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Abstract

Recently, the concept of equal thermodynamic distance (ETD) has been proposed to minimize entropy production in a
distillation process using a diabatic column. ETD gives the optimal temperature profile to first-order in N−1, where N is the
number of trays. ETD, however, does not generally give the true minimum for distillation columns with few trays. We therefore
apply a fully numerical, multidimensional optimization routine to determine minimum entropy production. Since this method does
not depend on an underlying theory, we expect a true minimum to be revealed. We then compare the performance of ETD and
numerical optimization by varying the number of trays and the purity requirements. Our results show a surprisingly good
agreement between the ETD results and those obtained numerically. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Within the area of finite-time thermodynamics (Sie-
niutycz & Salamon, 1990; Hoffmann, Burzler, & Schu-
bert, 1997), many papers have been devoted to
minimizing entropy production in thermodynamic pro-
cesses. In particular, the problem is well suited for
studying potential exergy savings in a distillation pro-
cess. The basic idea is a thermally controlled (diabatic)
distillation column (see Fig. 1). Instead of just one heat
source (reboiler) and one heat sink (condenser), a dia-
batic column uses a heat exchanger at each tray of the
column. The idea goes back to the work of Z. Fonyo in
the early 1970s (Fonyo, 1974) but has recently been
explored by a number of authors (Rivero, 1993; Kjel-
strup-Ratkje, Sauar, Hansen, Lien, & Hafskjold, 1995;
Sauar, Rivero, Kjelstrup, & Lien, 1997; Sauar, Sira-

gusa, & Andresen, 2001; Salamon & Nulton, 1998; de
Koeijer et al., 1999; Andresen and Salamon, 2000; de
Koeijer et al., 2001). The additional heat exchangers
add or remove heat to maintain a particular tempera-
ture profile inside the column. The temperature profile
prescribed by the theory of equal thermodynamic dis-
tance (ETD) achieves minimum entropy production for
the separation process to lowest order in one over the
number of trays1. The purpose of the present paper is
to compare this asymptotically minimum entropy pro-
ducing operation with the true minimum obtained
numerically.

The concept of equal thermodynamic distance uses a
thermodynamic metric based on the entropy state func-
tion of the mixture to be separated. The thermody-
namic length, L, of a process is given by the line
element (Salamon & Nulton, 1998):
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1 It is well known that any reasonable heat integration will aid in
the reduction of entropy production (King, 1971); here we attempt to
find the optimal heating profile.
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Fig. 1. Sketch of a conventional adiabatic distillation column and a diabatic column with additional heat exchange. Both columns have N=8
trays including the reboiler as tray 8.

dL=�−dZb tD2S dZb , (1)

where Zb = (U,V,…) is the vector of extensive variables,
and D2S is the matrix of partial derivatives �2S/�Zi�Zj.
In Section 3, the derivation of the ETD principle and
its application to distillation will be presented.

2. Distillation model

The mixture to be separated is introduced as feed F
usually near the middle of the column and the sepa-
rated components are removed at the top as distillate D
and at the bottom as bottoms B. The column is consid-
ered to be operating at a steady state, so all extensive
quantities are per unit time. For convenience, only
binary mixtures are considered, and the pressure is
assumed to be constant throughout the column. In
steady-state operation, the feed, distillate and bottoms
obey the flow balance equations:

F=D+B (2)

xFF=xDD+xBB, (3)

where xF, xB and xD denote the corresponding mole
fractions of the more volatile component (lower boiling
point) in the liquid phase. Similarly, the amount of
material flowing out of a tray must be equal to the
amount of material flowing into a tray. Hence, vapor

coming up from tray n+1 and liquid flowing down
from tray n have to balance the distillate D above the
feed and the bottoms B below the feed, respectively
(Fig. 2),

Vn+1−Ln=
�D above feed

−B below feed
(4)

Fig. 2. Definition of quantities around tray n appearing in the balance
Eqs. (4), (5) and (9).
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yn+1Vn+1−xnLn=
�xDD above feed

−xBB below feed
(5)

On the uppermost tray (n=1), the balance equations
simplify to V1=D+L0 and y1=xD ; for the lowest tray
(n=N, the reboiler), one obtains LN=B and xN=xB. For
our purposes of looking for optimal diabatic columns, the
reflux L0 is taken equal to zero. Its purpose in an adiabatic
column is to help carry heat out of the column. This
function is not needed in the diabatic column since heat
can be taken directly form tray one.

