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We investigate the optimization of chemical reactions of the typenA a mB in a closed container. The goal
is to produce a maximal amount of A or B within a given finite time. The controls are taken to be volume
and temperature, restricted to allowed regions in (V,â)-space withâ ) 1/kT. We show that the optimal path
is achieved by choosingV andâ such that, for the current amounts of reaction products NA and NB, the
reaction ratef(NB,NA,V,â) ) dNB/dt is at all times maximal or minimal. For different combinations of endo/
exothermicity and activation energies switches between extremal values ofV and/orâ may be included in the
optimal path. The resulting paths are described qualitatively for general values ofn andm, while the reactions
2NH3 a N2 + 3H2, N2O4 a 2NO2, and 2NO2 a N2 + 2O2 are used as concrete examples. It is observed
that the optimal and equilibrium paths differ by a constant∆â; a possible connection with a constant
thermodynamic speed path is discussed.

I. Introduction

In the past 15 years continued interest has been shown in the
effects of restricting physical processes involving thermody-
namic quantites to a finite durationτ. This theory of finite-
time thermodynamics was originally applied to the study of
Carnot engines,1-8 but was subsequently extended to simple
chemical reactions,9,10 diffusion,11 phase change,12 message
encoding,13 economics,14 etc. In all of these cases there has
been a felicitous marriage between thermodynamics and opti-
mization theory due to the fruitful questions that are posed by
the introduction of finite time. For example, “Given that only
a finite time is available to achieve a certain goal, how should
this be accomplished such as to produce as little entropy as
possible during the process” or “Given again a finite time, how
can a maximal amount of work be produced during the process?”
It is natural to extend this line of thought to include processes

involving chemical potentials such as chemical reactions,
distillation, and other separation processes. In this paper we
address the case of chemical reactions with controllable rates.
The natural question that arises is how to produce a maximal
amount of the desired product (or how to lose as little as
possible) when the total duration of the process is fixed. A
second point of interest is how to produce a given amount of
material within a given time such that the work consumption
or entropy production is minimal.
Here we concentrate on the question of maximization of the

desired component. The reactionnA a mB is chosen as a
paradigm since it exhibits all the features of interest as far as
the finite-time optimization with volume and temperature as
controls is concerned. The more general reaction∑RiA i a
∑RjA j will reduce to the simpler case if the components Ai are
chosen in the appropriate stoichiometric amounts. In general
the difference between the two reactions will be one of
complexity and not one of principle. More fundamental
differences occur if, for example, consecutive reactions of the
typenA a mB a lC are being considered. We refer to a future
publication15 for these kinds of reactions.
Of course, the question of the maximization of a desired

reaction product has been addressed before.16-18 Here we study
the general solution in sufficient analytical detail to allow us to

connect the results to the basic concepts of finite-time thermo-
dynamics. For all the reactions considered the distance between
the optimal and the equilibrium curves in (N,â)-space,∆â )
â*(N) - â0(N), is found to be constant, a result reminiscent of
the constant thermodynamic speed of optimal paths in finite-
time thermodynamic analyses where entropy production or
availability loss are minimized. However, this distance does
not approach zero as the durationτ becomes infinite, unlike
usual finite-time thermodynamic expansions.

II. Determination of the Optimal Paths

The determination of the optimal procedure to produce the
maximal amount of A or B for the reactionnA a mB falls into
two natural parts: (1) mathematical description of the reaction
and formulation of the optimization problem; (2) solution of
the optimization problem.
A. Mathematical Description of the Reaction. For the

purpose of this study we specify the following conditions for
the chemical reaction.
(1) The reaction chamber is closed; that is, neither of the

two substances A and B is added or removed during the process,
whereas energy and volume may flow as determined. Thus,
mass conservation holds, and we can always calculate the
amount of, for example, A present from our knowledge of the
amount of B and the initial load.
(2) The reactor is well-stirred, and thus no concentration or

temperature gradients exist within the reactor.
(3) The reaction rate is assumed to follow an Arrhenius-type

expression,

with forward and backward activation energiesEA and EB,
respectively. The exothermicity of the forward reaction is then
∆ ) EB - EA. Further,NB is the amount of B;NA ) N0 -
(n/m)NB is the amount of A, whereN0 is the total amount of
material if all the material were present as A; andâ ) 1/kT is
the inverse temperature. The constantsa andb are related to
the collision frequencies. Without restriction of generality we
can always assume thatmg n. This rate expression results if
the reaction is assumed to proceed by random collisions ofn
units of A to producem units of B and vice versa. (Ifn or mX Abstract published inAdVance ACS Abstracts,May 1, 1996.

dNB

dt
≡ f(NB,V,â) ) V[ae-âEA(NA

V )n - be-âEB(NB

V )m] (1)
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equals 1, it is assumed that the corresponding dissociation can
nevertheless occur, e.g. due to the presence of an inert gas of
constant density or due to the presence of a catalyst.)
(4) The parameters that can be controlled in order to achieve

the desired optimization are the volumeV and the (inverse)
temperatureâ.
(5) We will consider two types of constraints on these

controls: (i)V ∈ [V0,V1] andT ∈ [T0,T1] (or â ∈ [â1,â0]); (ii)
pressurep is constant andâ ∈ [â1,â0]. In this second case we
also assume that the ideal gas law holds,p ) (NA + NB)/Vâ.
In both cases we allow for an instantaneous adjustment of

the controls if the optimal path demands this. Clearly this is
an approximation, but it is reasonable within the context of this
paper, and in most realistic cases a jump in the control values
can be replaced by a fast change without major effect on the
optimal path.
We are now ready to formulate the optimization problem,

and to make the description as concise as possible, we will
consider the maximization of B; A as desired substance as well
as the opposite situation of minimization emerge by simple
symmetry.
Maximize the amount of product B at the end of the reaction

durationτ by adjusting theVolume and temperature along the
path:

with f(NB,V,â) giVen by eq 1 and V andâ appropriately
restricted.
B. Solution of the Optimization Problem. We will use

the indirect optimization method developed by Rozonoer and
Trsirlin,19 which is applicable to optimization problems of the
form

with

and whereu(t) is the control, andx(t) is the state. Ifx(t) is
monotonic in the interval [0,τ], we can change the integration
over timet into an integration over amountx:

with

Application of the Euler-Lagrange equations to this dual
optimization problem leads to the following necessary condition:

where λ is the Lagrange multiplier corresponding to the
constraint. Rozonoer and Tsirlin19 have shown that the mono-
tonicity of x(t) also makes this condition sufficient.
Equation 7 is an algebraic equation foruwith possibly several

solutionsui(x,λ). Maximization ofI[u(t)] will now be achieved
by choosing for each value ofx the solutionui(x,λ) which

generates the largest integrandf0/f1. This results in a piecewise
continuous solutionu*(x,λ). It remains to determineλ, which
can be found by solving the time constraint

