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Abstract: Any observation, and hence concept, is limited by the time and length scale of the observer and
his instruments. Originally, we lived on a timescale of minutes and a length scale of meters, give or take
an order of magnitude or two. Therefore, we devloped laboratory sized concepts, like volume, pressure,
and temperature of continuous media. The past 150 years we managed to observe on the molecular
scale and similarly nanoseconds timescale, leading to atomic physics that requires new concepts. In this
paper, we are moving in the opposite direction, to extremely large time and length scales. We call this
regime “slow time”. Here, we explore which laboratory concepts still apply in slow time and which new
ones may emerge. E.g., we find that temperature no longer exists and that a new component of entropy
emerges from long time averaging of other quantities. Just as finite-time thermodynamics developed
from the small additional constraint of a finite process duration, here we add a small new condition,
the very long timescale that results in a loss of temporal resolution, and again look for new structure.
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1. Introduction

Any observer perceives effects and structure only within a limited time window within which it is
able to achieve time resolution and thus establishing ‘before and after’ and causality. At shorter times,
we cannot resolve that, at longer times we do not observe any change. We have always experienced
laboratory/human scales directly. In more recent times, through inference and some observations, we have
extended our time window to shorter timescales, to molecular behavior. This means moving downward
by a factor of about 12 or more orders of magnitude. In the slow-time project, we are trying to look the
other way, to very long timescales by similarly roughly 12 or more orders of magnitude, in order to search
for structures that are invisible on the timescales we experience routinely.

Statistical mechanical modelling of e.g., spin glasses has taken a first step in that direction and
found new phenomena, called glassy dynamics, e.g., polynomial time evolution, memory, and recurrence,
but still within the laboratory scale universe of variables. An excellent review may be found in [1]
and references therein. These phenomena often extend over several decades of time and they involve
logarithmic laws, but eventually the usual exponential decay toward equilibrium sets in. These behaviors
all involve metastability, i.e., they appear stable for long periods of time. They are also found outside
thermodynamics, e.g., describing the decline in extinction rates and scale invariance in the fossil record
and the magnetic creep-rate of type-II superconductors [2,3]. In the present study, we go many orders of
magnitude beyond those studies and seek possibly new concepts and variables. Does thermodynamics as
we know it exist at those time and corresponding length scales?
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Our approach is an extension of standard thermodynamics into a new realm very much like finite-time
thermodynamics (FTT) was at its conception. FTT added one small condition, a limit on the duration of
the process considered. Similarly, slow-time thermodynamics adds the extrapolation to very long times
where laboratory dynamics disappears into fluctuations—not the usual equilibrium limit.

The traditional thermodynamic limit in which the system is assumed in equilibrium at uniform
intensive parameters (e.g., temperature) throughout no longer exists. The laboratory variables fluctuate
faster than what is observable in slow time, and position has similarly been coarsegrained. The system
never reaches even quasi-equilibrium in our usual variables. However, perhaps some other variables do?

The aim is to treat directly the effects of long timescales on physics or chemistry as time resolution is
lost. The distinct regimes of physics, such as the atomic and laboratory regimes, are familiar. There is a clear
hierarchy which has the distinctive property that each regime can “ignore” underlying ones, even though
they must be in fundamental agreement. That property is known as closure [4], following the terminology
arising from the historical problem of turbulence. Closure emerges through a process that induces new
relationships between existing or modified quantities in some limit, yielding a system of equations that
can be solved without reference to the underlying regime.

The central question the slow-time approach asks is whether a new regime or new regimes emerge on
long timescales and since equilibration expands at a certain rate, correspondingly coarsened space scales.
Loosely speaking that question puts an observer in a situation not unlike trying to view the laboratory
regime from atomic or kinetic scales. From the standpoint of such scales, the laboratory regime induces
new physical variables such as temperature, while burying specific dynamical variables in the loss of
resolution whereby entropy emerges.

Our first experiments consisted of flowing water, in this case the Niagara River just below the falls.
The left picture of Figure 1 has a 1/2 s exposure. The right picture is exactly the same but with a strong
filter allowing a 50 s exposure. The unsteady flow disappears in favor of smooth streamlines turning
to the right and vivid standing and bow waves previously invisible in the “noise” of local fluctuations.
We see similar “tranquil” situations in slow-time pictures of trees in the wind and of busy traffic in Figure
2. These pictures illustrate the presence of structure appropriate to different timescales.

