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Kullback–Leibler relative entropy for cross-scale 
analyses on a landscape of any size.
Methods Examine previous efforts using entropy in 
landscape ecology and introduce a Kullback Informa-
tion Index as a next step in the science of scaling.
Results Entropic indices can provide compositional 
and configurational information about a system and 
can be used to detect landscape patterns. Yet, most 
entropy-based metrics are scale-dependent, highlight-
ing the need to find a common currency for compara-
tive analysis across scales. The non-symmetric unit-
less property of the Kullback–Leibler relative entropy 
may remedy that since it is theoretically capable 
of comparing variables and scales. The proposed 
framework can be extended to describe any system 
that contains scalable modules of interest, which 
will advance scaling in landscape ecology and other 
disciplines.
Conclusions The Kullback Information Index 
describes landscapes’ compositional and configura-
tional patterns across scales. Since relative entropy is 
connected to information theory and thermodynam-
ics, the framework’s results can be interpreted within 
a broader ecological context.

Keywords Spatial organization · Landscape 
patterns · Diversity · Information theory · 
Thermodynamics · Entropy

Abstract 
Context The way organisms are patterned in space 
dictates the outcome of many ecological processes 
such as growth, survival, colonization, and migration. 
The field of landscape ecology has developed quan-
titative metrics to describe spatial patterning using 
the concept of entropy. However, a general theory of 
how these patterns relate to one another within and 
between different organizational levels and over dif-
ferent spatial scales has remained incomplete.
Objectives Review how statistical versions of 
entropy have been applied to detect spatial organi-
zation and propose a theoretical framework to use 
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Introduction

From cells to ecosystems, spatial structure plays a 
part in mediating the flow of energy and informa-
tion (James and Fortin 2013). The organizational pat-
terns—the composition and configuration of biologi-
cal entities—often influence interaction outcomes, 
which can be readily described using statistical meas-
ures such as entropy (Ulanowicz et  al. 2006; Harte 
2011; O’Connor et al. 2019). The term entropy origi-
nated in thermodynamics aiming to describe energy 
transformation in an isolated system (Jaynes 1980; 
Lesne 2014). Boltzmann further extended thermo-
dynamic entropy to statistical mechanics, introduc-
ing macrostate and microstate concepts that define a 
system’s conditions at a macroscopic scale (a mac-
rostate) and a more detailed depiction of the system’s 
conditions at the microscopic scale (a microstate), 
resulting in the following equation for Boltzmann 
entropy:

where k defines the units for S. In the international 
SI system, S has units  J/K in which case k is Boltz-
mann’s constant (1.38 9 ×  10−23  J/K), and W is the 
number of possible microstates corresponding to the 
particular macrostate (Boltzmann 1872).

Almost 100 years later, a parallel statistical version 
of entropy was developed by Claude Shannon (1948). 
Outside its original scope, Shannon entropy (some-
times referred to as information entropy) was quickly 
adopted by many scientific disciplines, including biol-
ogy (Sherwin 2010; Chanda et al. 2020; Roach 2020). 
It became popular as a diversity measure because a 
single equation could describe the distribution of dif-
ferent types of organisms in a community (Jost 2006; 
Daly et  al. 2018). Shannon’s formulation calculates 
the sum of the probabilities ( pi ) that an organism 
belongs to a specific type (the ith species) multiplied 
by the log of that probability. The equation then cal-
culates a summation over all types of organisms and 
represents the average uncertainty per microstate (h) 
as:

When multiplied by the number of microstates (N), 
this yields Shannon entropy (H). Thus,

(1)S = k logW

(2)h = −

n∑

i=1

pi log pi

The field of landscape ecology has integrated 
entropy approaches to detect spatial patterning, 
unpredictability, and pattern-scale dependence 
(Vranken et  al. 2015). However, the use of entropy 
in landscape ecology has been variable with some 
researchers arguing that Shannon entropy is ‘aspatial’ 
(sensu Leibovici 2009) as it only captures the prob-
ability distribution of the components within a system 
(Claramunt 2005; Wang and Zhao 2018). Recent pub-
lications advocate for Boltzmann entropy being used 
instead of Shannon entropy for spatial analysis, as 
Boltzmann entropy provides compositional as well as 
configurational information with an overall stronger 
thermodynamic interpretation (Vranken et  al. 2015; 
Gao and Li 2019). However, Boltzmann and Shannon 
entropies have been derived, and proven equivalent, 
for general physical situations (Jaynes 1957; McQuar-
rie 2000; see Online Appendix A).

Regardless of which entropy equation is used, both 
Shannon and Boltzmann entropies fundamentally 
measure uncertainty, and provide information about 
the system. However, both entropies assume that the 
system is uniform or take the entropies to be averages 
over the system considered, thus limiting calculations 
to a single scale. The results then can be difficult to 
compare across different levels of hierarchical organi-
zation or scale (Rajaram et al. 2017). Since many eco-
logical processes operate on multiple scales, creating 
different patterns at individual organizational levels, 
there is a need to address the multi-scale nature of 
ecosystems (Wu et al. 2000; Roach et al. 2018). The 
ability to use entropy statistics to detect spatial pat-
terns on different scales would greatly advance the 
understanding of pattern-process relationships. Here, 
we evaluate how statistical variants of entropy have 
been applied in previous studies to capture spatial 
variability. We subsequently build on this and develop 
a theoretical framework to describe configurations 
across multiple spatial and organizational scales using 
a Kullback Information Index.

