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Abstract

The methods of finite-time thermodynamics are complemented with some probabilistic
concepts allowing a more accurate description of the performance indicators of a
power system. A chemical reaction is studied. The model is a flow reactor coupled by a
heat exchanger to an engine. The probabilistic approach put into evidence the existence
of a maximum flow rate in the reactor which, when exceeded, with some probability
does not allow the reaction to start and, consequently, the power to be generated. The
power fluctuations depend on the initial concentration of the fuel, i.e. on its quality. The
modelis also appropriate for solid fuels. All the statistical indicators show that thereis a
finite flow rate that yields maximum engine power, and that the maximum fuel
efficiency is always attained at the uninteresting limit of zero flow rate.

1. Introduction

The field of finite-time thermodynamics was started in 1975 as a result of the increased
awareness of the limitations of the Earth’s resources. The oil crisis of 1973 made it clear
that energy sources are neither inexhaustible nor free. The criteria of merit provided by
traditional reversible thermodynamics were, with few exceptions, far too unrealistic for
evaluating the potential for conservation in real processes. Irreversible ther-
modynamics could in principle evaluate the losses in rate processes, but it requires
extensive knowledge of the microscopic mechanism of the process, something which is
usually not available and which relies on rather severe assumptions far from equilib-
rium. These observations prompted some researchers to formulate a macroscopic
theory of loss processes in the tradition of reversible thermodynamics and requiring as
little additional information about the system as possible. This theory is known as
finite-time thermodynamics (for a good early review see [ 1]; new results are reviewed in

[2,3]).
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From common practice we know, however, that by decreasing the duration allowed for
any given process there is a threshold under which the probability that the process
really occurs becomes significantly different from zero or unity. This is of course of no
importance in traditional reversible thermodynamics, where the duration allowed to
the process is infinite and, consequently, the process surely occurs. The situation is
drastically changed in finite-time thermodynamics, where the finiteness of the process
duration is essential. Another kind of limitation characterizes obviously the finite
resources. It refers to their quality. It is well known for example that poor solid fuels have
significant fluctuations of the caloric power. Are these fluctuations intrinsic or could
they arise from the combustion process? This question requires also a statistical and/or
probabilistic analysis. A third situation when the limitation is essential refers to those
processes which occur in systems with small spatial extension, where the total number
of particles is reduced. The recent interest in such small systems is an indirect consequence
of the finite Earth resources. As examples we quote processes occurring in genetic
engineering and microelectronics. In all these cases the use of intensive quantities is
sometimes of little help because of the breakdown on the laws of large numbers. The
implications of finite resources were first treated in [4, 5] while the effect of small size
has been developed extensively in [6], although still in a macroscopic fashion.

In this paper we prove that probability concepts can significantly improve the
performance of the usual finite-time thermodynamic methods. The cost of this im-
provement is on one hand the necessity to add to the macroscopic thermodynamic
model some microscopic details and, on the other hand, the need for more elaborate
mathematical techniques.

The simple system adopted here for illustration is a continuous flow tube reactor that
converts reactants to products in an exothermic process and thus supplies heat to an
engine. The time constraints enter through the rate coefficients of the chemical
reactions. The simplifying assumption is made that the rate coefficients are indepen-
dent of temperature. This provides a simple model of the boiler section of a power plant.
The reaction supplying heat will not, in general, go to completion, and the temperature
of the heat delivered to the engine may be lower than that of the reactor. This system was
studied in [ 7], while in [8] the assumption of temperature independent rate coefficients
was relaxed. In both quoted papers the treatment was based on usual finite-time
thermodynamic methods. Here we shall show that more detailed quantitative and even
qualitative conclusions can be reached when probabilistic methods are added.

In the next section we review the model of a chemically driven engine first proposed in
[7] (for conceptual details see the quoted paper). In subsequent sections the model is
analyzed by using probabilistic concepts for commonly encountered systems following
first order kinetics. All the three restrictions previously mentioned (namely, duratlon
quality and number of particles) w1ll be discussed.

