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Maxwellian velocity distributions in slow time
Abstract: We extend Maxwellian velocity distributions to long observational timescales in much the same
way that short timescale statisticalmechanics distributions are averaged to yield normal laboratory timescale
thermodynamic distributions. This long timescale view has several novel e�ects: Fluctuating overall veloc-
ities (i.e. “wind”) thermalizes into an additional component of temperature, while returning a Maxwellian
velocity distribution. However, �uctuating temperature results in a new distribution with a Gaussian core
but heavy polynomial tails. The power of the polynomial tail is either −3 or −2 depending on whether the
precision of the temperature is allowed to extend to ± in�nity or is required to remain strictly positive. The
distribution is also interesting in the way it remains almost exactly Gaussian up to a certain velocity after
which it quickly breaks o� to become polynomial. The distributions are carefully analyzed mathematically,
and physical consequences are drawn.
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1 Introduction
The kinetic domain brings to mind Brownian movement, individual molecules colliding, and dust particles
jiggling. This microscopic chaos becomes invisible in the limit of the larger scales of space, time, and parti-
cle number that de�ne the laboratory domain. Historically, linking the microscales to the laboratory scales
is the subject of statistical mechanics and kinetic theory. The laboratory scales function as an ideal, guid-
ing us among the various possible averaging processes that could take a discrete domain over to apparent
continua, allowing the microscopic chaos to be subsumed within thermodynamic equilibrium. But thermo-
dynamic equilibrium is also a limiting case that is realized rarely even as an approximation. In the continua
of the laboratory regime we do not typically achieve thermodynamic equilibrium at all. But if we imagine
traveling with the various dynamics that may exist in continua, we have a useful and pervasive alternative,
local thermodynamic equilibrium (LTE). In the mechanical rest frame of a moving �uid we imagine that we
may measure temperature and pressure locally as if the �uid were in equilibrium even if globally it is not.
This is the normal framework in which pressure, temperature, and other intensive quantities were �rst en-
countered historically, and it is the primary way we experience them in our lives – through meteorological
and biological temperatures, for example.

Butwhile this local equilibrium is essential formany�elds, employing classical treatments of physics and
chemistry, it is inherently limited. For example photons are typically not near equilibrium locally even if the
interactingparticles havingmassmaybe. Thesewordswouldbe invisible otherwise. The classicalMaxwellian
distribution for particle velocities will hold locally, but not without limitations if temperature can be mean-
ingfully represented as a continuous function of position in con�guration space where the discrete particles
with that distribution are also located. Atoms or molecules from spatially nearby local equilibria must there-
fore interact, meaning that the local equilibria are inherently transient if not externally controlled. In order
for them not to relax to a common equilibrium, processes must drive these local states to remain apart, thus
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never quite relaxing to a formal Maxwellian. The relaxation time to full equilibrium must be longer than the
timescales of the processes that form the laboratory scale gradients.

While we are not aware of any previous attempts at identifying slow time behavior as a separate dynam-
ics, we did recently look into a more precise de�nition of the viability of local thermodynamic equilibrium
[1] mentioned above, i.e. when is it realistic to talk about LTE values of say temperature and pressure. The re-
quirement is that time should be su�ciently short that essential equilibration is achieved within the (small)
local volume but not within the entire system. In the space of all extensive thermodynamic variables such
local equilibria will appear as a swarm of points. Only when true global equilibrium is achieved will they
merge into a single point.

Clearly, with a large but �nite number of molecules there is a place in the in�nite tails of the distributions
that is relatively unpopulated. The particles in the sparsely populated tails will also be the particles moving
the quickest, and so would have the shortest interaction times as they move most rapidly to local equilibria
neighboring in con�guration space. Thus we expect to �nd the greatest departure from a limitingMaxwellian
in the tails of the local equilibrium distributions. But if the spatial and temporal resolutions are lower than
that over which local equilibria vary, then the observed probability density will be a composition of many
local equilibria in space and time and not just one.

