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We investigate the optimization of chemical reactions of the tyfye= mB in a closed container. The goal

is to produce a maximal amount of A or B within a given finite time. The controls are taken to be volume
and temperature, restricted to allowed regionsvjB)-space with3 = 1/kT. We show that the optimal path

is achieved by choosiny and  such that, for the current amounts of reaction productsaNd Ns, the
reaction raté(Ng,Na,V,5) = dNg/dt is at all times maximal or minimal. For different combinations of endo/
exothermicity and activation energies switches between extremal valiesmaf/ors may be included in the
optimal path. The resulting paths are described qualitatively for general valaemdin, while the reactions
2NH; == N, + 3H, N>O, == 2NO;, and 2NQ == N, + 20, are used as concrete examples. It is observed
that the optimal and equilibrium paths differ by a constaft a possible connection with a constant
thermodynamic speed path is discussed.

I. Introduction connect the results to the basic concepts of finite-time thermo-

. . ) dynamics. For all the reactions considered the distance between
In the past 15 years continued interest has been shown in thethe optimal and the equilibrium curves iN,g)-space A =

effects of restricting physical processes involving thermody- g« \y — go(N), is found to be constant, a result reminiscent of
namic quantites to a finite duration This theory of finite-  he constant thermodynamic speed of optimal paths in finite-
time thermc_)dyniagmlcs was originally applied to the stugy of fime thermodynamic analyses where entropy production or
Carnot engines$,® but was subsequently extended to simple 5y 5ijapjlity loss are minimized. However, this distance does

. R er o _ 1S di .
chem0||_cal 3react|on%3 §(‘11IfoS|0n, IIIJhaflsi chang¥, m(;ssagﬁ not approach zero as the duratiorbecomes infinite, unlike
encoding;® economics;’ etc. In all of these cases there has g5 finjte-time thermodynamic expansions.

been a felicitous marriage between thermodynamics and opti-

mizz_ition the(_)ry due_ to th_e fruitful questions tha_t are posed by || Determination of the Optimal Paths

the introduction of finite time. For example, “Given that only o )

a finite time is available to achieve a certain goal, how should ~ The determination of the optimal procedure to produce the

this be accomplished such as to produce as little entropy asMaximal amount of A or B for the reactiarA = mB falls into

possible during the process” or “Given again a finite time, how WO natural parts: (1) mathematical description of the reaction

can a maximal amount of work be produced during the process?"and formulation of the optimization problem; (2) solution of
It is natural to extend this line of thought to include processes the opt|m|zat|on_problem. - .

involving chemical potentials such as chemical reactions, A, Matherr_]atlcal Descrlptlo_n of the Rea_ctlon. F(_)r_ the

distillation, and other separation processes. In this paper wePurpose qf this stqdy we specify the following conditions for

address the case of chemical reactions with controllable rates.the chemical reaction.

The natural question that arises is how to produce a maximal (1) The reaction Chamber is closed; that is, _nelther of the
amount of the desired product (or how to lose as little as two substances A and B is added or removed during the process,

possible) when the total duration of the process is fixed. A whereas energy and volume may flow as determined. Thus,
second point of interest is how to produce a given amount of MaSS conservation holds, and we can always calculate the
material within a given time such that the work consumption amount of, for exampl_ez A present from our knowledge of the
or entropy production is minimal. amount of B and t_he |n|t|al_load. .
. S (2) The reactor is well-stirred, and thus no concentration or
Here we concentrate on the question of maximization of the . - o

desired component. The reactiod = mB is chosen as a temperature grgdlents ?X'St within the reactor. .

. . . o . (3) The reaction rate is assumed to follow an Arrhenius-type
paradigm since it exhibits all the features of interest as far as expression
the finite-time optimization with volume and temperature as ’
controls is concerned. The more general reacfianA; = 8 e [NA) e [Ng\m
> o;A; will reduce to the simpler case if the componentsare e f(Ng,V,8) = V|ae ? A(v) — be” B(V) ] Q)
chosen in the appropriate stoichiometric amounts. In general
the difference between the two reactions will be one of jth forward and backward activation energiEs and Eg,
complexity and not one of principle. More fundamental respectively. The exothermicity of the forward reaction is then
differences occur if, for example, consecutive reactions of the A = gz — Ea. Further,Ng is the amount of BNa = Ny —
typenA = mB = IC are being considered. We refer to a future (n/m)Ng is the amount of A, wheré\, is the total amount of
publicatiort® for these kinds of reactions. material if all the material were present as A; gher 1KkT is

Of course, the question of the maximization of a desired the inverse temperature. The constamtndb are related to
reaction product has been addressed béfofé. Here we study  the collision frequencies. Without restriction of generality we
the general solution in sufficient analytical detail to allow us to can always assume that> n. This rate expression results if
the reaction is assumed to proceed by random collisions of

® Abstract published ilAdvance ACS Abstractdjay 1, 1996. units of A to producem units of B and vice versa. (ifiorm
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equals 1, it is assumed that the corresponding dissociation cargenerates the largest integradpffi. This results in a piecewise
nevertheless occur, e.g. due to the presence of an inert gas o€ontinuous solutiomw*(x,A). It remains to determing, which

constant density or due to the presence of a catalyst.) can be found by solving the time constraint

(4) The parameters that can be controlled in order to achieve
the desired optimization are the volurveand the (inverse) T= Xf;dx (8)
temperatures. *o £, (X,U*(X,4))

(5) We will consider two types of constraints on these o ) )
controls: (I)V € [Vo, V1] and T € [To,Ta] (or S € [B1Bd)); (ii) _ The gppllca}tlon of this method to the problem we consider
pressurep is constant anqﬁ c [ﬁlaﬁO]- In this second case we Ineq 2 IS Stralghtforward. The Contrdl‘s.andﬁ Correspond to
also assume that the ideal gas law hofalss (Na + Ng)/VA. u, while x represent$Ng. The two functiondy andf; are the

In both cases we allow for an instantaneous adjustment of Same, and thus the solution of eq 7 is given by either 0 or
the controls if the optimal path demands this. Clearly this is 9f/ou = 0. Sinced = 0 corresponds to the trivial statement
an approximation, but it is reasonable within the context of this thatNa(t) = Ng(0) + /dN, i.e. without any rate constraint, the
paper, and in most realistic cases a jump in the control valuesOptimal path will be given by
can be replaced by a fast change without major effect on the of
optimal path. 1

We are now ready to formulate the optimization problem, ou
and to make the description as concise as possible, we will
consider the maximization of B; A as desired substance as well
as the opposite situation of minimization emerge by simple
symmetry.