Inspired by Boltzmann entropy

In statistical mechanics, Boltzmann entropy repre-
sents an ensemble quantity that describes the vari-
ety of particles within a system. In biology, this can 

(3)H = Nh
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also be interpreted as the number of ways constitu-
ents fill functional or physical space i.e., the degree 
of spatial heterogeneity of the biological entities in 
a system (Roach et  al. 2017, 2019). In landscape 
ecology, Cushman (2016) found that spatial organi-
zation can be empirically captured by modifying the 
original Boltzmann entropy equation into

where HC is calculated as a natural logarithm of the 
number of unique arrangements within a landscape 
( W , or microstates) that produce the same total edge 
(TE) length (a macrostate).

Cushman’s formalism of Boltzmann entropy is 
based on the following assumptions:

Assumption 1: when entities of the same class are 
maximally aggregated, TE between different enti-
ties is low and therefore entropy is low.
Assumption 2: when different entities are maxi-
mally dispersed, TE increases with fewer ways to 
arrange entities to retrieve maximal edge length, 
therefore the landscape is said to have low entropy.
Assumption 3: when the position of entities is spa-
tially random, intermediate levels of aggregation 
occur, creating higher entropy.

(4)HC = ln (W)

The HC entropy calculations in Table 1 and Fig. 1 
demonstrate that the maximally aggregated landscape 
A showed lower entropy values than landscapes C 
and D, however the difference between A and C was 
only minor. The entropy of maximally heterogeneous 
landscape B was 0 since landscape B had only one 
way to attain the maximum TE of 12. Finally, land-
scape D had the highest entropy, because in spatially 
random configurations there is a higher chance of 
cells of the same type to be more adjacent to each 
other, thus, lower TE and higher entropy.

The introduction of Boltzmann entropy to land-
scape ecology (Cushman 2016) provided new meth-
ods to investigate landscape structuring using thermo-
dynamic principles. Initially this method (Cushman 
2016) was limited to small landscapes, as possible 
arrangements dramatically increased at larger scales. 
Further work (Cushman 2018) proposed an alterna-
tive method of computing Boltzmann entropy by 
randomizing landscape mosaics, counting the propor-
tion of landscape microstates, and finally calculating 
relative (Boltzmann) entropy. Recent reviews (Gao 
and Li 2019; Gao et al. 2021) agree that Cushman’s 
(2018) method is effective but still lacks experimental 
evaluation.

Efforts to extend Cushman’s entropic index for 
landscapes represented by gradients were made by 
Gao et  al. (2017). Here, a macrostate was defined 
as the upscaled depiction of a landscape, and 

Table 1  Entropy results 
with changing resolution of 
Fig. 1 landscapes

Here, H refers to Shannon 
entropy, H

C
 proposed 

by Cushman (2016), H
Cl

 
represents Claramunt 
(2005) spatial diversity 
and H

WZ
 depicts spatial 

entropy as proposed by 
Wang and Zhao (2018). 
Calculation performed with 
Rstudio (see Supplementary 
material)

Scale Landscape TE H HC HCl HWZ

3 × 3 A 4 0.991 2.48 0.754 2.786
B 12 0.991 0 1.169 118.929
C 8 0.991 2.56 1.079 12.459
D 7 0.991 3.58 1.053 15.417

4 × 4 E 4 1 – 0.676 2
F 24 1 – 1.108 240
G 12 1 – 1.039 21.466
H 10 1 – 1.005 17.889

8 × 8 I 8 1 – 0.641 2
J 112 1 – 1.029 1120
K 23 1 – 0.951 17.011
L 20 1 – 0.934 17.889

16 × 16 M 16 1 – 0.632 2
N 480 1 – 1.007 4800
O 46 1 – 0.933 17.011
P 48 1 – 0.917 21.466
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microstates were calculated by finding all possi-
ble ways to downscale to the original macrostate. 
Gao et al.’s (2017) treatment of Boltzmann entropy 
allowed for a more general theory as it did not 
depend on how one partitions the landscape. For 
example, calculating the distribution among some 
larger groups and subsequently the micro distribu-
tion within each group should yield the same results 
as estimating the full probability distribution of a 
single large set. In general, Cushman’s and Gao’s 
work made it feasible to calculate the Boltzmann 
entropy of landscape mosaics and gradients. These 
computational methods were later reviewed by 
Gao and Li (2019) concluding that future research 
should focus on a general model-independent 

calculation of Boltzmann entropy with a deeper 
thermodynamic interpretation.

