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Abstract

While endoreversible heat-to-power conversion systems operating between two heat
reservoirs have been intensely studied, systems with several reservoirs have attracted
little attention. Here we analyse the maximum power processes of such systems with
stationary temperature reservoirs. We find that independent of the number of res-
ervoirs the working fluid uses only two isotherms and two infinitely fast isentropes/
adiabats. One surprising result is that there may be reservoirs that are never used.
This feature is explained for a simple system with three heat reservoirs.

1. Introduction

Finite-time thermodynamics provides tools for deriving fundamental bounds and
optimal parameters for the performance of thermo-mechanical systems operating at
non-zero flows or at finite process durations. Within this theory thermo-mechanical
systems are often modelled as endoreversible systems [1–3] consisting of equilibrium
subsystems which are, in general, not in equilibrium with one another but are inter-
acting via irreversible heat transfer processes. The field of finite-time thermody-
namics has experienced intense research activity during the last twenty years, at least
initially with an emphasis on thermo-mechanical systems operating between two heat
reservoirs (see [3, 4] for reviews). Several authors have also studied staged and com-
bined systems (see [5–14] for example), yet endoreversible systems with more than
two fixed heat reservoirs have been neglected in the literature so far despite the fact
that such arrangements are common for many real-world applications such as indus-
trial heat recovery systems and solar energy installations.

The present paper tries to fill this gap and investigates endoreversible heat engines
with an arbitrary number of heat reservoirs using the average power output as a



criterion of thermodynamic merit. Methods of averaged nonlinear programming [15,
16], which are already well established for the optimisation of thermo-mechanical
systems with two heat reservoirs [17–19], are applied to determine the maximum pos-
sible average power output and optimal contact functions between the heat reservoirs
and a power converting subsystem. The analysis covers both cyclic and one-shot pro-
cesses. The temperatures of the heat reservoirs are assumed constant.

2. System description

In this section we introduce the system and we analyze and formalize the problem of
maximum power operation. The system at issue is depicted in Figure 1 and consists
of a power converting subsystem with a working fluid at one unique temperature
TðtÞ at each moment of time and N heat reservoirs at temperatures T0i with
i a ½1;N �. The heat transfer law for each reservoir has the form

~qqiðT0i;T ; yiÞ ¼ yiqiðT0i;TÞ: ð1Þ

The contact functions yi describe the extent of the contact between reservoir and
engine. They are equal to one when the working fluid is fully connected with the i-
th reservoir and are equal to zero when there is no contact. Thus 0a yi a 1.

We further assume that

� the working fluid in the power converting subsystem is in internal equilibrium and
is thus characterised by one unique value of its temperature TðtÞ at each moment
of time;

� the processes in the reservoirs and in the power converting subsystem are reversible
(i.e., the endoreversibility hypothesis [6]);

� all irreversibilities are associated with the interactions between the working fluid
and the heat reservoirs, that is, other possible irreversibilities in heat engines for
instance due to friction are not included;

� the transfer functions qiðT0i;TÞ satisfy common requirements for monotonicity
in T0i and T , that is, heat flows from high to low temperatures: qiðT0i;TÞ > 0 if
T0i > T , qiðT0i;TÞ < 0 if T0i < T , and qiðT0i;TÞ ¼ 0 if T0i ¼ T ;
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Figure 1 Model of an endoreversible heat engine connected to several heat reservoirs.
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� durations of isentropic/adiabatic processes vanish as we neglect friction and
inertia.

In the following we investigate a system where the temperatures T0i of all heat reser-
voirs are constant in time and the working fluid is subject to a given averaged rate of
change in internal energy u and entropy s during a process of fixed duration t.

3. Power optimized processes

The aim of this section is to characterize the maximum averaged power operation
of the above introduced system. We take the fluid temperature TðtÞ and the contact
functions yiðT0i;TÞ as the N þ 1 controls to optimize the average power output of
the system. To formalise the problem we introduce the energy and entropy balances
for the working fluid.