The temperature dependencies of the molar fractions
x and y in the liquid and vapor phase, respectively, are
given by the state equations for an ideal solution model
(Lewis & Randall, 1961):

y=x exp
��H �ap,1(T)

R
(

1
Tb,1

−
1
T

)
n

(6)

1−y= (1−x) exp
��H �ap,2(T)

R
(

1
Tb,2

−
1
T

)
n

. (7)

Tb,1 and Tb,2 denote the boiling points of the two pure
components. The enthalpies �Hvap,1(T) and �Hvap,2(T)
are calculated as

�Hvap,i(T)=�Hb
vap,i+ (T−Tb,i)(cp

vap,i−cp
liq,i ),

(i=1,2) (8)

where�Hb
vap,i denotes the heats of vaporization of the pure

components and cp
liq,i and cp

vap,i are the corresponding heat
capacities. Eq. (8) requires the heat capacities to be
temperature-independent.

In order to calculate the heat required at each tray to
maintain the desired temperature profile, the energy
balance has to be maintained for each tray n :

Qn=VnHn
vap+LnH liq

n −Vn+1Hvap
n+1−Ln−1H liq

n−1. (9)

For conventional adiabatic distillation columns, Eq. (9)
would be equal to zero (for 1�n�N), and there would
be no control parameters over which to optimize. The
enthalpies Hvap and H liq carried by the vapor and liquid
flows are determined by:

H liq(T)=x cp
liq,1(T−Tref)+ (1−x) cp

liq,2(T−Tref)
(10)

H �ap(T)=y [cp
liq,1(T−Tref)+�H �ap,1(T)]+

+ (1−y)[cp
liq,2(T−Tref)+�H �ap,2(T)] (11)

Here, we assumed constant heat capacities, a noninteract-
ing mixture of ideal gases for the vapor phase, and an
ideal solution for the liquid phase (Lewis & Randall, 1961).
Tref is an arbitrary temperature whose value drops out
of the calculations. It represents the temperature at which
the (relative) enthalpy of the pure liquids is zero.

For the lowest tray, the energy balance reduces to:

QN=VNHN
vap+BHN

liq−LN−1HN−1
liq . (12)

For condenser and reboiler, we obtain:
QD= (D+L0)(Hvap(T1)−H liq(TD)). (13)
QB=QN. (14)

For diabatic distillation, the reflux L0=0, and Eq. (13)
becomes:

QD=D(Hvap(T1)−H liq(TD)) (15)

while the n=1 case of Eq. (9) assumes the form:

Q1=DH1
vap+L1H1

liq−V2H2
vap. (16)

On the feed tray, the enthalpy of the feed flow has to be
explicitly added in Eq. (9):

QF=QnF−FH liq(TF). (17)

Note that we assume that the feed enters as liquid at its
boiling temperature, TF. The feed tray nF is chosen such
that the inequality TnF−1�TF�TnF holds.

Eqs. (2)– (17) enable us to evaluate the entropy produc-
tion of the distillation process. The heat exchange between
column and surroundings and the mass flows of distillate,
bottoms and feed contribute to the entropy production
�Su. Since the column is in steady state, its entropy is
constant. This implies that the entropy production equals
the change in entropy of the column’s surroundings. This
latter entropy change can be calculated by accounting for
all entropy flows into and out of the column. In order
to focus on the separation process proper, unobscured
by issues of heat exchange, we have chosen to define our
system to be the interior of the distillation column. This
makes the irreversibility associated with heat transfer in
and out of the column extraneous to the present
optimization2. Hence, we take the source temperatures for
the Qn to be equal to the tray temperatures Tn. We then
express the entropy production as:

�Su= �
N

n=0

Qn

Tn

+�Smass–flows, (18)

where n=0 refers to the condenser. �Smass–flows is given
by:

�Smass–flows= −FsF+DsD+BsB. (19)

The entropies per mole of the mass flows are given by:

si=xi
�

sref,1+cp
liq,1 ln

Ti

Tref

�
+ (1−xi)

�
sref,2+cp

liq,2 ln
Ti

Tref

�
+ (20)

+R [xi ln xi+ (1−xi) ln(1−xi)], (i=F,D,B)

Note that �Smass–flows is fixed by the specifications of the
process and is therefore not part of the optimization.

2 It can be shown that, in the limit of infinite N, the optimization
of the column including the entropy production due to heat exchange
decouples into two separate problems: the problem considered here
and a separate problem of creating a heat exchange network to
optimally supply the heats required at each tray.