A number of �elds encounter such distributions of distributions, or distributions subordinated other dis-
tributions. For example, many spin glasses and random �eld systems have time evolutions which are statisti-
cally subordinated sudden jumps in energy (quakes or avalanches) [2, 3]. In cosmology dark matter distribu-
tions are frequently convolved in such away [4] that the newdistributionmaybedescribed by anon-extensive
Tsallis distribution [5]. Porous media are often described by models which include combinations of thermo-
dynamic distributions and geometric restrictions [6] or di�usion on a fractal support [7]. Studies on spiking
responses of motor cortical neurons display a �ring rate described best by a convolution of expected single
neuron response with a distribution of other extraneous inputs [8]. Many of these convoluted distributions
have heavy polynomial tails. Generically, something like this is always at play when we study mutual infor-
mation. However, none of the situationsmentioned above as well asmany other situations are relevant to the
long time behavior we are investigating here.

1.1 Slow time

Any experiment or any observer is limited to a certain time window. We cannot distinguish between physical
events that are too close together in time.We cannot even recognize the order of the events, raising questions
about causality. Similarly, connected events too far apart in time are also not recognized. But that is because
they seem unconnected. Changes are too slow to observe directly. Our only hope to comprehend such things
is indirectly through inference from evidence left by the changes. Continental drift is a classical example. We
do not see it directly but the rocks tell us what happened outside of our lifetimes, outside of our window of
perception. Events that are too close together to perceive we say are beyond our fast time limit, while events
that are too far apart to perceive we say are beyond our slow time limit. We refer to the slow time regime
as being beyond the slow time limit. Figure 1 illustrates this. Sally Shortwave was coined to represent an
idealized observer on nanoscales. Larry Longwave represents observers on scales of years, lifetimes, or eons.
Our everyday lives are somewhere in between. Great e�ort has been expended in comprehending what an
observer encounters in the regime of Sally Shortwave. In this paper we attempt to get a glimpse into what an
observer in Larry Longwave’s regime would perceive.

With instruments that are too coarse and slow to capture local (near) equilibria, the observer would not
be able to perceive the laboratory scales thatwe know, butwould observe a folding ofmany local stateswithin
one. From the point of view of distributions, the observer would encounter a composite distribution instead.
That observer would perceive the laboratory scales the way we think of Sally Shortwave’s regime. That is, it
would seem remote, abstract, and invisible, only accessible through inference and clever experiments. The
scalar �elds of local thermodynamic variables and their temporal variations, which are central to our expe-
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Figure 1. Any experiment or any observer is limited to a certain time window within which it is able to achieve time resolution
and thus establish ‘before’ and ‘after’ and causality. At shorter times we cannot resolve that, at longer times we do not observe
any change. Sally Shortwave lives in the nanoscales world, Larry Longwave in a world of years or eons. Our everyday lives are
somewhere in between.

rience, would be unknown to that observer. They would be like jiggling molecules are to us. But what would
the observer see that would be foreign to our experience?

Would the observer in Larry’s regime see our laboratory scale as we do the nanoscale? What would his
regime be like? Would it be able to stand on its own, as does the laboratory regime, or would it be necessary
to constantly consult the underlying scales to faithfully represent it? That is, could it be closed? Just as the
mechanics of nanoscales di�ers from our experience being jiggly, sticky and non-inertial, should we expect
a di�erent mechanics for his regime? Would there be a kind of thermodynamics distinct to this regime?

1.2 Objectives

This paper attempts to discover what the Maxwellian distribution becomes beyond the slow time limit, i.e.
the slow time Maxwellian. This is needed before pursuing slow time analogues to �uid mechanics or local
thermodynamic equilibrium. Some preliminary conceptual ideas have been published in [9, 10]. While we
take anapproach similar to classical statisticalmechanics, ours ismore speculativebecausewearenot aiming
to connect two known regimes. The slow time regime is not currently known.

Space scales accompany timescales. If a collection of particles have a characteristic speed, their ability to
interact with surrounding particles is limited spatially when given a particular timescale. Groups of particles
beyond this characteristic distance are independent,while on longer timescales they arenot. Thus to consider
the slow time behavior one must consider a box with space coordinates and time. The box only represents
the sampling space, allowing particles to pass freely.

To ensure one is not just constructing an ensemble of particles that will recover the classical Maxwellian
behavior for the laboratory regime, we imagine that the box is composed of small cells each having its own
local statistics de�ned by a local Maxwellianwith a temperatureT and a rest frame velocity u. This is the �uid
mechanical rest frame (mean). Other rest frames may be de�ned for other �ow variables of the system. Their
rest frame velocities frequently di�er from u. We then proceed with distributions in u and T to capture the
distribution of the entire space-time box. This picture treats local velocity u and temperature T as represent-
ing �uctuations in local particle states within cells. Since the slow time regime treats the box as the limit of
resolution, the distribution of the box becomes the observed particle distribution, which is the composition
of the individual Maxwellians within it.