Because of the first law the average power output P and the averaged sum of the heat
flows

q ¼ 1

t

ð t

0

XN
i¼1

yiqiðT0i;TÞ dt ð2Þ

di¤er only by the averaged rate of change in internal energy

P ¼ q� u: ð3Þ

Thus the maximization of the average power output is equivalent to the maximiza-
tion of the averaged sum of the heat flows.

Maximum power output processes are thus determined by

q ¼ 1

t

ð t

0

XN
i¼1

yiqiðT0i;TÞ dt ! max
T ;y

; ð4Þ

subject to the restriction given by the entropy balance

1

t

ð t

0

1

T

XN
i¼1

yiqiðT0i;TÞ dt ¼ s: ð5Þ

The values of s and u are zero for cyclic processes and the process time t is the cycle
time.

The controls of the process, which are the temperature TðtÞ of the working fluid and
the elements of the vector yðtÞ ¼ ðy1; y2; . . . ; yNÞ of the contact functions, satisfy the
following properties:
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yiðtÞ a ½0; 1� and TðtÞ > 0: ð6Þ

Solving Eqs. (4–6) would usually require the use of optimal control theory. How-
ever, the special structure of Eqs. (4–6) define a problem of averaged nonlinear pro-
gramming [15, 16, 20], as the objective function (the power) as well as the constraint
(the entropy change) are quantities averaged over the process time. A special theory
can be used to solve such problems [20], which we recapitulate below to the extent
necessary.

3.1. Optimal contact functions

Equations (4–6) define a problem of averaged nonlinear programming. The optimal-
ity condition for this problem has the form

L ¼
XN
i¼1

yiqiðT0i;TÞ 1 � l

T

� �
! max

T ;y
: ð7Þ

Let us first consider the variation of L with respect to each of the contact functions
yiðT0i;TÞ. The Lagrange function L is linearly dependent on each yi, so the maxi-
mum can only be situated at the boundary of the admissible range of yi. The bound-
ary values f0; 1g of yi, through the Pontryagin maximum principle, determine a rule
for the contact functions:

yiðT0i;TÞ ¼ 1; if ½1 � l=T �qiðT0i;TÞ > 0

0; if ½1 � l=T �qiðT0i;TÞ < 0

�
i a ½1;N �: ð8Þ

Let us take a closer look at this rule, Eq. (8). If T is less than l then qiðT0i;TÞ needs
to be negative. This means that the working fluid is in contact with reservoirs serv-
ing as heat sinks and fulfilling the condition T0i < T . In the opposite case, when T

is greater than l, the heat flow qiðT0i;TÞ must be positive implying the condition
T0i > T . The working fluid connects to reservoirs acting as heat sources. In e¤ect
the rule (8) divides the set of N heat reservoirs into two subsets of hot and cold reser-
voirs, respectively. Depending on the value of T (greater or less than l) the working
fluid in the power converting subsystem is either connected to reservoirs of the hot or
cold set.

3.2. Constructing heating and cooling functions

To be more explicit about the heat flows resulting from the above rule, the heat
transfer function for each reservoir can be split into heat input and output functions:

qþi ðT0i;TÞ ¼ qiðT0i;TÞ; if T0i bT ;

0; if T0i < T ;

�
i a ½1;N �; ð9Þ
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q�i ðT0i;TÞ ¼
0; if T0i > T ;

qiðT0i;TÞ; if T0i aT ;

�
i a ½1;N �: ð10Þ

The total rate of heat input qþðT0;TÞ or output q�ðT0;TÞ to and from the working
fluid is then simply the sum of all contributions qþi ðT0;TÞ and q�i ðT0;TÞ,

qþðT0;TÞ ¼
XN
i¼1

qþi ðT0i;TÞ; ð11Þ

q�ðT0;TÞ ¼
XN
i¼1

q�i ðT0i;TÞ: ð12Þ

The abbreviation T0 ¼ ðT01;T02; . . . ;T0NÞ denotes the vector of reservoir tempera-
tures.

