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ABSTRACT 

 

The Gibbs-Duhem theory of stability of equilibrium states has been extended to determine the 

stability of irreversible processes. The basic concept of virtual displacement in the reverse 

direction on the real trajectory, which is involved in the celebrated Gibbs-Duhem theory, has 

been used. This establishes that all thermodynamically describable processes are 

thermodynamically stable. This outcome led us to reformulate the fourth law of thermodynamics. 

Moreover, our present investigations illustrate the basis of the universal inaccessibility principle 

formulated earlier by one of the present authors (AAB).     

 

INTRODUCTION 

 

To meet the global energy demands with the limited resources at our disposal, there is 

currently considerable pressure on sustainable energy management. To achieve this goal, 

thermodynamic considerations enjoy a vital status among other tools. Within this approach, the 

thermodynamic stability criterion plays a crucial role. To this day, we have only a very sound 

thermodynamic stability theory of equilibrium states, which is known as Gibbs-Duhem stability 

theory [1-4]. However, this theory applies only to a very limited extent to the real problems we 

encounter day to day. This is so because the said theory is centered on equilibrium states, 

whereas in real problems, one hardly deals with equilibrium situations. To remove this lacuna, 

we need a thermodynamic stability theory that works entirely within a nonequilibrium 

environment. The notable efforts are those of Prigogine and co-workers (see for example 

reference [4] and references cited therein), in which they have developed their stability theory for 

local thermodynamic equilibrium (LTE) states. In principle, this theory is not capable of 

handling those vast varieties of irreversible processes not expected to lie in the domain of LTE. 

Hence, a thermodynamic stability theory of a wider spectrum of applicability is required. To 

meet this requirement, we have extended the Gibbs-Duhem stability theory of equilibrium states 

to general nonequilibrium situations, in which no assumption like LTE is involved. Thus, it is a 

comprehensive thermodynamic theory of stability. 
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For the sake of self-sufficiency, let us first recall some basic aspects of the Gibbs–Duhem theory 

of stability of equilibrium states. 

 

The thermodynamic description of the natural direction of irreversible evolution is [1– 4], 

(  )                 (  )                  (  )                                                                   ( )           
(  )                 (  )                  (  )                                                                    ( )       

where in eqs. (1) and (2)   is the entropy,   is the Gibbs free energy,   is the Hemholtz free 

energy,   is the internal energy,   is the volume,   is the temperature, and   is the pressure. 

 

Hence the unnatural direction of processes obviously become described as, 

(  )                 (  )                  (  )                                                                      ( )      
(  )                 (  )                  (  )                                                                       ( )                              

These inequalities constitute the Gibbs-Duhem thermodynamic theory of stability of equilibrium 

states [1– 4]. 

 

In essence, the above inequalities respectively describe the impossible changes of the state 

functions or virtual displacements to a neighboring nonequilibrium states. In other words, they 

are the expressions of unattainability (under the given conditions) of nonequilibrium states from 

an equilibrium state. The said nonequilibrium states are the ones through which the system 

naturally evolved to a final equilibrium state, as described in eqs. (1) and (2). 

 

Let us recall that the inequalities of eqs. (1) and (2) describe the monotonic increase/decrease of 

the thermodynamic functions during the given irreversible processes. 

 

Upon close scrutiny of the above thermodynamic inequalities, a few queries get raised. They are, 

1. In the above inequalities, the change of state functions can be taken equally between two 

end equilibrium states, as well as between end equilibrium and nonequilibrium states. But 

when the latter is the case, then how does one arrive at these state functions for 

nonequilibrium states? This by itself is a thermodynamically (particularly at the times of 

Clausius, Gibbs and Duhem) obvious question. 

2. The preceding query crops up because we have a rigorous thermodynamic definition of 

entropy,  , in equilibrium only, which is given by Clausius [5], 

    
  

 
        (                                                )                      ( ) 

3. In equilibrium we have the following definitions of Helmholtz free energy,  , and Gibbs 

free energy,  , 

                                                                                          ( ) 
But when we consider that the above thermodynamic inequalities are between two end 

states, one equilibrium and the other nonequilibrium states, then it implies that there 

exists a function,  , also for nonequilibrium states and hence the definitions of eq. (6) 

hold true for nonequilibrium states as well. 