We �rst consider the e�ect of a �uctuating mean velocity u about 0 for �xed T. As u is not only the rest
frame velocity, but becomes the wind of �uid mechanics, there is a trade o� between wind and temperature
on long timescales. The new temperature è appears as it normally does in equilibrium, but for a slow time
equilibrium. Thus for �xed T a slow time ideal gas has a revised temperature è which emerges in velocity
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moments generating all of the standard expressions in place of T. Wind becomes thermalized not by process
but by resolution.

However, things are not so neat when temperatures �uctuate, because temperature also appears in the
normalization of the distribution. The resulting distribution is not Gaussian any longer. It is a distinctive
hybrid with a Gaussian core and heavy tails. The issue of heavy tails is explored, and the results of di�erent
assumptions are compared.

Speci�c values for constants are important to develop a sense of the relative contributions of terms. The
valuesusedare far fromunique, but for thepurposes of this paper values representing air at room temperature
are set in Appendix A and described as standard values throughout.

2 Thermalization of wind
Preliminary to other �uctuations, we consider the e�ect of �uctuations in rest velocity, u, or wind. Without
loss of generality we proceed in terms of �uctuations in one space dimension. Then the molecular velocity
pro�le is

p(v; u, T) = (
m
2kT

)
1/2 1

√ð
exp(−

m
2kT

(v − u)2). (1)

Imagine that within a space-time box large enough winds experience reversals and ranges of magnitudes so
that we may plausibly assume a normally distributed rest velocity u about u = 0 with òu being its standard
deviation, used for aMaxwellian probability distribution function (PDF)with temperatureT. It is conceivable
that no circumstance occurs where the central limit theorem fully holds. However assuming it does, this
convolution of the v and u distributions is itself a Gaussian,

p(v; è) = (
m
2kè

)
1/2 1

√ð
exp(−

m
2kè

v2), (2)

but with a revised e�ective temperature

è =
ò2
um
k

+ T (3)

that contains the wind u. Suppose òu ∼ 5m/s, then ò2
um/k ∼ 0.1 K (see Appendix A). This change of tempera-

ture of 0.1 K is negligible under normal conditions.
Generalizations of temperature are a standard fare of extended irreversible thermodynamics (e.g., [11,

12]). There are also temperature analogues that become temperature under limiting conditions (e.g., [13]).
But the emerging temperature here, è, is like neither of these: It is an emergent feature of a well-de�ned un-
derlying mechanism. The presence of small underlying �uctuations may bring to mind concepts like contact
temperature (e.g., [14]), where small deviations in �ows a�ect what an instrument actually reads. But this is
also a di�erent problem. The present è is in all respects a legitimate temperature and not just a generaliza-
tion. As long as u is �uctuating in a Gaussian manner, all of the ideal gas relationships re-emerge, but in the
temperature è instead of T. For example energy E along one axis is simply, E = Nkè/2, just as it is in T for the
laboratory regime. Coarsening the time scale for �uctuations in u amounts to thermalizing the wind.

3 Fluctuations in temperature
It will prove to be mathematically and conceptually convenient to work with the Gaussian precision (de�ned
below) instead of the standard deviation in what follows. For such distributions of distributions, �uctuations
in standard deviation are proportional to �uctuations in the square root of temperature. A �uctuation in
precision would be in terms of √â (â = 1/(kT)) instead. A larger precision means a tighter distribution. This
is well precedented. Similar structures are in play for thermodynamic intensive variables, like pressure and
chemical potential. P, ì, and â are all conjugate to V, N, and E, respectively, while temperature is the odd
variable residing in the denominator in that representation.
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There is noparticular reasonapriori to presume that �uctuations inT, or some function ofT, are normally
distributed. This is speculation, but in any event all such assumptions cannot be strictly true simultaneously.
The aim is only to �nd a plausible slow time scenario, although we will �nd the outcome appears to be quite
similar with di�erent assumptions. The di�erences will be explored in plots from direct computations below.
Meanwhile we will not be working with T but è = 1/(kâè), where wind, u, has been thermalized. Moreover,
we will still refer to �uctuations in the precision as “temperature �uctuations.”