Figure 2 illustrates the above construction of heating and cooling functions for an
example of four heat reservoirs at di¤erent temperatures and non-linear heat trans-
fer. Definitions (9–12) and rule (8) can be used to introduce a function of total heat
exchange,

qSðT0;TÞ ¼
XN
i¼1

yiqiðT0i;TÞ ¼ qþðT0;TÞ; if T > l

q�ðT0;TÞ; if T < l

�
; ð13Þ

which shows a discontinuity at T ¼ l where there is a jump from q� to qþ.

The heat exchange causes an entropy change of the working fluid in the reversible
compartment. The entropy flows to the working fluid are easily obtained by dividing
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Figure 2 An example of four heat reservoirs at di¤erent temperatures T01 < T02 < T03 < T04

which are connected to the working fluid via non-linear heat transfer. The heat input
qþi ðT0i;TÞ, and output q�i ðT0i;TÞ functions for each reservoir (left) are combined to total
heat input qþðT0;TÞ and output q�ðT0;TÞ functions (right).
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the corresponding heat exchange rates by the current temperature of the working
fluid. In particular, the total rate of entropy increase of the working fluid is

sSðT0;TÞ ¼ qSðT0;TÞ
T

¼ sþðT0;TÞ; if T > l

s�ðT0;TÞ; if T < l

�
; ð14Þ

where

sþðT0;TÞ ¼ qþðT0;TÞ
T

and s�ðT0;TÞ ¼ q�ðT0;TÞ
T

: ð15Þ

It is easily seen that qSðT0;TÞ is the integrand of the objective functional (4) and
sSðT0;TÞ is the integrand of the restriction (5) of the optimization problem. Since
the functions qþ; q�; sþ and s� are independent of l, and qþ; q� are additionally
monotonic in T , the relations sþðqþÞ and s�ðq�Þ are well defined and cover distinct
ranges with the exception of the origin as the only common point. Therefore we can
combine the two branches, sþðqþÞ and s�ðq�Þ, to one relation sðqÞ as illustrated in
Figure 4.

3.3. Optimal temperatures of the working fluid

The theory of averaged programming [15, 16] states that the solution for the optimal
controls are piecewise constant functions taking values from a set of no more than
l þ 1 base points where l is the number of averaged constraints of the problem. There
is only one constraint, the entropy balance of Eq. (5) in our study, and consequently
there are no more than two base points for the temperature T . These base points are
located at points where the function sðqÞ coincides with the lower border of its con-
vex hull. Figure 4 illustrates that points corresponding to a temperature T equal to
a reservoir temperature T0i are not on the lower border of the convex hull since the
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Figure 3 Entropy change rates s�ðT0;TÞ and sþðT0;TÞ for heat inflow and outflow, respec-
tively, versus the temperature T of the working fluid.

72 S.A. Amelkin et al.

J. Non-Equilib. Thermodyn. � 2005 �Vol. 30 �No. 1



contacts to heat reservoirs are switching at reservoir temperatures. This results in a
sudden decrease of the slope of sðqÞ at the kinks in the curve of sðqÞ.

Let us denote the two base points of the fluid temperature as T1 and T2. If the value
of s is located on the lower border convex hull of sðqÞ, the two base points T1 and
T2 are identical and there is actually only one base point. Without loss of generality
we now proceed with two (not necessarily distinct) base points. The Lagrange func-
tion (7) reaches its maximum at the base points so that the optimality condition
qL=qT ¼ 0, which can be written as

l ¼ qqS

qT
T

qqS

qT
� qSðT0;TÞ

T

� ��1

; ð16Þ

is fulfilled at T ¼ T1 and T ¼ T2.