2. Model of a chemically driven engine

Consider the exothermic process R — P which releases an amount of heat per unit time
q,- Suppose that this process supplies its heat to a heat engine. T(f) is the “flame”
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temperature at which q, is released from the chemical reaction, and T, is the tempera-
ture of the hot reservoir of the engine. Suppose further that the chem1cal reaction occurs
in a flow tube (length / and cross sectional area A4). Let us denote by fthe fuel flow rate at
the reactor inlet, measured in number of particles per unit time. The same fuel flow rate
measured in unit volume per unit time will be denoted V The two quantities are related
through f= VR’ where Rj is the initial reactant (fuel) concentration. We define the
dwell (or traversal) time 7 as the ratio T = (Al)/V; V,.1is the time during which the reaction
is allowed to proceed. The mean fuel velocity at the reactor inlet is denoted v, (=1/7).
The extent of the reaction &(7) is defined as

&(t) = P'(1)/R, (1)
where P’ is the product concentration. We may express g, as
q,= Q,e(0)f (2)

where @, is the exothermicity of the reaction (in energy units per particle of reactant).

Note that T and f may be expressed in terms of each other, and g, may be written as a
function of the flow rate:

_ALR,

. 4(N)=0Q,fe(f) (€)

The functional dependence ¢(f) on f must be determined by the reaction kinetics.

Two cases of converting the reaction heat into work were considered in [7]:

Case I

The reaction heat g, is extracted from the products emerging at the flame temperature
T(f) so that T'(f) is the highest temperature at which heat is supplied to do work. The
finite heat capacity C of the reaction mixture was considered constant through the

temperature range 7T, (the inlet temperature) to T(f) (the flame temperature). The
following relationship applies:

T()=Ty+ Qe(f)/C )
and the power production is given by
W)= 0,560~ CTofin] L2011 ®

so long as the engine converts the. heat of reaction into work with the maximum
efficiency.

Case 11

Another way in which a chemical process might drive a thermal engine would have the
product mixture transfer heat to the high temperature reservoir of the thermal engine,
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maintaining its temperature at Ty as in a steam generator. The product mixture escapes
at Ty, carrying with it some of the energy produced by the combustion process. In this
case Ty is independent of the flow rate and is presumably fixed by external factors. Then
the rate of heat input to the engine g is

—gu=10,e(f)—f | C(T)AT ©)
To

while the output power is

W= |qH|nengine . (7)

where 7, is the engine efficiency, which need not be of Carnot type. The equation (6)
is valid under the assumption that the heat capacity of the mixture C(T') is roughly the
same for reactants and products. When C is not dependent on temperature we find

—qn=f0,(f) —fC(Tyg — Ty) 8)
This relationship will be used in the following.

3. Reversible first order kinetics

Consider the first order reaction
R=P 9)

where R and P are the reactant and product, respectively. We denote by k  and k, the
direct and reverse transition probabilities per unit time. We assume both k and k, to be
independent of temperature. This limitation makes the probabilistic model more
tractable from a mathematical point of view.

We choose now a control volume ¥V whose size should allow a stochastic description
wherein the variables are the number of particles within the control volume, indepen-
dently of their momenta or their internal states [9,p. 285]. The appropriate size of V
depends, of course, on system and process. As an example, in case of reacting fluids it is
of the order of the cube of a few mean free paths [9,p 288]. The control volume moves
from the inlet towards the outlet of the reactor with constant velocity, reaching the end
of the reaction tube after the dwell time 7. At the reactor inlet (time ¢ = 0) the volume V
contains only reactant (fuel) at concentration R;. Then, the initial total number of
reactant particles in the volume V'is R, = VR, After the time ¢ ( < ) the control volume
contains a mixture of fuel and products of reaction. Their concentrations are denoted
R’ (t) and P'(t) = Ry, — R’(t) while the total number of reactant and product particles in
the volume Vis R = VR and P = VP, respectively.
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We denote by n(P,t) the probability that at time ¢ the control volume contains P
particles of reaction product. At a subsequent moment this probability could change.
We denote by w(P,, P,) the transition probability from state (P,) into state (P,).