The application of this method to the problem we consider
in eq 2 is straightforward. The controlsV andâ correspond to
u, while x representsNB. The two functionsf0 and f1 are the
same, and thus the solution of eq 7 is given by eitherλ ) 0 or
∂f1/∂u ) 0. Sinceλ ) 0 corresponds to the trivial statement
thatNB(t) ) NB(0)+ ∫dNB, i.e. without any rate constraint, the
optimal path will be given by

Thus, the optimal path will consist of maximizing the reaction
rate f(NB,V,â) for each value ofNB.
Integrating eq 1 using the optimal valuesV*(NB) andâ*(NB)

results in a monotonically increasing or decreasing function
NB*( t), which makes eq 9 both a necessary and a sufficient
condition for the determination of the optimal path.19 We
conclude that the problem of finding the optimal path in (V,â)-
space for the maximal production of substance B can always
be reduced to finding the maximum of a function of two
variablesf(V,â) where the location of the optimum is param-
etrized byNB. This general prescription is in agreement with
earlier optimization results on a more qualitative basis.16-18

III. The Optimal Paths for the Reaction nA a mB

In the previous section we have shown that the determination
of the optimal path is equivalent to determining the values ofV
andâ for which the reaction ratef(NB,V,â) is maximal at every
point of the path. This result is actually quite general and
applies to all reactions of the type∑RiA i a ∑RjA j, the only
difference being thatNB is replaced by the standard reaction
coordinateê. However, to demonstrate the main features that
occur in many such optimal paths, we have restricted ourselves
to the casenA a mB where the reaction rate is assumed to be
given by eq 1 and the constraints onV andâ are as outlined in
subsection II.A.
In principle, eight different optimization situations occur

whether (1) the desired product to be maximized is A or B (since
m g n was arbitrarily chosen in section II.A.3); (2) the initial
contentNA(0) is small (≈0) or large (≈N0); or (3) the forward
reactionnA f mB is exothermic (∆ > 0) or endothermic (∆ <
0). In addition, a number of special cases may arise ifm) n
and/orn ) 1 and for certain relative values of the activation
energies.
Whereas the exact description of the optimal paths in sections

IV and V covers all situations, our written discussion will limit
itself to the case where B is the desired product in order to
avoid confusion. The other case results by symmetry.
For sufficiently small initial amounts of B the optimal reaction

rate is positive over the whole allowed range ofV andâ. Clearly
we want it to remain positive for “as long as possible” (measured
in NB), and for largeτ the final optimal values ofV andâ will
thus correspond to the equilibrium situation (f ) 0) that gives
the largest amount of B for the allowed range ofV andâ. At
this value ofNB the reaction ratef for the remaining part of the
allowed region is negative.
On the other hand, for sufficiently large initial amounts of B

the reaction rate is negative over the whole allowed range ofV
andâ. Now we wantf to reach the equilibrium value (f ) 0)

max
V(t), â(t)

NB(τ) ≡ NB(0)+∫0τf(NB,V,â) dt (2)

max
u(t)

I[u(t),τ] )∫0τf0(x,u) dt (3)

x̆) f1(x,u), x(0)) x0, x(τ) ) xτ (4)

I[u(t),τ] )∫x0xτ
f0(x,u)

f1(x,u)
dx (5)

∫x0xτ 1
f1(x,u)

dx) τ ) τ
xτ - x0
∫x0xτdx (6)

∂f0
∂u
f1 - f0

∂f1
∂u

) λ
∂f1
∂u

(7)

τ )∫x0xτ 1
f1(x,u*(x,λ))

dx (8)

∂f1
∂u

) 0 (9)
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“as quickly as possible” (measured inNB), i.e. with as little
loss of B as possible, and thus for largeτ the final optimal values
of V and â are those wheref ) 0 appears for the first time
(measured inNB). These are, of course, identical with the
optimal final values one would reach when beginning with a
small amount of B. For shorter durationsτ equilibrium is never
reached, and the optimal path is chosen to minimize the absolute
value of f at all times.
Note, however, that these final values ofV andâ are only

guaranteed to be optimal when the reaction reaches equilibrium
for τ f ∞. This makes it imperative for the case of finite
available timeτ not just to simply choose the final optimal
values ofV andâ associated with the largest amount of B at
equilibrium but instead to choose always those values ofV and
â that maximize the reaction rate at any given instant.
The general procedure for constructing the optimal path is

then as follows.
(1) Determine the location of the interior maxima and the

zeroes of the reaction rate as functions ofNB as well as the
behavior of the reaction rate forâ, V f 0 and∞.
(2) Compare the values off at the boundary of the allowed

regions (boundary extrema) with the values at the interior
extrema in order to determine the absolute maximum. Of
special interest are the values ofNB at which two such local
extrema become identical, since this indicates that a switch in
the controls should take place. Although the exact values of
theseNB can only be determined numerically because they

generally require the solution of transcendental equations, it is
nearly always possible to use analytical estimates to predict
whether such a jump will occur somewhere along the optimal
path for a given set of parameters,m, n, EA, EB, a, b, â0, â1,
V0, andV1.
(3) Determine the range of parameters which will give the

same optimal path as a means to classify the solutions.
In sections IV and V we will, after a short description of the

behavior of the reaction rate as a function ofNB, list the different
cases in tabular form. The optimal path is parametrized byNB

and will consist of a sequence of branches, each one being either
an internal extremum or a control boundary. Switches from
one branch to the next may occur when they intersect. Thus,
the optimal path “â0 f ââ

2(NB) f â1” is to be interpreted as
follows: “Start atâ ) â0; when a value ofNB is reached such
that f(â0) ) f(ââ

2(NB)), switch toâ ) ââ
2(NB); when a value of

NB is reached such thatf(ââ
2(NB)) ) f(â1), switch toâ1 and

remain there until the end of the prescribed duration” (the
quantities are derived in the appendices).
For the sake of compactness we have in Table 1 combined

many cases whose optimal paths consist of only segments of a
more general path, valid for a somewhat larger region in
parameter space; usually it is quite obvious from the specific
choice of parameters which path applies. For the description
of this multitude we employ brackets and braces. Braces
enclose two branches separated by a comma and indicate that
one of those branches will occur at this step of the path.