Overall, Boltzmann entropy’s link to thermody-
namics makes the equation attractive for broader 
applications. However, Boltzmann entropy becomes 
computationally intensive when applied to realis-
tic landscapes because the resolution and number of 
classes are often higher than in theoretical experi-
ments (Zhang and Wu 2020). Nevertheless, steps have 
been taken to optimize computation times of Boltz-
mann entropy with proposal of the R package ‘belg’ 
and use of the Wasserstein metric (Nowosad et  al. 
2020; Gao et  al. 2021). Moreover, landscapes that 
have different TE values may still have the same num-
ber of unique configurations, which leads to equal 

Fig. 1  Sixteen chessboard-like landscapes a–p with dimen-
sionality of 3 × 3, 4 × 4, 8 × 8 and 16 × 16 with two classes 
–class white, and class green. The existing 3 × 3 landscapes 

a–d were fine-grained to 4 × 4, 8 × 8, and 16 × 16 to depict how 
entropy changes when changing spatial resolution while keep-
ing the configurations similar to the original a–d landscapes
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entropy values [see in Cushman (2016) Table  1]. 
Instead of using TE as the main spatial factor, a few 
different approaches have been proposed using spatial 
entropy, a term used to describe an entropic variant 
that is capable of capturing landscape heterogeneity 
using other spatial variables.

Spatial entropy

Although the use of Shannon entropy for spatial anal-
ysis has been questioned, it is important to note that 
statistically the Shannon entropy equation is valid in 
its simplest form and can still be useful (Zhao and 
Zhang 2019). A few different approaches have been 
proposed to improve Shannon entropy by incorporat-
ing spatial features to elucidate how different com-
ponents of the sample are spatially organized (Wang 
and Zhao 2018). For instance, Claramunt (2005) used 
distance as a factor to determine the degree of simi-
larity between entities in space. Claramunt based this 
on Tobler’s “First Law of Geography” (TFL), which 
states that “Everything is related to everything else, 
but near things are more related than distant things” 
(Tobler 1970). Accordingly, a spatial measure of 
entropy was calculated by following two assumptions:

Assumption 1: when different entities are closer, 
diversity (i.e., entropy) increases
Assumption 2: when similar entities are closer, 
diversity (i.e., entropy) decreases

Claramunt added a spatial constraint of intra- and 
extra-distances creating a spatial diversity measure:

where dint
i

 is distance among the same class and dext
i

 is 
distance between classes. In Claramunt’s equation, 
the dint

i

dext
i

 acts as a discriminant-ratio to assess how 

entropy changes with Euclidean distance. Claramunt 
argued that the spatial diversity measure increases 
when the distance between the same class members 
increases, or entities from different classes are closer 
in space. For example, in the chessboard case (Fig. 1), 
landscape B contains intra-distances that are larger 
and evenly distributed relative to landscape A, in 

(5)HCl = −

n∑

i=1

dint
i

dext
i

pi log2
(
pi
)

which the classes, green and white, are spatially clus-
tered. In landscape C and D, entropy values are simi-
lar although both landscapes have different cell 
arrangements, which is something that should be 
carefully evaluated when comparing larger datasets.

While the incorporation of space into the Shan-
non entropy equation has proven to be effective for 
describing landscape patterns, the terms “near” and 
“related” in TFL used by Claramunt (2005) were 
vaguely defined (Miller 2004). Wang and Zhao 
(2018) introduced a new form of spatial entropy, 
which uses a mixture of Cushman’s ideas on the 
total edge length and Claramunt’s distances between 
classes. The proximity factor that the authors use is 
proportional to the number of edges between the 
distinct classes as Li and inversely proportional to 
di , which represents an average distance between 
different class centroids:

Wang and Zhao (2018) argued that adding a proxim-
ity factor to entropy provides information about the 
spatial arrangement of entities in geo-space. This spa-
tial entropy ( HWZ) idea was built on the following two 
assumptions:

Assumption 1: entropy increases as the TE 
between classes increases, which is the opposite 
of Cushman’s assumptions.
Assumption 2: entropy should increase as the dis-
tance between different class centroids decreases, 
which aligns well with Assumption 1 from Clara-
munt’s (2005) spatial entropy.

These assumptions were tested in our example, 
and the calculated entropy was low for the most 
aggregated mosaic in Fig.  1 (Fig.  1a) and high for 
the most heterogeneous landscape in B. HWZ was 
able to distinguish between patterns C and D, which 
lacked clarity using Claramunt’s measure. HWZ was 
also easier to calculate, as only centroid distances 
and total edge lengths were used, although the com-
putational difficulty may change when applied to 
larger biological landscapes.