Maximize the amount of product B at the end of the reaction
durationt by adjusting thevolume and temperature along the
path:

0 (9)

Thus, the optimal path will consist of maximizing the reaction
ratef(Ng,V,5) for each value oNg.

Integrating eq 1 using the optimal valugy Ng) andS*(Ng)
results in a monotonically increasing or decreasing function
Ng*(t), which makes eq 9 both a necessary and a sufficient
condition for the determination of the optimal path.we
conclude that the problem of finding the optimal pathVf)3)-
space for the maximal production of substance B can always
be reduced to finding the maximum of a function of two
variablesf(V,3) where the location of the optimum is param-
etrized byNg. This general prescription is in agreement with

WitT_f(tNgvVﬁ) given by eq 1 and V ang§ appropriately earlier optimization results on a more qualitative bais8
restricte

B. Solution of the Optimization Problem. We will use lll. The Optimal Paths for the Reaction nA = mB
the indirect optimization method developed by Rozonoer and
Trsirlin,2® which is applicable to optimization problems of the
form

Vr(‘tr)]y%) Ng(7) = Ng(0) + ‘/(‘)Tf(NB!Vaﬁ) dt )

In the previous section we have shown that the determination
of the optimal path is equivalent to determining the value¥ of
andp for which the reaction ratNg,V,3) is maximal at every

ot point of the path. This result is actually quite general and
nJ(%)d[u(t)’t] - j(')fo(x,u) dt (3 applies to all reactions of the typeoiA; = Y ajA;, the only
difference being thalNg is replaced by the standard reaction
with coordinate. However, to demonstrate the main features that
] occur in many such optimal paths, we have restricted ourselves
x=fi(xu), x(0)=x, X()=x (4) to the caseA = mB where the reaction rate is assumed to be
given by eq 1 and the constraints @randg are as outlined in
subsection II.A.

In principle, eight different optimization situations occur
whether (1) the desired product to be maximized is A or B (since
. Ta%U) m = n was arbitrarily chosen in section 11.A.3); (2) the initial

and whereu(t) is the control, an(t) is the state. I(t) is
monotonic in the interval [@], we can change the integration
over timet into an integration over amount

u(t),7] = f (5) contentNa(0) is small &0) or large &Ng); or (3) the forward
% f,(X,u) . . . . .
1 reactionnA — mB is exothermic A > 0) or endothermicA <
ith 0). In addition, a number of special cases may arisa i n
wi and/orn = 1 and for certain relative values of the activation
v 1 - energies.
f " dx=1= f " (6) Whereas the exact description of the optimal paths in sections

*o fl(X1u) Xf - XO %o

IV and V covers all situations, our written discussion will limit
itself to the case where B is the desired product in order to

Application of the EulerLagrange equations to this dual avoid confusion. The other case results by symmetry.

optimization problem leads to the following necessary condition: ~ For sufficiently small initial amounts of B the optimal reaction
rate is positive over the whole allowed range/andj. Clearly
af, of, of; we want it to remain positive for “as long as possible” (measured
ool =40 (7) in Ng), and for larger the final optimal values oY andg will
au au au B): g p
thus correspond to the equilibrium situatidn= 0) that gives
where 1 is the Lagrange multiplier corresponding to the the largest amount of B for the allowed range\béndj. At
constraint. Rozonoer and Tsirtthhave shown that the mono-  this value ofNg the reaction raté&for the remaining part of the
tonicity of x(t) also makes this condition sufficient. allowed region is negative.
Equation 7 is an algebraic equation towith possibly several On the other hand, for sufficiently large initial amounts of B
solutionsui(x,4). Maximization ofl[u(t)] will now be achieved the reaction rate is negative over the whole allowed rangé of
by choosing for each value of the solutionui(x,A) which andfS. Now we wantf to reach the equilibrium valud & 0)
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TABLE 1: Optimal Paths (Read Vertically) for All Possible Reaction Conditions WhenV and § Are Constrained to the
Intervals V € [Vo,Vi] and B € [P0 (or T € [To,T1])2

product B product A
smallN(0) largeN(0) smallN(0) largeN(0)
A<0
m>n>1 (Vo,B1) (V1.B0) (Vo) (V1,50)
— (W(B1),B1) — (V,81) — (VoS (Vo)) — (Vo,B0)
— (V1,81) = (Vo,80)
m>n=1 (V1,81) (V1.80) (Vo,B1) (Vo,Bo)
— (V1,81) — (VoS (Vo))
— (Vo,B0)
m=n>1 (Vo,1) (V1.80) (Vo,B1) (V1.80)
— (V1,81 — (Vo,8%(V0))
— (Vo,B0)
m=n=1 V,f2) (V,B0) (V\B1) (V,B0)
— (V.81 — (V.8AV))
g (Vrﬁo)
A>0
m>n>1 (Vo,B1) (V1.80) (Vo,B1) (V1,80)
< = (VY(B1),B1) [— (Vo,B0)]
< — (V1,81)
< — (Vo,f(V))
= — any point on *,%)
> — (Vo,p%(V0)) [— (Vu,B0)]
> — (Vo,0)
> = (VY(Bo),Bo)
— (V1,0) — (Vo,81)
m>n=1 (V1,82) (V1,B0) (Vo,81) (V1,80)
— (V1,8%(V1)) — (Vo,81)
= (V1,0)
m=n>1 (Vo,82) (V1,B0) (Vo,81) (V1,0)
— (VoS (Vo)) — (V1)
= (Vo,f0)
m=n=1 (V.51 (Vo) (V.81 (V.Bo)
—(V.BAV)) —(V,1)
— (V,B0)

aBranches in brackets may not be included in the optimal path. For the exothé&mi®f casem > n > 1, < indicates intermediate branches
whenEg/Ex < (m — 1)/(n — 1) and similarly with the relational operator replaced=byand>. The initial and final branches are the same for all

values ofEg/Enx.