TABLE 1: Optimal Paths (Read Vertically) for All Possible Reaction Conditions WhenV and â Are Constrained to the
Intervals V ∈ [V0,V1] and â ∈ [â1,â0] (or T ∈ [T0,T1])a

product B product A

smallN(0) largeN(0) smallN(0) largeN(0)

∆ < 0
m> n> 1 (V0,â1) (V1,â0) (V0,â1) (V1,â0)

f (VV(â1),â1) f (V1,â1) f (V0,ââ(V0)) f (V0,â0)
f (V1,â1) f (V0,â0)

m> n) 1 (V1,â1) (V1,â0) (V0,â1) (V0,â0)
f (V1,â1) f (V0,ââ(V0))

f (V0,â0)

m) n> 1 (V0,â1) (V1,â0) (V0,â1) (V1,â0)
f (V1,â1) f (V0,ââ(V0))

f (V0,â0)

m) n) 1 (V,â1) (V,â0) (V,â1) (V,â0)
f (V,â1) f (V,ââ(V))

f (V,â0)

∆ > 0
m> n> 1 (V0,â1) (V1,â0) (V0,â1) (V1,â0)

< f (VV(â1),â1) [f (V0,â0)]
< f (V1,â1)
< f (V1,ââ(V1))
) f any point on (Vâ,ââ)
> f (V0,ââ(V0)) [f (V1,â1)]
> f (V0,â0)
> f (VV(â0),â0)

f (V1,â0) f (V0,â1)

m> n) 1 (V1,â1) (V1,â0) (V0,â1) (V1,â0)
f (V1,ââ(V1)) f (V0,â1)
f (V1,â0)

m) n> 1 (V0,â1) (V1,â0) (V0,â1) (V1,â0)
f (V0,ââ(V0)) f (V1,â1)
f (V0,â0)

m) n) 1 (V,â1) (V,â0) (V,â1) (V,â0)
f (V,ââ(V)) f (V,â1)
f (V,â0)

a Branches in brackets may not be included in the optimal path. For the exothermic (∆ > 0) casem> n > 1,< indicates intermediate branches
whenEB/EA < (m- 1)/(n - 1) and similarly with the relational operator replaced by) and>. The initial and final branches are the same for all
values ofEB/EA.
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Brackets enclose branches of the optimal path that vanish for
certain choices of the parameter values. Thus, the path “{â0,â1}
[f {â1,â0}]” has the following interpretation: “Start atâ0 or
â1 depending on whetherf(â0) or f(â1) is larger; if at some point
f(â0) ) f(â1), switch toâ1 or â0, respectively; iff(â0) ) f(â1)
never occurs, then stay on the original branch”.

IV. Constraint 1: V ∈ [V0,V1], â ∈ [â1,â0]
In Figure 1 we have sketched a typical reaction ratef(NB,V,â)

as a function ofV andâ for a fixed value ofNB. To visualize
the optimal paths associated with constraint 1, we sketch for
some value ofNB the curves in the (V,â)-plane where the
reaction ratef(NB,V,â) or its partial derivative with respect to
V andâ vanishes (Figures 2 and 3). Depending on the values
of the particle numbersm and n and whether the process is
exothermic or endothermic (∆ > 0 or∆ < 0), the graphs will

be different. For each of these cases the optimal path may
further depend on the allowed ranges ofV andâ. The formulas
necessary for the discussion are listed in Appendix 1, the optimal
paths and their switches are presented in Table 1, and the
resulting limiting behaviors off are found in Table 4.
A. ∆ < 0 (Endothermic Reaction). 1. m> n> 1 (Figure

2). The three curves (V0,â0), (VV,âV), and (Vâ,ââ), which
represent the points where the reaction ratef and its partial
derivatives with respect toV and â vanish, respectively, are
specially marked in Figure 2. From eqs A7, A8, and A9 in
Appendix 1 we see that they differ only by their prefactors and
therefore never cross. As a consequence, no interior extremum
of f exists, and the optimal path will always lie on the boundary
of the allowed region in (V,â)-space. This location can be either

Figure 1. Plot of the reaction ratef(NB,V,â) at fixedNB for the reaction N2O4 a 2NO2 with constrained ranges ofV andâ. Maximal rate is on
the leftV boundary, the ridge is the (Vâ,ââ) curve, and equilibrium (V0,â0) is at the intersection with the base plane.

Figure 2. Plot of the points of zero reaction rate (V0,â0), eq A7, (‚‚‚)
and the lines of critical points for constantâ(VV,âV), eq A8, (s) and
for constantV(Vâ,ââ), eq A9, (s) for an endothermic (∆ < 0) reaction
at a particular value ofNB. If n ) 1, the thick curve (VV,âV) is not
present. A possible allowed range of volume and temperature values
is indicated by the dashed rectangle. The eight possible switching points
are marked with circles.

Figure 3. Plot of the points of zero reaction rate (V0,â0), eq A7, (‚‚‚)
and the lines of critical points for constantâ (VV,âV), eq A8, (s) and
for constantV (Vâ,ââ), eq A9, (s) for an exothermic (∆ > 0) reaction
at a particular value ofNB. If n ) 1, the thick curve (VV,âV) is not
present. A possible allowed range of volume and temperature values
is indicated by the dashed rectangle. The eight possible switching points
are marked with circles. Note that ifEB(n- 1)/EA(m- 1)) 1, (VV,âV)
is identical to (Vâ,ââ) and represents a line of interior maxima.
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one of its corners or the intersection of (VV,âV) or (Vâ,ââ) with
the boundary. Those eight points are marked with circles in
Figure 2. AsNB changes, the three curves will gradually move,
leading to changes in the optimal values ofV andâ as functions
of NB and to switches from one optimal segment to another,
i.e. from one of the eight possible extremum points to another.
2. m> n ) 1 (Figure 2). The only difference from case 1

is the lack of curve (VV,âV), sincef is monotonically increasing
with V for all values ofâ (eq A3′).
3. m) n > 1. In this case (VV,âV) has become identical to

(V0,â0) (eqs A7′, A8′). The limiting behavior off(V) depends
on â. The curve (Vâ,ââ) is a line of relative minima in the
â-direction.
4. m ) n ) 1. The reaction rate is volume independent.

The optimal path is the same as in case 3 above with all
reference to volume removed.
B. ∆ > 0 (Exothermic Reaction). 1. m> n > 1 (Figure

3). From eqs A7, A8, and A9 in Appendix 1 we see that the
three curves of (V0,â0), (VV,âV), and (Vâ,ââ) again differ only
by their prefactors. Except for the special caseEB/EA ) (m-
1)/(n- 1), when (VV,âV) and (Vâ,ââ) are identical, these curves
will never cross. As a consequence, no interior extremum off
exists, and the optimal path will again always lie on the
boundary of the allowed region in (V,â)-space, either at one of
its corners or at the intersection of (VV,âV) or (Vâ,ââ) with the
boundary. In the special caseEB/EA ) (m - 1)/(n - 1) we
find that f has a line of relative maxima along the curve (Vâ,ââ)
) (VV,âV).
2. m> n ) 1 (Figure 3). We note that again curve (VV,âV)

is missing.
3. m ) n > 1. As in case A.3 above, (VV,âV) has become

identical to (V0,â0). The difference from the endothermic case
is that (Vâ,ââ) now is a line of relative maxima in theâ-direction.
Again the limiting behavior off(V) depends onâ. The optimal

paths are identical to those for∆ < 0 (with the roles ofNA and
NB exchanged).
4. m ) n ) 1. The reaction rate is volume independent.

The optimal path is the same as in case 3 above with all
reference to volume removed.