M. Schaller et al. / Computers and Chemical Engineering 25 (2001) 1537–15481540

Fig. 3. Heat capacity C� in Eq. (23) as a function of temperature for three different purity requirements (xD/xB=0.9/0.1, 0.95/0.05, 0.99/0.01).
The break at 366 K corresponds to the feed point.

3. Equal thermodynamic distance

The distillation process is modeled as an N-step
process (Nulton, Salamon, Andresen, & Anmin, 1985),
with N corresponding to the number of trays in the
distillation column. There is an asymptotic theory
bounding the entropy production for such processes in
the limit of N��. Asymptotically, the total entropy
production �Su of an N-step process is bounded by
�Su�L2/(2N) (a result from the horse–carrot theo-
rem (Salamon & Nulton, 1998; Andresen & Salamon,
2000)). The thermodynamic length of an N-step process
can be written as:

L= �
N

n=1

�Ln , (21)

where �Ln is the length of the nth step. Asymptoti-
cally, for minimal entropy production, the lengths of
the steps have to be equal, i.e.:

�L1=…=�Ln=…=�LN, (22)

hence the name, equal thermodynamic distance.
For the distillation model described in the previous

section, the thermodynamic length element Eq. (1) is
given by (Salamon & Nulton, 1998):

dL=
�C�

T
dT, (23)

where C� is the total constant pressure coexistence heat
capacity of the binary two-phase mixture in equilibrium
(Rowlinson, 1969). This is the heat capacity of a con-
stant pressure system consisting of L moles of liquid
coexisting in equilibrium with V moles of vapor. As
such a system is heated, the amounts of liquid and
vapor change and the compositions readjust in such a
fashion as to maintain equilibrium. The quantities of
liquid and vapor that need to be counted in C� are the
flows L and V between trays. To give V(T) and L(T)
irrespective of N, these need to be taken equal to the
limiting (infinite N) values, which are given above the
feed by:

V(T)=
xD−x(T)

y(T)−x(T)
D (24)

L(T)=
xD−y(T)

y(T)−x(T)
D, (25)

and below the feed by:

V(T)=
x(T)−xB

x(T)−y(T)
B (26)

L(T)=
y(T)−xB

x(T)−y(T)
B. (27)

In Fig. 3, C� of a benzene/toluene mixture is depicted
for different purity requirements. In order to establish
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an ETD path from the condenser T0 to the reboiler TN

in a column with N trays, one has to determine temper-
atures Tn such that:� Tn+1

Tn

�C�

T
dT=

1
N
� TN

T 0

�C�

T
dT, n=0,…,N−1 .

(28)

ETD is a first-order asymptotic theory (Salamon &
Nulton, 1998; Andresen & Salamon, 2000) for mini-
mum entropy production. This gives rise to the ques-
tion of how reliable ETD is for columns with few trays.

In order to answer this question, we use a fully
numerical, multidimensional optimization routine to
minimize entropy production for a distillation process
and compare this with ETD.

4. Numerical optimization

Because of its asymptotic nature, the minimum en-
tropy production calculated with ETD will be higher
than the true minimum for fewer trays. Consequently,
we are interested in the difference between ETD and
optimal operation. This motivates our fully numerical
optimization, which will find the true minimum for any
feasible N.

The entropy production (Eq. (18)) is minimized using
a multidimensional optimization routine. Thus, the op-
timal temperature for each tray in the column is deter-
mined; no thermodynamic principle like ETD is
applied. Calculating the gradient of Eq. (18) is rather
cumbersome due to the structure of the state equations
Eqs. (6) and (7). For this reason, we have chosen
Powell’s routine (Press, 1992) to perform the minimiza-
tions since it does not require gradient information.

The temperature T1 at the uppermost tray and the
temperature TN at the reboiler are fixed by the given
distillate and bottoms purity requirements xD and xB,
respectively. This reduces the number of control vari-
ables to N−2. For convenience, in the following de-
scription, we will use M=N−2 for the number of
variables. The minimization algorithm consists of the
following steps:
1. An initial temperature profile Tb 0= (T1,…,TN) for

the N trays with the temperatures being sorted, i.e.
T1�T2�…�TN−1�TN, and an initial set of
search directions (u� 1,…,u� M) are given. Usually, u� i
denotes the standard basis vectors of RM.