4. It seems that the answer to the above question lies in the use of the inequality in 

differential form, stated by Clausius himself without its derivation [5,6],  

       
  

 
        (                   )                                                                   ( ) 

However, Meixner, as late as in 1973, argued that the entropy function appearing in eq. 

(7) must be that for the intermediate nonequilibrium states of an irreversible evolution of 

a system [6]. 

5. In particular, the inequalities in terms of the functions   and   are extensively used in 

chemical thermodynamics describing chemical reactions at non-vanishing rates, inter-

110



phase matter transfers, and matter diffusion (see for example [7–9]) starting with the 

inequality of eq. (7). 

 

In spite of these ambiguities associated with the above stated inequalities, the crucial principle 

that is involved in the Gibbs-Duhem theory of stability of equilibrium states is the impossibility 

of traversing the path in the reverse direction.  This basic element we have extended to 

irreversible processes. The conclusion reached is that irreversible evolutions describable 

thermodynamically are all stable ones. 

 

In doing so, we take care of not getting trapped in the types of ambiguities mentioned above. Our 

investigations finally culminate into a formulation of the fourth law of thermodynamics. 

 

The chronology of presentation is as follows. Next Section describes the thermodynamic theory 

of stability of (i) irreversible processes both under traditional conditions and general evolution, 

and (ii) nonequilibrium stationary states. In the following Section we formulate the fourth law of 

thermodynamics. The final Section contains concluding remarks.  

 

ENTROPY BALANCE EQUATION AND THERMODYNAMIC STABILITY OF 

IRREVERSIBLE PROCESSES 

 

Earlier we have developed a generalized phenomenological irreversible thermodynamic 

theory (GPITT) [10– 20]. We in particular refer readers to the paper cited at reference [18] 

wherein we have finally succeeded in identifying thermodynamic variables for spatially non-

uniform systems (also in upcoming paper [21]). Using GPITT given Gibbs relation or from any 

of the other nonequilibrium thermodynamic frameworks such as classical irreversible 

thermodynamics (CIT), extended irreversible thermodynamics (EIT), etc. (reviewed in reference 

[22]), it is easy to recall that for an open system evolving irreversibly we have, 
  

  
    

   

  
    

   

  
                                                                                                                          ( ) 

where       is the net rate of entropy change of the system, the net rate of entropy exchange is 

given by, 
   

  
      ∫(    )                                                                                                                   ( ) 

and the total rate of entropy production reads as, 
   

  
      ∫                                                                                                                                (  ) 

where    is the entropy flux density and    is the entropy source strength. Notice that eqs. (8) – 

(10) are valid for a multicomponent multiphase system in nonequilibrium. 

 

Thus, a complete and direct description of irreversibility is the rate of entropy production, eq. 

(10). Hence, Prigogine writes the second law of thermodynamics in the following words [23, 

24]: 

 

 

 

 

 

Although eq. (10) is an inequality, it cannot be used to deduce the thermodynamic stability of the 

corresponding irreversible processes along the lines of the Gibbs-Duhem theory of stability of 

equilibrium states. This is so because it is not a complete description of the change of state 

during an irreversible process. However, we notice that under certain conditions, the rate of 

―Entropy of a system can change on two and only two counts, one by the 

exchange mechanism and the other by its production within the system.‖ 
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entropy production becomes a complete description of the change of state of a system. This 

approach is described in the following Subsection. 

 

Thermodynamic Stability of Irreversible Processes Occurring in Systems with Conditions 

Imposed 

 

Notice that once we have established an entropy function in nonequilibrium 

independently using Clausius‘ inequality, it then follows that we legitimately have the following 

standard relations at the local level too, 

                                                                                                               (  ) 
where   is the per unit mass Hemholtz free energy and   is the per unit mass Gibbs free energy. 