V. Constraint 2: p ) (NA + NB)/Vâ ) Constant,
â ∈ [â,â0]

The major difference from the previous constraint is the fact
that the number of independent variables is reduced to one. As
a consequence, however, the functional form off(NB,â) is more
complex, as can be seen in Figure 4, which depicts the reaction
rate as a function ofNB andâ. Depending on the values ofâ1
andâ0, we find up to three interior extrema (solutions of eq
A15) and up to two zeroes (solutions of eq A14) of the reaction
rate f as a function ofâ for a given value ofNB, making the
analysis rather involved and tedious. Thus, we will not discuss
all the possible variations the optimal path can take for each
special case. We hope that the discussion below will allow the
interested reader to deal with special cases of interest personally.
The formulas necessary for the discussion are listed in Appendix
2.
A. ∆ < 0 (Endothermic Reaction). 1. m> n> 1 (Figure

5). From eq A14 in Appendix 2 we see that, in addition toâ0
) 0 andâ0 ) ∞, exactly one solutionâ0(NB) exists for all values
of NB. The location ofâ0(NB) varies continuously withNB; its
limiting locations whenNB f 0, and whenNA f 0, as for all
the other cases, are given in Table 4. Similarly eq A15 gives
exactly two solutions, in addition toââ ) 0 (if n > 2) andââ

) ∞: ââ
1 (relative maximum,f(ââ

1) > 0 and ââ
2 (relative

minimum,f(ââ
2) < 0) for all values ofNB. We find furthermore

thatââ
1 < â0 < ââ

2 and that they vary continuously as functions
of NB. See again Table 4 for the limiting values. Combined

Figure 4. Plot of the reaction ratef(NB,â) for the reaction N2O4 a 2NO2 with constant pressurep and constrained range ofâ. Maximal rate is
on the ridge, equilibrium at the intersection with the base plane.
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with the behavior of the reaction rate for large and small values
of â, this determines the optimal paths as summarized in Table
2.
2. m> n ) 1. In addition toâ0 ) ∞, one solutionâ0(NB)

of eq A14 exists for all values ofNB, and its location varies
continuously withNB. However, under these conditions eq A15
gives just one solutionââ

2 (relative minimum,f(ââ
2) < 0),

besidesââ ) ∞, for all values ofNB. As opposed to case A.1
above,f(âd0) is positive here. We find also thatâ0 < ââ

2 and
that it varies continuously as function ofNB.
3. m) n> 1 (Figure 6). Here eq A14 can be solved exactly

to yield one solution,â0 ) (1/∆) ln(h(NB)). Equation A15 has
two solutions,ââ

1 (relative maximum,f(ââ
1) > 0) and ââ

2

(relative minimum,f(ââ
2) < 0). We find again thatââ

1 < â0
< ââ

2 and that they vary continuously as functions ofNB.
Clearly the solutionââ

1 is only of relevance ifh(NB) < 1 (NB

small), sinceââ
1 < 0 if (h(NB) is defined in eq A13).

4. m ) n ) 1. Since the problem is volume independent,
the requirement of constant pressure is irrelevant, and the
solution is identical to the one presented in section IV.A.4.

B. ∆ > 0 (Exothermic Reaction). 1. m> n > 1 (Figure
7). Besidesâ0 ) 0 andâ0 ) ∞, eq A14 now has zero, one, or
two solutionsâ0i(NB) depending on the value ofh(NB) (defined

Figure 5. Plot of the reaction ratef(â) for an endothermic (∆ < 0)
reaction withm> n > 1 at constant pressurep. VaryingNB deforms
the curve but leaves the number of roots and exterma invariant.

TABLE 2: Optimal Branches (Read Vertically) for All Possible Reaction Conditions When Pressurep Is Constant andâ Is
Constrained to the Interval B ∈ [â1,â0] (or T ∈ [T0,T1])a

product B product A

smallN(0) largeN(0) smallN(0) largeN(0)

low mid high low mid high low mid high low mid high

∆ < 0
m> n> 1 â0 ââ

1 â1 â1 † â0 â0 ââ
2 â1 â1 ‡ â0

fââ
1 fâ1 fâ1 fâ0 fââ

2 fâ0

fâ1 fâ0

m> n) 1 â1 â1 â1 â1 † â0 â0 ââ
2 â1 â0 â0 â0

fâ1 fâ0 fââ
2

fâ0

m) n> 1 â0 ââ
1 â1 â1 † â0 â0 ââ

2 â1 â1 ‡ â0

fââ
1 fâ1 fâ1 fâ0 fââ

2 fâ0

fâ1 fâ0

m) n) 1 â1 â1 â1 â0 â0 â0 â1 â1 â1 â0 â0 â0

∆ > 0
m> n> 1 see Table 3

m> n) 1 see Table 3

m) n> 1 â0 ââ
2 â1 â1 † â0 â0 ââ

1 â1 â1 ‡ â0

fâ0 fââ
2 fâ0 fââ

1 fâ1 fâ1

fâ0 fâ1

m) n) 1 â1 â1 â1 â0 â0 â0 â1 â1 â1 â0 â0 â0

aColumn headings low/mid/high refer to the barrier heights in the appropriate direction of reaction, i.e.EA < (n - 1)/â0; (n - 1)/â0 < EA < (n
- 1)/â1; EA > (n - 1)/â1, respectively, orEB < (m- 1)/â0; (m- 1)/â0 < EB < (m- 1)/â1; EB > (m- 1)/â1. Branches marked † are identical
to those for low barrier height iff(â0) < f(â1) and to those for high barrier height iff(â0) > f(â1). ‡ signals the opposite relationship.

Figure 6. Plot of the reaction ratef(â) for an endothermic (∆ < 0)
reaction withm) n> 1 at constant pressurep for three different values
NB. Note how one of the roots and extrema disappear asNB increases.

Figure 7. Plot of the reaction ratef(â) for an exothermic (∆ > 0)
reaction withm > n > 1 andEB(n - 1)/EA(m - 1) ) 1 at constant
pressurep for three different valuesNB. Note how the single maximum
splits up asNB increases, andh (eq A13) goes through the sequence
h(NB) < hex (s), hex < h(NB) < hc (s), h(NB) > hc(- - -).
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in eq A13) relative to the critical value

Correspondingly, we defineâc ) (m- n)/∆ ≡ â01≡ â02 at the
critical point. The locations of these solutions vary continuously
with NB. Similarly, in addition toââ ) 0 (if n > 2) andââ )
∞, eq A15 gives one, two, or three solutionsââ

i depending on
the value ofh(NB) relative to a critical valuehex. It is found
thathex < hc and that theââ

i vary continuously as functions of
NB. However, their limiting locations depend on the value of
EB/EA relative to (m- 1)/(n- 1). (See Table 4.) We observe
that ââ

1 and ââ
3 are always relative maxima withf(ââ

1) and
f(ââ

3) positive. In general, the exact location of (âex,hex) has to
be found numerically from eq A15 and itsâ-derivative. IfEB/
EA ) (m - 1)/(n - 1), we can calculatehex andâex explicitly:

Then ââ
2 is a relative maximum or minimum depending on

whetherh < hex or h > hex; for all other values ofEB/EA, ââ
2

is a relative minimum throughout. Furthermore,f(ââ
2) > 0 when

h < hc (f(ââ
2) < 0 whenh > hc).