The reaction occurring in the control volume can be modeled as a Markov process. The
assumption of a one-particle reaction (first order kinetics) allows to describe the time
evolution of the system as a birth- and death-process. When the system is in the state
(P), only the states (P—1) and (P +1) are accessible in the next time step. The
appropriate master equations are [10, p.87]

dn‘(;:, ) =wP—-1L,P)n(P—-1,t)—[(Ww(P,P—-1)+w {P,P + ) ]=(P,t)
+wP+1LP)r(P+1,) P=1.2,. R, (10)
d“;(t)’t) — w(1,0)n(1,0 —w(0,)m(0,f) P =0 (1)

The first order reaction (9) allows one to write, after a simple renormalization, the birth
and death transition probabilities w(P,P + 1) and w(P,P — 1), respectively, as

w(P,P+1)=k,R=k(Ry—P)  w(P,P—1)=k,P (12)

By using eqns. (12) we can obtain another form of the master equations (10) and (11):

d"‘(f: ) 1 [Ry — (P —1)1n(P — 1,1) — [k, (Ro — P) + kyP1n(P.2)
+ky(P+Dr(P+ 1,0 P=12,.R, (13)
d";t)’t) — kyn(1,2) —k ; Ry (0, 2). (14)

The following initial conditions have to be used:

n(P,0)=1 P=0
0 P+#0 (15)

i.e. at time ¢t = 0 (at the reactor inlet) surely there is no single product particle.

Equations (13) and (14) are finite-difference equations with linear coefficients. The
finite-difference property is a result of the discreteness of the stochastic variable — the
number of product particles in the control volume — while the linearity of the coeffi-
cients is a consequence of the one-particle character (first order kinetics) of the reaction
(9). The role of the limitation of the present analysis to first order reaction becomes now
evident. Indeed, in this case an analytical solution for the egs. (13) — (15) can be found.
When higher order reactions are considered, solving the master equations associated
with them is a difficult task which requires further investigations.
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The solution of eqns. (13) — (15) is (see Appendix):

k, Ro k) L Fo= ¥
— P S (k) (k,+ ,,t_l 2 r+ ,,t+1
e e e

P=0,1,...R, (16)

By using eq. (16) we can determine the mean value of the reaction extent ¢_,, which is
givenbye_. =P, /R;=P_. /R, (see Appendix):

mean mean mean

1 ;
fean = g (1 — €70 ] 17)

where r = k,/k,. This expression was previously derived in [7] by using the rate
equations method. It is obvious, however, that the probabilistic approach amplifies the
information we could obtain by using classical methods. Indeed, from eq. (16) we learn
that for a given time the reaction extent ¢ = P’/R; = P/R, could have values quite
different from the mean value ¢_,, given by eq. (17), and, more than that, we can
evaluate the probabilities of all these possible values.

The superiority of the probabilistic approach over the classical one is obvious when we
try to understand and/or describe the fluctuations which usually are associated with the
experimental data. The classical approach allows average values to be evaluated only.
The probabilistic techniques make possible, however, the computation of higher order
moments. To be more specific, new information concerning the time properties of the
reaction mixture we study here can be obtained by computing the variance D?(P). This
is a measure of the fluctuations of the number of product particles from the control volume
around its mean value P_,,_ () = R,¢_,.,,(¢). After some algebra we obtain (see Appendix):

D?(P(£)) = Ppean()(1 — &0 (t))- " (18)

We see that generally D? # P__, . Consequently, the distribution n(P, ) is not Poissonian
and generally the fluctuations are not negligible compared to the average values. Also
note that D?(P(0)) = 0. This is not surprising because we accepted the initial number of
product particles as being known. The large fluctuations at later times allow both
extreme outcomes for any dwell time 7, namely the reaction does not start (P(t) = 0)and
the fuel is completely consumed (P(z) = R,), respectively. Indeed, eq. (16) shows that the
probabilities of either of these cases are non-zero (but usually very small).

The standard deviation of the reaction extent o(¢) can be evaluated from the standard
deviation of P, namely o(P) = [D?(P)]*/?, and the definition a(¢) = o(P)/R,. By using
eq. (18) we obtain ' o

\/smean(l — 8mean)
. 19
= a9
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The magnitude of o(¢) is a function of the initial number R, of reactant particles. We
should remind that R, depends on both the control volume V and the initial reactant
concentration R; (R, = VRy). In the limit of large R, a(¢) vanishes, and the fluctuations
of the reaction extent are negligible. Consequently, the classical approach can be used
successfully in this case. However, at smaller values of R, the standard deviation o (¢) is
important (Fig. 1) and using probabilistic methods is recommended. Note that the
fluctuations of the reaction extent are relatively more important at the beginning of the
reaction, when ¢ is close to zero. Indeed, o(¢)/e ~ (1/6 — 1)} - co when ¢—0.

