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Abstract:We continue our exploration of thermodynamics at long observational timescales, “slow time,” by
including turbulent dynamics leading to a condition of fluctuating local equilibrium. Averaging these fluc-
tuations in wind speed and temperature results in a velocity distribution with heavy tails which, however,
are necessarily truncated at some large molecular speed preserving all moments of the velocity distribution
including the energy. This leads to an expression for the ideal gas law in slow time which as its core has the
superficially familiar term 3

2Nkθ in addition to a term accounting for the large-scale fluctuations, which is
also proportional to the particle number N; θ is a new temperature including thermalization of wind. The
traditional temperature T no longer exists. Likewise, the additional energy term necessitates a new quantity
that parallels entropy in the sense that it captures hidden degrees of freedom. Like entropy, it captures phys-
ical properties manifesting indirectly, but on scales larger than the familiar laboratory scales. We call this
quantity epitropy.

Keywords: slow time, long time, ideal gas law, epitropy

1 Introduction

Local equilibrium is a ubiquitous condition in physical systems, from planetary atmospheres to oceans and
stars. It is of necessity in the context in which thermodynamics was first envisaged and in which it is com-
monly experienced. These systems need not be in steady states. Local equilibrium typically coexists with
turbulent dynamics leading to a condition of fluctuating local equilibrium (FLE). This paper aims to examine
FLE systems on long timescales using what we have developed previously [1] within the conceptualization of
slow time. For another interesting approach to fluctuating systems see superstatistics introduced by Beck [2].

The slow-time project aims to treat directly the effects of long timescales on physics or chemistry as time
resolution is lost. The distinct regimes of physics, such as the atomic and laboratory regimes, are familiar.
These of course are special cases of quantum mechanical and relativistic regimes. There is a clear hierarchy
which has the distinctive property that each regime can “ignore” underlying ones even if they must be in
fundamental agreement. That property is best known as closure [3], following the terminology arising from
the historical problem of turbulence. Closure emerges through a process that induces new relationships be-
tween existing ormodified quantities in some limit, yielding a system of equations that can be solvedwithout
reference to the underlying regime.

The central question the slow-timeapproachasks iswhether anew regimeor new regimes emerge on long
timescales and correspondingly coarsened space scales. Loosely speaking that question puts an observer in a
situation not unlike trying to view the laboratory regime from atomic or kinetic scales. From the standpoint of
such scales the laboratory regime induces newphysical variables such as temperature, while burying specific
dynamical variables in the loss of resolution whereby entropy emerges.

In the prior work [1], free variables (temperature and flow velocity) were fluctuating in a simple homoge-
nous system to produce probability density functions (PDFs) appropriate for long timescales. It attempted to
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identify key features of PDFs that must arise without consideration of local equilibrium systems per se. FLE
systems go one step further and introduce new considerations as they are embedded in a configuration space.
Instead of a single fluctuating thermodynamical-dynamical system, FLE implies the existence of fluctuating
scalar and vector fields throughout the system, i. e., in this view the large system does not fluctuate in unison
but each local pocket may fluctuate by itself, hence the need for fields.

This generalization to FLE systems has mostly indirect effects on the reasoning of the prior work. Thus
we do not directly repeat the same analysis in 3D that we performed in 1D earlier. Instead we operate with the
ansatz that the key features of the PDF approximation derived there,

puT (υ,w) =
ψ0
√π
(

w2

υ2 + w2)
3/2

e−
w2ψ20υ

2

υ2+w2 , (1)

persist. In this equation υ is the particle velocity andψ(θ) is the precision of the Gaussian velocity distribution
which is itself fluctuating around the central value

ψ0 ≡ ψ(θ)
!!!!!!!!θ=θ0
= √m/(2kθ0). (2)

Here θ is the thermalized wind temperature, which is a generalization of temperature that includes thermal-
ized wind [1]; w is the Gaussian precision of the fluctuations in ψ with units of velocity. For mathematical
convenience we work with the Gaussian precision instead of the standard deviation. For standard deviation
σ the precision ψ = 1/σ. Thus a larger precision means a tighter distribution. The subscripts of puT indicate
fluctuated velocity, u, and temperature, T. (In [1] puT was denoted p̂(υ;w,ψ0).)