When   and   are uniform throughout a given system, we have the following standard relations 

at the global level, 

                                                                                                         (  ) 
Notice that all the functions of eqs. (11) and (12) are time dependent, because in these 

expressions there appears the time dependent entropy in nonequilibrium. 

 

Recall once again that the Gibbs-Duhem theory of stability of equilibrium states is based on the 

impossibility of a virtual displacement from an equilibrium state in the reverse direction on the 

trajectory of the natural evolution, to the final equilibrium state determined by eqs. (3) and (4).  

We are applying exactly the same method to the irreversible segments between two end 

nonequilibrium states that would determine the thermodynamic stability of irreversible 

processes. 

 

Now it is ideal to start with closed systems evolving irreversibly under certain imposed 

conditions. 

1. On imposing the condition of isolation on a system, all exchange mechanisms become 

forbidden, eq. (8) reduces to,  

(
  

  
)
   
    (

   

  
)
   
       {

(                               
                      )

                              (  ) 

This inequality describes the evolution towards a final equilibrium state. Also, the rate of 

entropy production monotonically decreases and finally becomes zero, and as a result of 

this, the entropy of the system maximizes at the final equilibrium state. Hence for its 

conjugate virtual displacement, eq. (13) guarantees, 

(
  

  
)
   
    (

   

  
)
   
      {

(                        
                                )

                              (  ) 

Therefore, the irreversible processes in the natural direction under the condition of 

isolation are guaranteed to be thermodynamically stable ones. The allowed irreversible 

processes are chemical reactions at non-vanishing rates, internal matter diffusion within 

and across the phases of the system, and due to the existence of heat and momentum 

fluxes within the system. 

2. In this case, we impose on eq. (8) the condition of the constancy of   and   and we 

obtain, 

(
  

  
)
   
    (

   

  
)
   
       {

(                                   
                               )

                         (  ) 

In arriving at the result of eq. (15) we have also used the following identity obtained 

under the uniformity of   and the constancy of   and   from the first law of 

thermodynamics, 

(
  

  
)
   
    (

   

  
)
   
     {

(                          
                              )

                                     (  ) 
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The inequality of eq. (15) describes the evolution towards a final equilibrium state. It also 

demonstrates that the rate of entropy production decreases monotonically and becomes 

zero at the final equilibrium state, whereby the entropy of the system maximizes at the 

final equilibrium state. Therefore, for the conjugate virtual displacement eq. (15) 

guarantees, 

(
  

  
)
   
    (

   

  
)
   
      {

(                                     
                               )

                    (  ) 

Thus, the isoenthalpic-isobaric evolution of a system is guaranteed to be a 

thermodynamically stable one. In arriving at the above inequality, the pressure and 

temperature were considered uniform throughout the system. Therefore, at constant 

pressure and enthalpy, the only irreversibility that can exist is due to chemical reactions 

at a non-vanishing rate and matter diffusion. 

3. Let us consider a closed system evolving irreversibly under the uniform   within and 

across the boundaries of the closed system, with the only possible work being that due to 

    changes. Hence the corresponding expression of the first law of thermodynamics 

is, 
  

  
    

  

  
      

  

  
     (             )                                                                      (  ) 

Further assuming uniformity of   within and across the boundaries of the given closed 

system, we can use the standard relation of Helmholtz free energy given in eq. (12), 

whose time rate variation reads as, 
  

  
    

  

  
     

  

  
   

  

  
       (             )                                                           (  ) 

Notice that because now we have used the entropy function for nonequilibrium states, the 

function   is that for a nonequilibrium state. Next on substituting eq. (18) into eq. (19) 

yields,    
  

  
    

  

  
      

  

  
      

  

  
   

  

  
     (             )                                     (  ) 

which under the condition of constant   and   reduces to, 

(
  

  
)
   
    (

  

  
)
   
     (

  

  
)
   
       (             )                                          (  ) 

