuBois [28]. Boukobza et al. obtained

he Scovil–Schulz-DuBois maser efficiency formula when the TLS was operated as an amplifier [29,40,41]. The efficiency
f the amplifier is defined as the ratio of the output energy to the energy extracted from the hot reservoir [42]. In a
onequilibrium steady state, the efficiency is a fixed value which equals 1 − (ε2 − ε0) /(ε1 − ε0), because all heat fluxes
re linear functions of the same rate of excitation. However, a thermal transistor is a thermal device used to amplify
r switch the thermal currents at the collector and the emitter via a small change in the base heat flux or the base
emperature. Nonlinearity is the essential element needed to give rise to such thermal amplification. For the purpose of
lexible control of the thermal currents, the characteristic functions of the TLS should not entirely depend upon the energy
evel structure of the TLS.

A thermal amplifier requires a transistor with a high amplification factor αE/C , which is defined as the instantaneous
ate of change of the emitter or collector heat flux to the heat flux applied at the base. The quantum thermal transistor
as fixed emitter and collector temperatures TE and TC (TE > TC ), respectively. The fluxes JE and JC are controlled by JB,
hich can be adjusted by the base temperature TB. Then the amplification factor αE/C explicitly reads

αE/C =
∂ JE/C

∂ JB
. (12)

he ratio of the slopes of the thermal currents is the key parameter to find out whether the amplification effect exists.
hen

⏐⏐αE/C
⏐⏐ > 1, a small change in JB stimulates a large variation in JE or JC and the thermal transistor effect appears.

his implies that a small change of the heat flux signal of the base would lead to noticeable changes of the energy flowing
hrough the emitter and collector.

We consider heat fluxes from the baths into the TLS as positive. As TE and TC are fixed values and TB is adjustable, the
hermal conductances of the three terminals are defined as

σi = −
∂ Ji
∂TB

= σi1 + σi2, (13)

here σij = −
∂ Jij
∂TB

(i = E, C, B; j = 1, 2), σi1 are the thermal conductances with respect to the spontaneous emission,
and σi2 are the thermal conductances relying on the coherence ℜ (ρ12). The energy conservation in Eq. (8) implies the
relationship of the three thermal conductances, σB + σC + σE = 0. Using Eq. (13), the amplification factor in Eq. (12) can
be recast in terms of σE and σC , i.e.,

αE/C =
σE/C

σB
= −

σE/C

σC + σE
. (14)

he absolute value of the amplification factor
⏐⏐αE/C

⏐⏐ > 1 implies that one of the thermal conductances is negative,
.e., σC < 0 or σE < 0. This means that there exists a NDTR, and consequently, the TLS can behave as a thermal transistor
y controlling the heat flow in analogy to the usual electric transistor.

. Results and discussion

In the following section, we need to explore the extent to which the quantum nature of the TLS affects the thermal
ransistor. The formalism obtained here will allow us to access how coherences can lead to a NDTR and an enhancement
f the amplification factor. To do so, the thermal conductances and temperatures of the three baths are recast in units
f ∆. In the wide-band approximation, we write the decoherence rates of the three terminals as Γi (v) = Γi and the
ephasing rate of the base as γB (0) = γ0.
Fig. 2(a) shows the thermal conductances σi of each terminal as functions of the base temperature TB. |σE |, σC , and

σB decrease with TB at low temperature and become constant as TB approaches TE . One of the thermal conductances is
negative, i.e., σE < 0, satisfying the basis condition for the thermal amplification. In addition, σB remains lower than |σE |