The actual time when the system changes from the state (P) into the state (P + 1) cannot
be exactly known. However, an estimation of the moment when probably this event
occurs can be made by using the approach we propose here. It is convenient to define
this estimation (say t,_ ,,,) by assuming that when t >1t,_ ., the probability of the
state (P + 1) exceeds that of the state (P). So, wecanuse n(P,t,_,,,)=n(P+1,t,_,.,)
to define ¢,_,,,. There is a numerable set of values t,_, , which correspond to
P=0,...,R,—1.

The time when the reaction probably starts (say t,_,) can be defined through
n(0,t,_,) = n(1,z,_, ). By using this definition and eq. (16) we find:

Lo b R+l
"' (1+r)k, Ry—r

(20)

Equation (20) gives the minimum dwell time (probably) needed to start the reaction:
Tpin = Lo ;- T his minimum time can be correlated with a maximum flow ratef, , . When
t<t,,, (e f>f,,) thereaction probably will not start. Note that ¢,_, >0 even in case
of no reverse reaction (r = 0). The minimum necessary dwell time increases by intensify-
ing the reverse reaction (i.e. increasing r) and by diminishing the direct reaction (i.e.
decreasing k). Both conditions characterize poor quality fuels. Generally, the initial

0.16

o AN
o v

0.06- 7 — Ro=100 \
[\

g:; 7 Romto
% - -

standard deviation of eps

»

0’ "7 T T T T T T L
O 0.1 0203 040506070809 1
reaction extent eps

Fig 1: The standard deviation o(¢) as a function of the reaction extent ¢ for different values of the
initial number R, of reactant particles in the control volume.
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i

number of particles R, from the control volume influencest,_, ;. Large values of R, make

vanish the minimum dwell time necessary to start the reaction. It is convenient to use

the notation:

=k =K/f 1)

where k' = AIRgk .. We call T the reduced dwell time (the dwell time in k  units). From
eq. (20) we see that 7, = k 7_;, becomes a function of two parameters only, namely R,
and r. Numerical evaluations show a negligible dependence of 7_;, on r for reasonably
small values of r (i.e. less than unity) and initial number of reactant particles in the
control volume R, > 10.

It is important to point out that classical (deterministic) approaches always associate
the start of the reaction with the time ¢ = 0. Consequently, they are not able to put into
evidence a maximum flow rate which, when exceeded, makes the reaction to stop.
However, common practice shows that such a maximum flow rate does exist. The fact
that the probabilistic approach is able to predict it is, of course, one of its advantages.

4. Power production

Now let us examine the two arrangements of power generation. The above consider-
ations make it clear that important fluctuations arise only for relatively small systems
and/or low fuel concentrations. In practice such situations could arise, for example, in
case of the combustion of solid fuels. Then R, could denote the initial number of bricks
in the control volume. Of course, there is no reverse reaction in this case, and a value
r =0 has to be used.

We define two expectation bounds for the fluctuations of the reaction extent, namely
Ewp and &

ssup (inf) = €mean i 6(8) n (22)

Of course, each quantity (say X) depending on ¢ is characterized by an expected range
of values between X (g, )) and X (g,,).

We should remind that the classical finite-time thermodynamics allows to evaluate the
mean value of X only. The probabilistic approach, which allows to define some statistic
measures for the fluctuations too (as the expectation bounds above), brings out new
information from which one learns more about the system and its operation.

Case I , .
By using eq. (21) the reaction heat g, defined in eq. (2) can be put into reduced
(dimensionless) form.:

. _ 4 _&@ir)
qr - k/Qp - % . (23)
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The mean value §, ... is positive only when the reduced dwell time 7 exceeds the value
T min = TminK  Where 7, =t _, | is given by eq. (20). Numerical computations show that
the reduced reaction heat has a maximum which depends on R, and corresponds to a
reduced dwell time in the range 0.5 to 1.0; g, ,,;,, vanishes in the limit 7 — co. The upper

and lower limits §, o and §, ;,c show qualitatively similar features.

By using the egs. (3) and (23) we can obtain the reduced form of the heat released per
unit amount of fuel spent:

4yr = a;f_ e(T,r). (24)

Note that g,,, can be seen as a fuel efficiency. This indicator increases monotonically
with the reduced dwell time 7.