Figure 1. Two images of the same Niagara Falls downstream flow. The left image is an exposure of 1/2 sec,
while the right hand image is exposed for 50 sec. Note the flow features visible in the right hand image
(stream lines, bow waves, standing waves, vortices, etc.) that are not clearly visible or simply invisible in
the left image due to the “noise” of local fluctuations.
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Figure 2. A busy intersection with lots of students, cars, trucks, and busses moving about. The left frame
is a normal picture taken at 1/100 sec, the right frame is exposed for 10 min. No moving objects are seen
anymore, except for a few very faint shadows. The multiple cars in the left turning lane sit waiting for
green, leading to multiple images of running lights in that position. The red-yellow-green traffic lights are
all lit at the same time, on average.

2. The Slow-Time Probability Density Function

In our first exploration of a fluctuating system at long times [5], we let temperature and flow velocity
fluctuate in a simple homogenous system to produce probability density functions (PDF’s) appropriate for
long timescales. It identified key features of PDF’s that must arise without consideration of the small-scale
local equilibrium systems per se.

The standard thermal Gaussian molecular velocity distribution that is centered around u is

pu(v) =
( m

2kT

)1/2 1√
π

e−
m

2kT (v−u)2
, (1)

where m is the particle mass, k the Boltzmann constant, and T the standard temperature. Fluctuating the
rest velocity u (wind) about zero with a given variance σu results in a new Gaussian distribution [5],

pθ(v) =
( m

2kθ

)1/2 1√
π

e−
m

2kθ v2
(2)

but with a modified temperature θ,

θ = T +
σ2

um
k

(3)

that embeds the fluctuations of the wind velocity u in the form of its variance. In other words, the wind
has been thermalized. However the particle velocity v has not been. v persists as a valid quantity on long
timescales. Similar quantities that carry over to slow time are particle number, energy, and under certain
conditions volume. The fluctuations in wind velocity have become thermalized just like the molecular
velocities are on the laboratory timescale, a sort of mega Brownian motion. Because the expression (2) is
still a standard thermal Gaussian distribution, just with a new temperature variable in the exponent, θ is
indeed a real temperature for its regime, not some sort of “noise temperature”. The wind has simply been
thermalized. Fluctuating wind on the laboratory scale is no different from fluctuating molecular velocities
on the atomic scale. We could, of course, equally well have fluctuated the reference velocity u around a
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non-zero value; that would not have changed the conclusions above. A realistic wind fluctuation in our
daily weather is σu ∼ 5 m/s, which makes the correction term σ2

um/k ∼ 0.1 K, a change that is negligible
under normal conditions. θ is not a generalization of temperature, it is an emerging feature of long-time
fluctuations of wind and will, therefore, in all places replace the laboratory scale temperature T.

Fluctuating temperature, on the other hand, is more delicate, because it does not only appear in
the exponent of the molecular velocity distribution (1), but also in the prefactor. That leads to the very
interesting normalized functional form [5]

puT(v) =
∫ ∞

−∞
pu pξ dξ =

w3ψ0√
π(v2 + w2)3/2 e−

w2ψ2
0v2

v2+w2 , (4)

valid for wψ0 & 2. In this equation, v is the particle velocity and ψ(θ) is the precision of the Gaussian
velocity distribution (1), which is itself fluctuating around the central value

ψ0 ≡ ψ(θ)

∣∣∣∣
θ=θ0

=
√

m/2kθ0 (5)

according to the Gaussian distribution

pξ =
w√
π

e−w2ξ2
(6)

where ξ is the fluctuating part of ψ, ψ = ψ0 + ξ and with θ defined in (3). Thus, w is the Gaussian precision
of the fluctuations in ψ with units of velocity. For mathematical convenience, we work with the Gaussian
precision instead of the standard deviation. For standard deviation σ the precision ψ = 1/σ. Thus a larger
precision means a tighter distribution. We could, of course, have chosen another type of fluctuation for
ψ than the Gaussian (6) as long as it approaches zero at large argument values sufficiently rapidly to be
normalizable. The results would have been qualitatively the same, the mathematics just more complicated.