(6)HWZ = −

n∑

i=1

Li

di
pi log2

(
pi
)
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Changing scale

We fine-grained the existing 3 × 3 landscapes A-D 
to 4 × 4, 8 × 8, and 16 × 16 (Fig.  1 and Table  1) to 
compare how spatial entropies change with spatial 
resolution, keeping the configurations similar to 
the original A-D landscapes. Unlike the Claramunt 
and Wang and Zhao spatial measures, Cushman 
(2016) did not provide easily reproducible exam-
ples and a way to compare results across different 
spatial scales. Additionally, the number of unique 
cell arrangements generally increases rapidly with 
increasing dimensionality, which makes the calcula-
tions prone to human error unless one has model-
ling programs like QRULE or FRAGSTATS (Gard-
ner 1999; McGarigal et  al. 2012). Therefore, we 
decided to avoid miscalculating Cushman’s meas-
ure and chose to continue comparing how spatial 
entropy changes with scale only for the other two 
metrics (i.e., HCl , HWZ ). Claramunt’s spatial diver-
sity ( HCl ) followed a general declining trend with 
increasing resolution, with values dropping by 
approximately 15% from 3 × 3 to 16 × 16 scales. 
Wang and Zhao’s spatial entropy ( HWZ ) for the 
maximally aggregated landscape was lowest among 
all the landscapes, with E, I, and M landscapes 
showing equal results with increasing resolution. 
The maximally dispersed “chessboard” example 
B, F, J, and N increased with increasing resolution 
with landscape B showing lowest spatial entropy 
compared to F, J, and N because of the small ratio 
of total edge length and centroid distance between 
classes. In general, landscape N had the highest spa-
tial entropy ( HWZ ) value because of the extremely 
large TE value of 480, something that should be 
carefully evaluated when assessing highly dispersed 
landscapes.

The two entropic variants had different assump-
tions and used different variables in the final equa-
tions and thus, landscapes A-H had higher values 
since Claramunt’s spatial diversity increases when 
entities from different classes are closer in space. 
The opposite was detected for Wang and Zhao’s 
metric ( HWZ ), where A-H landscapes had overall 
smaller values for HWZ , likely because the 3 × 3 and 
4 × 4 landscapes are quite similar when it comes to 
cell interaction range. In other words, A-D and E–H 
landscapes only have small spatial neighborhoods, 

whereas “close” and “far” neighbors start to be 
more evident in 8 × 8 and 16 × 16 landscapes.

The different ways statistical versions of entropy 
have been used in landscape ecology highlight steps 
forward in understanding the organizing principles of 
nature. Other efforts have been made to detect spatial 
patterns with Wasserstein entropy (Zhao and Zhang 
2019; Zhang et al. 2020), decomposing original Shan-
non entropy (Altieri et al. 2018); or applying Boltzmann 
entropy to lattices, surfaces, and point patterns (Cush-
man 2021). However, it remains to be seen which meth-
odological innovation will become most operation-
ally feasible (Frazier 2019) at multiple scales. A solid 
statistical-mechanical and mathematical foundation 
for the proposed measures also still needs to be devel-
oped. Although the computation of Boltzmann entropy 
for landscape mosaics and gradients and its thermody-
namic interpretations still requires further evaluation, 
the method is promising for detecting spatial patterns 
at many ecologically relevant scales. Additionally, the 
entropy indices described above often rely on changing 
the original formula, thus they should be viewed more 
as calculational variants than as a thermodynamic 
entropy. That is not to say that the entropy indices 
are not useful. On the contrary, Eqs. 4, 5, and 6 allow 
spatial patterns of landscapes to be studied, especially 
where composition, as well as proximity are significant 
in the analysis. Regardless of the preferred method, the 
concept of entropy is capable of capturing configura-
tional and compositional information based on specific 
research questions. To continue using entropy as a sta-
tistical tool to describe a landscape’s spatial patterns, 
we must be able to account for the multiscale nature of 
ecosystems and therefore create a mechanism that acts 
as a common currency across scales.

A common currency: Kullback–Leibler 
divergence

Kullback–Leibler divergence ( DKL ), also known as 
relative entropy, describes how different the prob-
ability distribution P is from the previous estimate Q 
(Kullback and Leibler 1951):

It should be noted that DKL mathematically 
speaking is not a distance but a divergence as 

(7)DKL(P‖Q) =
�

x∈�

P(x) log
P(x)

Q(x)
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DKL has two essential properties: non-symmetry 
DKL(P ∥ Q) ≠ DKL(Q ∥ P) and non-negativity 
DKL(P ∥ Q) ≥ 0 (Eguchi and Copas 2006). In botani-
cal studies, DKL was used for partitioning biodiver-
sity measures (alpha, beta, and gamma diversities) 
by decomposing Shannon entropy into hierarchi-
cal nested levels. More recently, DKL has been used 
to rescale temporal and spatial precipitation data 
to examine how different variables are affected by 
changing time–space scales (Sohoulande et al. 2019). 
The authors found that higher correlations were per-
sistent on larger scales, suggesting that statistical 
interpretations are often influenced by a strong scal-
ing effect on certain variables. In marine research, 
DKL has been utilized to find variability between phy-
toplankton populations at different spatial scales that 
represent different habitats and environmental gradi-
ents (Roselli et al. 2013).

The DKL is also a useful ‘shortcut’ for calculating 
the mutual information I(X,Y), between the random 
variables X and Y:

where DKL is the Kullback–Leibler divergence 
between the joint distribution P(X, Y) and the mar-
ginal distributions P(X) and P(Y). H is the Shannon 
entropy mentioned earlier. Both definitions express 
that I(X,Y) is the information shared by X and Y, i.e. 
what goes beyond the X and Y distributions individu-
ally. In contrast to DKL , the I(X,Y) results are inter-
preted in an inverse fashion: zero values show that 
X and Y are independent, higher values indicate a 
greater relationship between the variables (Villaverde 
et al. 2014; Corso et al. 2020). The symmetric prop-
erty of I(X,Y) may be preferred by some ecologists as 
it is often easier to interpret. However, even though 
DKL asymmetry is more difficult to grasp, it contains 
more information than I(X,Y). Imagine a predomi-
nant grassland with some weeds in it evolving into 
a diverse forest with no species dominant. Then DKL 
(forest||grass) < DKL (grass||forest) because the forest 
is more uniform in its distribution. The forward and 
backward evolution are not equally likely, and there-
fore the difference is direction dependent.