However, at constant   and   eq. (8) reads as, 

(
  

  
)
   
    (

   

  
)
   
    (

   

  
)
   
                                                                                (  ) 

The second law of thermodynamics for a system at uniform temperature throughout and 

across its boundaries gives, 
  

  
    

 

 
 
  

  
    

   

  
    

   

  
    

   

  
                                                                           (  ) 

so that from eq. (23) we have, 

(
   

  
)
   
    

 

 
  (
  

  
)
   
                                                                                                    (  ) 

Thus, on substituting eq. (24) into eq. (21) and using eq. (22), yields the following 

inequality, 

(
  

  
)
   
     (

   

  
)
   
        {

(                                    
                                  )

            (  ) 

The inequality of eq. (25) describes the evolution towards a final equilibrium state. Also, 

the rate of entropy production decreases monotonically and finally becomes zero 

whereby the Helmholtz free energy of the system is a minimum at the final equilibrium 

state. Therefore, for its conjugate virtual displacement eq. (25) guarantees, 
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(
  

  
)
   
     (

   

  
)
   
       {

(                                    
                                    )

      (  ) 

Thus, the evolution of a closed system at constant         is guaranteed to be a 

thermodynamically stable one. Arriving at the above inequalities, the uniformity of   and 

  was assumed, such that the irreversibility on account of heat transfer within and across 

the boundaries of the system, and that due to     changes cannot exist anymore 

because volume is also kept constant. 

4. Now let us consider uniformity of   and   within and across the boundaries of a closed 

system and also assume that only     work is involved. Then the applicable expression 

of the first law of thermodynamics is, 
  

  
    

  

  
      

  

  
     (             )                                                                      (  ) 

Under these conditions we can use the standard expression of Gibbs free energy,  , given 

in eq. (12) and its time rate of change reads as, 
  

  
    

  

  
     

  

  
   

  

  
       (             )                                                         (  ) 

which on combining with eq. (27) yields the following expression, 
  

  
    

  

  
      

  

  
     

  

  
   

  

  
       (             )                                        (  ) 

which at constant   and   takes the form, 

(
  

  
)
   
    (

  

  
)
   
     (

  

  
)
   
       (             )                                          (  ) 

while at constant   and   eq. (8) reads as, 

(
  

  
)
   
    (

   

  
)
   
    (

   

  
)
   
                                                                                (  ) 

Under these conditions, from eqs. (23) and (31) the rate of exchange of entropy reads as, 

(
   

  
)
   
    

 

 
  (
  

  
)
   
                                                                                                   (  ) 

which on substitution into eq. (30) yields, 

(
  

  
)
   
     (

   

  
)
   
        {

(                                    
                                  )

              (  ) 

The inequality of eq. (33) describes the evolution towards a final equilibrium state. Also, 

the rate of entropy production decreases monotonically and finally becomes zero at 

equilibrium, and whereby the Gibbs free energy of the system is minimum at the final 

equilibrium state. Therefore, for its conjugate virtual displacement eq. (33) guarantees, 

(
  

  
)
   
     (

   

  
)
   
       {

(                                      
                                  )

              (  ) 

Thus, the evolution of a closed system at constant   and   is guaranteed to be a 

thermodynamically stable one. Arriving at the above inequalities, the uniformity of   and 

  was assumed such that the irreversibility on account of heat transfer within and across 

the boundaries of the system and that due to     changes cannot exist. Thus, if viscous 

dissipation is also absent, then the only irreversibility that can exist is due to non-

vanishing rates of chemical reactions and internal matter diffusion. 

 

Now we see that the inequalities of eqs. (1) and (2) are in essence the assertions about the 

entropy production under the respective conditions. 

 

Yet another deduction that follows from the conditional inequalities of eqs. (13) – (15), 

(17), (25), (26), (33), and (34) is that they all guarantee that the respective evolution follows a 

passage through predestined nonequilibrium states to the final equilibrium state. Also as the 
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system evolves, it passes successively from more unstable nonequilibrium states to less unstable 

nonequilibrium states. This then implies that during these conditional evolutions, the 

instantaneous rate of entropy production continuously decreases. 