Let us focus on the power W supplied by the heat engine. By using eqns. (5) and (21) the
reduced power Wcan be defined as

~ W ue(®)—In[ue(@) + 1]
W= = =
CT,k T

(25)

where the notation u = Q,/CT; is used. The time variations of W ..., Wsup and W, are
shown in Figure 2 foru = 1 All these indicators have a maximum which depends on R,,
For small values of R, the fluctuations of Wmay be rather big. It is obvious in this case
that the information obtained by using the classical approach (the mean value of the
reduced power) could give an incomplete image only of what could really happen. At
larger dwell time Wdecreases along with the fluctuatons. In the limit 7 — co the power
vanishes. Other computations were performed for the cases u= 0.1 and u = 10. The

above remarks still apply.

0.25
Ro=10 (sup)
0.2 >~ Ro=1000 (sup) ———

5;7 mean
8 0.15 : Ro=1000 (inf) —
o
[]
S ot
S
o

0.05 Ro=10 (inf)

oH

0 06 1 15 2 25 3 35 4 45 &
reduced dwaell time

Fig 2: Case 1. The mean, the superior bound and the inferior bound of the reduced power
... W and W r» Tespectively; see eqs. (25), (17) and (22)) as functions of the reduced dwell

time (eq (21)) for. dlﬁerent values of the initial number R, of reactant particles in the control
volume.
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. '
Equations (3) and (25) can be used to define the reduced power per unit amount of fuel:

~

W, = C;f: Zus(d) —In [ue(® +1] (26)

Figure 3 shows the time variation of W, W means W/f’s‘lp and W, Wi for u= 1. None of these
indicators have a local maximum. Each of them reaches its maximum value in the limit
7— oo. This is in agreement with the dependence on 7 of the heat released per unit
amount of fuel. The fluctuations of the reduced power per unit amount of fuel are large
for smaller values of R,. As we see, the actual value of this indicator could be in some
cases 20% higher or smaller than the mean value, which is the only information

predicted by the classical approach. The above remarks maintain for other values of u.

Case 11
Equations (3), (7) and (8) can be used to.derive the reduced power W and the reduced
power per unit amount of fuel W :

- Ty
: —(E-1
W: W _ r’engme [ME (T) ( .1-(.) ) :I (27)
T CT,k - F
- W . Ty

Different expressions for the engine efficiency 7., have been derived in the framework
of finite-time thermodynamics (see [ 11]). Here we assume the well known Chambadal-

Ro =v10 (sup)

Ro = 10 (inf) —
Ro = 1000 (sup)

mean

Ro = 1000 (inf)

O 05 1 15 2 25 3 35 4 45 5
reduced dwell time

reduced reaction heat/unit fuel amount
(@]
o

Fig 3: Case I. The mean, the superior bound and the inferior bound of the reduced power per
unit amount of fuel (W Jf;mean> W,fsu and W,fm,, respectively; see eqs. (26), (17) and (22)) as functions
of the reduced dwell time % (eq. (21)) for different values of the initial number R0 of reactant
particles in the control volume.
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3
Ro=10 (sup)
2.5
Ro=1000 (sup)
2 mean
Ro=1000 (inf)

15
/A
o514/ Ro=10 (in')\

c T T T T T T T - T T
O 05 1 15 2 25 3 35 4 45 5
reduced dwell time

reduced power

Fig 4: Case II. The mean, the superior bound and the inferior bound of the reduced power
(W W ,and W (> Tespectively; see eqs. (27),(17) and (22)) as functions of the reduced dwell time
T (eq (21)) for dlfferent values of the initial number R, of reactant particles in the control volume.
We assumed u =10 and Ty /T, = 2.

Novikov-Curzon-Ahlborn (CNCA) efficiency [3, 12]:

T 1/2
nengme =1- (?101 - ) (29)

Both performance indicators Wand I7V/' s can be evaluated for the mean, the superior,
and the inferior expectation values by using egs. (17) and (21). Note that for certain
combinations of the parameters u, T,/T, and r the thermal engine cannot supply
positive power. Le. the system is being driven so hard that the engine must act as a heat
pump in order to maintain the required temperatures. Figure 4 shows some results
obtained for Wwith u = 10 and T/ T, = 2. The optimum dwell time when the maximum
power occurs depends on R,,. It is important to note that the fluctuations are larger on
the same range of the reduced dwell time where the maximum of the reduced power is
obtained. This shows that caution should be taken when the classical approach is used
for optimization design. If possible, the probabilistic approach is recommended to be
used in this case. In the limit 7 — co all expectation values vanish. The reduced power
per unit amount of fuel increases monotonically with the dwell time. Its time variation
is similar to that of W; , shown in Figure 3.

