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The optimal heating or cooling strategy that minimizes entropy production is derived for a 
simple class of common heat transfer processes that are constrained to proceed in a 
lixed, finite time. The empirical wisdom embodied in conventional single-pass counterflow 
heat exchanger design is examined in light of this solution. For judiciously selected 
system parameters, the counterhow heat exchanger can yield the optimal solution. 

I. INTRODUCTION 

In heat exchanger design the heat transfer is usually 
tied, whereas the amount of entropy produced depends on 
the way in which the process is carried out (primarily the 
temperature gradient). Since the entropy produced is 
equivalent to availability lost, this means that an improved 
heat exchanger design which reduces the entropy produc- 
tion can in principle provide additional useful work some- 
where else in the plant. 

The following extensive energy consumers are often 
equipped to exploit this available work: factories with co- 
generation capabilities, distillation plants driven by heat 
pumps or with reuse of the process heat at lower temper- 
atures, and the electric utility providing the energy, espe- 
cially if it also delivers district heating. For these installa- 
tions minimizing entropy production can be a desirable 
objective. 

We consider one particular type of problem toward 
illustrating the optimal heating/cooling strategy that min- 
imizes entropy production. The process is constrained to 
proceed in a fixed, given time (as is common in industry 
where fixed production rates are a constraint). The prob- 
lem selected is illustrative in that it has a simple closed- 
form analytic solution. 

It is natural to ask how close conventional designs for 
heating and cooling processes are to the optimal one. We 
select the specific case of standard single-pass heat ex- 
changer design in which three possibilities are usually con- 
sidered: ( 1) parallel flow; (2) condensing flow (constant 
temperature for the effective heat reservoir); and (3) coun- 
terflow (see Fig. 1). Counterflow design is the usual choice 
primarily because its effectiveness (ratio of actual heat ex- 
change rate to maximum possible heat exchange rate’) is 
highest, and second because its lower-temperature gradi- 
ents produce less entropy. 

We show that the counterflow heat exchanger can rep- 
resent the optimal solution for a somewhat idealized model 
which captures the essential physics of heat exchanger op- 
eration. Furthermore, common designs are often rather 
close to the optimal heating/cooling strategy. Empirically 

the counterflow design has evolved as superior. Now one 
can appreciate just how beneficial it is in view of the opti- 
mal solution. 

II. OPTIMAL SOLUTION FOR A SIMPLE HEATING/ 
COOLING PROBLEM 

For a system to be heated or cooled, the process must 
be completed in a given, fixed time r. The system has a 
known heat capacity C and a time-dependent temperature 
T(t) with required initial and final temperatures T(0) and 
T(r), respectively. Heating or cooling is effected from an 
external reservoir of known heat capacity C, and adjust- 
able time-dependent temperature r,(t) (see Fig. 2). For 
simplicity of analysis, it is assumed that the only non-neg- 
ligible thermal resistance is at the heat-transfer interface 
between system and reservoir, where there is a thermal 
conductance K. In other words, heat equilibration within 
the system and the reservoir proceeds much faster than 
exchange between them (well-mixed media). 

The objective is to find the heating/cooling strategy 
that minimizes entropy production when a given quantity 
of heat must be transferred between reservoir and system 
during a given time 7. The practical control variable is the 
reservoir temperature T,,(t). In the analysis that follows, 
we consider the heating problem, wherein T,,> T. The so- 
lution for the corresponding cooling problem, however, in- 
volves a simple change of sign. 

The rate of entropy production dS,/dt is 

dsu 
,=K(T~- T) (1) 

(which is always non-negative, as required by the second 
law of thermodynamics). The dynamic constraint for heat 
transfer rate 4 into the system is 

Two methods can be used to determine the optimal 
strategy. In the first more formal and cumbersome one, one 
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FIG. 1. Schematic of three single-pass heat exchanger designs (one-di- 
mensional model): parallel flow, condenser, and counterflow. Horizontal 
arrows denote mass flow. Vertical arrows denote heat flow for heating of 
system by reservoir. 

defines a modified Lagrangian L with a time-dependent 
Lagrange multiplier il ( t) : 

L=x(T~-T)($-$)-A(C~-K(T~-T)). 