“as quickly as possible” (measured M), i.e. with as little generally require the solution of transcendental equations, it is
loss of B as possible, and thus for langghe final optimal values nearly always possible to use analytical estimates to predict
of V and g are those wheré = 0 appears for the first time  whether such a jump will occur somewhere along the optimal
(measured inNg). These are, of course, identical with the path for a given set of parameters, n, Ea, Eg, &, b, B0, 51,
optimal final values one would reach when beginning with a Vp, andV;.
small amount of B. For shorter durationgquilibrium is never (3) Determine the range of parameters which will give the
reached, and the optimal path is chosen to minimize the absolutesame optimal path as a means to classify the solutions.
value off at all times. In sections IV and V we will, after a short description of the
Note, however, that these final values\ofand 8 are only behavior of the reaction rate as a functioriNgf list the different
guaranteed to be optimal when the reaction reaches equilibriumecgses in tabular form. The optimal path is parametrizetipy
for 7 — co. This makes it imperative for the case of finite  and will consist of a sequence of branches, each one being either
available timez not just to simply choose the final optimal  an internal extremum or a control boundary. Switches from
values ofV andf associated with the largest amount of B at one branch to the next may occur when they intersect. Thus,
equilibrium but instead to choose always those valuég arfid the optimal path 8o — B#2(Ng) — 51" is to be interpreted as
p that maximize the reaction rate at any given instant. follows: “Start atB = fo; when a value ofg is reached such
The general procedure for constructing the optimal path is thatf(80) = f(8f2(Ng)), switch to = f2(Ng); when a value of
then as follows. Ng is reached such thd(5’,(Ng)) = f(51), switch to; and
(1) Determine the location of the interior maxima and the remain there until the end of the prescribed duration” (the
zeroes of the reaction rate as functionsNgf as well as the guantities are derived in the appendices).
behavior of the reaction rate f@ V — 0 andco. For the sake of compactness we have in Table 1 combined
(2) Compare the values éfat the boundary of the allowed many cases whose optimal paths consist of only segments of a
regions (boundary extrema) with the values at the interior more general path, valid for a somewhat larger region in
extrema in order to determine the absolute maximum. Of parameter space; usually it is quite obvious from the specific
special interest are the values N§ at which two such local choice of parameters which path applies. For the description
extrema become identical, since this indicates that a switch in of this multitude we employ brackets and braces. Braces
the controls should take place. Although the exact values of enclose two branches separated by a comma and indicate that
theseNg can only be determined numerically because they one of those branches will occur at this step of the path.
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Figure 1. Plot of the reaction rat§Ng,V,3) at fixed Ng for the reaction MO, == 2NO, with constrained ranges & and3. Maximal rate is on
the leftV boundary, the ridge is the/,8%) curve, and equilibrium\(°,3%) is at the intersection with the base plane.

Brackets enclose branches of the optimal path that vanish forbe different. For each of these cases the optimal path may
certain choices of the parameter values. Thus, the §#&d)1} further depend on the allowed ranges/odndj. The formulas

[— {B1.Bac}]" has the following interpretation: “Start gl or necessary for the discussion are listed in Appendix 1, the optimal
1 depending on whethéfBo) or f(3,) is larger; if at some point ~ paths and their switches are presented in Table 1, and the
f(Bo) = f(B1), switch tof31 or S, respectively; iff(8o) = f(81) resulting limiting behaviors of are found in Table 4.

never occurs, then stay on the original branch”. A. A < 0 (Endothermic Reaction). 1. m> n > 1 (Figure
2). The three curves\W,39, (W,3Y), and §%,f), which
IV. Constraint 1: V e [Vo,V4], B € [B1,fd represent the points where the reaction rfatnd its partial

derivatives with respect t& and vanish, respectively, are
specially marked in Figure 2. From eqs A7, A8, and A9 in
Appendix 1 we see that they differ only by their prefactors and
therefore never cross. As a consequence, no interior extremum
of f exists, and the optimal path will always lie on the boundary
of the allowed region in\(,5)-space. This location can be either

In Figure 1 we have sketched a typical reaction f@ti,V,5)
as a function ol andp for a fixed value ofNg. To visualize
the optimal paths associated with constraint 1, we sketch for
some value ofNg the curves in the\{,5)-plane where the
reaction ratef(Ng,V,3) or its partial derivative with respect to
V andp vanishes (Figures 2 and 3). Depending on the values

of the particle numbersn and n and whether the process is
exothermic or endothermi&\(> 0 or A < 0), the graphs will
2 +
1.5
1 +
\
0.5
0 } t t t t } t
0 | = | } : 0.2 04 B 06 0.8 1 1.2 1.4
0.2 04 B 06 0.8 1
Figure 3. Plot of the points of zero reaction rate°(3°), eq A7, ¢-+)
Figure 2. Plot of the points of zero reaction rate®(5°), eq A7, ¢+*) and the lines of critical points for constafit(\V,5Y), eq A8, () and
and the lines of critical points for constaff\VV,5"), eq A8, ) and for constantv (V#,8%), eq A9, () for an exothermic4 > 0) reaction
for constantv/(V# 8), eq A9, () for an endothermicA < 0) reaction at a particular value oNg. If n = 1, the thick curve \V,4") is not
at a particular value olNg. If n = 1, the thick curve ¢V,4Y) is not present. A possible allowed range of volume and temperature values

present. A possible allowed range of volume and temperature valuesis indicated by the dashed rectangle. The eight possible switching points
is indicated by the dashed rectangle. The eight possible switching pointsare marked with circles. Note thatis(n — 1)/Ea(m— 1) = 1, (VY,8Y)
are marked with circles. is identical to ¥#,4%) and represents a line of interior maxima.
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Figure 4. Plot of the reaction rat§Ng,5) for the reaction MO, == 2NG,
on the ridge, equilibrium at the intersection with the base plane.

one of its corners or the intersection &(3Y) or (V#,8%) with

the boundary. Those eight points are marked with circles in
Figure 2. AsNg changes, the three curves will gradually move,
leading to changes in the optimal values/dindg as functions

of Ng and to switches from one optimal segment to another,
i.e. from one of the eight possible extremum points to another.

2. m> n=1 (Figure 2) The only difference from case 1
is the lack of curve\V,3V), sincef is monotonically increasing
with V for all values off5 (eq A3).

3. m=n> 1. In this caseV",3Y) has become identical to
(V9,89 (egs A7, A8'). The limiting behavior off(V) depends
on B. The curve Y2 f) is a line of relative minima in the
pB-direction.

4. m=n = 1 The reaction rate is volume independent.
The optimal path is the same as in case 3 above with all
reference to volume removed.