 

 

Thermodynamic Stability of Equilibrium States 

 

In the preceding Subsection we have demonstrated the stability of irreversible evolution. 

This remains true throughout the irreversible evolution. Hence, at the ‗end segment‘ of the 

irreversible evolution, the virtual displacement would be considered from the final equilibrium 

state to the same neighboring nonequilibrium states comprising forward motion, but in the 

reverse order. Since this reverse motion constitutes an impossible transition, the stability of the 

equilibrium state gets established. This is nothing else but the Gibbs-Duhem theory of stability of 

equilibrium states, and its specific descriptions get generated on integration of inequalities of this 

Section between the end equilibrium state and the neighboring nonequilibrium states. They are 

none else than the traditional ones given in eqs. (1) and (3). Correspondingly, if we consider the 

differential rates of this Section as the ones between the end equilibrium state and the 

infinitesimally away nonequilibrium state, then they are nothing else than those given in eqs. (2) 

and (4). This establishes the self-consistency of the present analysis of stability of irreversible 

processes. 

 

Thermodynamic Stability of Nonequilibrium Stationary States (NSS) 

 

Lavenda has claimed that it is not possible to thermodynamically assign maximum 

entropy to a nonequilibrium stationary state (NSS) (see Chapter 4 in [25]). However, it is 

possible to establish thermodynamic stability of NSS. Let us first elaborate the above assertion of 

Lavenda. 

 

Thermodynamically at nonequilibrium stationary state we have from eq. (8), 
     

  
         

   
   

  
    

   
   

  
                                                                                          (  ) 

where on the right-hand side of the second equality, the first term is the rate of exchange of 

entropy, the second term quantifies the rate of production of entropy, and the superscript 

    denotes nonequilibrium stationary state. Then the Taylor expansion of entropy about its value 

at NSS on a path that led the system to achieve the given NSS yields, 

 ( )            (  )( )     
 

 
 (   )( )      (                  )                              (  ) 

Notice that it is not possible to arrive at (  )       without imposition of some suitable 

conditions, but then under those conditions it would not be possible to attain a NSS. That is, one 

cannot assert that the entropy at NSS is maximum or in other words, the entropy about NSS is 

not obtained as a convex function. Hence on differentiating eq. (36) w.r.t. time we get, 

  

  
    

 (  )

  
     

 

 
 
 (   )

  
        (                  )                                                (  ) 

Now eq. (37) needs to be compared with eq. (8) and we see in eq. (8) that the rate of entropy 

change is determined by the flow (     ⁄ )         and the non-flow (     ⁄ )        terms. 

Hence, eq. (37) needs to be composed of flow and non-flow terms. Therefore, eq. (37) gets 

expressed as, 
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    (

 (  )

  
)
    

    (
 (   )

  
)
    

                 (
 (  )

  
)
       

  

   (
 (   )

  
)
       

                                                                                                (  ) 

where the first set of terms on the right-hand side of eq. (38) must measure the rate of exchange 

of entropy, 

   

  
    (

 (  )

  
)
    

    (
 (   )

  
)
    

                                                                        (  ) 

and the second set of terms of eq. (38) must measure the rate of production of entropy, 

   

  
    (

 (  )

  
)
       

    (
 (   )

  
)
       

                                                             (  ) 

Because of the existence of a contribution from flow terms, we have no definite sign in eq. (38). 

Hence on the attainment of an NSS the entropy is not maximized in general. 

 

As far as the thermodynamic stability of NSS is concerned, one needs to recall that when 

the constraints on the system are such that it finally attains a NSS, which is thermodynamically 

described by eq. (8) it finally reduces to eq. (35). This motion is unidirectional from 

nonequilibrium to the final NSS. Therefore, the reverse motion from the said NSS to any of the 

nonequilibrium states from which the said NSS was achieved is impossible. That is, if from eq. 