Together with the limiting behavior of the reaction rate for
large and small values ofâ the critical points and zeroes off
determine the optimal paths. However, the situation is now
rather involved (cf. Table 3) since there are many possibilities
for â andâ0 to be placed with relation to the location of the
zeroes and critical points of the reaction rate. We note that the
optimal paths of caseEB/EA > (m - 1)/(n - 1) follow from

the analysis of the caseEB/EA < (m - 1)/(n - 1) since the
order of the four special temperaturesâA ) (n - 1)/EA, âB )
(m- 1)/EB, âc ) (m- n)/∆, andâex is just reversed:âA < âB

< âc < âex for EB/EA < (m- 1)/(n - 1), whileâA > âB > âc

> âex for EB/EA > (m- 1)/(n- 1). Thus, in the optimal paths,
â0 andâ1 change roles, as doââ

1 andââ
3.

2. m> n) 1. The zero, one, or two solutionsâ0i(NB) of eq
A14 behave in the same way as in case 1 (m> n > 1) with n
put equal to 1 in all the formulas. However, we note thatf(âd0)
> 0 and fâ(âd0) < 0, leading to the removal of the relative
maximumââ

1. This agrees with the fact that only zero, one,
or two solutions offâ(â(1)) ) 0 (eq A15) exist depending on
whetherh is smaller than, equal to, or larger thanhex. We find
as before thathex < hc and that theââ

i vary continuously as
functions of NB. As far as the dependence ofEâ/EA is
concerned, the only case which is relevant isEB/EA < (m -
1)/(n - 1) since (m - 1)/(n - 1) f ∞ for n f 1.

As before, the exact location of (âex,hex) has to be found
numerically from solving eqs A15 and itsâ-derivative. We
observe thatââ

3 is always a relative maximum withf(ââ
3)

positive, andââ
2 is always a relative minimum withf(ââ

2) > 0
when h < hc (f(ââ

2) < 0 whenh > hc). Again the optimal
paths are rather involved since there are many possibilities for
â1 andâ0 to be placed with relation to the location of the zeroes
and critical points of the reaction rate.

3. m) n > 1. The optimal paths for this case are identical
to the ones discussed for∆ < 0 with the roles ofNA andNB

exchanged.

4. m ) n ) 1. Since the problem is volume independent,
the requirement of constant pressure is irrelevant and the solution
is identical to the one presented in section IV.B.4.

TABLE 3: Optimal Branches for Exothermic ( ∆ > 0) Reactions with Stoichiometrym > n > 1 andm > n ) 1 When
Pressurep Is Constant andâ Is Constrained to the Interval â ∈ [â1,â0] (or T ∈ [T0,T1])a

product B product A

smallN(0) largeN(0) smallN(0) largeN(0)

m> n> 1
EB/EA < (m- 1)/(n- 1)

â0 < âc [[â0f]ââ
1f]â1 [â0f]â1 [[â1f]ââ

2f]â0 [â1f]â0

â1 < âA, âc < â0 ââ
1 f [â1f] {â0,â1} [â1f]ââ

2 [[â0f]â1f]
[ââ

3f]â0 [f{â1,â0}] â0 f ââ
2

âA < â1 < âc < â0 â1[f{â0,ââ
3}] {â0,â1} [â1f]ââ

2 â0 f ââ
2

[f{â1,â0}]
âc < â1 â1 f [ââ

3f]â0 â0 â1 â0 f [ââ
2f]â1

EB/EA ) (m- 1)/(n- 1)
â0 < âc â0 f ââ

1 f â1 â1 â0 â1 f â0

â1 < âc < â0 âc f {ââ
1,ââ

3} f {â0,â1} âc[dââ
2] {â0,â1}

{â0,â1} [f{â1,â0}] [f{â1,â0}]
âc < â1 â1 f ââ

3 f â0 â0 â1 â0 f â1

EB/EA > (m- 1)/(n- 1)
â1 < âc [[â1f]ââ

3f]â0 [â1f]â0 [[â0f]ââ
2f]â1 [â0f]â1

â0 < âB, âc < â1 ââ
3 f [â0f] {â0,â1} [â0f]ââ

2 [[â1f]â0f]
[ââ

1f]â1 [f{â1,â0}] â1 f ââ
2

âB < â0 < âc < â1 â0 f {â1,ââ
1} {â0,â1} [â0f]ââ

2 â1 f ââ
2

[f{â1,â0}]
âc < â0 â0 f [ââ

1f]â1 â1 â0 â1 f [ââ
2f]â0

m> n) 1
â0 < âc â1 [â0f]â1 [[â1f]ââ

2f]â0 â0

â1 < âc < â0 [[â1f][ââ
3f] {â0,â1} [â1f]ââ

2 â0 f ââ
2

â0f]â1 [f{â1,â0}]
âc < â1 â1 f [ââ

3f]â0 â0 â1 â0 f [ââ
2f]â1

a Branches in brackets may not be included in the optimal path. Branches in braces are alternatives.

hc ) ( e∆
m- n)

m-n
(10)

hex ) ( e∆
m- n)

m-nn- 1
m- 1

) n- 1
m- 1

hc (11)

âex ) âc (12)
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VI. Realistic Examples

To illustrate the qualitative description of the optimal paths
given in the previous two subsections we now apply the analysis
to three chemical reactions, 2NH3 a N2 + 3H2, N2O4 a 2NO2,
and 2NO2 a N2 + 2O2. In all cases we will model the reactions
using the simple reaction equation eq 1 together with the
simplifying assumptions mentioned (ideal gas law, constant
activation energies, etc.).
A. 2NH3 a N2 + 3H2. The desired quantity is ammonia,

and it is assumed that we begin with initially 2 mol combined
of nitrogen and hydrogen in the appropriate stoichiometric ratio
(1:3), i.e. 0.5 mol N2 plus 1.5 mol H2, corresponding to 1 mol
NH3. From the literature20 we take the following constants (at
pressures of about 250 atm and temperatures of about 820 K):
EA ) 167 kJ/mol,EB ) 58.6 kJ/mol,b/a ) 5.43× 10-5 m6/
mol2. (We note that 1 kJ/mol corresponds to a temperature of
about 120 K.) Thus, we have the following quantities of
interest:m ) 4, n ) 2, EA ) 167 kJ/mol,EB ) 58.6 kJ/mol,
∆ ) -108 kJ/mol, (n - 1)/EA ) 0.006 mol/kJ, (m- 1)/EB )
0.0512 mol/kJ,b/a ) 5.43× 10-15 m6/mol2, N0 ) 1 mol.
We consider two constraints.
(i) V0 ) 0.005 m3, V1 ) 0.02 m3, â0 ) 0.3 mol/kJ (T0 ) 400