Another optimality condition is determined from the equality of the Lagrangian at
the base values, Lðl;T1Þ ¼ Lðl;T2Þ, expressed as

qSðT0;T1Þ 1 � l

T1

� �
¼ qSðT0;T2Þ 1 � l

T2

� �
: ð17Þ

Restriction (5) on the average rate of entropy change of the working fluid gives an
equation that can be used to obtain the parts g1 and g2 of the process time t spent
at the corresponding base points T1 and T2

g1

qSðT0;T1Þ
T1

þ g2

qSðT0;T2Þ
T2

¼ s; ð18Þ
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Figure 4 The relation sðqÞ between the rates of entropy increment s and heat flow rate q con-
sists of two branches sþðqþÞ and s�ðq�Þ which have the origin of the graph as one common
point. The lower border of the convex hull of sðqÞ is drawn as a dotted line.
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g1 þ g2 ¼ 1; g1 b 0; g2 b 0: ð19Þ

Equations (16–19) determine the values of l;T1;T2; g1, and g2 for given laws of heat
conduction qiðT0i;TÞ, reservoir temperatures T0i and average rates of change for the
entropy s and internal energy u of the working fluid. These equations are used to an-
alytically or numerically calculate optimal solutions. Note that the optimal solutions
for the controls are not unique if there is more than one base value, because the func-
tionals (4) and (5) are independent of the order in which the controls take their base
values.

3.4. Optimal solution for cyclic systems

A cyclic operating regime is characterised by vanishing average rates of entropy s

and internal energy u. These conditions allow us to simplify Eq. (18) to

g2

g1

¼ �T2qSðT0;T1Þ
T1qSðT0;T2Þ

: ð20Þ

The ratio qSðT0;T1Þ=qSðT0;T2Þ in the above expression can be eliminated using Eq.
(17). The resulting expression is further simplified with condition (19) to

l ¼ g1T2 þ g2T1: ð21Þ

Let us discuss the meaning of this result. It is immediately clear from condition (19)
that the value of l is between the values of the base points T1 and T2. The cases
where one or two of the base points are equal to l is of little interest here since this
would correspond to zero heat input or output as can be seen from Eqs. (16) and
(17). We therefore can assume that one base value, now denoted Tþ, is larger than
l and the other one, now denoted T�, is smaller than l.

The rule (8) for the contact function implies that the base value Tþ is associated with
heat input from reservoirs with temperatures larger than Tþ while the value T� is
associated with heat output to reservoirs at temperatures smaller than T�. All reser-
voirs with temperatures in the range between T� and Tþ are therefore never con-
nected during a cycle; these reservoirs are called unused reservoirs.

Let us take a closer look at the example presented in Figures 2 to 4 to explain how
one can distinguish between used and unused reservoirs and how optimal solutions
are obtained. Figure 5 shows a detail of the sðqÞ relation depicted in Figure 4. The
two base points T� and Tþ of the optimal solution are located at the lower left and
upper right corner of the graph in Figure 5. The heat flows at these points are

qþ� ¼ qþðT0;T
þÞ ¼ qSðT0;T

þÞ; ð22Þ

q�� ¼ q�ðT0;T
�Þ ¼ qSðT0;T

�Þ: ð23Þ
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The base points are easily found geometrically by starting at the origin where the
restriction s ¼ s ¼ 0 is fulfilled and travelling in the two opposite directions on the
sðqÞ curve until the lower border of the convex hull of sðqÞ is touched. All points
on the negative branch of the graph from the origin to the base point ðq��; s��Þ cor-
respond to increasing temperatures from T01 to T�; all points on the positive branch
of the graph from the origin to the base point ðqþ�; sþ�Þ correspond to decreasing
temperatures from T04 to Tþ. This means that reservoirs whose temperatures are
between T� and Tþ, that is, outside the range (q��; s��) and ðqþ�; sþ�Þ on the sðqÞ
curve, are unused reservoirs.

In our example, the working fluid alternately operates at the temperature T� where
it rejects heat to the two coldest reservoirs (T02 and T01) and at the temperature Tþ

where it receives heat from the hottest reservoir ðT04Þ. The working fluid however
never connects to the reservoir with the intermediate temperature T03.

The parts of time gþ and g� spent at either base point can be determined analytically.
Substitute the two occurrences of l into Eq. (17) by the two instances of Eq. (16). By
considering the notation for the two base points Tþ and T� one obtains

T�qþ�

Tþq��

� �2

¼ ðqqþ=qTÞjTþ

ðqq�=qTÞjT�
: ð24Þ

Then substitute the left side of the above equation by Eq. (20) and take the square-
root to get an expression for the ratio of the parts

g�

gþ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqqþ=qTÞjTþ

ðqq�=qTÞjT�

s
: ð25Þ

The values for each part are readily derived using Eq. (18), gþ þ g� ¼ 1:
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Figure 5 The optimal solution for s ¼ 0 is the average of the two base points T� and Tþ

corresponding to heat and entropy outflow ðq��; s��Þ and inflow ðqþ�; sþ�Þ, respectively, and
leading to an average power output P.