B. A > 0 (Exothermic Reaction). 1. m> n > 1 (Figure
3). From egs A7, A8, and A9 in Appendix 1 we see that the
three curves of\°,39, (W,8Y), and {,5%) again differ only
by their prefactors. Except for the special c&séEs = (M —
1)/(n — 1), when ¥V,8Y) and (//,3%) are identical, these curves
will never cross. As a consequence, no interior extremuin of

with constant pressune and constrained range gf Maximal rate is

paths are identical to those far < 0 (with the roles oNa and
Ng exchanged).

4. m= n = 1. The reaction rate is volume independent.
The optimal path is the same as in case 3 above with all
reference to volume removed.

V. Constraint 2: p = (Na + Ng)/V = Constant,
B < (BB

The major difference from the previous constraint is the fact
that the number of independent variables is reduced to one. As
a consequence, however, the functional fornf(Ng,s) is more
complex, as can be seen in Figure 4, which depicts the reaction
rate as a function dilz and. Depending on the values 8
and 8o, we find up to three interior extrema (solutions of eq
A15) and up to two zeroes (solutions of eq A14) of the reaction
ratef as a function of3 for a given value ofNg, making the
analysis rather involved and tedious. Thus, we will not discuss
all the possible variations the optimal path can take for each
special case. We hope that the discussion below will allow the
interested reader to deal with special cases of interest personally.
The formulas necessary for the discussion are listed in Appendix

exists, and the optimal path will again always lie on the

boundary of the allowed region ivV{3)-space, either at one of
its corners or at the intersection af{3Y) or (V,5f) with the
boundary. In the special cag®/Exn = (m — 1)/(n — 1) we
find thatf has a line of relative maxima along the cur¥é,3?)

= (WY

2. m> n=1 (Figure 3) We note that again curv&/{,3")
is missing.

3. m=n> 1. Asincase A.3 aboveW,sY) has become
identical to §°,4%. The difference from the endothermic case
is that {/2,6%) now is a line of relative maxima in thgdirection.
Again the limiting behavior of(V) depends o8. The optimal

A. A < 0 (Endothermic Reaction). 1. m> n> 1 (Figure
5). From eq Al4 in Appendix 2 we see that, in additionsfo
= 0 andp® = «, exactly one solutio®(Ng) exists for all values
of Ng. The location of3°(Ng) varies continuously witiNg; its
limiting locations wherNg — 0, and wherNa — 0, as for all
the other cases, are given in Table 4. Similarly eq A15 gives
exactly two solutions, in addition t8% = 0 (if n > 2) and?
= o f3f; (relative maximum,f(5f1) > 0 andf?, (relative
minimum, f(3%,) < 0) for all values ofNg. We find furthermore
thatph; < 8° < fBf, and that they vary continuously as functions
of Ng. See again Table 4 for the limiting values. Combined
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f ! '
. 2 4 B 6 8 10 0.2 1
f 1
0.4 T
0.1+
0.6+
Figure 5. Plot of the reaction rat§) for an endothermicA < 0) Figure 6. Plot of the reaction rat§) for an endothermicA < 0)
reaction withm > n > 1 at constant pressupe Varying Ns deforms reaction withm=n > 1 at constant pressupdor three different values
the curve but leaves the number of roots and exterma invariant. Ns. Note how one of the roots and extrema disappedNzdacreases.
with the behavior of the reaction rate for large and small values
of 3, this determines the optimal paths as summarized in Table .|
2.
2. m> n= 1. In addition to3° = o, one solution3°(Nz) 021
of eq Al4 exists for all values dflg, and its location varies
continuously withNg. However, under these conditions eq A15  ¢.14f
gives just one solutioB?; (relative minimum,f(3%;) < 0), | .
besideg3? = o, for all values ofNg. As opposed to case A.1 0 | . ; :
above f(3=0) is positive here. We find also tha? < 5%, and oS 4 B 6
that it varies continuously as function bls. o014 NS
3. m=n> 1 (Figure 6) Here eq Al4 can be solved exactly
to yield one solutionf® = (1/A) In(h(Ng)). Equation A15 has
two solutions,s#; (relative maximum,f(3%;) > 0) and 8%, Figure 7. Plot of the reaction rat&3) for an exothermic 4 > 0)
(relative minimum,f(3%,) < 0). We find again thapf; < p° reaction withm > n > 1 andEg(n — 1)/Ea(m — 1) = 1 at constant

< P3B : ; pressure for three different valuebls. Note how the single maximum
f"> and that they vary continuously as functions N, splits up asNg increases, antl (eq A13) goes through the sequence

Clearly the solution?; is only of relevance ih(Ng) < 1 (Ng h(Ne) < hex (—), hex < h(Ne) < b (=), h(Ng) > he(- - -)
small), sincef?; < 0 if (h(Ng) is defined in eq A13). ' ' '

4. m=n =1 Since the problem is volume independent, B. A > 0 (Exothermic Reaction). 1. m> n > 1 (Figure
the requirement of constant pressure is irrelevant, and the7). Besides3° = 0 andf® = », eq A14 now has zero, one, or
solution is identical to the one presented in section IV.A.4.  two solutions3%(Ng) depending on the value tfNg) (defined

TABLE 2: Optimal Branches (Read Vertically) for All Possible Reaction Conditions When Pressurep Is Constant and § Is
Constrained to the Interval B € [#1,0q] (or T € [To,T4])?

product B product A
smallN(0) largeN(0) smallN(0) largeN(0)
low mid high low mid high low mid high low mid high
A<0
m>n>1 Bo Bh ot b1 T Bo Po B f1 b1 ¥ Bo
—pk —p1 —p1 —Po —pF; —PBo
—p1 —PBo
m>n=1 B A A A T Bo Bo BP b1 Po Bo Bo
—’ﬁl —’ﬁo —’ﬁﬁz
ﬁﬂo
m=n>1 Bo PP B ot T Bo Po B 1 B ¥ Bo
—pk —p1 —p1 —Bo —pF —Bo
—B1 —PBo
m=n=1 i P B Bo Bo Bo P1 b1 p1 Bo Bo Bo
A>0
m>n>1 see Table 3
m>n=1 see Table 3
m=n>1 Bo B2 P P T Po Bo Bk 1 B s Bo
—Bo —pF; —Bo —ph —p1 —pB1
—ho —p1