K), â1 ) 0.1 mol/kJ (T1 ) 1200 K). This corresponds to the
case of desired product A in small initial amounts in section
IV.A.1 and Table 1 such that the optimal reaction path is the
following: The volume should beV ) V0 ) 0.005 m3

throughout. The temperature should initially beâ ) â1 ) 0.1
mol/kJ. WhenNB has decreased to 1.985 mol, corresponding
to a product ofNA ) 0.0075 mol, a continuous switch toâ(NB)
) (-1/∆) ln[(V0m-n/g(NB)) (EA/EB)] ) 0.2029 - 0.0185
ln[NB

2/(2 - NB)] mol/kJ is possible. Finally, whenNB has

reached 0.1 mol, the temperature switches smoothly toâ ) â0
) 0.3 mol/kJ and stays at that value.
(ii) p ) 256 atm) 2.59× 107 Pa,â0 ) 0.3 mol/kJ (T0 )

400 K), â1 ) 0.1 mol/kJ (T1 ) 1200 K). This corresponds to
the case of desired product A in small initial amounts with a
high barrier height in section V.A.1 and Table 2 sinceâ1 > (m
- 1)/EB. The optimal path then starts with an initial temperature
â ) â1 ) 0.1 mol/kJ. WhenNB has decreased to 1.93 mol,
corresponding to a product ofNA ) 0.035 mol, the temperature
switches smoothly toâ ) ââ

2(NB), which may be found by
solving eq A15. AtNB ) 0.017 mol it switches off the internal
extremum toâ ) â0 ) 0.3 mol/kJ and stays at that value.
In Figure 8 we plot the optimal pathâ(NB) for p ) 256 atm

and â ∈ [0.1,0.3] mol/kJ. On the same graph we show the

TABLE 4: Limiting Behavior of the Reaction Rate f when V f 0 and ∞ and When â f ∞ (T f 0) (left); Limiting Behavior of
the Roots and Extrema of the Reaction Rate (right)a

f(NB,V,â) â0
i ââ

i

Vf 0 Vf ∞ â f ∞ NB f 0 hf hex NA f 0 NB f 0 hf hex NA f 0

∆ < 0
m> n> 1 -∞ 0+ 0- ∞ 0 (n- 1)/EA 0

∞ (m- 1)/EB

m> n) 1 -∞ q 0- ∞ 0 • • •
∞ (m- 1)/EB

m) n> 1 ∞† 0+† 0- ∞ 0* -∞ (m- 1)/EA 0* -∞
-∞‡ 0-‡ ∞ (m- 1)/EB

m) n) 1 0-

∆ > 0
m> n> 1 -∞ 0+ 0+ âc-** 0

âc+** ∞ (n- 1)/EA ∞ 0

< âex- (m- 1)/EB
< âex+ ∞
) âc- 0
) âc âc âc

) âc+ ∞
> âex- 0
> âex+ (m- 1)/EB
> (n- 1)/EA ∞

m> n) 1 -∞ q 0+ âc-** 0 • • •
âc+** ∞ âex- (m- 1)/EB

âex+ ∞
m) n> 1 ∞† 0+† 0+ ∞ 0* -∞ ∞ (m- 1)/EB

-∞‡ 0-‡ (m- 1)/EA 0* -∞
m) n) 1 0+

a † is for â > âV, ‡ is for â < âV. For brevity we defineq ) (aNAe-âEA)-. Whenâ f 0 (T f ∞), f approaches a finite value, positive or
negative, which depends not only on the parameters but also on the instantaneous product concentration. Roots and extrema marked with‚ do not
exist. The entries marked with an * are for the limith f 1, while ** indicatesh f hc. For the exothermic (∆ > 0) casem> n > 1, < indicates
intermediate branches whenEB/EA < (m - 1)/(n - 1) and similarly with the relational operator replaced by) and>.

Figure 8. Plot of the optimal temperature pathâ*(NB) for ammonia
at p ) 256 atm, 0.1e â e 0.3 mol/kJ (s). As a comparison,â*(NB)
for realistic data taken from ref 21 is also shown (- - -) as well as the
equilibrium pathâ0(NB) (‚‚‚).
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optimal path that was found numerically in ref 21 using the
best available data for the activation coefficients and equation
of state. The similarity between the two curves is impressive
considering the highly simplified reaction equation and equation
of state used in our calculation. The agreement could be
improved further if the numerical values for the effective
activation energies of the modern catalysts were available, since
a lowering of the activation energiesEA andEB would result in
an upward shift of the optimal curveâ*(NB) in Figure 8. The
main effect of the more accurate kinetic information will be
the time allocation along the optimal path rather than the path
in (V,â)-space itself.
B. N2O4 a 2NO2. The desired quantity is the dimer N2O4,

and it is assumed that we begin with initially 2 mol of nitrogen
dioxide. From the literature20 we take the following constants
(at pressures of about 1 atm and temperatures of about 300 K):
EA ) 46.25 kJ/mol,EB ) 7.16 kJ/mol,b/a ) 1.35× 10-10

m3/mol. Thus, we have the following quantities of interest:m
) 2, n ) 1,EA ) 46.25 kJ/mol,EB ) 7.16 kJ/mol,∆ ) -39.1
kJ/mol, (m - 1)/EB ) 0.14 mol/kJ,b/a ) 1.35× 10-10 m3/
mol, N0 ) 1 mol.
We consider two constraints.
(i) V0 ) 0.02 m3, V1 ) 0.04 m3, â0 ) 0.4 mol/kJ (T0 ) 300

K), â1 ) 0.35 mol/kJ (T1 ) 340 K). This corresponds to the
case of desired product A in small initial amounts in section
IV.A.2 and Table 1 such that the optimal reaction path is the
following: The volume should beV) V0 ) 0.02 m3 throughout.
The temperature should initially beâ ) â1 ) 0.35 mol/kJ. When
NB has decreased to 1.99 mol, it switches smoothly toâ(NB) )
(-1/∆) ln[(V0m-n/g(NB)) (EA/EB)] ) 0.5112- 0.0256 ln[NB

2/
(2 - NB)] mol/kJ. WhenNB has fallen to 1.95 mol, the
temperature switches further toâ ) â0 ) 0.4 mol/kJ and stays
at that value.
(ii) p) 1 atm) 1.013× 105 Pa,â0 ) 0.4 mol/kJ (T0 ) 300

K), â1 ) 0.35 mol/kJ (T1 ) 340 K). This corresponds to the
case of desired product A in small initial amounts with a high
barrier height in section V.A.2 and Table 2 sinceâ1 > (m -
1)/EB. The optimal path then starts at temperatureâ ) â1 )
0.35 mol/kJ. WhenNB has dropped to 1.90 mol, it switches to
â ) ââ