The Gaussian precision, ÷, is de�ned by the following,

(
m
2kè

)
1/2 1

√ð
exp(−

m
2kè

v2) =
÷
√ð
exp(−÷2v2), (4)

where ÷ is given by ÷ = 1/(√2òè) = √m/(2kè) = √mâè/2 and has units of 1/velocity for the Maxwellian.
Let us now suppose that this precision itself is not constant but is normally distributed in a variable î

about some reference value ÷0 such that ÷ = ÷0 + î. Then

÷
√ð
exp(−÷2v2) =

÷0 + î
√ð
exp(−(÷0 + î)2v2) ≡ pvî. (5)

Because ÷ = √m/2kè > 0 for �nite è then î ∈ (−÷0,∞), so that the normal distribution ought to be truncated.
However, in typical statistical applications in�nite domains are commonly used instead of semi-in�nite ones.
For example, the convention of spectroscopy is to integrate over spectral lines for frequencies, í ∈ (−∞,∞),
even though negative frequency makes little physical sense. If we anticipate, as in spectroscopy, that little
is lost because the inadmissible values contribute little to relevant integrals, this can be a viable approach,
which can be checked after the fact.

Taking this position we allow î ∈ (−∞,∞) instead. The corresponding PDF in î is

p̂î =
w
√ð
exp(−w2î2), (6)

where w is the Gaussian precision for this î distribution with units of velocity. The hat (caret) indicates the
in�nite domain extension. We will see that the resulting structure is such that w appears naturally in the
expressions as a velocity aiding interpretation of molecular velocity v regimes:

p̂(v; w, ÷0) =
∞

∫
−∞

pvîp̂îdî =
w3÷0

√ð(v2 + w2)3/2
exp (−

w2÷2
0v

2

v2 + w2 ). (7)

Two distinctive features emerge: This PDF has polynomial (heavy) tails and a Gaussian core. The shift be-
tween these is controlled by the remarkable argument of the exponential, −w2÷2

0v
2/(v2 + w2). When v ≪ w, it

becomes the classical Gaussian argument−÷2
0v

2 since the denominator in the pre-factor, (v2 + w2)3/2, behaves
like a constant. When v ≫ w, the argument of the exponential approaches a constant leaving an asymptotic
behavior of ∼ v−3.

This is quite di�erent from the result of letting the velocity u �uctuate, where the result was another
Gaussian PDF, but with a revised temperature, è. The u �uctuations were naturally incorporated into the
microscopic ones. This does not happenwith the �uctuations in î since temperature or precision also appears
in the normalization factor multiplying the exponential.

For the truncated distribution p̂î of î, equation (6) gets replaced by

pî =
2

1 + erf(w÷0)
w
√ð
exp(−w2î2). (8)

If ÷0 → ∞ the error function goes to 1, causing the expression to reduce to the Gaussian on the in�nite do-
main with the function always normalized to 1. For the standard values de�ned in Appendix A, one has
2/(1 + erf(w÷0)) ≈ 2 − 10−7, which makes (6) close to (8) despite di�erent normalizations.
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Then the new velocity distribution is given by the density function

p(v; w, ÷0) =
∞

∫
−÷0

pvîpîdî

=
1 + erf( w2÷0

(v2+w2)1/2 )

1 + erf(w÷0)
w3÷0

√ð(v2 + w2)3/2
exp(−

w2÷2
0v

2

v2 + w2 ) +
1

1 + erf(w÷0)
w

ð(v2 + w2)
exp(−w2÷2

0). (9)

The second term arises because of the truncation, which no longer permits an odd term in the integrand
from canceling out under integration. It is thus responsible for a quadratic heavy tail, which will dominate
the cubic one in the �rst term for large v. The mathematical nature and physical meaning of this di�erence
will be discussed in the following. But it bears noting that this term’s existence is entirely a consequence of
asymmetric truncation, which can be as physically questionable as any of the other assumptions.

3.1 Common limits

The large w limit (in�nite î precision, i.e. no î �uctuations) removes all temperature �uctuations:

lim
w→∞

p(v; w, ÷0) = p(v;∞, ÷0) = p̂(v;∞, ÷0) =
1
√ð

÷0 exp(−÷
2
0v

2) ≡ p÷0
. (10)

For v ≪ w for given �nite w, the second term of (9) is negligible and then

p(v; w, ÷0) ≈
1
√ð

÷0 exp(−÷
2
0v

2) ≈ p̂(v; w, ÷0), (11)

i.e. the same result as for largew. Thus near the center of the PDF the function behaves like aMaxwellianwith
temperature èwhile far from the core the simple notion of temperature is not sustainable. This Maxwellian is
invalid for |v| > |w|, thus è has no usable role in the sense of thermodynamics in that moments of the integral
will not produce the traditional simple functions in terms of è. For example the second moment diverges.
What that means will be discussed below.