m=n=1 ot Joit ot Po Bo Po ot Joit ot Po Bo Po
a Column headings low/mid/high refer to the barrier heights in the appropriate direction of reacti@, xgn — 1)/fo; (n — 1)[fo < Ea < (n
— 1)IB1; Ea > (n — 1)/p4, respectively, oEg < (m — 1)/o; (M — 1)Ifo < Eg < (m — 1)If1; Es > (m — 1)/B1. Branches marked 1 are identical
to those for low barrier height if{5) < f(81) and to those for high barrier heightfiffo) > f(31). F signals the opposite relationship.
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TABLE 3: Optimal Branches for Exothermic (A > 0) Reactions with Stoichiometrym > n > 1 andm > n = 1 When
Pressurep Is Constant and # Is Constrained to the Interval € [f1,8q] (or T € [To,T1])2

product B
smallN(0) largeN(0) smallN(0) largeN(0)
m>n>1
Ea/En < (M— 1)/((n — 1)
Bo < p° [[Bo—18P =161 [Bo—1B1 [[B1=16—]1Bo [B1—=1Bo
Bi < B B° < Bo Bl — [B1—] {Bof1} (81187 [[Bo—]p1—]
(87180 [—{B1Bd}] Bo— B
PA<P1L<p°<po Pal—{Bof3}] {Bo.B1} (815 Bo— P
[—{B1.B0}]
B°<p1 B1— [B%~1Po Bo B Po— [BPr1p1
Es/En = (M— 1)/(n — 1)
Po < p° Bo— pir— B B Bo B~ fo
Pr<p°<po Be—{p1ps} — {Bopi} BU=p"] {Bopr}
{Bo,B1} [—{B1.B0}] [—{BuBo}]
B°<p1 P1— BPs— fo Po Jort Po— P
Eg/Ean > (m— 1)/(n — 1)
Br<p° [[B—18%5—1Bo [B1—1Bo [[Bo—18% 161 [Bo—1h1
Bo < B B <pu BP3— [Bo—] {Bof1} [Bo—16"2 [([A1—1Bo—]
[AF1—1P1 [—{B1.B0}] 1— B
BB <Pfo<p<p Bo—{prpP1} {Bo,B1} [Bo—16"; 1= pP2
[—{B1.Bo}]
B < o Bo— [BA—=1P1 B Bo Bi— [BP=1Po
m>n=1
Bo<p° B [Bo—1B1 [[B1=16—]1Bo Bo
B1<p°<po [[B—=[B%—] {Bof1} (81187 Bo— pP2
011 [—{B1.B0}]
B <P B1— [B%~1Po Bo B Bo— [fF—1P1

aBranches in brackets may not be included in the optimal path. Branches in braces are alternatives.

in eq Al13) relative to the critical value

he = (mef )mf" (10)

Correspondingly, we defing® = (m — n)/A = 8% = 8% at the
critical point. The locations of these solutions vary continuously
with Ng. Similarly, in addition to = 0 (if n > 2) andpf =

o, eq Al5 gives one, two, or three solutigfs depending on
the value ofh(Ng) relative to a critical valué®:. It is found
thathex < h¢ and that the8%; vary continuously as functions of
Ng. However, their limiting locations depend on the value of
Eg/Ea relative to (n — 1)/(n — 1). (See Table 4.) We observe
that 8#; and %3 are always relative maxima witf{3%;) and
f(8%3) positive. In general, the exact location gFP(h®) has to

be found numerically from eq A15 and jfisderivative. IfEg/

Ea = (m — 1)/(n — 1), we can calculatb® and* explicitly:

h° (11)

heX:( eA )m‘”n—lzn—l
m-—n m—1 m-—-1

B =p° (12)

Then 8%, is a relative maximum or minimum depending on
whetherh < hex or h > hex for all other values oEg/Ep, 3%,

is a relative minimum throughout. Furthermdi@/,) > 0 when

h < he (f(8%,) < 0 whenh > he).

Together with the limiting behavior of the reaction rate for
large and small values ¢f the critical points and zeroes bf
determine the optimal paths. However, the situation is now
rather involved (cf. Table 3) since there are many possibilities
for 5 and o to be placed with relation to the location of the

the analysis of the cases/Ean < (m — 1)/(n — 1) since the
order of the four special temperaturgs = (n — 1)/Ea, A8 =
(m— 1)/Eg, €= (m — n)/A, and®is just reversed” < 3B

< B¢ < B for Eg/Ea < (m — 1)/(n — 1), while 8A > gB > ¢
> fpexfor Eg/Ea > (m— 1)/(n — 1). Thus, in the optimal paths,
Bo and B; change roles, as déf; and 5.

2. m> n=1. The zero, one, or two solutiof,(Ns) of eq
Al4 behave in the same way as in casenl>(n > 1) with n
put equal to 1 in all the formulas. However, we note f(ja#=0)
> 0 andfg(f=0) < 0, leading to the removal of the relative
maximumpF#;. This agrees with the fact that only zero, one,
or two solutions off3(8%) = 0 (eq Al5) exist depending on
whetherh is smaller than, equal to, or larger th#. We find
as before thah® < hc and that the3? vary continuously as
functions of Ng. As far as the dependence @&j/Ea is
concerned, the only case which is relevanEigEan < (m —
1)/(n — 1) since h — 1)/(n — 1) — o for n — 1.

As before, the exact location offh®*) has to be found
numerically from solving eqs A15 and if$-derivative. We
observe that3?; is always a relative maximum witl(5#3)
positive, andg3?; is always a relative minimum witf(5%2) > 0
whenh < he (f(8%;) < 0 whenh > h%). Again the optimal
paths are rather involved since there are many possibilities for
fB1andpo to be placed with relation to the location of the zeroes
and critical points of the reaction rate.

3. m=n> 1. The optimal paths for this case are identical
to the ones discussed far < 0 with the roles ofNa and Ng
exchanged.