Thermo-mechanical systems with heat reservoirs 75

J. Non-Equilib. Thermodyn. � 2005 �Vol. 30 � No. 1



gþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðqq�=qTÞjT�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðqqþ=qTÞjTþ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðqq�=qTÞjT�

p ð26Þ

g� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðqqþ=qTÞjTþ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðqqþ=qTÞjTþ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðqq�=qTÞjT�

p : ð27Þ

In summary, we can say that a cycle of the working fluid consisting of two isotherms
at Tþ and T� connected by two (infinitely fast) isentropes/adiabats produces maxi-
mum power.

4. Example: a system in contact with three heat reservoirs

As an example let us consider a system with three heat reservoirs. The temperatures
of these reservoirs are T01;T02, and T03. If they are connected to the working fluid
the heat exchange follows a linear transport law:

qiðT0i;TÞ ¼ kiðT0i � TÞ: ð28Þ

We choose the heat conductances ki to be equal and without loss of generality we
set k1 ¼ k2 ¼ k3 ¼ 1 by an appropriate choice of units. For this case of linear heat
transport, qþðT0;TÞ and q�ðT0;TÞ are piecewise linear, whereas sþðT0;TÞ and
s�ðT0;TÞ consist of pieces of rectangular hyperbolae.

This system is one of the simplest possible to discuss the phenomenon of unused res-
ervoirs. In order to do so we fix the temperatures of the hottest and coldest reservoir:
T01 ¼ 1 and T03 ¼ 4. We then vary the temperature of the intermediate reservoir T02

between T01 and T03 in steps of 0:05 and study how the behavior of the system
changes.

Following the above developed theory, the optimal cycle of the working fluid is a
Carnot cycle with two isotherms and two isentropes. Thus we determine the two
base points for each temperature T02. From those the corresponding heat flows lead
to the maximal power and the e‰ciency at maximal power which all depend on T02.

In Figure 6a the indicator function indðT02Þ shows how the intermediate heat reser-
voir is used: For low temperatures it is in contact with the working fluid at the same
time as reservoir 1, here indicated by ind ¼ 1; for high temperatures it is in contact
at the same time as reservoir 3 and thus ind ¼ 3. In between the reservoir is not used
at all: ind ¼ 0. One clearly sees the intermediate region where reservoir 2 remains
unused.

In Figure 6b the temperatures Tþ and T� are shown as functions of T02. One
sees that with increasing T02 both base values increase until reservoir 2 is switched
o¤. In the intermediate regime they remain constant and finally they increase again
when reservoir 2 is used again. Note that the base temperatures show discontinuities
at the switching temperatures: T� jumps when reservoir 2 is separated from it, Tþ

jumps when reservoir 2 is connected to it.
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Figure 7a shows the resulting maximal power output as a function of T02. With
increasing T02 the power decreases until reservoir 2 is switched o¤, then it remains
constant, and after reservoir 2 is switched on again – but now to the high tempera-
ture branch – the power increases again. In Figure 7b the corresponding e‰ciency at
maximum power is shown. In the intermediate regime it attains its maximum value
which coincides with the e‰ciency at the two boundary points T02 ¼ T01 and
T02 ¼ T03.