Equation (1) is a simplified, but highly accurate, approximation of the full PDF from [1]. The simplified
version may be as sound as the full version in that the full version is based on certain ad hoc assumptions
such as Gaussian fluctuations, and in the case of temperature a truncated Gaussian. While these are plausi-
ble they are not confirmed. Any highly accurate simplification may be just as valid. This is in line with our
goal at this stage to illustrate how different slow time is from behavior at the laboratory scale. A full general
thermodynamic theory at slow time is still to come.

The PDF normalization is not fully maintained in this approximation as it can be shown that puT (υ) nor-
malizes to erf(wψ0), which is very close to 1 providedwψ0 ≫ 1. The physical interpretation of this requirement
is that the standard deviation (1/w) of the fluctuationsψ of the velocity fluctuations must be suitably smaller
than its central value ψ0 [eq. (2)], such that most of the weight of the distribution ψ(θ) remains within the
physical regime of θ ≥ 0. If that is not the case, the distribution is no longer Gaussian as assumed but has
substantial weight in the unphysical range of negative temperatures.

Numerical integration shows that in practice only wψ0 ≳ 2 is needed [1]. The conditions discussed in [1]
estimated values of wψ0 larger than 2 by at least a factor of 102. For perspective, erf(102) ≈ 1 − 10−4345. Thus
the probability lost in the simplification is extremely small, justifying such an approximation for a PDF.

The term w is the transition velocity at which the effects of temperature fluctuations manifest as being
unthermalizable. This can be seen in the factor exp[−w

2ψ2
0υ

2

υ2+w2 ], discovered in the prior calculations, which has
extraordinary properties that complement the more familiar properties of the remaining factors. The transi-
tion velocity marks where this factor switches from Gaussian for small υ to a constant for large υ. Similarly
the transition velocity marks where the factor ψ0

√π (
w2

υ2+w2 )
3/2 changes from a constant for small υ to a power

law for large υ, leading to a heavy tail PDF [1]. The result is a Gaussian core with heavy tails.
This paper develops from those previous results [1]. The properties employed for the FLE case are in three

categories: previous results, fundamental requirements, and simplifying assumptions.

Previous results [1]
– PDFs are a composite of Maxwellian behavior for small velocities and heavy tails for large velocities.
– There is a sharp transition between the two behaviors at the critical transition velocity, w, with a full

Gaussian form returning in the large w limit.
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– Heavy tails imply that for finite w the distribution is not Gaussian and hence temperature is a laboratory
regime property that does not exist in the slow-time limit. This arises because, unlike persistent velocity
(“wind”) fluctuationswhichare absorbed into thenew temperature θ [1], temperaturefluctuations cannot
be thermalized. “Thermalization” means that Gaussian fluctuations are incorporated only into changes
in the standard deviation of a Gaussian form.

Fundamental requirements
– FLE systems reduce to thermodynamic equilibrium in the absence of fluctuations. For example, in (1) as

w →∞, the distribution of fluctuations in temperature goes to adelta function and (1) becomesGaussian.
With this principle the slow-time thermodynamics excludes distributions that do not reduce to standard
thermodynamics at laboratory-scale conditions. This condition plays a role similar to the correspondence
principle of quantummechanics, or the Newtonian limit of relativity.

– Heavy tail behavior holds for finite velocity magnitudes greater than w, but is asymptotically artificial,
meaning that moments must exist in true distributions because these distributions become depopulated
beyond large enough υ = υ∗, where it is presumed that υ∗ ≫ w. If instead υ∗ ≪ w, one can proceed
with a truncated Gaussian form without heavy tails. We will not consider that here, but it should be
straightforward to implement using these results.

Simplifying assumptions
– The velocity distribution is isotropic allowing meaningful representation by a single velocity axis.

Anisotropy can be accounted for if needed elsewhere.
– Fluctuatingmeanvelocity (“wind”) is assumed fully thermalized for simplicity, according to [1]. However,

persistent non-fluctuating winds can be easily accounted for too if desired.

This paper uses these properties to determine a slow-time relationship between moments in an FLE sys-
tem that does not employ usual variables in the laboratory regime valid for finite w. It builds on knowl-
edge of Gaussian systems and introduces a deviation function R, known as the redistribution function, to
account for non-Gaussian behavior arriving finally at a long timescale equation for an ideal gas in an FLE
system.