3.2 Compound probability distributions

In order to illustrate the e�ect of temperature variationswe have calculated a number of velocity distributions
with di�erent standard deviations in Figure 2 (the thin red curves). Averaging such velocity distributions over
three di�erent temperature variations – a Gaussian distribution of the standard deviations (fat red), a boxcar
distribution of the standard deviations (fat blue), and a Gaussian distribution in precision of the precisions
(fat green) – results in velocity distributions distinctly wider than a Gaussian. The distributions of standard
deviations òv and precisions îv used for these compound probability distributions are depicted in Figure 3.
The slight di�erence between the standard deviation (red) and precision (cyan) curves indicates the small
di�erence in using one or the other averaging method.

4 The scaling function Λ
De�ne a functionΛ(v; w, ÷0) such that it transforms the in�nite domain probability distribution into the trun-
cated one,

p(v; w, ÷0) = p̂(v; w, ÷0)Λ(v; w, ÷0). (12)

Λ provides an e�ective framework, not only to understand the relationship between p and p̂, but to under-
stand the nature of the transition from Gaussian to heavy tails for both functions.

Authenticated | andresen@nbi.ku.dk author's copy
Download Date | 5/28/15 9:07 PM



C. Essex and B. Andresen, Maxwellian velocity distributions in slow time | 7

−20 −15 −10 −5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
v distributions

v

σ−Gauss
σ−box
ξ−Gauss

Figure 2. Velocity distributions for di�erent variations. The thin red curves are Gaussian distributions for standard deviations
òv ∈ [1.5, 6.5]m/s. The fat curves are velocity distributions averaged over a range of deviations. The red curve is averaged over
a Gaussian distribution of òv itself having a standard deviation of 0.5m/s around 4.0m/s. The blue curve is averaged over a
boxcar distribution of òv in the range [3.5, 4.5]m/s. And �nally the green curve is the velocity distribution with a variable pre-
cision corresponding to the red standard deviation curve; they are pinned at ±1 standard deviation of both. Clearly the type of
averaging makes only a minor di�erence for these purposes.
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Figure 3. Distributions of standard deviations òv and precisions îv used for the averages of Figure 2. Blue is the boxcar distri-
bution of òv. Red is the Gaussian distribution of òv. And green is the precision distribution of the precision î (scaled down by
a factor of 20 to �t on the same plot). Finally, the cyan curve is a conversion of the green precision distribution into equivalent
standard deviations. The slight di�erence between the red and cyan curves indicates the small di�erence in using one or the
other averaging method.
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From (9) and (7) it follows that

Λ(v; w, ÷0) =
1

1 + erf(w÷0)
[1 + erf(

w2÷0

(v2 + w2)1/2
) +

(v2 + w2)1/2

÷0√ðw2 exp(−
w4÷2

0

v2 + w2 )] (13)

and
lim
w→∞

Λ(v; w, ÷0) = Λ(v;∞, ÷0) = 1. (14)

Thus p(v;∞, ÷0) = p̂(v;∞, ÷0) returning both distributions to the no temperature �uctuation case.
Λ is an extraordinary function as can be seen from its graph (Figure 4). It takes on the value 1 with re-

markable precision for a wide interval in v out to values in excess of 107 m/s for our standard values, which
approaches 10% of the speed of light. Beyond that, asymptotically linear growth ensues because the two dif-
ferent heavy tails diverge from each other as p̂ decreases more rapidly than p.