Even with the current evidence, DKL has been 
largely overseen by many ecologists as a potential sta-
tistics tool, often overshadowed by more common but 
not necessarily more well-founded similarity indices 

(8)
I(X;Y) = DKL(P (X, Y)‖P(X),P(Y)) = H(X) + H(Y) − H(X, Y)

such as Bray–Curtis (Ludovisi and Taticchi 2006). 
The Bray–Curtis index gained its popularity for sim-
plicity reasons—it is useful for detecting the extent 
to which the sampling units share, or do not share, 
similar biological entities (e.g., species, molecules, 
genes etc.). However, Bray–Curtis dissimilarity is 
biased towards dominant, disproportionally abundant 
species, under-representing less abundant species in 
the sample (Chao et  al. 2006). In community-based 
studies, rare species can represent an important func-
tion or trait, thus disregarding them as “analytical 
annoyances” may limit a full understanding of the 
system (Jousset et al. 2017). This is where the loga-
rithm of low probabilities in the Kullback equation 
could potentially be useful, especially in  situations 
where conditionally rare taxa are important. Another 
valuable aspect of Kullback–Leiber divergence is the 
summation of the log of the ratio of each individual’s 
probability between the two samples. Whilst a com-
monly used Shannon entropy only shows how much 
unevenness is in the probability distribution, DKL can 
provide information on which species are causing the 
unevenness in the sample. Therefore, we propose to 
use the unitless property of DKL that can differentiate 
between the samples across scales and add a spatial 
component to normalize DKL , which would account 
for the spatial configuration within the sample.

The Kullback Information Index

Scaling and identifying spatial patterns start with a 
hypothetical sampling design shown in Fig.  2. Each 
sampling unit has an associated probability distribu-
tion of features (e.g., molecules, species, cover types 
etc.). In our model the sample consists of a mixture 
of two components, V and W. In Fig. 2, yellow rep-
resents 90% V, green 90% W (with an epsilon to 
account for possibly not sampling to completion and 
to mathematically deal with log 0). We can relate all 
the features of the system using a Kullback–Leibler 
divergence ( DKL ), which describes divergence of one 
probability distribution from another, in this way cre-
ating edges between different nodes in the network 
of all the samples (Fig.  2b, e). The higher the DKL , 
the more dissimilar the two distributions are, whilst 
a DKL of 0 represents distributions that are identical. 
The resulting Kullback matrix can be averaged by the 
number of cells in the landscape (Fig. 2b, e) and thus 
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describes the average skewness of the community dis-
tribution within a sampling unit. To account for both 
probability distribution and spatial distribution, the 
average Kullback value needs to be normalized by a 
spatial component. In our example, we use total edge 
length (TE), which only accounts for nearest-neigh-
bor interactions. In other words, TE provides ‘spatial 
information’ only when things are interacting locally. 
If other interactions are assumed or known for the 
observed landscape, other spatial normalization fac-
tors could be used to account for spatial organization 
(e.g., proximity). The averaged and spatially normal-
ized Kullback measure is the Kullback Information 
Index (KII). The KII captures both compositional and 
configurational patterns in a landscape of any size 

that can later be compared to other sampling scales 
(Fig.  2c, f). Higher KII depicts a highly aggregated 
system, whereas lower KII represents a highly dis-
persed system. By comparing systems with KII, one 
can detect the presence or absence of statistical rela-
tionships of spatial configurations across scales.

In summary, we propose calculating composi-
tional information of each scale of interest, whether 
that would be a leaf or a polyp, or branch of a 
coral, and then investigate how each sampling unit 
is related across scales (Fig.  3a–f). The two num-
bers retrieved from the calculations provide two 
means of comparing samples. The average Kullback 
entropy describes the total distribution of types of 
entities in the whole system (Fig. 3b), whereas KII 

Fig. 2  A conceptual depiction of the framework that shows 
how to calculate average Kullback–Leibler divergence for a 
sample, and how to proceed to a Kullback Information Index 
(KII) that captures both the compositional and configura-
tional organization of the landscape with a single number. In 
the top leaf (Sampling unit 1) the two types of cells appear in 
separate patches (yellow and green) in panel a. In b the Kull-
back–Leibler divergence D

KL
 is calculated for each sample and 

its average found for each location (A, B, C). In c each aver-
age is further divided by the edge length to yield the Kullback 
Information Index (KII), which thus is a property of the entire 

leaf. In the lower leaf (Sampling unit 2) the yellow and green 
components are thoroughly mixed in each sampling cell, yield-
ing more or less the same averaged Kullback values e as in 
the upper leaf. However, the edge length is now much larger 
and the KII therefore noticeably lower f, clearly distinguish-
ing the lower leaf from the upper. The KII can then be used to 
compare samples across scales by comparing to the maximum 
possible value of KII, which scales directly with the number 
of cells and inversely to the spatial normalization factor [i.e., 
Total Edge length (TE) in this example]
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captures the spatial organization of that landscape 
with a single number that can be used across scales 
(Fig.  3c) by comparing values to the maximum 
possible value of KII, which scales directly with 
the number of sampling units and inversely to the 
spatial normalization factor (i.e., Total Edge length 
(TE) in this example).