(36) for the forward motion we have (      )      , then it is impossible to have a motion 

commensurate with (      )     . This can also be understood by the fact that the exchange 

of entropy contribution to (      ) would change sign on reversing the motion, while 

simultaneously the entropy production contribution cannot be made negative. Hence, the so 

called virtual displacement would carry the system on paper to some other succession of 

nonequilibrium states, but that cannot be taken as the reverse motion. In this way, we have 

proven the impossibility of virtual displacement described by (      )      and hence all NSS 

are thermodynamically stable states. This is the Gibbs-Duhem theory specialized for NSS. 

 

Thermodynamic Stability of a General Irreversible Evolution 

 

So far, we have demonstrated the thermodynamic stability of (i) conditional irreversible 

evolution of closed systems, (ii) equilibrium states, and (iii) nonequilibrium stationary states 

(NSS). However, it is possible to establish thermodynamic stability of a general irreversible 

evolution as follows. 

 

Consider the general statement of eq. (8), which is valid for open systems too. It 

describes an irreversible motion and correspondingly establishes forward direction. This is 

demonstrated by proving that this description cannot be reversed. For a system to have a reversed 

motion all the terms of eq. (8) must be made to reverse their signs. However,      ⁄        

cannot be assigned a negative sign, because that will shatter the very definition of a 

nonequilibrium state. That means on changing the sign of      ⁄  the system would attain some 

other nonequilibrium state, which cannot be called a reverse motion. Alternatively, suppose that 

in a given irreversible motion           ⁄  irrespective of the sign of      ⁄ , then the 

envisaged reverse motion described by          ⁄  is impossible because the rate of entropy 

production cannot change its sign. It thus establishes that eq. (8) indeed describes the forward 

motion that cannot be reversed. Thus, in general no irreversible motion describable by eq. (8) 

can be reversed. That means the virtual displacement in the reverse direction of a forward 

motion described by eq. (8) cannot be realized, and every irreversible motion describable by eq. 

(8) is obtained as a stable one. This also demonstrates the basis of the statement of the Universal 
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Inaccessibility Principle (UIP) [10, 12] formulated earlier by one of the present authors (AAB), 

which reads as, 

 

 

 

 

 

 

THE FOURTH LAW OF THERMODYNAMICS 

 

The discussions and conclusions presented in the preceding Section lead us to formulate a 

new law of thermodynamics. That we term as the fourth law of thermodynamics that reads as, 

 

 
 

In this connection we also recall that earlier, the fourth law of thermodynamics was proposed 

(for example, recently Kamal has described earlier attempts of formulation of the fourth law of 

thermodynamics [26]), but none of these proposals could advance beyond the proposal stage. 

However, the proposal originating from the works of Glansdorff and Prigogine on the stability of 

the so-called local equilibrium states merits mention herein [4, 27, 28]. They have proposed the 

following condition of stability of local equilibrium states, 

                 
 

  
 (    )                                                                                                   (  ) 

which seemingly resembles Lyapunov‘s direct (second) method of stability of motion [29– 40]; 

Glansdorff and Prigogine claim the same. That is,      has been assumed to serve as the 

thermodynamic Lyapunov function. The thermodynamic basis of the second inequality in eq. 

(41) has been questioned [25, 40], although the very assumption of local equilibrium allows one 

to consider the local entropy a convex upward function, so that the first inequality in eq. (41) is 

legitimized. It is pertinent to cite a very recent example wherein Sieniutycz and Kuran (private 

communication) have shown that far from equilibrium      fails to serve as a Lyapunov 

function. Hence, the conditions of eq. (41) are not general and hence cannot be taken as the 

fourth law of thermodynamics.  