2(NB), again found by solving eq A15. WhenNB ) 1.483
mol, the temperature switches toâ ) â0 ) 0.4 mol/kJ and stays
at that value.
C. 2NO2 a N2 + 2O2. The desired quantity is the molecules

N2 and O2, and it is assumed that we begin with initially 1 mol
of nitrogen dioxide. From the literature20we take the following
constants (at pressures of about 1 atm and temperatures of about
300 K): ∆ ) 67.7 kJ/mol,EB ) 945 kJ/mol,b/a ) 477 m3/
mol. The value forEB corresponds to the heat of formation of
N2 from two single nitrogen atoms. Thus, we have the following
quantities of interest:m) 3, n ) 2,EA ) 877.3 kJ/mol,EB )
945 kJ/mol,∆ ) 67.7 kJ/mol, (m- 1)/EB ) 0.0021 mol/kJ, (n
- 1)/EA ) 0.0011 mol/kJ,âc ) (m - n)/∆ ) 0.0147 mol/kJ,
hc ) 184.03 kJ/mol,âex ) 0.0159 mol/kJ, hex ) 183.46 kJ/
mol, b/a ) 477 m3/mol, N0 ) 1 mol.
We consider two constraints.
(i) V0 ) 0.004 m3, V1 ) 0.04 m3, â0 ) 0.4 mol/kJ (T0 ) 300

K), â1 ) 0.1 mol/kJ (T1 ) 1200 K). This corresponds to the
case of desired product B in small initial amounts and withEB/
EA < (m- 1)/(n - 1) in section IV.B.1 and Table 1 such that
the optimal reaction path is the following: For the combined
content of N2 plus O2, NB increasing to 0.144 mol, found by
solving eq A8, the optimal conditions areâ* ) â1 ) 0.1 mol/
kJ andV* andV0 ) 0.004 m3. As the reaction proceeds to the
range 0.144< NB < 0.288 mol, again calculated from eq A8,
â* remains atâ1 ) 0.1 mol/kJ, whileV* evolves alongVV(NB)

) 1.095NB
3/(1 - (2/3)NB)2 m3. In the following 0.288< NB

< 0.343 mol, bothâ* and V* remain fixed atâ* ) â1 ) 0.1
mol/kJ andV* ) V1 ) 0.04 m3. At the end of that range a
smooth switch toââ(V1) occurs withâ* found from eq A9,â*
) 0.1397+ 0.0148 ln[NB

3/(1 - (2/3)NB)2] mol/kJ andV* )
V1 ) 0.04 m3. Finally, atNB > 1.4996 mol the optimal path
switches to the constantâ* ) â0 ) 0.4 mol/kJ andV* ) V1 )
0.04 m3.
(ii) p ) 1.013× 105 Pa,â0 ) 0.25 mol/kJ (T0 ) 480 K),â1

) 0.1 mol/kJ (T1 ) 1200 K). This corresponds to the case of
desired product B in small initial amounts in section V.B.1 and
Table 2 sinceâ1 > âex and (EB/EA) < (m - 1)/(n - 1). The
optimal path then starts at temperatureâ* ) â1 ) 0.1 mol/kJ.
WhenNB has increased to 0.4569 mol, the third solution of eq
A15,ââ

3(NB) has become equal toâ1 and a switch to that branch
occurs. WhenNB ) 1.4487 mol, the optimal path switches off
that branch again toâ* ) â0 ) 0.25 mol/kJ and stays at that
value.

VII. Discussion

A. Generality of the Results. In section III we have
presented a qualitative description of the optimal reaction paths
for all reactions of typenA a mB, illustrated in section VI
with three numerical examples where the transition points along
the optimal path were calculated from the parameters of the
reaction. As we pointed out earlier, the result of the optimiza-
tion procedure in section II is more general and applies to all
reactions of the type∑RiA i a ∑RjA j. We observe further that
our derivation never referred to the special structure of eq 1,
and thus, in principle, any empirical reaction rate can be used
as long as it is only a function ofNB, V, andT. This would
permit the inclusion of realistic equations of state plus the
temperature and pressure dependence of the activation coef-
ficients in our analysis.
However, the method we used in section II does not

generalize in a straightforward manner to several variables
(reaction coordinates). Therefore, reactions of the typenA a
mB a lC with B as the desired product will have to be treated
differently. The optimal choice of controls is then not neces-
sarily the one that maximizes the reaction rate at any given
moment.15

B. Thermodynamic Distance. The classical way to ap-
proach chemical reactions is from the point of view of
equilibrium. As we have seen in this papper, for the case of
finite duration of the reactions the crucial quantity has turned
out to be the reaction rate instead, where the case of equilibrium
(f ) 0) is never attained in finitie time, although we have spoken
of reaching equilibrium as fast or slowly as possible measured
in NB coordinates. Such a use of thermodynamic quantities as
a measure of distance from some (infinite-time) state of the
system and/or as a proper time along the path of the process is
well-known in finite-time thermodynamics.22 Here one speaks
of the thermodynamic distance which measures the distance in
the space of thermodynamic coordinates between the system
in its current state and some ghost equilibrium state which it
strives toward (usually this relaxation requires an infinite time).
In a quantitative description a thermodynamic metricM is
introduced,22,23 consisting of the second derivatives of one of
the extensive variables with respect to all the others, e.g. the
entropy metric

where theX may be energyU, volumeV, particle numberN,
etc.

MS ) -{ ∂
2S

∂Xi ∂Xj} (13)
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In our example a reasonable choice of such a ghost equilib-
rium state corresponds to the values ofV andT (or just T, if
constraint 2 applies) for which the currentNB is the equilibrium
value. We have plotted the curve of equilibrium valuesâ0(NB)
for the ammonia reaction (reaction A in section VI) under the
constraint of constant pressurep ) 256 atm in Figure 8 and
find that over almost the entire range of values ofNB the
numerical distance in theâ-direction between the optimal and
the equilibrium path is nearly constant and equals 0.012( 0.001
mol/kJ. Such a constant value of the distance to the equilibrium
state has also been observed in ref 21, although those data cover
only a much shorter range ofNB values (also plotted in Figure
8). We have also performed the same analysis for reactions B
and C in section VI (both forward and backward), and we find
again that the distance betweenâ*(NB) and â0(NB) is ap-
proximately constant (whereverâ0(NB) exists) and equals 0.053
( 0.002 mol/kJ and 0.00111( 0.00002 mol/kJ (forward)/
0.0021( 0.0001 mol/kJ (backward), respectively.
An immediate interpretation of this constant∆â would be to

identify it with a lag distance in the (NB,â)-space in analogy to
that defined in ref 22 and found to be constant for an optimal
process based on thermodynamics length. However, this
interpretation encounters serious difficulties. On a formal level,
whereas the internal energyU and entropyS form “good
metrics” (i.e. with the same sign everywhere) due to the
traditional principles of an equilibrium system having minimum
energy/maximum entropy, no such extremum principle exists
for particle numberN. The straightforward connection between
∆N ) N*(â) - N0(â) and∆â would be made via∂2N/∂â2, but
∂2N/∂â2 changes sign at least once over the full range ofâ, [0,∞],
so a metric based on this quantity is not useful. Consequently,
the usual optimality criterion22 of constant thermodynamic speed
cannot be applied, and the amazing constancy of∆â must have
a different interpretation.
On a more practical level one should notice two important