puT(v), Equation (4), is a very interesting function in that it is a conventional Gaussian for large w
(i.e., very narrow fluctuation of ψ), but becomes a power function for small w. That means that (4) is not a
proper thermal distribution, in other words, the concept of temperature does not extend to long timescales
where also the precision of the velocity distribution fluctuates. Besides formally being the precision of
the precision of the v fluctuations, w is the transition velocity above which the effects of temperature
fluctuations become unthermalizable due to the heavy tails. Figure 3 showing the function Φ = puT/pu,
i.e., the PDF for fluctuating temperature (4) as compared to the Gaussian PDF for fluctuating wind (1),
illustrates this. As long as v� w, the value is 1, but, outside that range, considerable deviations appear.
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Figure 3. The function Φ = puT/pu relating the PDF for fluctuating velocity as well as temperature for four
different precisions of precisions w to the PDF with an exact precision of temperature. The two distributions
are identical, i.e., Φ = 1, for v� w.

So far, we have been considering a one-dimensional system which fluctuated as a whole. Especially
for very long time and spatial scales we need to be more realistic and allow for local fluctuations around
local equilibria. Such local equilibria are widespread in physics from the smallest to the largest scales.
Those systems do not even need to be in steady state. We define this situation as fluctuating local equilibrium
(FLE). It implies the existence of fluctuating scalar and vector fields throughout the system, each local
pocket will fluctuate by itself. We use these properties to determine a slow-time relationship between
moments in an FLE system that does not employ usual variables in the laboratory regime valid for finite w
in order to arrive at a long timescale equation for an ideal gas in an FLE system. In addition, we assume
spatial isotropy for mathematical convenience.

3. The Slow Time Ideal Gas Law

Because the physical world is not continuous to the extreme but eventually discrete, all moments
of puT(v) (4) are convergent for sufficiently large w. LetMn{g(v)} ≡

∫
D vng(v) dv be the nth moment of

g(v). Subsequently,M0{puT(v)} = 1, andM1{puT(v)} = 0 while the second moments add up to the
energy E involving all components of v,

E =
mN

2 ∑
i
M2{puT(vi)} =

mN
2 ∑

i
M2{pu(vi)}+

mN
2 ∑

i
M2{puT(vi)− pu(vi)}, (7)

where N is the number of particles in the entire FLE system and the summations over i are the three
dimensions of physical space, x, y, z. For some suitable function f (w, v∗), this may be written as

E =
3
2

Nkθ + N f (w, v∗). (8)

The first term is the standard energy expression for the thermal distribution (1), i.e., the first term on the
right hand side of (7), while f (w, v∗) represents the second right hand term. Those are the effects due to the
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thermal fluctuations that depend on their precision of precision w and a parameter v∗ indicating the largest
velocity for which a continuous PDF is physically meaningful. I.e., realistically, no particle in the system
has a velocity v > v∗ even though the continuous PDF does have a tiny but non-vanishing value all the
way to infinity. This observation of discreteness in Nature allows us to truncate the normalization v integral
of puT(v) from ∞ to v∗ and thus ensure normalization of the PDF (4) in all situations. The properties of
f (w, v∗) require w and v∗ to be fully determined in terms of the specific structures in play.

The correspondence principle for the FLE systems requires that the energy equation reduces to the
classical equation E = 3

2 NkT in the absence of fluctuations. Clearly, θ → T in that case, but we must
also have limw→∞ f (w, v∗) = 0. This follows if limw→∞ puT(v) = pu. To ensure these results, we must
either ignore v∗ or require w � v∗. This allows for us to introduce an expansion at infinity of the form
f (w, v∗) = w−2h + O(w−4), or

E =
3
2

Nkθ + Nw−2h + O(w−4), (9)

where h is a constant to be determined. We do not at present know this slow-time behavior and, thus,
must expect h 6= 0. Its value will depend on specifics unavailable to us a priori with our laboratory scale
knowledge, but it is, in principle, something measurable with appropriate instruments from the [deleted
the extra ‘the’] slow-time regime.

Discarding higher order terms in (9),

E =
3
2

Nkθ + Nw−2h (10)

becomes the slow-time version of the ideal gas law, where θ, w, and h are the natural slow-time
regime variables.