4. m=n= 1. Since the problem is volume independent,

zeroes and critical points of the reaction rate. We note that the the requirement of constant pressure is irrelevant and the solution

optimal paths of cas&g/Ep > (m — 1)/(n — 1) follow from

is identical to the one presented in section I1V.B.4.
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TABLE 4: Limiting Behavior of the Reaction Rate f whenV — 0
the Roots and Extrema of the Reaction Rate (right)

Scha and Andresen

and o and When 8 — o (T — 0) (left); Limiting Behavior of

f(NB!Vrﬁ) ﬁoi ﬁﬁi
V—0 V— o p— o Ng — 0 h— hex Na—0 Ng— 0 h— hex Na—0
A<0
m>n>1 —oo ot 0 0 0 (n—1)/Ea 0
00 (m—1)/Es
m>n=1 —oo q 0 00 0 . . .
00 (m—1)/Es
m=n>1 oot ot on 00 0* —oo (m—1)/Ea 0* —o0
—oof (O 00 (m—1)/Es
m=n=1 0
A>0
m>n>1 —co ot o+ o 0
[et*x 00 (n— 1)/Ea 00 0
< /e (m—1)/Eg
< i 0
= ﬁC7 o
— ﬂc ﬁc ﬁc
= ﬁc+ 00
> /e 0
> pet (m—1)/Es
> (n— 1)/Ea 00
m>n=1 —o0 q ot C—kk 0 . . .
i 0 B (m— 1)/Eg
ﬁ€X+ 00
m=n>1 oot ot 0" [ 0* —o0 0 (m— 1)/Ep
—oot ot (m—1)/Ea 0* —oo
m=n=1 o*

atis forB > BY, 1 is for § < BY. For brevity we defineg = (aNae#5)".

Whenp — 0 (T — =), f approaches a finite value, positive or

negative, which depends not only on the parameters but also on the instantaneous product concentration. Roots and extrema nadokeat with
exist. The entries marked with an * are for the lirhit> 1, while ** indicatesh — h¢. For the exothermicA > 0) casem > n > 1, < indicates
intermediate branches whé&a/Ex < (m — 1)/(n — 1) and similarly with the relational operator replaced=byand >.

VI. Realistic Examples

To illustrate the qualitative description of the optimal paths
given in the previous two subsections we now apply the analysis
to three chemical reactions, 2NEZ N, + 3H,, N,Os = 2NO,,
and 2NQ == N, + 20.. In all cases we will model the reactions
using the simple reaction equation eq 1 together with the
simplifying assumptions mentioned (ideal gas law, constant
activation energies, etc.).

A. 2NH3 = N2 + 3H,. The desired quantity is ammonia,
and it is assumed that we begin with initially 2 mol combined
of nitrogen and hydrogen in the appropriate stoichiometric ratio
(2:3), i.e. 0.5 mol N plus 1.5 mol H, corresponding to 1 mol
NH3. From the literatur® we take the following constants (at
pressures of about 250 atm and temperatures of about 820 K)
Ea = 167 kJ/mol,Eg = 58.6 kJ/mol,b/a = 5.43 x 107> mé/
mol2. (We note that 1 kJ/mol corresponds to a temperature of
about 120 K.) Thus, we have the following quantities of
interest: m= 4, n = 2, Ex = 167 kJ/mol,Eg = 58.6 kJ/mol,

A = —108 kJ/mol, 6 — 1)/Ep = 0.006 mol/kJ, h — 1)/Eg =
0.0512 mol/kdp/a = 5.43 x 10715 m8/mol, No = 1 mol.

We consider two constraints.

(i) Vo = 0.005 n3, V; = 0.02 n?, Bo = 0.3 mol/kJ To = 400
K), A1 = 0.1 mol/kJ T; = 1200 K). This corresponds to the
case of desired product A in small initial amounts in section
IV.A.1 and Table 1 such that the optimal reaction path is the
following: The volume should be/ = V, = 0.005 n#
throughout. The temperature should initially pe= 5, = 0.1
mol/kJ. WhenNg has decreased to 1.985 mol, corresponding
to a product oNa = 0.0075 mol, a continuous switch #§Ng)
= (—1/A) In[(Vo™g(Ng)) (Ea/Eg)] = 0.2029 — 0.0185
IN[Ng%(2 — Ng)] mol/kJ is possible. Finally, wheilNg has

0.4 e ' :

p

0.05

0 | S A Y
0

Figure 8. Plot of the optimal temperature pafti(Ng) for ammonia

‘atp = 256 atm, 0.1< B < 0.3 mol/kd (). As a comparison3*(Ng)

for realistic data taken from ref 21 is also shown (- - -) as well as the
equilibrium pathS%Ng) (--*).

reached 0.1 mol, the temperature switches smoothB/+of,
= 0.3 mol/kJ and stays at that value.

(i) p = 256 atm= 2.59 x 10" Pa,o = 0.3 mol/kJ To =
400 K), 81 = 0.1 mol/kJd 1 = 1200 K). This corresponds to
the case of desired product A in small initial amounts with a
high barrier height in section V.A.1 and Table 2 siffge> (m
— 1)/Eg. The optimal path then starts with an initial temperature
B = 1= 0.1 mol/lkJ. WherNg has decreased to 1.93 mol,
corresponding to a product by = 0.035 mol, the temperature
switches smoothly t@8 = %,(Ng), which may be found by
solving eq A15. AtNg = 0.017 mol it switches off the internal
extremum tof = o = 0.3 mol/kJ and stays at that value.

In Figure 8 we plot the optimal pajp(Ng) for p = 256 atm
andf € [0.1,0.3] mol/kJ. On the same graph we show the
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optimal path that was found numerically in ref 21 using the = 1.093s%(1 — (2/3)Ng)2 m3. In the following 0.288< Ng
best available data for the activation coefficients and equation < 0.343 mol, both3* and V* remain fixed at* = g, = 0.1
of state. The similarity between the two curves is impressive mol/kJ andv* = V; = 0.04 n?. At the end of that range a
considering the highly simplified reaction equation and equation smooth switch tg8#(Vy) occurs with3* found from eq A9,3*
of state used in our calculation. The agreement could be = 0.1397+ 0.0148 InNg%/(1 — (2/3)Ng)?] mol/kJ andV* =
improved further if the numerical values for the effective V; = 0.04 n?. Finally, atNg > 1.4996 mol the optimal path
activation energies of the modern catalysts were available, sinceswitches to the constaft = o = 0.4 mol/kJ andv* = V; =
a lowering of the activation energi&€ andEg would result in 0.04 n?.
an upward shift of the optimal cury&(Ng) in Figure 8. The (i) p=1.013x 1 Pa,Bo = 0.25 mol/kJ Tp = 480 K), 51
main effect of the more accurate kinetic information will be = 0.1 mol/kJ {1 = 1200 K). This corresponds to the case of
the time allocation along the optimal path rather than the path desired product B in small initial amounts in section V.B.1 and
in (V,p)-space itself. Table 2 sincef; > e and Eg/Ea) < (m— 1)/(n — 1). The