and σC over the whole range. According to the definitions of thermal conductances in Eq. (13), this phenomenon means
that a small difference of the base heat flux JB due to the change of temperature TB is able to dramatically change the
emitter and collector thermal flows JE and JC , leading to a noticeable amplification effect. When TB is between 100∆ and
200∆, the variations of |σE | and σC with TB will be more obvious than that of σB. By following the decomposition of
the thermal fluxes [Eqs. (9)–(11)], each thermal conductance can be divided into two separate parts [Eq. (13)]. Fig. 2(b)
4
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Fig. 2. (a) The overall thermal conductances σi; (b) the thermal conductances σi1; (c) the thermal conductances σi2; and (d) the real part of the
coherence ℜ [ρ12] versus the base temperature TB . We choose the parameters in units of ∆: ΓE/∆ = Γ C/∆ = ΓB/∆ = γ0/∆ ≡ 1, ε1/∆ = 10,
2/∆ = 7, TE = ∆/0.003, and TC = ∆/0.15.

Fig. 3. The amplification factors αE (solid line) and αC (dashed line) versus the base temperature TB . All parameters are the same as those used in
ig. 2.

nd (c) display the thermal conductances σi1 pertaining to the population distributions and to the coherence contributed
hermal conductances σi2 varying with the base temperature TB. σE1, σC1, and σB1 share a magnitude close to each other,
ndicating that it is unlikely to create an autonomous thermal amplifier without coherence. Quantum coherence ℜ (ρ12)

xists [Fig. 2(d)], allowing us to modify the thermodynamic behavior through the quantum control. For the two thermal
onductances σB1 and σB2 of the base, σB1>0 [Fig. 2(b)], whereas σB2 originating from the coherence is negative [Fig. 2(c)],
ensuring that we achieve a vanishing σB [Fig. 2(a)]. When σB approaches zero, Eq. (14) has indicated that one can design
a quantum thermal transistor with large amplification factors.

The curves of the amplification factors αE and αC as functions of the base temperature TB are illustrated in Fig. 3. The
amplification factors αE and αC are clearly greater than 1 over a large range of TB. As seen from Eq. (14) and Fig. 2,
these effects result from σE < 0, which is similar to the property of some electrical circuits and devices where an
increase in voltage across the overall assembly results in a decline in electric current through it, i.e., negative differential
conductance. Specifically, Fig. 3 shows that the amplification factors diverge at TB = 135.3∆ due to the fact that the
thermal conductance of the base σB = 0, induced by the quantum coherence. Under these conditions, an infinitesimal
change in JB makes a considerable difference in JE and JC . The results demonstrate that there is no fundamental difficulty
in constructing small, self-contained thermal amplifiers by using the three-level model, because it is possible to build the
steady-state coherence under the nonequilibrium environment. The quantum coherence arouses nonlinear heat transports
and gives rise to NDTR, which makes the thermal device suitable for thermal amplification. Despite the dimension of the
thermodynamic machines being small, it is still able to operate at a high amplification factor.
5
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Fig. 4. (a) The overall thermal conductances σi; (b) the thermal conductances of the base σBj (inset); and (c) the amplification factors αE (solid line)
and αC (dashed line) versus the decoherence rate of the base ΓB .

Fig. 5. (a) The absolute value and the real part of coherence, |ρ12| and ℜ [ρ12], versus the dephasing rate of the base γ0 . (b) The amplification factors
E (solid line) and αC (dashed line) versus the dephasing rate of the base γ0 .

Figs. 4 and 5 reveal the influences of the decoherence rate ΓB and the dephasing rate of the base γ0 on the performance
f the thermal transistor. The base temperature TB = ∆/0.015, while the values of other parameters are the same as
hose used in Fig. 2. The amplification factor αC increases as ΓB increases in the small-ΓB regime (ΓB < 1.287∆), but the
absolute value of αC decreases as ΓB increases in the large-ΓB regime (ΓB > 1.287∆), while αC tends to divergence for
ΓB → 1.287∆. The amplification factor αE as a function of ΓB has opposite signs. The decoherence rate ΓB is an important
parameter for building a desirable amplifier. As illustrated in Fig. 4(b), the thermal conductance σB of the base is the
sum of σB1 and σB2. Once again, we observe that σB1 is always positive, while the thermal conductance relevant to the
coherence effect σB2<0 leading to a cancellation of the sum when ΓB → 1.287∆. For the same reason, the amplification
factors diverge at ΓB → 1.287∆ when σB = 0.