(3) 

FIG. 2. Schematic of one-node thermal model for system exchanging heat 
with a variable-temperature (controllable) reservoir. Arrows denote heat 
exchange for heating or cooling. 

The independent variables are T, dT/dt, and To (and in 
principle dT,,/dt which, however, does not appear in the 
Lagrangian ) . The Euler-Lagrange equations to determine 
the optimal strategy then become 

aL d aL --- 
aT dt a(dT/dt) =” 

(4) 

After some tedious algebra (not forgetting the time depen- 
dence of A), one obtains the solution 

To(t) =PT(t>, (5) 
where fl is a constant. Equation (2) then yields the final 
solution 

T(t)=T(0)exp(K”~ I)‘), 

where the constant fi is determined from the condition that 
T(0) and T(T) are known: 

B= I+ (7) 

The reservoir temperature, which is within our control, is 
then implemented according to Eqs. (5)-( 7). The entropy 
production using this optimal strategy SEpt is obtained 
from integrating Eq. ( 1): 

The reversible solution of T,(t) = T(t), i.e., /3 = 1, yields 
zero entropy production but cannot satisfy the constraint 
that the process be completed in a fixed given time 7. 

The second method -of solution exploits the elegant 
proof of Ref. 2 that for any linear system the strategy for 
minimizing total entropy production corresponds to a con- 
stant rate of entropy production. Thus equating Eq. ( 1) to 
a constant immediately and simply yields Eq. (5). Using 
the constraint of Eq. (2), one again emerges with the rest 
of the optimal solution, Eqs. (6) and (7). 

Ill. HEAT EXCHANGER DESIGN AND MINIMAL 
ENTROPY PRODUCTION STRATEGIES 

One could now ask to what degree heating and cooling 
strategies that are used in factory and power plant settings 
mimic the strategy that minimizes entropy production. 
This issue, as well as the sensitivity of the optimal solutions 
to the functional form of the rate of heat transfer (e.g., 
radiative rather than linear), will be addressed in a sepa- 
rate publication.’ Here we restrict our attention to the spe- 
cial case of single-pass heat exchanger design as these are 
common elements in industrial and power plant energy 
systems and have functionally transparent results. 

We consider iinite temperature gradients as the sole 
source of irreversibility in the heat exchanger. In addition 
temperature gradients are modeled as one-dimensional 
only. These are, of course, idealizations since frictional 
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FIG. 3. Temperature vs time or, equivalently, heat exchanger position for 
parallel flow, condenser, and counterflow (schematic only). Arrows de- 
note direction of mass flow. 

flow losses exist, and fluid mixing is never perfect. How- 
ever, for common well-designed heat exchangers these ap- 
proximations capture the essential physics of the problem.’ 
Given the added advantage of the functional simplicity of 
the corresponding results, we adopt the simple model of 
Sec. II for modeling a one-dimensional single-pass heat 
exchanger. As in Sec. II, for specificity of presentation, we 
analyze the case of the reservoir heating the system 
[To(f) > T(f)]. 

At fixed mass flow rates m and m. (for the system and 
environment, respectively), the time t and position x along 
the heat exchanger measured from the system inlet are 
equivalent variables (see Fig. 3). Consequently specifying 
the total process time r or the length L of the heat ex- 
changer amounts to the same. However, care must be ex- 
ercised in transforming the results of Sec. II for the sta- 
tionary system, Fig. 2, to the flow systems of Fig. 1 because 
the optimality condition (5) must be satisfied at each po- 
sition along the heat exchanger: 

To(x) =PT(x>, 

where 

(9) 

mC T(L) 
B=l+zlnTo (10) 

is now given in terms of ,the mass tlow rate m and the 
specific heat of the system C, thermal conductance per unit 
length of heat exchanger Z, and its total length L. The 
overhead symbol “- ” denotes quantities normalized per 
unit mass or per unit length as required by the formulation 
of the flow system. 