The most extraordinary features of Λ are in the details. To understand this function take the derivative

dΛ
dv

=
1

(1 + erf(w÷0))√ð÷0w2
v

(v2 + w2)1/2
exp(−

w4÷2
0

v2 + w2 ). (15)

As Λ is symmetric, we need to look only at positive v in the following treatment of the derivative. For v ≪ w,

dΛ
dv

∼
v

(1 + erf(w÷0))√ð÷0w3 exp(−w
2÷2

0) ≈ 10−13 × 10−2.7×10
4
v, (16)

using the standard values in Appendix A. Here, 10−13 is the contribution of the factors other than the expo-
nential, which are clearly of no signi�cance. Even though the derivative is increasing with v, the coe�cient
is so extraordinarily small that with increasing v it will be indistinguishable from zero to computer accuracy
well beyond v = w. But above v = w, the exponential factor in (15) ceases to behave like a constant. The de-
nominator of the exponential’s argument begins to grow signi�cantly and the exponential begins to grow
toward 1 rapidly. We see that

lim
v→∞

dΛ
dv

=
1

(1 + erf(w÷0))√ð÷0w2 , (17)

i.e. the slope approaches a constant.
Because the �rst derivative is so small compared to 1, the second derivative

d2Λ
dv2

=
v2(1 + 2w2õ2

0) + w2

(1 + erf(w÷0))√ð÷0

1
(v2 + w2)5/2

exp(−
w4÷2

0

v2 + w2 ) (18)

is the curvature. Figure 5 shows that it rises from essentially zero to a maximum somewhat above w, then
drops o� to zero again. The maximum is the smallest radius of curvature in the natural metric, which would
not necessarily be apparent on a plot of arbitrary units. This behavior suggests a bend between nearly straight
lines, which is what we observe; see Figure 4.

Before the turn, both p and p̂ behave like the Gaussian they have in common, p÷0
(see limits (10) and

(11)), which is why Λ is steadily close to 1. After the turn, |v| ≫ |w|, they di�er in how heavy their respective
heavy tails are. The in�nite domain case, p̂, is cubic and the truncated domain case, p, is quadratic. This
demonstrates that the heavy tail behavior originates with �uctuating temperature as the presence of heavy
tails is controlled by the precisionw. The larger the value ofw the further out in v thep÷-like behavior extends.

5 The scaling functionΦ
Λ compared two hybrid heavy-tail/Gaussian distributions. We must also compare the hybrid densities with
�uctuating precision to the pure Gaussian forms with �xed precision to complete the investigation. De�neΦ
such that p̂(v; w, ÷0) = p÷0

Φ, then

Φ =
w3

(v2 + w2)3/2
exp(

÷2
0v

4

v2 + w2 ). (19)
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Figure 4. The function Λ(v) relating the in�nite domain PDF, p̂(v; w, ÷0), to the truncated domain PDF, p(v; w, ÷0), for four di�er-
ent precisions of precisions, w. Each curve is essentially made up of an extremely flat portion with Λ = 1 connected to linearly
increasing (decreasing) segments at a rounded corner.
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Figure 5. The second derivatives (curvatures) d2Λ/dv2 corresponding to the Λ curves of Figure 4. Notice the extremely small
values in a wide range around v = 0 and the two narrow peaks where the transition from an almost constant Λ value of one to a
straight incline takes place.
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Figure 6. The functionΦ(v) relating the PDF with an exact precision p÷0 to the PDF p̂(v; w, ÷0) with a distribution of precisions
for four di�erent precisions of precisions w. The two minima disappear over a fairly small w range. Notice that v and w are on
di�erent scales from the previous �gures in order to show this e�ect clearly.

Becausep(v; w, ÷0) = p÷0
ΦΛ, investigatingΦ also informsus about the scaling function forp(v; w, ÷0) in terms

of p÷0
.

This function has a di�erent nature than Λ because it emphasizes the polynomial aspects of p̂(v; w, ÷0)
even in the core of the function where it is most Gaussian in nature. Globally the transition for v large com-
pared towwill still exist, but close to the origin, the sharper peak of the polynomial will dominate causingΦ
to decline,while in the case ofΛ therewas a linear (although exceedingly small) increase. But the exponential
will take over eventually as the scaling function must grow fast enough to compensate for the exponentially
declining tails. That means there will be minima which are determined by the following.