aspects which distinguish our finite-time optimization from
traditional problems in finite-time thermodynamics to which the
concept of thermodynamic length has been applied.
(i) The system does not move between two predefined

thermodynamic states,N(0) andN(τ), while some other quantity,
e.g. entropy or availability, is produced/lost in an optimal fashion
due to the finite time available. Instead the task calls for the
maximization ofN(τ), where the only constraints are the finite
durationτ and the reaction ratef(N,â). In other words, our final
state is also part of the optimization, not just the intervening
path.
(ii) No matter how much timeτ available, the optimal path

will never approach the equilibrium curve. That is,∆â is not
a function ofτ, and∆â N 0 asτ f ∞ precisely because the
final stateN(τ) is not fixed but part of the optimization.
As a consequence, we suggest that the proper reference curve

with respect to which a thermodynamic distance is to be defined
and measured is the optimal path, i.e. the curve of maximum
reaction rate. Similarly, the quantity that should be minimized
due to deviations from the optimal path (e.g if only a finite
number of temperature adjustments are allowed) is the amount
of “underproduced” material compared to the optimal path, or,
correspondingly, the extra time necessary to produce the same
amount of product as along the optimal path. The treatment
then will be analogous to the study of quasistatic processes with
a finite number of steps.24 Note that along the optimal path
∂2f/∂â2 is always of only one sign (away from the boundary).
Similarly, we expect that the optimal path will proceed with

constant thermodynamic speed, i.e. will keep a constant
thermodynamic distancesmeasured in the entropy metricsaway

from the equilibrium curve if we minimize, for example, the
entropy production during a chemical reaction that results in a
well-prescribed amount of reaction products. This is analogous
to the standard posing of the problem in finite-time thermody-
namics.
Nevertheless, the question remains whether the approximate

constancy of∆â is a general consequence of the optimization.
Clearly, if and when it can be shown that optimality implies a
constant∆â, this optimality criterion could then be used to
determine the optimal path for those systems of chemical
reactions that do not yield easily to optimization methods like
the one used in section 2. This will be of special importance
since for general chemical systems it is considerably easier to
determine the curve of equilibrium values than the actual optimal
path.
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Appendix 1: Extremal Points for Constraint 1

The general rate equation taken from eq 1 is

with the additional definition

Remember that mass conservation implies thatNA ) N0 - (n/
m)NB. We also require the partial derivatives

Using eqs A1, A3, and A5, one can determine the critical points
of f and the points of zero reaction rate:

f(V0,â0) ) 0S V0(â0) ) exp(- â0∆
m- n)g(NB)

1/(m-n) (A7)

fV(V
V,âV) ) 0S

VV(âV) ) (m- 1
n- 1)1/(m-n)

exp(- âV∆
m- n)g(NB)

1/(m-n) (A8)

f(NB,V,â) ) ae-âEA
NA

n

Vn-1(1- e-â∆ g

Vm-n) (A1)

g(NB) )
bNB

m

aNA
n

(A2)

fV ) ∂f
∂V

) -ae-âEA
NA

n

Vn [(n- 1)- (m- 1)e-â∆ g

Vm-n] (A3)

fVV ) ∂
2f

∂V2
) ae-âEA

NA
n

Vn+1[n(n- 1)- m(m- 1)e-â∆ g

Vm-n]
(A4)

fâ ) ∂f
∂â

) -ae-âEA
NA

n

Vn-1[EA - EBe
-â∆ g

Vm-n] (A5)

fââ ) ∂
2f

∂â2
) ae-âEA

NA
n

Vn-1[EA2 - EB
2e-â∆ g

Vm-n] (A6)
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fâ(V
â,ââ) ) 0S

Vâ(ââ) ) (EBEA)1/(m-n)

exp(- ââ∆
m- n)g(NB)

1/(m-n) (A9)

Note the special cases

From fââ we can further conclude that (Vâ,ââ) are local minima
in theâ-direction if∆ < 0 and local maxima in theâ-direction
if ∆ > 0. FromfVV follows that (VV,âV) are always local maxima
in the V-direction if m > n > 1. If m ) n > 1, thenâV(V)
corresponds to a line of saddle points, and

Appendix 2: Extremal Points for Constraint 2

Entering the constant pressurep ) (NA + NB)/Vâ into the
general rate equation, eq 1, and taking theâ-derivative, we arrive
at

and

with the definition

The zeroes and critical points of the reaction rate now follow:

In general the number of solutions (in addition toâ ) 0 and∞)
to eqs A14 and A15 will depend on the value ofh(NB).

The limiting values off are

Similarly,
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m) n> 1: â0(V) )
ln(g(NB))

∆
(A7′)

âV(V) )
ln(g(NB))

∆
(A8′)

ââ(V) )
ln(g(NB))

∆
+
ln(EB/EA)

∆
(A9′)

m> n) 1: fV(V,â) > 0S f increases monotonically
with V for all â (A3′)

m) n) 1: f(V,â) ) f(â), i.e. the problem is
volume independent (A1′)

fV > 0 for â < âV

fV < 0 for â > âV (A10)

f(NB,â) ) a
NA

n

(NA + NB)
n-1p

n-1ân-1e-âEA(1- hâm-ne-â∆)

(A11)

fâ ) ∂f
∂â

) a
NA

n

(NA + NB)
n-1p

n-1ân-2e-âEA[n- 1- âEA -

h(m- 1- âEB)â
m-ne-â∆] (A12)

h(NB) ) b
a

NB
m

NA
n(NA + NB)

m-np
m-n (A13)

f(â0) ) 0S â0 ) 0 if n> 1 or â0 ) ∞ or

eâ0∆ ) h(â0)m-n (A14)

fâ(â
â) ) 0S ââ ) 0 if ng 2 or ââ ) ∞ or

(n- 1- ââEA)e
ââ∆ -

h(m- 1- ââEB)(â
â)m-n ) 0 (A15)

f(â f ∞) ) {0+ for ∆ > 0

0- for ∆ < 0
(A16)

f(âd0)) {0 for n> 1
aNA for m> n) 1
aNA - bNB for m) n) 1

(A17)

fâ(âf∞) ) {0- for ∆ > 0

0+ for ∆ < 0
(A18)

fâ(âd0)) {0 for n> 2

a
NA

2

NA + NB
p for m> n) 2

(aNA
2 - bNB

2)

NA + NB
p for m) n) 2

-aNAEA for m> 2,n) 1

-b
NB

2

NA + NB
p- aNAE

A for m) 2,n) 1

bNBEB - aNAEA for m) n) 1

(A19)
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