Similarly energy conservation at the interface requires 
that the rate of heat gained Qby the system equals the rate 
of heat lost by the reservoir at each point: 

~=~(To- T)=mcg= -rnoEoz, (11) 

which links T(x) and To(x) as 

mC 
To(x) = - T(x) - + a, 

m0C0 

with (Y = const. 
The condenser heat exchanger with To = const is 

clearly incompatible with the optimality condition (5) or 
(9) since T is not constant. The other two types of heat 
exchangers may be analyzed together since counterflow is 
simply represented by m o < 0. Then energy conservation, 
Eq. ( 12), and optimality, Eq. (lo), can be satisfied at the 
same time provided 

a=0 (13) 

and 

p-2. (14) 

The material quantities, 2, co, ZZ, L, and the process vari- 
ables T(O), T(L), m are usually given by design. The only 
remaining control variable is the reservoir mass flow mo, 
which must be adjusted to the value rng@ in order to ensure 
optimal operation of the process 

opt- m. -- (15) 

Since the term in large parentheses is always positive, only 
a particular negative value of m. will produce minimum 
entropy. Thus parallel heat exchangers are never optimal. 
Counterflow heat exchangers are only optimal for a partic- 
ular set of parameters.-Note that the common case of “bal- 
anced” flow mC=moCo cannot be optimal. 

IV. SUMMARY 

There is an empirical wisdom that has evolved for 
equipment used in heat transfer and heat production. We 
have considered here a simple model for a specific but 
common heat transfer process in which the total heat 
transfer is fixed, as is the time for the process. Different 
heating and cooling strategies, however, result in markedly 
varying degrees of entropy production. The exercise of 
finding the heating or cooling strategy that minimizes en- 
tropy production is often of value to electric utilities and to 
factories with cogeneration installations. 

The one-node thermal system in which a reservoir, the 
temperature of which can be controlled, heats a system via 
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a given thermal resistance in a given fixed time, yields a 
relatively simple optimal solution: reservoir and system 
temperatures are proportional to one another, and their 
time dependence is a simple exponential. 

This simple one-node model also happens to capture 
the essential physics of well-designed single-pass heat 
exchangers. * Of the three common design options (parallel 
flow, condenser, and counterflow) only counterflow can be 
optimal, under judiciously chosen conditions. After solving 
for the generally optimal heating/cooling strategy for the 
one-node thermal model, one can determine the precise 
conditions for which counterflow heat exchangers repre- 
sent the optimal heating/cooling strategy. 

Design conditions are not always optimal, but com- 
mon design parameters yield profiles that are close to op- 
tim-al. For example, consider the common matched 
mC=moCo heat exchanger (which by its nature cannot be 
optimal-see Sec. III) with the following design 
parameters:4 

m=6.3 kg/s, mo=6.t23 kg/s, EL=23 515 W, 

c=4187 J/kgK, &=3810 J/kgK, 

T(0) =283 K, T(L) =309.2 K, 

To(O) =312.4 K, T,(L) ==338.6 K. 

Although the ratio TdT is not constant, it varies by only 
j=O.4%. This heat exchanger produces entropy at the av- 
erage rate dS,/dt = 212 W/K as opposed to dS,/dt = 211 
W/K for optimal conditions for which miPt = 6.298 kg/s. 

The perspective here is evaluating commonly used 
heating and cooling techniques in terms of their entropy 
production. In single-pass heat exchanger design the merits 
of the counterflow design have been recognized.’ It has 
been shown here that one can also add the advantage of 
being able to achieve the heating/cooling strategy that 
minimizes entropy production. 

’ W. M. Kays, Compact Heat Exchangers, 2nd ed. (McGraw-Hill, New 
York, 1964). 

*P. Salamon, A. Nitzan, B. Andresen, and R. S. Berry, Phys. Rev. A 21, 
2115 (1980). 

‘B. Andresen and J. M. Gordon (unpublished). 
4 F. Kreith and M. S. Bohn, Principles of Heat TransJ.er, 4th ed. (Harper 

& Row, New York, 1986), Chap. 8, Sec. 8.4. 
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