Our framework aims to move from the traditional 
view of landscapes being large-scale observations, 
to any sub-space with multiple higher resolution 
sampling units. All the examples shown in Fig.  3 
are landscapes on their own regardless of their size 
and scale. In that way our framework captures the 
statistical distribution of types of features (e.g., spe-
cies, cover types, molecules, pixels) and spatial con-
figuration of those features across hierarchical lev-
els using the Kullback Information Index. This will 
open new avenues for understanding how “space” 
structures biological distributions and provides cru-
cial information on the pattern-process relationship.

Discussion

Ecologists have a long history trying to understand 
spatial patterns in natural communities as these pat-
terns often carry information on the ecological pro-
cesses that shape them (Law et  al. 2009; Turner 
1989). The field of landscape ecology has suc-
cessfully implemented entropy-like  calculations to 
detect spatial heterogeneity. However, the variety 
of entropic measures used in the field show differ-
ent results largely because they are built on different 
assumptions. For example, Claramunt’s (2005) spa-
tial entropy is purely based on Tobler’s First Law of 
Geography, suggesting that all systems abide by these 
“rules”. While this is true for some biological entities, 
these assumptions cannot be used for systems where 
organisms can actively pursue locomotion. Even for 
organisms that are sessile, these assumptions ignore 
the fact that other forces can be driving the spatial 
structure; for instance, the Janzen-Connell hypothesis 

Fig. 3  A stepwise sketch of the proposal to study multi-scale 
entropy patterns of a coral reef (top panels) and forest ecosys-
tem (bottom panels) using Kullback Information Index. The 
sequence is the following: a Calculate the probability distribu-
tions of the available components (green, yellow, black etc.) at 
different locations (A, B, C). b Calculate the Kullback–Leibler 
divergences and average them for each of these locations. c 

Normalize each of the averages with a spatial component (e.g., 
distance between samples or edge length) where the different 
components meet to get the Kullback Information Index (KII). 
d Compare these KII for different sampling locations. e Coarse 
grain further to compare different individuals and f still further 
to different landscapes
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states that the fitness costs can be avoided if offspring 
do not cluster next to the parent (Janzen 1970; Con-
nell 1971). In reef systems, some coral propagules 
are capable of long-distance dispersal due to currents, 
often blurring the notion that “near things are more 
related than distant things”.

Furthermore, to calculate the number of unique 
arrangements within a landscape, Cushman (2016) 
used Total Edge (TE) metric, which measures the 
number of edges or boundaries shared between differ-
ent classes in the system. The number of total edges 
within the landscape will depend on how entities are 
configured in space, and thus provide a Boltzmann-
like entropic value describing that system. These 
ideas were incorporated in Wang and Zhao’s (2018) 
spatial entropy, which used a combination of Cush-
man’s Boltzmann entropy and Claramunt’s distance 
calculations. In their formalism, the resulting entropy 
is equivalent to the degree of landscape heterogene-
ity where diversity increases when total edge length 
increases between different classes, and when dif-
ferent class centers are closer in space. Neverthe-
less, it should be noted that TE only accounts for 
nearest neighbor interactions, and unless functional 
arguments for assuming relevant interactions are 
considered, the entropy will not carry any physical 
meaning. Especially if future studies aim to relate 
patterns to thermodynamic processes, it is impor-
tant to define what interactions matter, what condi-
tions are held constant, and what is dynamic in the 
system. In statistical mechanics and physics where 
the concept of entropy originates, all interactions are 
quantified  through the interaction energy as a func-
tion of distance between the interacting components. 
Not only can that interaction be either short or long 
ranged, but it can also be directional, and it is fre-
quently not monotonic in its distance dependence. 
In other words, it could for example be a repulsion 
at short range and an attraction at longer range; this 
would create a distinct structure in the system’s spa-
tial appearance. It is likely that many structures in 
ecology are the result of similar non-simple distance 
dependencies.

There is no doubt that efforts to apply entropy 
in ecology have been fruitful. The probabilistic 
approach is attractive to many fields because both 
Shannon and Boltzmann entropies can statistically 
describe how systems are organized. Yet, the equa-
tions only consider the probabilities of entities in the 

system without a reference to the entity type and are 
scale-dependent. To deal with the latter, an approach 
already used in physics is scaling with Tsallis entropy. 
Tsallis (1988) modified the original Shannon expres-
sion and used a power law instead of the logarithm in 
Eq. 2. Although originally applied in physics, Tsallis 
entropy has found its way to biological studies e.g., as 
a biomarker to find signs of dementia, or to improve 
gene regulatory network expression profiles (Lopes 
et al. 2011; Al-Nuaimi et al. 2015). However, Tsallis 
entropy does not provide configurational information 
that is necessary to examine how biological entities 
occupy physical or functional space. Thus, we intro-
duce another way to scale systems accounting for 
spatial and probability distributions using the Kull-
back Information Index. The framework begins  by 
estimating probabilities of each type of species of 
a sample and averaging the results over sampling 
modules within each sampling unit. The average 
Kullback is then normalized by a spatial component 
to account for spatial configuration within the sys-
tem. For this step, different spatial normalizers such 
as total edge length, physical distance, or Wang and 
Zhao proximity can be used depending on the system 
and the interaction depth. The resulting KII will then 
scale linearly with the number of sampling units and 
inversely with the spatial normalizer.