Taking the derivative of the logarithm ofΦ and simplifying,

(v2 + w2)2

Φ
dΦ
dv

= v(2÷2
0v

4 + v2(4÷2
0w

2 − 3) − 3w2). (20)

For horizontal tangents, one has v = 0 or

v2 =
−(4÷2

0w
2 − 3) ± √(4÷2

0w2 − 3)2 + 24÷2
0w2

4÷2
0

. (21)

When 4÷2
0w

2 > 3, which is the case for the standard values described, the + sign produces the real results

v = ±√
−(4÷2

0w2 − 3) + √(4÷2
0w2 − 3)2 + 24÷2

0w2

4÷2
0

, (22)

which is, using the standard values, v = ±358m/s. (For the parameters used in Figure 6 the value is±369m/s.)
These minima and the maximum at v = 0 are depicted in the graph ofΦ, Figure 6. The minima represent the
largest overestimate of p̂ by p÷0

globally. Outside of the interval de�ned by these minima, p÷0
increasingly

underestimates p̂ as Φ grows unbounded. There are no other horizontal tangents than these three, and for
|v| ≪ |w| the exponential’s positive argument grows as v2, which swamps the polynomial factor.
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Λ told us that close to the origin, when both densities were most Gaussian-like, they were most like each
other. This con�rmed that the heavy tail behavior was a consequence of the temperature �uctuations. Φ
tells a slightly di�erent story. While there is sharp divergence in the tails too, the minima clearly tell us that
p̂(v; w, ÷0) is a rather di�erent object than a pure Gaussian. The implication is that the compound distribu-
tions cannot be simply Maxwellians evaluated using di�erent parameter values, as was possible with the
simple thermalization of wind. Given that is so, local temperature will not have the signi�cance it had in the
Laboratory regime.

6 Maximum velocity
The Maxwellian is classically limited. While its mathematical domain is in�nite, physically such a mathe-
matical domain has little meaning. There are no massive particles with unbounded energy in a particular
ensemble with �xed energy, let alone particles moving beyond the speed of light. The Maxwellian is strictly
classical. It does not consider relativistic aspects at all, which require instead something like the Maxwell–
Jüttner distribution (e.g., [15]). Moreover, a �nite number of particles with �nite energy cannot have an un-
bounded distribution in any case. At some location the domainmust be cut to avoid such physical objections.
However, the small contribution fromphysically objectionable parts of the domain are outweighed by the for-
mal convenience of in�nite limits. As mentioned, this happens in spectroscopy where negative frequencies
are admitted for convenience. For the most part, this presents no di�culties. Exponential tails defeat any
polynomial growth. Formal moments are all well de�ned, leading to elegant formal relationships between
integrals.

All of the distributions in this paper have the Maxwellian as their starting point. Therefore all of the
physical di�culties mentioned are present, and all of the composite distributions have similar problems.
With a given number of particles of given energies, in�nite �uctuations in velocity and temperature are not
physically meaningful even if convenient. In any case, in�nite physical domains are problematic, which was
why we considered p in addition to p̂.

In every Maxwellian subsystem amaximum velocity is implied, which thus implies an overall maximum
for all of the composite distributions. Even leaving relativistic limits and the uncertainty principle aside, no
particle can travel faster than a single particle holding all of the system’s energy. Although being an entropi-
cally exceptionally improbable situation, this is a rigorous upper bound. Beyond that velocity, vm, there can
be no particles at all, and thus in reality the domain is not in�nite. This is far above a common upper bound
for v, vc (i.e. vc ≪ vm), since giving all energy to just one particle is a singular case. Clearly kè/2 < vc < vm
with the lower bound representing the sharing of energy equally. The upper bound will growwith the system
size, but for the purpose of establishing �niteness, it is su�cient. For a given energy, E, and number,N, the
Maxwellian vm is easily computed. The vm for the Maxwellian is a microscopic property una�ected by the
convolutions, so should apply to slow time convolutions equally.

Consider an isolated system consisting of N identical particles. Its total energy is in one-dimensional
space, as we have been considering here,

E =
N

∑
i=1

1
2
mv2i =

1
2
kèN. (23)

Putting all energy into one of these particles while all the others are at rest,

v2m =
kèN
m

. (24)

There are no particles for v > vm. But what is the error in pretending that there are? Putting vm into the PDF
at that speed, equation (2) becomes

p(vm) = (
m
2kè

)
1/2 1

√ð
exp(−

N
2
). (25)
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Quite remarkably the exponential’s argument is independent of particle mass as well as temperature. There
is only the weak temperature dependence in the pre-factor. This will be an extraordinarily small number with
N in the exponent. We may expect p(vc) to be somewhat larger.