Coherence is maintained in a nonequilibrium steady state even in the presence of the dephasing bath. However, a
large dephasing rate has a deleterious effect on the characteristics of the TLS thermal transistor [Fig. 5(b)]. Fig. 5(a) shows
that the absolute value |ρ12| and the real part ℜ [ρ12] of coherence are monotonically decreasing functions of γ0, the
decoherence rate of the base. The pure-dephasing bath acting on the TLS induces the loss of steady coherence, yielding
smaller αE/C .

4. Conclusions

In summary, we proposed a TLS to analyze the effects of the dipole–dipole interaction and the dephasing on the energy
transfer processes in a thermal transistor. The coupling between the two excited states of the TLS is capable of generating
steady coherence in a nonequilibrium environment, making the thermal fluxes behave nonlinearly. The coherence, at the
same time, gives rise to NTDR of the base. Quantum coherence enables the thermal flow through the collector and emitter
to be controlled by the temperature of the base. Such a thermal transistor can amplify a small input signal as well as direct
heat to flow preferentially in one direction. The thermal transistor effect can be significantly improved by adjusting the
base temperature and coherence rate or reducing the dephasing rate.
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ppendix A. The dissipative operators of the TLS

The master equation [Eq. (6)] can be derived by using the weak coupling, Markovian, and Weiskopf–Wigner approx-
mations [43–45]. Owing to the weak coupling between the TLS and the baths and setting ∆ to be small, the dissipative
uperoperators of the emitter and collector DE[ρ] and DC[ρ] are described by the local Liouville operator of the Lindblad
form [29,30,43]

Di [ρ] = Γ i (εi) [(ni + 1)
(
O−

i ρO+

i −
1
2

{
O+

i O
−

i , ρ
})

+ ni

(
O+

i ρO−

i −
1
2

{
O−

i O
+

i , ρ
})

], (A.1)

where the system operators are defined as O+

E = |1⟩ ⟨0|, and O+

C = |2⟩ ⟨0|.
The system-base coupling relates only to the states |1⟩ and |2⟩. It is appropriate to consider the role of the two excited

states first, and then the resulting dissipative operator DB[ρ] could be readily be incorporated into the dynamics of the TLS.
The jump operator associated with the base can be obtained by decomposing the system operators from the system-base
interaction Hamiltonian, which is defined as

AB(v) =

∑
ν=ε−ε′

∏
ε′

(|1⟩ ⟨1| − |2⟩ ⟨2|)
∏

ε

, (A.2)

here
∏

ε±
= |±⟩ ⟨±| is the projection onto the eigenspace belonging to the optically excited states. The operator

B(0) = cos 2θ (|+⟩ ⟨+| − |−⟩ ⟨−|) describes the dephasing effects due to the interaction with the base, while AB(ω) =

sin 2θ |−⟩ ⟨+| and A†
B(−ω) = AB(ω) are related to the decay channels with nonzero transition frequencies. In our case,

the sum is extended over v = 0, ±ω, where ω = ε+ − ε− =

√
(ε1 − ε2)

2
+ 4∆2. The second-order perturbation method

eveloped for the Lindblad master equation assumes that the interactions between the TLS and the baths are weak, but it is
pplicable over a broad range of ∆ [32]. However, because we use local Liouville operators for describing the dissipations
o the emitter and collector, ∆ can only be a small value. Putting Eq. (A.2) back into Eq. (7) yields

DB[ρ] = γB (0) cos2 2θ
[
τzρτ †

z −
1
2

{
τ †
z τz, ρ

}]
+ ΓB (ω) sin2 2θ [(nB + 1)