2 Isotropy conditions and normalization

2.1 One dimension

In [1] we focused on developing a PDF strictly in one space dimension. In order tomake this physically mean-
ingful, we must discuss how this pertains to a 3D velocity space. For simplicity we will aim for isotropic
probability distributions as is often the case in thermodynamics.

We have already discussed how extraordinarily small the deviation from 1 is in the normalization of
the approximate PDF (1). If one seeks a regular normalization, one may, most naturally, regularize the
lost probability from (1) by adding a minute term that integrates over υ to give 1 − erf(wψ0). Such a func-
tion is not unique, which merely reflects the highly accurate though approximate nature of (1) as long as
wψ0 ≳ 2. If ψ0 is taken as a given constant for this analysis and thus by this requirement w ≳ 2/ψ0, one
could use any function β(υ,w) with a finite interval (−γ, γ) and chosen to satisfy all the following proper-
ties,
(a) 0 ≤ β(υ,w) ≪ puT (υ,w) for υ ∈ (−γ, γ),
(b) β(υ,w) = 0 for υ ∉ (−γ, γ),
(c) ∫γ−γ β(τ,w) dτ = 1 − erf(wψ0), wψ0 ≳ 2,

to regularize the normalization. There is no difficulty to achieve thesewith the characteristic numbers in play.
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2.2 Three dimensions

Wewill follow the samemethod for regularization in 3D as just outlined for 1D above. For those requirements,
υ and w are 1D quantities in theℝ1 velocity space. However extending intoℝ3 requires a distinction between
the values on an axis, i (i. e., υi,wi), and the magnitude of vectors (i. e., ν, ω). We will employ this distinction
in the remainder of this section.

Thus by analogy we now introduce the small 3D regularization term ξ through

p(ν,ω, α1, α2, α3) dV = ξ (ν,ω, α1, α2, α3)dV +
ψ3
0

π3/2
(

ω2

ν2 + ω2)
9/2

e−
ω2ψ20ν

2

ν2+ω2 dV , (3)

where the three components of the regularized probability, β(ναi,ωαi) + puT (ναi,ωαi), were multiplied. The αi
are the direction cosines (i. e., α21 + α

2
2 + α

2
3 = 1 and υi = ναi, wi = ωαi) for each of the three components in the

3D space.
It is tempting to regard ξ as an inherited regularization from the 1D cases. However, with such an inter-

pretation complications arise because of conditions that are excluded by the 1D regularization properties.
It should be kept in mind that the volume element dV in (3) is what must be infinitesimal, not necessarily
its extension in each of the Cartesian directions. Moreover, attempts to manage them involve 1D structures
that do not manifest in 3D. In the first instance, ξ is the sum of products of individual terms; β never appears
alone. By far most of the domain will satisfactorily follow the 1D regularization requirements, but they will
not be valid for αi ≲ 2/(ωψ0), which corresponds in special cases to angles about a degree off a critical axis.
This is a domain excluded by the 1D regularization conditions. While one might try to relax this condition by
careful choices of β, it cannot eliminate the singular case at α = 0. There w = 0, which is non-physical and
mathematically problematic (the limit does not exist at the origin).

These difficulties arise entirely because of trying to insert 3D considerations into a perfectly sufficient 1D
regularization. Moreover they are entirely a spurious artifact of the choice of coordinate system. That is, if the
actual manifold is left fixed and the coordinate system is rotated, the difficulties follow the axes and do not
remain with the manifold. This problem is manifested if one considers the integrals of (3),

∫
D

ξ (ν,ω, α1, α2, α3)dV = 1 − ∫
D

ψ3
0

π3/2
(

ω2

ν2 + ω2)
9/2

e−
ω2ψ20ν

2

ν2+ω2 dV , (4)

whereD represents the entire space. The right side of (4) does not dependon {αi},while the left side apparently
does. But it does not need to. The only connection ξ has to reality is its role in regularizing p. Without loss
we may require ξ to be some new function such that ξ (ν,ω, α1, α2, α3) → ξ (ν,ω), which solves this issue as a
sufficient but not necessary requirement:

∫
D

ξ (ν,ω)dV = 1 − ∫
D

ψ3
0

π3/2
(

ω2

ν2 + ω2)
9/2

e−
ω2ψ20ν

2

ν2+ω2 dV . (5)