B. N2O,= 2NO,. The desired quantity is the dimen®, optimal path then starts at temperatyifte= 5, = 0.1 mol/kJ.
and it is assumed that we begin with initially 2 mol of nitrogen WhenNg has increased to 0.4569 mol, the third solution of eq
dioxide. From the literatuf® we take the following constants ~ A15, 3%3(Ns) has become equal fa and a switch to that branch
(at pressures of about 1 atm and temperatures of about 300 K):0ccurs. WherNg = 1.4487 mol, the optimal path switches off
Ea = 46.25 kJ/mol,Eg = 7.16 kJ/mol,b/a = 1.35 x 10710 that branch again tg* = o = 0.25 mol/kJ and stays at that
m3/mol. Thus, we have the following quantities of interest: value.
=2,n=1,Exr =46.25 kJ/molEg = 7.16 kJ/molA = —39.1 ) .
kd/mol, (n — 1)/Eg = 0.14 mol/kJ,b/a = 1.35 x 10710 m¥ VII. Discussion

mol, No = 1 mol. A. Generality of the Results. In section Il we have
We consider two constraints. presented a qualitative description of the optimal reaction paths
(i) Vo = 0.02 n?, V1 = 0.04 n?¥, Bo = 0.4 mol/kJ o = 300 for all reactions of typenA == mB, illustrated in section VI

K), f1 = 0.35 mol/kJ T; = 340 K). This corresponds to the  with three numerical examples where the transition points along

case of desired product A in small initial amounts in section the optimal path were calculated from the parameters of the

IV.A.2 and Table 1 such that the optimal reaction path is the reaction. As we pointed out earlier, the result of the optimiza-

following: The volume should b¥ =V, = 0.02 n¥ throughout. tion procedure in section Il is more general and applies to all
The temperature should initially = $; = 0.35 mol/kJ. When reactions of the typ& aiA; = > oyAj. We observe further that
Ng has decreased to 1.99 mol, it switches smooth|§(ids) = our derivation never referred to the special structure of eq 1,

(=2/A) In[(Vo™"/g(Ns)) (Ea/Es)] = 0.5112— 0.0256 InNg%/ and thus, in principle, any empirical reaction rate can be used
(2 — Ng)] mol/kJ. WhenNg has fallen to 1.95 mol, the as long as it is only a function dflg, V, andT. This would
temperature switches further fo= 8o = 0.4 mol/kJ and stays  permit the inclusion of realistic equations of state plus the

at that value. temperature and pressure dependence of the activation coef-
(i) p=1 atm= 1.013x 10 Pa,3, = 0.4 mol/kJ o = 300 ficients in our analysis.

K), B1 = 0.35 mol/k] T1 = 340 K). This corresponds to the However, the method we used in section Il does not

case of desired product A in small initial amounts with a high generalize in a straightforward manner to several variables

barrier height in section V.A.2 and Table 2 singge> (m — (reaction coordinates). Therefore, reactions of the type=

1)/Eg. The optimal path then starts at temperatfire: 81 = mB == IC with B as the desired product will have to be treated

0.35 mol/kJ. Whemg has dropped to 1.90 mol, it switches to  differently. The optimal choice of controls is then not neces-
B = P+(Ng), again found by solving eq A15. Wheiz = 1.483 sarily the one that maximizes the reaction rate at any given
mol, the temperature switchesfic= 8o = 0.4 mol/kJ and stays moment!s

at that value. B. Thermodynamic Distance. The classical way to ap-

C. 2NO, =N, + 20,. The desired quantity is the molecules Proach chemical reactions is from the point of view of
N and @, and it is assumed that we begin with initially 1 mol ~ €quilibrium. As we have seen in this papper, for the case of
of nitrogen dioxide. From the literatii%we take the following ~ finite duration of the reactions the crucial quantity has turned
constants (at pressures of about 1 atm and temperatures of abolUt t0 be the reaction rate instead, where the case of equilibrium
300 K): A = 67.7 kd/mol,Eg = 945 kJ/mol,b/a = 477 n#/ (f=0) is never attained in finitie time, although we have spoken
mol. The value fofEg corresponds to the heat of formation of ©f reaching equilibrium as fast or slowly as possible measured
N, from two single nitrogen atoms. Thus, we have the following N Ne coordinates. Such a use of thermodynamic quantities as
quantities of interestm= 3, n = 2, Ex = 877.3 kJ/molEg = a measure of distance from some (infinite-time) state of the
945 kJ/mol A = 67.7 kd/mol, tn — 1)/Eg = 0.0021 mol/kJ, 1f system and/_or as a proper time along t_he path of the process is
— 1)/Ex = 0.0011 mol/kJg¢ = (m — n)/A = 0.0147 mol/kJ, well-known in finite-time thermodynamic®. Here one speaks
he = 184.03 kJ/mol,3 = 0.0159 mol/kJ, B = 183.46 kJ/ of the thermodynamic distance which measures the distance in
mol, bla = 477 m¥/mol, No = 1 mol. the space of thermodynamic coordinates between the system
in its current state and some ghost equilibrium state which it
strives toward (usually this relaxation requires an infinite time).
In a quantitative description a thermodynamic metc is
introduced®?23 consisting of the second derivatives of one of
the extensive variables with respect to all the others, e.g. the
entropy metric

We consider two constraints.

(i) Vo = 0.004 n3, V; = 0.04 n?, Bo = 0.4 mol/kJ To = 300
K), A1 = 0.1 mol/kJ T; = 1200 K). This corresponds to the
case of desired product B in small initial amounts and \kigh
Ea < (m— 1)/(n — 1) in section IV.B.1 and Table 1 such that
the optimal reaction path is the following: For the combined
content of N plus @, Ng increasing to 0.144 mol, found by 9S
solving eq A8, the optimal conditions a& = 1 = 0.1 mol/ Mg=— X, X
kJ andv* and Vo = 0.004 n¥. As the reaction proceeds to the J
range 0.144< N < 0.288 mol, again calculated from eq A8, where theX may be energy, volumeV, particle numbeN,
B* remains at8; = 0.1 mol/kJ, whilev* evolves alongvV¥(Ng) etc.