(
τ−ρτ+

−
1
2

{
τ+τ−, ρ

})
+ nB

(
τ+ρτ−

−
1
2

{
τ−τ+, ρ

})
]. (A.3)

t appears as a surprise to uncover that the dipole–dipole coupling between states |1⟩ and |2⟩ arouses dephasing in this
model, where γB (0) = limv→0 γB (v) = limv→0

ΓB(v)

v
kBTB is the dephasing rate due to the base. The dephasing rate is

n important effect in molecular and atomic spectroscopy and mesoscopic devices [46–48]. A new set of Pauli operators
z = |+⟩ ⟨+| − |−⟩ ⟨−|, τ+

= |+⟩ ⟨−|, and τ−
= |−⟩ ⟨+| are defined. Eq. (A.3) provides the evidence of the influence of

he coupling between states |1⟩ and |2⟩, as indicated in the terms of sin2 2θ and cos2 2θ . For purposes of testing on the
properties of the entire TLS with all the weakly coupled photon baths, Eq. (A.3) should be transformed back into the local
basis utilizing the optical Bloch equations. For the dissipative process of a two level system, the relations of the optical
Bloch equations between the bare and dressed pictures are given in Appendix B. Note that DB[ρ] is described with the
projection on the delocalized state (|+⟩ and |−⟩), while DE[ρ] and DC [ρ] are written with the original states (|1⟩ and |2⟩).
This treatment has been widely adopted in the studies of three-level systems [30,49–51]. A more rigorous calculation
requires us to write all the dissipative operators in the dressed-state basis, which is an important topic in need of further
research.
7
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According to Eqs. (6), (A.1), and (A.3), we have a coupled set of equations describing the dynamics of the populations,
ρi = ⟨i|ρ|i⟩, and the coherence, ρij = ⟨i|ρ|j⟩, as follows,

d
dt

⎛⎜⎝ρ11 − ρ22
ρ11 + ρ22
ℜ [ρ12]
ℑ [ρ12]

⎞⎟⎠ = −M

⎛⎜⎝ρ11 − ρ22
ρ11 + ρ22
ℜ [ρ12]
ℑ [ρ12]

⎞⎟⎠

+

⎛⎜⎝ΓE (ε1) nE − Γ C (ε2) nC − Γ sin2 2θ cos 2θ
ΓE (ε1) nE + Γ C (ε2) nC

−
1
2Γ sin3 2θ

0

⎞⎟⎠ , (A.4)

here the matrix M is shown in Appendix C. For the TLS, the ground state population ρ00 should be included and the
opulation conservation becomes ρ00+ρ11+ρ22 = 1. The equations for the off-diagonal terms ρ01 and ρ02 are absent from
q. (A.4) and do not affect the steady-state solution. However, the time evolutions of the populations are not decoupled
rom that of the off-diagonal elements ρ12. ℜ [ρ12] and ℑ [ρ12] are the real and imaginary parts of ρ12, and may not vanish
even in the steady state after long time evolution. Specifically, we will find that the coherent transitions between the two
excited states induce nonlinearity in the system. The heat fluxes in Eqs. (9)–(11) can be computed based on the steady
solution of Eq. (A.4).

Appendix B. The dissipative process of a two level system

The system-base coupling relates only to the excited states |1⟩ and |2⟩. In order to obtain the dynamics of the TLS
[Eq. (A.4)], it is convenient to consider the dissipative process of a two-level system first. The two-site Hamiltonian is

H0 = ε1 |1⟩ ⟨1| + ε2 |2⟩ ⟨2| + ∆(|1⟩ ⟨2| + |2⟩ ⟨1|). (B.1)

The eigenvalues of H0 are ε± = (ε1 + ε2) /2±

√
(ε1 − ε2)

2 /4 + ∆2 and the corresponding eigenstates are |+⟩ and |−⟩ as
escribed in the main text.
Based on the interaction Hamiltonian Eq. (B.1) and the dissipative superoperators Eq. (A.3) of the base , we obtain the

volution of the density matrix elements of a two-level system as

ρ̇++ = −γB (ω) sin2 2θρ++ + γB (−ω) sin2 2θρ−−, (B.2)