Equation (5) is the correct 3D analog to the requirement (c) of the 1D regularization properties. So long asωψ0
follows the characteristic values of wψ0, the other analogs to the 1D properties will follow. Thus

p(ν,ω) dV =
ψ3
0

π3/2
(

ω2

ν2 + ω2)
9/2

e−
ω2ψ20ν

2

ν2+ω2 dV , (6)

where ξ has been discarded due to its minuteness and the same replacement p(ν,ω, α1, α2, α3) → p(ν,ω) as
above for ξ has been applied, leaving an isotropic expression for p(ν,ω). Of course ξ need not be isotropic.
It was only chosen to be. If one repeats this argument for the w →∞ case, this entire argument goes over at
each step to the classical development of a 3D distribution for the Maxwellian.

Isotropy is of course unnecessary. Anisotropy can be accommodated building from the 1D case too.
Anisotropy conditions are commonplace in physics, for example, supersonic molecular beams which have
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different temperatures by a large factor in different directions. (See for example Section 2 of [4], Section 3.4
of [5], or [6].) Similarly major directional differences are found in jets emerging from neutron stars and black
holes due to magnetic fields. Similarly photons have states embedded in momentum space which induce
inherently direction-dependent states [7]. Only in full thermodynamic equilibrium do all of these direction-
dependent states coalesce into one, achieving isotropy. What is achieved in this section is that we can mimic
the approach of Maxwell to make the 1D approach that we have developed have an impact in a normal 3D
space. Rearranging probability has a more significant role in what follows.

In the following, unless stated otherwise, we suppress the subscript i and let υ represent one of the com-
ponents υi, and similarly w will represent wi.

3 The slow-time probability density function
In [1] new PDFs were deduced from the Maxwellian, pM(υ) [previously p(υ,T)], by fluctuating that distri-
bution’s parameters. When flow velocity was fluctuated about zero, the wind was “thermalized,” yielding
another Gaussian form,

pu(υ) =
ψ
√π

e−ψ
2υ2 (7)

[previously p(υ, θ)], where ψ is defined in (2) above. This yields three PDFs, pM , pu, and puT , to which we add
a fourth, ps(υ), which is the true slow-time PDF.

The PDF ps not only encompasses the loss of spatial resolution that slow time implies, but it also gathers
the full range of velocity distributions of the field into a single distribution, which we presume is isotropic
according to the description in the introduction. In the following we will thus address this distribution by
considering only one axis unless otherwise specified.

While puT , as per (1), asymptotically approaches zero, ps must drop to zero abruptly after some velocity
υ∗ because the real world is not a continuum but consists of a finite number of particles, i. e., the wing of the
distribution is granular with one particle being the fastest. If the entire integration domain, D, is D = D1 ∪ D2
where D1 = {υ|υ∗ ≥ |υ|} and D2 = {υ|υ∗ < |υ|}, then

ps = {
puT + δ(υ) υ ∈ D1,
0 υ ∈ D2,

(8)

where δ(υ) is a correction function that ensures that normalization is preserved. A constraint on δ follows,

∫
D1

δdυ = ∫
D2

puTdυ = 2
∞

∫
υ∗

w3ψ0
√π(υ2 + w2)3/2

e−
w2ψ20υ

2

υ2+w2 dυ. (9)

For small ζ = w/υ,

w3ψ0
√π(υ2 + w2)3/2

e−
w2ψ20υ

2

υ2+w2 =
ζ 3ψ0
√π

e−w
2ψ2

0 (1 + O(ζ 2)). (10)

Thus for large υ = υ∗,

∫
D1

δdυ ∼ 2w
3ψ0
√π

e−w
2ψ2

0υ−2∗ = 2
wψ0
√π

e−w
2ψ2

0ζ 2∗ . (11)

Representative values from the appendix of [1] put values for the exponent of the exponential factor
∼ −104 (i. e., 10−4342 from the introduction). Thus the correction is exceptionally small.

We may draw two conclusions if (8) holds:
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Figure 1: Distribution functions for w = 1000 (marked with a | on the υ axis) and υ∗ = 1600 (marked with a *). The left frame
shows the redistribution function R(υ) = ps −pu which is equal to −pu, typically an exceptionally small quantity, for |υ| > υ∗. The
right frame shows its two components, the Gaussian pu and the “true” distribution ps which vanishes identically for large |υ|.