The largest velocities that can be encountered in the composite distributions will likely be well repre-
sented by some average of vc. The issue of the �niteness of domain is somewhat hidden in the Gaussian case.
But �uctuating temperatures led to heavy tails, bringing this issue out. They are in of themselves not a prob-
lem, but in moments they are. The second moment, which we would use for energy, diverges for both p and
p̂. This is only a problem if the in�nite domains are regarded as physical. Clearly if the convenience of in�nite
integrals compromises the essential physical reality they must take second place. The in�nite domain must
be trimmed. Exactly how that ought to be done will be considered in future work.

7 Conclusion
This paper has contemplated the perspective of an observer whowould regard the laboratory regime as jiggly
and microscopic, much as we see the kinetic or nanoscales. We aimed to get beyond pure speculation by
focusing on how the Maxwellian distribution might be seen by such an observer. The window of observation
for this observer would be bounded by events that are too close in time to distinguish from his point of view
(fast time), which would include our regime. We would regard the putative observer as experiencing slow
time. Hence the resulting distribution is described as the slow time Maxwellian.

The technique was to form compound distributions by �uctuating the wind, u, and temperature, T.
There were several approaches possible in this regard. Which version the putative observer would actually
encounter is unknown, and it is unclear how to determine it explicitly. A range of assumptions were tried
computationally, making some simple comparisons. As the various cases did not di�er much, we adopted
assumptions that made the explicit calculations more straightforward and intuitive. In that regard choosing
precision toworkwithwasmost helpful. Temperature and velocity emergewith a conjugate quality,which oc-
curs explicitly in the case of thermalizing ofwind. But it also appears in amore subtlemanner in the precision
picture because �uctuating precision led to a normal distribution with its own precision (i.e. the precision of
the precision). The latter has units of velocity, and this velocity, w, plays a decisive role in the structure and
behavior of the resulting compounded densities. It acts like a reference velocity separating regimes. It divides
Gaussian-like structure from heavy tail structure.

An unusual hybrid of Gaussians with heavy tails emerges in this paper as a persistent feature. Heavy
tails clearly can be expected to be a feature of the slow time regime. This has some consequences. First the
notion of local equilibrium ceases to be strictly valid. There is no straightforward temperature, as there is in
the Maxwellian case. There could be other qualities that might play such a role in the slow time regime, but
theywould not be temperature strictly speaking. Ifw is large enough, the corewould still behaveMaxwellian,
which would permit a limited return to temperature as long as the core of the PDF is of importance. Second,
the wings of the distribution need to be considered from a physical standpoint to avoid divergent moment
integrals.

There was a question as to what negative ÷ meant. We revised the calculation to be normalized for a
truncated Gaussian. This led to two distributions, p and p̂. The former di�ered by a new term in (9), as well as
a factor that proves to be very close to 1. It is entirely a result of thebreakingof symmetry through the truncated
distribution. It is an extraordinarily small number compared to the other term except for large enough v, given
the standard values in Appendix A. But truncating is a convenient �x and is not necessarily more physical
than allowing negative ÷. A sudden jump is known to cause a Cauchy-like distribution in a signal suddenly
switched on followed by exponential decay. This suggests that some other distribution without the jump
might not lead to the v−2 behavior. Therefore we discount this term which dominates p for larger |v|.

The slow time observer is left with a rather di�erent behavior for the ideal gas. There are heavy tails and
a nearly Gaussian core, becoming more Gaussian with increasing w. But as the tails are heavy, we observe
divergent second moments. Does this mean that energy becomes in�nite? Not if there are only a �nite num-
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ber of particles and �nite energy in the underlying system to begin with. The composition of PDFs changes
nothing in this regard.

One use for such a PDF is in moment equations that are also considered from a slow time perspective [9].
This could lead to a slow time dynamics, which would be the ultimate goal of thinking from this perspective.
Clearly the heavy tails and basic closure problems need to be dealt with in future work.

A Standard values
In order to maintain a solid physical intuition we use typical molecular values for our examples. A stan-
dard air temperature is T0 = 300 K and the molecular weight of air is 29 g/mol, so m = 4.84 × 10−26 kg.
Thus if we take the variation of the wind speed to be òu ∼ 5 m/s, we arrive at the combined temperature
è = ò2

um/k + T = 300.08 K and the center precision of speed ÷0 = √2(ò2
u + kT0/m) ∼ 2.42 × 10−3 (m/s)−1. Since

÷ = √2kè/m and thus |d÷| = (÷0)
3(k/m)|dT|, a representative value for w would be w ∼ 1/|d÷| ∼ 105 m/s for

|dT| ∼ 2.5 K.
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