Kullback–Leibler divergence has been previously 
used as a measure to account for information loss 
when coarse-graining (Shell 2008, 2012; Chaimovich 
and Shell 2010). The advantage of using DKL in ecol-
ogy over most other entropic measures, or dissimilar-
ity indices, is that it compares the same species in two 
different distributions. This allows the construction of 
a geometry of probability distributions within the net-
work (Shalizi 2007). Compared to Shannon entropy, 
which only demonstrates that something has changed, 
Kullback–Leibler divergence describes what has 
changed because it accounts for individual species 
probabilities. Since the measure is species sensitive, 
it could be used to study species change during stress-
events or even compare perturbed and unperturbed 
systems (Dechant and Sasa 2020). Recently, Kull-
back–Leibler divergence has been used as an early-
warning signal to detect complex diseases. Zhong 
et  al. (2020) related  reference samples taken from 
healthy individuals to a single ‘unhealthy’ sample 
and found that the single-sample Kullback–Leibler 
divergence method captures the tipping point before a 
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severe disease. Not only does this capture the impact 
of Kullback in medical sciences but also shows the 
potential applicability of DKL in ecological studies 
where the early-warning signals could be useful to 
manage nonlinear ecosystem change.

It is worth mentioning that space is continuous, 
and the type of subdivision the researcher choses 
might lead to different results or the interpretation of 
those results. Even though the proposed framework 
would impose a certain division of biological units, 
the comparative power could be used to find data dis-
continuities within systems and provide additional 
information about how biology is structured in space 
or time. The design of this framework is advanta-
geous because the Kullback Information Index shows 
the difference between the nodes in the network. In 
other words, this measurement offers different prop-
erties that can be used to study systems within and 
between hierarchical levels.

Conclusion

Identifying spatial patterns across a range of spatial 
and organizational scales is a complex task. Here, 
we show that building a theory that allows ecologi-
cal data to be compared across scales is achievable. 
Our approach demonstrates how systems where spa-
tial scales are nested can be described in a spatially 
explicit manner using a combination of probabilistic 
and spatial ecology approaches. We propose to aver-
age Kullback–Leibler divergence and normalize it 
with a spatial component to account for spatial organ-
ization of the system. The resulting Kullback Infor-
mation Index accounts for not only compositional and 
configurational information of the ecological sample, 
but also is scalable. Future research could further 
extend the framework by describing the interaction 
terms between entities in the system, providing a 
deeper insight into biological relationships in space.
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APPENDIX  

  

Entropy is a statistical measure of uncertainty. In the realm of physics, it is often referred to 

as thermodynamic entropy, which describes uncertainty about the configuration of particles 

(microstates) within the specified system (a macrostate), resulting in the Boltzmann entropy 

𝑆𝑆 =  𝑘𝑘 log𝑊𝑊 (A1) 

as it is chiseled into Boltzmann’s tombstone in Vienna. The constant k defines the units you 

want for S. In the international SI system, S has units J/K in which case k is kB, now known as 

Boltzmann’s constant (1.389 x 10-23 J/K). W is the number of possible microstates 

corresponding to the specified macrostate. In most situations that means the number of 

microstates having the same energy as well as satisfying other possible other constraints. 

 

In information theory entropy is calculated as the statistical average of the surprisal of each 

microstate, 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖, i.e., how unusual a particular microstate is: 

𝐻𝐻 = −𝑘𝑘𝑘𝑘�𝑝𝑝𝑖𝑖 log 𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (A2) 

This is known as Shannon entropy (sometimes referred to as information entropy). For large 

systems for which the Stirling approximation is valid, these two expressions are equivalent, 

as we will show here. 

 

For a system consisting of N particles / microstates, grouped into M different macrostates the 

number of possible distinct manifestations is 

𝑊𝑊 =
𝑘𝑘!

∏ 𝑛𝑛𝑖𝑖!𝑀𝑀
𝑖𝑖=1

 (A3) 
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where 𝑛𝑛𝑖𝑖 is the number of  microstates in macrostate i. For sufficiently large groups (which in 

reality is an amazingly small number: ~3), the factorial is well represented by Stirling’s 

approximation, 

ln(𝐾𝐾!) ≈ 𝐾𝐾 ln (𝐾𝐾) − 𝐾𝐾 (A4) 

Using this approximation for W in Equation A3 and entering the result into Equation A1 

above, we find that 

ln (𝑊𝑊) = −�𝑛𝑛𝑖𝑖ln �
𝑛𝑛𝑖𝑖
𝑘𝑘
�

𝑀𝑀

𝑖𝑖=1

 (A5) 

= −𝑘𝑘�𝑝𝑝𝑖𝑖ln(𝑝𝑝𝑖𝑖)
𝑀𝑀

𝑖𝑖=1

 (A6) 

where 𝑝𝑝𝑖𝑖 = 𝑛𝑛𝑖𝑖/𝑘𝑘 is thus the probability of being in macrostate i.  