1. Setting δ = 0 in (8) is an exceptionally accurate approximation. This is of importance when using puT to
estimate ps when υ < υ∗.

2. All moments of ps, the true distribution (8), converge because ps = 0 for υ > υ∗. This conclusion is not
a direct consequence of the previous one, but primarily based on the existence of an upper bound on
speed, υ∗.

4 The redistribution function R

While the list of properties laid out in the introduction call for the true distribution function ps to be non-
Gaussian, our classical conceptualization of such problems is Gaussian in form. A Gaussian PDF is a natural
reference, thus we define the redistribution function

R(υ) ≡ ps − pu. (12)

The integral of R over the full domain Dmust be

∫
D

Rdυ = 0, (13)

because probability is conserved. Since R is an even function it follows that

∞

∫
0

Rdυ = 0. (14)

Thismeans that excesses in the differences of probabilitymust cancel out. Deficits in one domainmust cancel
with excesses in another. We know that heavy tails are larger than exponential tails, so for large υ, R must
be positive. This must be compensated for with a domain of negative values. Thus there must be at least one
zero in R. Moreover, near υ = 0 the function is Maxwellian, so there must be a second zero and horizontal
tangent there. See Fig. 1. The positive and negative areas of R are indeed equal as required by (14). This shape
agrees with the function Φ = puT/pu (Fig. 2) discussed in [1], which is even with two local minima and a local
maximum at υ = 0; R sets ps up as a perturbation on a familiar form: ps = pu + R.
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Figure 2: The function Φ = puT /pu relating the PDF for fluctuating velocity as well as temperature for four different precisions of
precisions w to the PDF with an exact precision of temperature. The two minima disappear over a fairly small w range. Note that
υ and w are on different scales from the previous figure in order to show this effect clearly.

5 The slow-time ideal gas law
Section 3 demonstrates that all moments of ps are convergent. Let Mn{g(υ)} ≡ ∫D υ

ng(υ) dυ be the nth mo-
ment of g(υ). Then we may compute Mn{ps(υ)}. With the assumptions from the introduction, we find that
M0{ps(υ)} = 1 andM1{ps(υ)} = 0.

Second moments are most relevant in connection with energy, E, which involves all components of υ,

E = mN
2
∑
i
M2{ps(υi)} =

mN
2
∑
i
M2{pu(υi)} +

mN
2
∑
i
M2{R(υi)}, (15)

whereN is the number of particles in the entire FLE system. The form of the second sum, involving pu, follows
naturally from known integrals, so

E = 3
2
Nkθ + mN

2
∑
i
M2{R(υi)}. (16)

While from properties of R,M0{R(υ)} = 0 andM1{R(υ)} = 0, we cannot expect the same result forM2{R(υ)}.
In [1] we foundM2{puT (υ)} to diverge logarithmically even ifM2{ps(υ)} does not. For some suitable function
δ(υ) in (8), then

E = 3
2
Nkθ + Nf (w, υ∗), (17)

where the properties of f (w, υ∗) require w, υ∗, and δ to be fully determined in terms of the specific structures
in play.

The correspondence principle for the FLE systems requires that the energy equation reduces to the clas-
sical equation E = 3

2NkT in the absence of fluctuations. Clearly θ → T in that case, but we must also have
limw→∞ R(υ) = limw→∞ f (w, υ∗) = 0. This follows if limw→∞ ps(υ) = pu, which in turn implies limw→∞ δ(υ) =
0. To ensure these results we must either ignore υ∗ or avoid depopulated domains by requiringw ≪ υ∗. If we
assume to the contrary that υ∗ is held fixed, then the redistribution function and the normalization correction
do not vanish in the limit, thus the moments do not generally vanish in that limit (i. e., limw→∞ f (w, υ∗) ̸= 0),
and the correspondence principle does not apply. This allows us to consider an expansion at infinity of the
form f (w, υ∗) = w−2h + O(w−4), or

E = 3
2
Nkθ + Nw−2h + O(w−4), (18)
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where h is a constant to be determined. Outside of possible exceptions we do not at present know this slow-
time behavior and thus must expect h ̸= 0. Its value will depend on specifics unavailable to us a priori, but it
is in principle something measurable with commensurate time and instruments.