5. Conclusions

The usage of probabilistic concepts allows a fuller description of the performance of a
power system. So, each of the usual 1nd1cators (power supplied, thermal and exergetic
efficiencies, etc.) may first be evaluated in a “mean” approach. Then upper and lower
standard expectation values can be estimated. The mean value of any performance
indicator is accessible by the usual finite-time thermodynamic methods as treated in
this paper, at least in case of linear kinetic processes. The other indicators related to
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‘q

fluctuations require an appropriate probabilistic model. Of course, when such a

probabilistic model exists, it allows the evaluation of the mean values of the perform-

ance indicators too.

When the mean value indicator is used, the following conclusions can be drawn. The
reaction heat and the reaction heat per unit amount of fuel are strictly decreasing and
increasing functions of the dwell time, respectively. There is an optimum dwell time (or
flow rate) which maximizes the mean power produced by an engine which has
maximum efficiency and which is driven by an exothermic first order chemical reaction.
Thisis true for Case I where the heat of reaction is transferred reversibly to the engine at
the reaction temperature T(f) as well as for Case II where the reaction products
transfer heat to a reservoir at T and then escape at Ty. The mean fuel efficiency W/f is
an increasing function of the dwell time.

The probabilistic picture allows one to extract some specific features. There is a
minimum dwell time 7_; necessary to start the reaction. When the traversal time 7 is
smaller than _;_ (i.e. the flow rate fexceeds a certain maximum valuef,_,,) probably the
reaction does not start and, consequently, the reaction heat and the power supplied in
both cases I and II are zero. The minimum dwell time is larger in case of poor (inferior)
fuels. Generally the fluctuations of the estimates are strongly dependent on the initial
number R, of reactant particles from the control volume. The richer fuels, or the larger
systems (where a large control volume could also be defined), are usually associated
with smaller fluctuations in the power generation system. The fluctuations are most
important at small values of the dwell time (i.e. at large flow rates). This proves the
utility of the probabilistic concepts in finite-time thermodynamic theories which are
obviously devoted to describing processes characterized by limited duration or,
equivalently, by large velocities.

A more realistic treatment of a chemically driven engine requires (i) use of chemical
reactions of higher order and (ii) use of temperature dependent rate coefficients. Both of
these improvements were already analyzed using deterministic tools [4,5]. Covering (i)
and (ii) by a probabilistic method is a difficult task which requires further investigation.

Finally, we mention that there are a number of advanced engineering processes where
the use of probabilistic finite-time thermodynamic methods seem to be appropriate. As
an illustration and in order to give perspective to our findings we briefly state a few of
them without detailed explanation. In the practice of thermal gasification of wood and
coal it is known that the reactor has a stable operation for a certain flow range only,
while exceeding a maximum flow stops the reaction [13,14]. These experimental facts
are qualitatively similar to the results predicted by our theory. So, we expect a specific
probabilistic model could be developed in the above case, too. This would allow to
derive the best operation conditions for gasification but also some statistic measures for
the fluctuations of the products rate. A new technique of solar energy conversion is the
free-falling particle receiver, known also as the direct absorption solar receiver [15]. Its
design allows the working medium (a large number of small solid falling particles) to be
introduced directly into-the receiver cavity which is then exposed to the incoming
concentrated solar energy. The absorption of radiation by a given particles is a
probabilistic process and the receiver cavity plays the role of the reactor from our
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model. Indeed, there is a probability for the falling particle to “burn” (i.e. receive and
absorb solar radiation during its falling, hence increasing the thermal energy, of the
working fluid) or not to burn, similar to the probability of a reactant particle to perform
or not the first order reaction (eq. (9)) from our model. A third field of interest, not very
close to the simple reaction we treated here, is the process of colloidal aggregation with
fragmentation which concerns systems with dimensions of nanometres to micrometres
(like aerosols, cements, cosmetics, emulsions, foams, paints and plastics). Engineering
processes which rely on the application of properties of colloidal systems are adhesion,
detergency, grinding or emulsion polymerization. All these processes are usually driven
by heat, work and mass transfer through the system boundaries, which should be taken
into account during the engineering design. On the other hand, because of their small
size, colloidal particles undergo Brownian motion and their aggregation and coagulation
should be modeled by statistic methods [16]. So, it is expected an interdependence
between the macroscopic fluxes entering or leaving the system and the random behaviour
of the microscopic components of the system should exist and it is the purpose of
probabilistic finite-time thermodynamics to try to describe it.
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Appendix