 

However, in Lyapunov‘s theory of stability of motion an act of sufficiently small 

perturbation from the real trajectory is involved, hence we have a perturbed trajectory distinctly 

different from the unperturbed trajectory. In this way, the identified Lyapunov function has to be 

a function of perturbation coordinates, not dependent only on the thermodynamic variables on 

the real trajectory. In view of this requirement,      may perhaps be considered a Lyapunov 

function on the real trajectory, with the virtual displacement coordinates as the perturbation 

coordinate. But then the difficulty is that the virtual displacements, in principle, would carry the 

system on the real trajectory in the reverse direction. If so, how can we define corresponding 

perturbation coordinates distinctly different from the thermodynamic variables on the real 

trajectory? Yet another difficulty is that on a real trajectory, by the assumption of local 

thermodynamic equilibrium, each point is a local equilibrium state; or in other words, the real 

trajectory is made up of a succession of local equilibrium states. The perturbation, in principle, 

needs to carry the system to a neighboring nonequilibrium state, which is not a local equilibrium 

state. Otherwise, we will be guilty of questioning the very proposal of local equilibrium 

assumption. Therefore, the Lyapunov method of stability cannot be applied if it is a case of 

𝑑𝑆

𝑑𝑡
    

𝑑𝑒𝑆

𝑑𝑡
    

𝑑𝑖𝑆

𝑑𝑡
               

𝑑𝑖𝑆

𝑑𝑡
        

―The irreversible processes describable by, 

cannot be reversed, hence they all constitute thermodynamically stable processes.‖ 

―In every neighborhood of every equilibrium and nonequilibrium state of a system there 

exist states (both equilibrium and nonequilibrium ones), which remain unattainable by 

reversible or spontaneous paths.‖ 
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virtual displacement in the reverse direction on a path consisting of a succession of local 

equilibrium states. Hence, the Glansdorff-Prigogine theory of stability of local equilibrium states 

cannot be considered as a thermodynamic Lyapunov theory. Thus, if it is a case of virtual 

displacement on the real trajectory in reverse direction, then there is no room to call      a 

Lyapunov function and then use its time derivative. Further, as stated above, in addition to these 

difficulties, no thermodynamic basis of the second inequality in eq. (41) could be established
*
. 

Of course, Landsberg [41] did suggest that it may be called a new ―law‖ that appears to be the 

fourth law of thermodynamics. Unfortunately, his optimism did not stand the test of time. 

 

In contrast, our formulation of thermodynamic stability theory and the fourth law of 

thermodynamics are based purely on a Gibbs-Duhem type stability theory for irreversible 

processes described in the preceding Sections— that is, it is based on the concept of virtual 

displacement in the reverse direction on the real trajectory. 

 

CONCLUDING REMARKS 

 

A long pending demand to have a thermodynamic theory of stability of irreversible 

processes has been met in this paper. It is in essence an extension of Gibbs-Duhem theory of 

stability of equilibrium states to systems evolving irreversibly. With the advent of this theory, 

almost all branches of science would benefit, such as industrial processes, energy optimization 

management, biophysics, processes affecting/maintaining ecology, physico-chemical processes, 

etc. 

 

We notice that the inequalities of eqs. (1) – (4) can now be understood as describing 

natural and unnatural changes of closed systems (i) between end equilibrium states, (ii) between 

equilibrium and nonequilibrium states, and (iii) between end nonequilibrium states. This is easily 

demonstrated by appropriately integrating the inequalities of eqs. (13), (25), and (33) that yield 

the inequalities of eq. (1) for the categories (i), (ii), and (iii). Similarly, appropriately integrating 

the inequalities of eqs. (14), (26), and (34), yields the inequalities of eq. (3) for the categories (i), 

(ii), and (iii). On the other hand, for infinitesimally away states when we drop the dt from the 

denominator from the inequalities of eqs. (13), (14), (25), (26), (33), and (34), the inequalities of 

eqs. (2) and (4) are obtained for the categories (i), (ii), and (iii). 

 

The striking outcome is that the irreversible processes describable by eq. (8) all become 

established as thermodynamically stable ones. On the face of it, it looks like a strange outcome, 

but we need to keep in mind that basically thermodynamics is not a constitutive theory, it only 

provides broad guidelines, and for example eq. (8) describes irreversible evolution of a system 

with its behavioral contents, but not the constitutive rates of the other properties of the system. 