ρ̇+− = −[2γB (0) cos2 2θ +
1
2
ΓB (ω) sin2 2θ (2nB + 1)

+ iω]ρ+−. (B.3)

An alternative solution representation to the optical master equation is provided by the Bloch equations. Since
⟨τz (t)⟩ = tr [τz (t) ρ (t)] = ρ++ − ρ−−, ⟨τ+ (t)⟩ = tr [τ+ (t) ρ (t)] = ρ−+, ⟨τ− (t)⟩ = tr [τ− (t) ρ (t)] = ρ+−, and
ρ++(t) + ρ−−(t) = 1, Eqs. (B.2) and (B.3) can be rewritten as the differential equations of the Bloch vectors

⟨τ̇z⟩ = −ΓB (ω) sin2 2θ [(2nB + 1) ⟨τz (t)⟩ + 1] , (B.4)

⟨τ̇+⟩ = −[2γB (0) cos2 2θ +
1
2
ΓB (ω) sin2 2θ (2nB + 1)

− iω] ⟨τ+ (t)⟩ . (B.5)

To transform back into the local basis, we express the elements of the reduced density matrix by the average of the
auli operators

⟨
τz,±

⟩
t = tr

[
τz,±ρ (t)

]
and

⟨
σz,±

⟩
t = tr

[
σz,±ρ (t)

]
. Together with the relations between the bare and

ressed states, it is straightforwardly to obtain

⟨σz (t)⟩ = cos 2θ ⟨τz (t)⟩ + sin 2θ ⟨τx (t)⟩ , (B.6)

⟨σx (t)⟩ = sin 2θ ⟨τz (t)⟩ − cos 2θ ⟨τx (t)⟩ , (B.7)

⟨
σy (t)

⟩
= −

⟨
τy (t)

⟩
. (B.8)

y utilizing Eqs. (B.6)–(B.8), the dynamics of the density matrix elements in Eqs. (B.2) and (B.3) can be transformed back
nto the local basis.
8
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A

R

ppendix C. Elements of the matrix M

According to the Liouville operator Di[ρ] (i = E, B, and C) for the TLS in Eqs. (A.1) and (A.3), the elements of the matrix
M in (A.4) are given by

M11 = 2γ0 sin2 2θ cos2 2θ +
1
2
ΓB (1 + 2nB) sin2 2θ

(
cos2 2θ + 1

)
+

1
2
ΓE (1 + nE) +

1
2
ΓC (1 + nC ) , (C.1)

M12 =
1
2
ΓE (1 + 3nE) −

1
2
ΓC (1 + 3nC ) , (C.2)

M13 = −4γ0 sin 2θ cos3 2θ + ΓB (1 + 2nB) sin3 2θ cos 2θ, (C.3)

M14 = −4M41 = 2ω sin 2θ, (C.4)

M21 =
1
2
ΓE (1 + nE) −

1
2
ΓC (1 + nC ) , (C.5)

M22 =
1
2
ΓE (1 + 3nE) +

1
2
ΓC (1 + 3nC ) , (C.6)

M31 = −γ0 sin 2θ cos3 2θ +
1
4
ΓB (1 + 2nB) sin3 2θ cos 2θ, (C.7)

M33 = 2γ0 cos4 2θ +
1
2
ΓB (1 + 2nB) sin2 2θ

(
sin2 2θ + 1

)
+

1
2
ΓE (1 + nE) +

1
2
ΓC (1 + nC ) , (C.8)

M34 = −M43 = −ω cos 2θ, (C.9)

M44 = 2γ0 cos2 2θ +
1
2
ΓB (1 + 2nB) sin2 2θ

+
1
2
ΓC (nC + 1) +

1
2
ΓE (nE + 1) , (C.10)

M23 = M24 = M32 = M42 = 0. (C.11)
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