(13)
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In our example a reasonable choice of such a ghost equilib-from the equilibrium curve if we minimize, for example, the

rium state corresponds to the values\b&nd T (or justT, if entropy production during a chemical reaction that results in a
constraint 2 applies) for which the curreév is the equilibrium well-prescribed amount of reaction products. This is analogous
value. We have plotted the curve of equilibrium valp&g\s) to the standard posing of the problem in finite-time thermody-
for the ammonia reaction (reaction A in section VI) under the namics.

constraint of constant pressupe= 256 atm in Figure 8 and Nevertheless, the question remains whether the approximate
find that over almost the entire range of values Ny the constancy ofAj is a general consequence of the optimization.
numerical distance in thg-direction between the optimal and Clearly, if and when it can be shown that optimality implies a
the equilibrium path is nearly constant and equals 0-6T2001 constantAg, this optimality criterion could then be used to

mol/kJ. Such a constant value of the distance to the equilibrium determine the optimal path for those systems of chemical
state has also been observed in ref 21, although those data coveractions that do not yield easily to optimization methods like

only a much shorter range df; values (also plotted in Figure  the one used in section 2. This will be of special importance

8). We have also performed the same analysis for reactions Bsince for general chemical systems it is considerably easier to
and C in section VI (both forward and backward), and we find determine the curve of equilibrium values than the actual optimal
again that the distance betweg@i(Ng) and S°(Ng) is ap- path.

proximately constant (wherevgf(Ng) exists) and equals 0.053
+ 0.002 mol/kJ and 0.0011% 0.00002 mol/kJ (forward)/

0.0021+ 0.0001 mol/kJ (backward), respectively.

An immediate interpretation of this constaig would be to
identify it with a lag distance in theNg,3)-space in analogy to
that defined in ref 22 and found to be constant for an optimal
process based on thermodynamics length. However, this
interpretation encounters serious difficulties. On a formal level,
whereas the internal enerdy and entropyS form “good Appendix 1: Extremal Points for Constraint 1
metrics” (i.e. with the same sign everywhere) due to the
traditional principles of an equilibrium system having minimum The general rate equation taken from eq 1 is
energy/maximum entropy, no such extremum principle exists
for particle numbeN. The straightforward connection between N,

AN'= N(8) — N%B) andAS would be made via?N/as2, but (NG V) = aeﬁEA_A(l _ eﬂAL) (A1)
32N/32 changes sign at least once over the full rangg, §,], vt \VAl

so0 a metric based on this quantity is not useful. Consequently,

the usual optimality criterici? of constant thermodynamic speed  with the additional definition
cannot be applied, and the amazing constancy/fust have

a different interpretation. 5

On a more practical level one should notice two important 9(Ng) = F
aspects which distinguish our finite-time optimization from A
traditional problems in finite-time thermodynamics to which the
concept of thermodynamic length has been applied.

(i) The system does not move between two predefined
thermodynamic stateBl(0) andN(z), while some other quantity, n
e.g. entropy or availability, is produced/lost in an optimal fashion ¢ _ of _ _ae—ﬁEAN_A[(n —1)— (m— 1)e—ﬂA _9 ] (A3)

V! vt
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m

(A2)

Remember that mass conservation implies Mat= No — (n/
m)Ng. We also require the partial derivatives

due to the finite time available. Instead the task calls for the ¥ 9V

maximization ofN(z), where the only constraints are the finite

durationt and the reaction rat€N,3). In other words, our final o N,"

state is also part of the optimization, not just the intervening  f,, =~ = ae‘ﬁEA—H[n(n —1)— m(m— 1)e‘ﬁAL_]

path. Y V! v
(i) No matter how much time available, the optimal path (A4)

will never approach the equilibrium curve. That i§3 is not

a function ofr, andAS # 0 ast — o precisely because the NP

final stateN(7) is not fixed but part of the optimization. fy= KL oA A [EA — EBe—ﬁAL] (A5)
As a consequence, we suggest that the proper reference curve B vt vy

with respect to which a thermodynamic distance is to be defined

and measured is the optimal path, i.e. the curve of maximum 9% e, Na 5 2 pa 0

reaction rate. Similarly, the quantity that should be minimized fop=—>=ae A—l[EA — Ege —n] (A6)

due to deviations from the optimal path (e.g if only a finite p v VT

number of temperature adjustments are allowed) is the amount

of “underproduced” material compared to the optimal path, or,

correspondingly, the extra time necessary to produce the sam

amount of product as along the optimal path. The treatment [{ ﬁOA

n

n

Using egs Al, A3, and A5, one can determine the critical points
eof f and the points of zero reaction rate:

then will be analogous to the study of quasistatic processes with f(V°,8%) = 0= V°(8%) = ex

a finite number of step¥. Note that along the optimal path

01332 is always of only one sign (away from the boundary). f (VV ﬁv) — 0o
Similarly, we expect that the optimal path will proceed with V" - v

constant thermodynamic speed, i.e. will keep a constant VV(ﬁV) _ (m - 1) ex;{— B'A )g(N )1/(m—n) (A8)

thermodynamic distaneemeasured in the entropy metriaway n—1 m-—n, B

e )g(NB)“‘m”> (A7)
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fﬁ(vﬁﬁﬁ) —0e The limiting values off are
E,\1/(m—n) 'BA
Vi) = (_B) exp(_ﬁ—)g('\‘ ) (A9) 0" for A>0
E m—n/7* B f(8 — ) = Al6
oA =) o for A<O (A16)
Note the special cases
0 for n>1
In(9(Ng)) f(=0)={ aN for m>n=1 (Al7)
— . O A — B , A
m=n> 1 FV)=—1— (AT) aN, —bN; for m=n=1
In(9(Ng)) Similarl
Van — B , imilarly,
BV =—1 (A8)
0 for A>0
In(g(NR)) In(Ex/EL) fo(f—c0) = Al8
V) = AB + ZA (A9") =)= for A <0 (A18)
_ . ’O for n>2
m>n=1: f(V,0) > 0 < fincreases monotonically N2
. A N
with Vfor all 8 (A3 N for m>n=2
A B
m=n=1: f(V,6) = (B). i.e. the problem is (aN,? — bNg?) for men2
volume independent (AL f4(8=0) = N, + Ng
Fromfgs we can further conclude tha¥{,5’) are local minima —aN,E, for m>2n=1
in the S-direction if A < 0 and local maxima in thg-direction Ng* A _ _
if A > 0. Fromfyy follows that /V,3Y) are always local maxima _bmp —aN,E" for m=2,n=1
in the V-direction ifm > n > 1. If m=n > 1, thengY(V) _ o
corresponds to a line of saddle points, and bNEg — aN,E, for m=n=1
(A19)
f,>0 for g<p’
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