2. Repeat the following procedure until the entropy
production stops decreasing:
� For each direction u� i, i=1,…,M, minimize along

that direction using the temperature profile Tb i−1

as starting point. Save the result as Tb i. The line
minimization is performed by a bracketing rou-
tine and parabolic interpolation (Brent’s method;
Brent, 1973; Press, 1992). Save direction u� L along

which the entropy production made its largest
decrease �. Save the average direction moved
Tb M−Tb 0.

� Using the objective function �Su(Tb ), define the
quantities: �0��Su(Tb 0), �N��Su(Tb M),
�E��Su(2Tb M−Tb 0) .

� If one of the inequalities:

�E��0 or
2(�0−2�M+�E)[(�0−�M)−�)]

�(�0−�E)2 �1,

(30)

holds, then keep the old direction set. Save Tb M as
Tb 0. Go back for another iteration. If neither
condition in (Eq. (30)) holds, discard the direc-
tion of largest decrease u� L and assign u� L�u� M.
This avoids a buildup of linear dependence of the
search directions. Assign u� M� (Tb M−Tb 0). Mini-
mize along the new u� M and save the result as Tb 0.
Go back for another iteration.

However, one problem may arise using the algorithm
above. The entropy production (Eq. (18)) consists of
terms of the form Qn/Tn, which in turn are functions of
the liquid and vapor flows Vn and Ln. An explicit
representation of the vapor flow above the feed using
the material balance Eqs. (4) and (5) is given by:

Vn(Tn,Tn−1)=
xD−xn−1(Tn−1)

yn(Tn)−xn−1(Tn−1)
D. (31)

Analogous expressions exist for the liquid flows and for
the trays below the feed. Eq. (31) has a singularity, and
the flow becomes infinite for yn=xn−1. This leads to an
undesired instability of the optimization algorithm: at
the beginning of a line minimization along a particular
search direction, the minimum needs to be bracketed.
Otherwise, the one-dimensional minimization routine
may identify this singularity as the minimum and lead
to an unphysical result, e.g. a large negative value for
the entropy production.

For a few trays, the ETD steps to cover the total
distance, L, are unphysically large, requiring a higher
concentration of the more volatile component in the
liquid of the tray above than enters as the vapor from
the tray below (see Fig. 4). This requires a higher than
infinite reflux flow rate which the equations manage by
making some of the flow rates negative. It is somewhat
surprising that the numerical optimization also has
difficulty here. The reason is linked to the high heat
demand on these trays, which diverges as we approach
infinite reflux. The vertical asymptotes lead to numeri-
cal instabilities, which will be explored in future studies.

As initial guesses, we used linear temperature profiles
in all our optimizations. In general, minimum entropy
production was obtained after a few N iterations using
a relative accuracy of 10−9.
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Fig. 4. Description of an unphysical situation in the vapor– liquid–diagram.

5. Results and discussion

For our comparison of the entropy production asso-
ciated with distillation on shorter (small N) columns,
we chose benzene/toluene as our system to be sepa-
rated. The entropy production for the separation of a
50/50 mole fraction benzene/toluene mixture is mini-
mized by applying both methods. The number of trays
and purity requirements are varied to show differences
in the performance of ETD and numerical optimiza-
tion. The comparisons are always between columns
with the same material flows in and out. Notably the
feed, bottoms and distillate flows match not only in
magnitude but also in composition and temperature in
the columns compared.

The results for the simulations are shown in Figs.
5–7. The figures show the entropy production as a
function of the number of trays for (i) a conventional
column (ii) the ETD column, (iii) the numerically opti-
mized column, and (iv) the asymptotic lower bound
(L2/2N) for the entropy production based on the ETD
calculation.

The L2/2N values are suprisingly far from the ETD
curves. The reason for this comes from the fact that the
flow rates V and L enter the expression for C�. The
values of V and L are the continuous values given in
Eqs. (24)– (27), which corresponds to an infinite num-
ber of trays. The continuous path is needed to define
thermodynamic distance along the column. When the

temperatures found from Eq. (28) are used to calculate
the actual flow rates with the given number of trays N,
the flow rates are significantly above the minimum
reflux levels and account for the difference3. The sur-
prisingly good match between �Soptimal

u and �SETD
u led

to a deeper explanation. It turns out that the match
between these two quantities is always of the order
1/N3 (Nulton & Salamon, submitted for publication).