A study of egs. (13) and (14) is performed most conveniently in the generating function
representation. We define the generating function F(s,t) by [10,p.18]

Ro

F(s,ty= Y. stn(P,1) (A1)

P=0

where |s| < 1 in order to assure convergence. By using (A1) egs. (13) and (14) take the
following form:

oF oF
5 =krRols = DF(s,1) +5=Lhy + (ky — k)s — Ky 571 (A2)

This first-order equation with partial derivatives will be solved by realizing that, first,
7( P,t) must be normalized and, second, The initial condition (15) has to be fulfilled. The
first requirement means that

Ry
F(L,o)= Y n(P,r)=1 ‘ (A3)

P=0

while the second implies that
F(s,0)=1. (A4)
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The characteristic system attached to eq. (A2) is:

dt ds _ dF (A5)
1 —[ky+(k,—ky)s—k;s*] k;Ro(s—1F
By integrating eq. (AS) one obtains:
et
Inr— = = C1 (A6)
S—q
. s __ p [Ro/(p — @))Iksr + kb)/ 2ks]
ln— =C, (A7)

|ky(s —p)(s — @)/

where C,,C, are constants while p and q are the roots of the equation

Equation (A2) has the solution W(C,,C,) =0 or, by using eqgs. (A6) and (A7)

ky(s —p)(s — q)|%/? e
F=r [R/I())(— )][(?f)-li-k)k 9|7 Tk = (A8)
s — p|WRo/ (P~ DUy + ko) [ks] s—p [kp(p — 9)
s—q s—q

Here Wand g are arbitrary functions. The form of g may be determined by using eq.
(A4). Then eq. (A8) becomes

1 L _ry2|S—P [Ro/(p— ) Llks + kn)/2kr])
g VS—p 1/k(p — q) _I f(s“‘P)(S_Q)l s—q =). (A9)
s—4q
From eq. (A9) one obtains
L 1
x=g Y(y)= - (A10)
S—q
where g~ ! is the inverse of the funcﬁon g- This may be rewritten as
ke(p—q)
__px7 —4q :
= o1 (D
Consequently
2 —Ry/2
y= kf(p q) xkp—a 0 IxI—Ro(kf+ k,,)/Z- . (A12)

- [xkre—o — 172
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But eq. (A10) shows that
y=g(x) g7'(n)=x (A13)

By using eqs. (A8), (A10), (A12) and (A13) one obtains:

F(s,t)= |Is — gle® P~ — |s — p||Roe = Rolks(p—a) + (ks + ko)l t/2 (A14)

_
r—q

Now we use the normalizing condition (A3) to get

e~ Rolkr(p—q) + (kr + ke)lt/2 1
p—a® =g i (A1)
Combining eqgs. (A14) and (A15) one obtains
|s — gle¥? 9" —|s —p| |®
F(s,t)= TP e pa (A16)

The final form of F(s,t) can be derived by using the definitions of p and g:

R
] . (AL7)

The generating function can be used to determine the stochastic functlon n(P,t)
[10,p 442] by

k
s+-2|—

|S . lle'—(kj-l'kb)(
kf

kf
roo-| £,

n(P,t) =F®(0,t)/P! P=0,1,....R,, (A18)

By performing these computations we obtain eq. (16). The generating function can be
used to determine the mean value P__,_ and the variance D?(P(t)) [10, p440] through

mean

oF
Pmean —a—s_ =1 (A19)
0°F oF (oF
2
D*(P(t)) = el +—= s (as) . (A20)
By using eqs. (A16), (A19) and (A20) we obtain

P__ =R ks [1-— e-<'°f+;°b>f] (A21)

mean Okf + kb

2 Pmean
D2(P(t)) = Pppy| 1 — =222 ), (A22)

R,
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