 

QED, Boltzmann and Shannon entropies are the same. In both cases the constant k secures 

the desired unit for S in combination with the chosen logarithm (natural ln, decimal log, base-

2 log, etc.). Please note that while the summation involves only intensive quantities (𝑝𝑝𝑖𝑖, all in 

the interval [0;1] and independent of system size), the total number of microstates, N, in front 

ensures extensivity of S. 
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A simple RStudio code (R version 4.1.0) was created to calculate spatial entropies of A-P 
landscapes from Figure 1. The results are presented in the main text Table 1.  
The procedure starts with assigning each pixel coordinates in a separate data frame with an 
associated class (either green or white; in our case A or B, respectively). The code then aims 
to calculate Claramunt (2005) and Wang and Zhao (2018) spatial entropies. 
 
 
Equations used in the R-script:  
 
Claramunt (2005) added a spatial constraint of intra- and extra-distances denoting average 
distances within the same class (𝑑𝑑𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖) and between classes (𝑑𝑑𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖), creating a spatial diversity 
measure: 
 
 

𝐻𝐻𝐶𝐶𝐶𝐶 = −�
𝑑𝑑𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖

𝑑𝑑𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖
𝑝𝑝𝑖𝑖 log2(𝑝𝑝𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

 

 
Wang and Zhao (2018) use the proximity factor that the authors use is proportional to the 
number of edges between the distinct classes as Li, and inversely proportional to di which 
represents an average distance between different class centroids: 
 
 

𝐻𝐻𝑊𝑊𝑊𝑊 = −�
𝐿𝐿𝑖𝑖
𝑑𝑑𝑖𝑖
𝑝𝑝𝑖𝑖 log2(𝑝𝑝𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
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RStudio script 
 
### CLARAMUNT'S SPATIAL ENTROPY ## 
#A stand for green pixels, B stands for white pixels 
df<- read.csv ("distances.csv",header = TRUE) 
df= data.frame(df) 
 
#Example Landscape A 3x3  
#  x y class 
#1 1 1     A 
#2 1 2     A 
#3 1 3     A 
#4 2 1     A 
#5 2 2     A 
#6 2 3     B 
#7 3 1     B 
#8 3 2     B 
#9 3 3     B 
 
#Extract intra and extra distances from a Euclidean distance matrix  
 
df %>%  
  select(-class) %>%  
  dist() %>%  
  as.matrix() -> dist.m 
 
as.matrix(dist.m)[grep("A", class), grep("A", class) ]  
 
#Intra-distance for each class 
intra <-sapply(LETTERS[1:2], function(let) as.matrix(dist.m)[grep(let, class), grep(let, class) 
] 
     )  
 
#Extra-distance for each class 
extra <- sapply(LETTERS[1:2], function(let) as.matrix(dist.m)[grepl(let, class), !grepl(let, 
class) ] 
      ) #this works as extra distance calculator 
 
#Average Intra-distance for green class (i.e., A) 
intra_green<-do.call(rbind.data.frame, intra[1]) 
intra_green<-mean(intra_green[intra_green!=0]) 
 
#Average Intra-distance for white class (i.e., A) 
intra_white<-do.call(rbind.data.frame, intra[2]) 
intra_white<-mean(intra_white[intra_white!=0]) 
 
#Average Extra-distance for green and white classes (i.e., A and B) 
extra_green<-mean(extra[extra!='A']) 
extra_white<-mean(extra[extra!='B']) 
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#Probabilities for each class, for this example we are using Landscape A 3x3 probabilities: 
p_g<- (5/9) 
p_w<- (4/9) 
p_g<- (p_g*log2(1/p_g)) 
p_w <- (p_w*log2(1/p_w)) 
 
#Claramunt's entropy ratios (intra/extra) 
green_CL <- intra_green/extra_green 
white_CL <- intra_white/extra_white 
 
#Claramunt's spatial entropy  
Claramunt <- sum(p_g*green_CL+p_w*white_CL)  
print (Claramunt) #the result 
 
 
######## WANG AND ZHAO SPATIAL ENTROPY ####### 
#Get centroid values for each class 
centroids <- aggregate (. ~ class, df[, 1:2], mean) 
 
# Split the centroid data frame into two observations 
centroid_green <- centroids[1, ] 
centroid_white <- centroids[2, ] 
 
# Calculate and print their distance using the Euclidean Distance formula 
centr_distance <- sqrt( (centroid_green$x - centroid_white$x)^2 + (centroid_green$y - 
centroid_white$y)^2 ) 
centr_distance 
 
 
#Calculate Wang and Zhao spatial entropy 
#Entropy of that landscape 
entropy <- p_g+p_w 
 
WangZhao <- sum(10/centr_distance*entropy) #adjust according to each landscape’s TE 
print(WangZhao) #the result 
 
#This code can be easily ‘looped’ for faster computing 
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