4. Discussion and Conclusions

To summarize, the slow-time temperature θ reduces to T in the no fluctuation limit, but the classical
temperature T itself no longer exists. The transition velocity, w, the statistical precision of fluctuations
in the temperature variable, ψ, (5), represents the transition from Gaussian to heavy tail (polynomial)
behavior. h is the residual at infinity of the correction term in the slow-time ideal gas law (10).

Hoping to define an appropriate slow-time temperature, distinct from θ, analogously to the laboratory
regime requires that we have a definite entropy of the FLE in order to be able to calculate a derivative that
is analogous to ∂E/∂S. However, there is no fundamental reason to carry over the notion of intensities that
are generated from partial derivatives of a function of extensities. Like classical temperature, this analogy
may prove to be unsuitable for the slow time regime.

Entropy does not exist at the atomic scale, since all motion in principle can be monitored and, thus,
is represented as kinetic energy. On the laboratory scale that small random motion is coarse grained away
(blurred), but its average effect remains in the form of entropy. In slow time, an analogous effect turns
randomly variable winds into a temperature contribution to the new thermalized wind temperature θ.

However, h (9) is different, because it describes the large-scale behavior of the system. The integral h
should have a measurable value, but that value is not knowable from classical theoretical principles on
the laboratory scale. We still lack an expression that is analogous to S = −k ∑i pi ln pi. The Maxwellian
has unsuitable tail behavior to address this matter. The new term in the slow-time ideal gas law (10), h,
captures features that are invisible on shorter timescales, e.g., the laboratory scale. In principle, h is a new
observable of the slow-time regime. We call it epitropy.
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Similar slow-time behavior, not seen on shorter timescales, may be found in simple numerical
simulations. Consider the Rösler equations,

ẋ = −y− z (11)

ẏ = x + Ay (12)

ż = xz− Cz + B. (13)

They describe a chaotic three-dimensional system, where the long-time behavior cannot be observed
through a short calculation. Figure 4 shows the XY projection of a long-time calculation (107 steps) with the
parameters A = B = 0.2 and C = 5.981 (left) and C = 5.982 (right). We can make two observations from
these pictures: (i) the many trajectories have a clear large-scale structure with bands of dense population
(yellow) and bands of minimal population (brown) very clearly separated although adjacent. Neither
the equations nor a few individual trajectories indicate such a behavior. (ii) The tiny difference in the C
parameter, from 5.981 to 5.982, dramatically changes the picture. This is slow-time behavior, not seen on
cursory plots.

XY projection
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Figure 4. XY-projections of a 107 step iteration of the Rösler equations with the parameters A = B = 0.2
and C = 5.981 (left) and C = 5.982 (right). We see that: (i) the many trajectories have a clear large-scale
structure with bands of dense population (yellow) and bands of minimal population (brown) very clearly
separated although adjacent. (ii) The tiny difference in the C parameter, from 5.981 to 5.982, dramatically
changes the picture.

A strange attractor gives some insight into the slow-time picture. Figure 4 shows two instances of the
attractor with slightly different parameter settings. Someone computing the trajectory over short time
sees trajectories and not densities. Outside of a bifurcation point, they will not detect any qualitative
differences in the attractor in the two cases, but, after long time integrations, one notices shifts in the
densities of trajectories that only become visible and understandable in the coarsegraining that is implied
by densities. One might connect density distributions in space with the system parameters to gain
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a qualitative understanding of long-time behaviors without revealing any obvious differences to the
short-time trajectories. The long-time behaviors are invisible on the short timescales.

Finite-time thermodynamics added the seemingly small additional constraint that the process in
question proceed during a finite time. However, it had a profound effect and led to concepts, like maximum
power, minimum entropy production, time dependent potentials, optimal paths, and a lot more and spread
to a much wider range of applications than usually called thermodynamic. In this paper, we use the
same approach by adding a small new condition, a very long timescale, and again look for new structure.
We do not claim to have built a full new theory of slow time, only defined some new concepts, and found
surprising observations for particular functional dependencies, like the Gaussian fluctuations laws (6).
Other explicit PDF’s would have resulted in somewhat different behavior, but the new effects, like a
modified temperature (3), a non-Gaussian long-time behavior (4), and the appearance of epitropy (9)
would not have been affected. So far, we have only scratched the surface, there is much more to come.
The derivation of an "ideal gas law" and a new contribution (epitropy) to the entropy in slow-time
are encouraging.
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