Of course, on elaborating the rate of change of entropy in terms of the thermodynamic variables 

and then on supplying constitutive relations of the rates of change of thermodynamic variables, 

the corresponding thermodynamic predictions would be generated. To understand this, let us 

recall that in chemical thermodynamics, on providing the constitutive equations, say ideal gas 

law or van der Waals equation, the corresponding thermodynamic predictions get generated. 

Similarly, in the case of natural evolution of an isolated system, for example, if the irreversibility 

is on account of a simple bimolecular reaction at a non-vanishing rate, the rate of change of 

entropy is given by [8, 23, 24], 
  

  
    

   

  
    

 

 
 
  

  
                                                                                                            (  ) 

                                                 
*
 Of course, even if at the global level under certain global conditions, such as isolation of the system where we have   

        , this does not guarantee, in general,           at a local level because each local pocket behaves as a tiny 

open system. 
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where   is the chemical affinity and    is the extent of advancement of the chemical reaction. 

Whereas from chemical kinetics [42] the rate of the chemical reaction, say 

                                                                                                                                            (  ) 
with the forward rate constant  , is given by, 

  

  
        

  

  
        (     ⁄ )      

  
  

  
  
   

 
    (       ⁄ )                                                                         (  ) 

where    and    are the concentrations of the reactants A and B respectively,   is the Arrhenius 

pre-exponential factor,    is the Arrhenius energy of activation of the forward chemical reaction, 

   is the Boltzmann constant,    is Planck‘s constant,      is the Gibbs free energy of activation 

in going from reactants to activated complex ( ) at the top of the Gibbs free energy barrier of the 

chemical reaction, and R is the universal gas constant. 

 

In eq. (44), the first expression of the rate of reaction is based on laboratory experiments, 

the second expression is the Arrhenius theoretical version [43], and the third expression is also a 

theoretical one based on the Eyring‘s theory of bimolecular reaction rates [43– 49]. Thus, there 

are three possibilities to evaluate the rate of entropy change of eq. (42). In this way we will have 

corresponding thermodynamic predictions, as well as access to the respective control parameters. 

 

The present study tells us that, to achieve stability, one needs to maintain inaccessibility 

in the reverse direction on the trajectory of a given motion. Thus, we learn that if the conditions 

of irreversible evolution are strictly and meticulously maintained, in reality the thermodynamic 

stability would be maintained. Hence, the challenge before us is to maintain those conditions 

rigorously during an irreversible process under investigation. However, the stability/instability 

obtained from non-thermodynamic means constitutes a constitutive theoretical investigation; 

indeed, they have their own practical advantages too. The distinction between the two is akin to 

the distinction between thermodynamics and statistical mechanics. Moreover, in order to retain 

the full thermodynamic character of the present theory, we have not incorporated the aspects 

dealing with the hydrodynamic stability, as Glansdorff and Prigogine have done in their 

proposal. 

 

The present discussion also sheds light on the effect of the fluctuations about equilibrium 

and nonequilibrium stationary states on thermodynamic properties of a given system. 

Statistically, all possible fluctuations leading a system to neighboring nonequilibrium states are 

counted, but only overwhelmingly dominating fluctuations are those, which produce the virtual 

displacements in the reverse direction on the trajectory described by eq. (8) in the forward 

direction. 

 

Though the present theory does not need the Lyapunov type of analysis, one would still 

be interested to know if there can be a thermodynamic tool akin to Lyapunov‘s theory of stability 

of motion [29– 40]. Yes, one of the present authors (AAB) has already developed a 

comprehensive thermodynamic theory of stability of irreversible processes (CTTSIP) [50– 54]. 

In CTTSIP we apply all the steps of Lyapunov‘s direct method of stability of motion to the 

defined thermodynamic Lyapunov function via the entropy production function on real and 

perturbed trajectories. This approach we are summarizing in the following paper [55]. 
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