For all three purity requirements, the optimal
columns were far more efficient than their conventional
adiabatic counterparts. The optimal results also were
above the ETD lower bound, but approached the ETD
bound as N was increased. The large N simulation for
the 99/01 purity requirement had the closest values to
the ETD bound as was expected due to the asymptotic
nature of the ETD theory. The numerical optimization
results predicted slightly less entropy production in the
small N regions, but agreed very well with the ETD
results for larger N values. Sample temperature and
heating profiles for the three different systems are also
shown.

The temperature profiles (Figs. 8–10) for both meth-
ods have the characterisic mild ‘S’ curvature found in
optimally operating columns where the separation is

3 This reflux rate refers to the value of V−L for that plate and
should not be confused with the reflux rate L0 for the column which
is needed to be non-zero for the conventional column but is zero for
the ETD and the optimal columns.
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Fig. 5. Minimal entropy production for varying numer of trays determined with ETD and numerical optimization. The purity requirement is
xD=0.9, xB=0.1. For comparison, the entropy production for a conventional column (CC) and the lower bound for ETD, L2/(2N), are included.

Fig. 6. Entropy production for purity requirement xD 0.95, xB 0.05.
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Fig. 7. Entropy production for purity requirement xD=0.99, xB=0.01.

Fig. 8. Optimal temperature profiles for a 15 tray column (purity requirement xD=0.9, xB=0.1).

symmetric. This shape of the temperature profiles is
probably due to the effective heat capacity C�. The
temperature difference from tray to tray in the column

is smaller in the regions where the heat capacity is
large. As can be seen in Fig. 3, the 99/01 separation is
the most dramatic example of this.
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Fig. 9. Optimal temperature profiles for a 25 tray column (purity requirement xD 0.95, xB 0.05).

Fig. 10. Optimal temperature profiles for a 70 tray column (purity requirement xD=0.99, xB=0.01).
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Fig. 11. Corresponding heating requirements for a 15 tray column (purity requirement xD=0.9, xB=0.1).

Fig. 12. Corresponding heating requirements for a 25 tray column (purity requirement xD=0.95, xB=0.05).
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Fig. 13. Corresponding heating requirements for a 70 tray column (purity requirement xD=0.99, xB=0.01).

Fig. 14. The familiar (inverted u)-u shape of the optimal heating profile. Data shown is the same as in Fig. 13 with end trays omitted.
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The heating profiles (Figs. 11–13) show the largest
differences between the two methods studied here. The
figures show that in general, the ETD column requires
larger condensers and reboilers than the optimal
column but smaller heat exchangers on intermediate
trays. Since squeezing large heat exchangers into distil-
lation trays has proved to be a difficult task, this may
be a desirable feature for some installations. Another
thing to note is that the heat demands for the interme-
diate trays are fairly small and roughly the same for all
the trays. On closer examination of the heat demand
for the 71 tray column, we note that the demands near
the feed and near the reboiler and condenser are signifi-
cantly higher than the demands on the trays in between.
This gives the familiar (inverted-u)-u shape shown in
Fig. 14 previously noted in other studies (Brown, 1998;
Andresen & Salamon, 2000; de Koeijer et al., 2001;
Sauar et al., submitted for publication). A similar ex-
amination of the 15 tray column shows only a slight
tendency toward this behavior and keeps �Qn �� con-
stant for 1�n�N. Nearly constant heat demand
makes Rivero’s design for diabatic columns quite at-
tractive (Rivero, 1993). His design employs two heat
exchangers: one above and one below the feed. Each
heat exchanger winds its way through the column, and
this arrangement can probably approximate the opti-
mal heating/cooling profiles that we find.

6. Conclusion

In the present manuscript, we compared the entropy
production for ETD operation and numerically opti-
mized operation of a distillation column. The calcula-
tions assumed reversible heat transfer and equilibrium
stages on each tray. Similar studies comparing a differ-
ent optimization algorithm to an isoforce criterion have
appeared elsewhere (Kjelstrup-Ratkje et al., 1995;
Sauar, Rivero, Kjelstrup, & Lien, 1997; de Koeijer et
al., 1999).

For columns with many trays, the agreement between
ETD and optimal operation is good. More surprisingly,
the agreement between the entropy productions is re-
markably good even for moderate length columns. For
shorter columns, there are significant deviations, partic-
ularly in the heating profiles. The optimal profile calls
for a nearly constant heat demand, which works well
with the Rivero implementation of diabatic columns
(Rivero, 1993).
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