Discarding higher order terms in (18),

E = 3
2
Nkθ + Nw−2h (19)

becomes the slow-time version of the ideal gas law, where θ, w, and h are the natural regime measurables.

6 Discussion and conclusion

To summarize, in slow time θ reduces to T in the no-fluctuation limit, but θ must not be confused with T,
as it includes “thermalized” wind. Classical temperature T no longer exists. The transition velocity, w, is the
statistical precision of fluctuations in the temperature variable, ψ [eq. (2)]. It represents the transition from
Gaussian to polynomial behavior. The term h is the residual at infinity of the correction term in the slow-time
ideal gas law (19).

Extensive and intensive variables
Classical thermodynamics makes a sharp distinction between extensive and intensive variables; see, e. g.,
[8]. Extensive variables scale linearly with the size of the system (e. g., particle number, energy, and volume,
to name the most common set). Intensive variables are the partial derivative of some objective functions with
respect to these extensive variables (e. g., chemical potential, temperature, and pressure, corresponding to
the above). They are independent of the size of the system. Thus extensive and intensive variables always
come in pairs. The common objective functions (potentials) are E(S,V ,N) and S(E,V ,N). They both operate
within the same set of extensive variables, {E, S,V ,N}, but with different intensive variables.

In slow timewewill talk about variables that scale linearly with the particle numberN as extensive, e. g.,
the energy E in (19). However, the corresponding intensive variables are more delicate. If we choose E as our
objective function, its derivative with respect to N would be

χ = àE
àN
=
3
2
kθ + w−2h. (20)

The notion of volume, which could have given us a pressure, was treated implicitly. That is, in part, be-
cause, along with coarsening time resolution, space is also coarsened. That could either be interpreted as
volume being unbounded, in which case there is no pressure, or we could work in the local equilibrium
approximation and define volume as the region of space occupied by a certain number of particles. This is
typically what is done when calculating the pressure at different altitudes of the atmosphere. The precise
form in slow time is something for future work.

Hoping to define an appropriate slow-time temperature, distinct from θ, analogously to the laboratory
regime requires that we have a definite entropy of the FLE in order to be able to calculate a derivative analo-
gous to àE/àS. However, there is no fundamental reason to carry over the notion of intensities generated from
partial derivatives of a function of extensities. Like classical temperature, this analogy may prove in future
work to be unsuitable for the slow-time regime.

Epitropy
Entropy does not exist at the atomic scale since all motion in principle can be monitored and thus is repre-
sented as kinetic energy. On the laboratory scale that small randommotion is coarse grained away (blurred)
but its average effect remains in the form of entropy. In slow time an analogous effect turns randomly variable
winds into a temperature contribution to the new thermalized wind temperature θ [1].
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However, h is different in that it represents the value of integrals over a domain that is truncated by
depopulation in a manner external to classical theories, which assume an inappropriate infinite or semi-
finite domain with non-zero integrands. The integral h should have a measurable value, but that value is not
knowable from classical theoretical principles. The theoretical determination of h depends on properties that
we cannot access at present but nonetheless must collectively manifest themselves.

It seems on its face to be paradoxical: something integral to the machinery that may be observed while
depending on things inaccessible to us. But we deal with such a quantity in the form of entropy. The ety-
mological meaning of entropy might be best translated for this purpose as internal churning. We do not see
the activity because it is internal. In the case of h we do not see its hidden activity because it is external,
so the etymological analog is epitropy, from Greek epi (“external”) and trope (“churning”). The new term in
the slow-time ideal gas law, h, captures features that are invisible on shorter timescales, e. g., the laboratory
scale, which accrue to emerge in the slow-time regime. In principle h is a new observable of the slow-time
regime. However more properties of it will be explored in future work.

Isotropy
The assumption of isotropy is not necessary. One can imagine actions under fields that set preferential direc-
tions, for example.

Persistent winds
The assumption that the flow velocity, u, averages to zero is unnecessary. One can imagine awind field that is
fluctuating plus a persistent component. This will cause the first moment among others to no longer be zero,
and will lead to dynamical equations, distinct from thermodynamical ones. That is the topic of future work.
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