Finally we mention that the above discussed behavior can be understood in terms of a
Curzon–Ahlborn engine: As in the intermediate regime the system uses only two heat
reservoirs, the e‰ciency at maximum power should be that of the Curzon–Ahlborn
engine

hCA ¼ 1 �
ffiffiffiffiffiffiffi
T01

T03

r
¼ 1 �

ffiffiffi
1

4

r
¼ 0:5; ð29Þ

which it is indeed. An analysis presented in the next section shows that also the
T02 dependence of the power and the temperatures Tþ and T� can be analytically
determined.
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Figure 6 (a) The indicator function indðT02Þ. (b) The temperatures Tþ and T� as functions of
T02. The solid line illustrates T02.
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Figure 7 (a) The maximal power output as a function of T02. (b) The corresponding e‰ciency
at maximum power.
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5. Curzon–Ahlborn equivalent engines

In this section the analytical dependence of the temperatures as well as the power
production are based on the power optimization of particular Curzon–Ahlborn
engines. Let us assume that a Curzon–Ahlborn engine operates between two heat
reservoirs at TH and TL, to which it is coupled through heat conductances kH and
kL, respectively. For this engine the temperatures at maximum power are

Tþ
CAðTH;TLÞ ¼

ffiffiffiffiffiffi
kH

p ffiffiffiffiffiffiffi
TH

p
þ ffiffiffiffiffiffi

kL
p ffiffiffiffiffiffi

TL

pffiffiffiffiffiffi
kH

p þ ffiffiffiffiffiffi
kL

p
ffiffiffiffiffiffiffi
TH

p
; ð30Þ

T�
CAðTH;TLÞ ¼

ffiffiffiffiffiffi
kH

p ffiffiffiffiffiffiffi
TH

p
þ ffiffiffiffiffiffi

kL
p ffiffiffiffiffiffi

TL

pffiffiffiffiffiffi
kH

p þ ffiffiffiffiffiffi
kL

p
ffiffiffiffiffiffi
TL

p
: ð31Þ

Note that these temperatures do depend on the heat conductances kH and kL. The
maximum power also depends on the conductances

PCA;maxðkH; kL;TH;TLÞ ¼
kHkL

ð ffiffiffiffiffiffi
kH

p þ ffiffiffiffiffiffi
kL

p Þ2
ð

ffiffiffiffiffiffiffi
TH

p
�

ffiffiffiffiffiffi
TL

p
Þ2; ð32Þ

while the e‰ciency at maximum power is independent of the conductances

hCAðTH;TLÞ ¼ 1 �
ffiffiffiffiffiffiffi
TL

TH

r
: ð33Þ

In Figure 8 the lines represent the analytically obtained dependences for three di¤er-
ent choices of Curzon–Ahlborn engines: The solid line gives the results for the choice
(I) TH ¼ T03 and TL ¼ T01 and kH ¼ kL ¼ 1. The long dashed line corresponds to
choice (II) TH ¼ ðT02 þ T03Þ=2, TL ¼ T01, kH ¼ 2 and kL ¼ 1, that is, the two reser-
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Figure 8 (a) The maximal power output is shown for a three-reservoir system. Dots indicate
the optimal solution. The curves are the maximum power output of Curzon–Ahlborn engines
with particular choices of reservoirs. Solid: only the extreme reservoirs T02 and T03 are used.
Short dashed: the low-temperature reservoir is the average of T01 and T02. Long dashed: the
high-temperature reservoir is the average of T02 and T03. (b) The e‰ciency at maximal power
output is shown for a three-reservoir system.
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voirs 2 and 3 have been united into one reservoir. Finally (choice (III)) the short
dashed line has TH ¼ T03, TL ¼ ðT01 þ T02Þ=2, kH ¼ 1 and kL ¼ 2, which means
that reservoirs 1 and 2 have been combined.

It is seen that the optimal solution corresponds to Curzon–Ahlborn engines with
corresponding averages of reservoirs. Note that equating PCA;max from Eq. (32) for
choice (I) and (III) results in an equation for the lower switching temperature
T

ðIII�IÞ
02 . One finds T

ðIII�IÞ
02 ¼ c1

ffiffiffiffiffiffiffi
T01

p
þ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T01T03

p
þ c3

ffiffiffiffiffiffiffi
T03

p
with coe‰cients c1; c2,

and c3. Likewise T
ðI�IIÞ
02 can be determined.

6. Conclusion

This study considered power producing thermo-mechanical systems exchanging heat
with several (more than two) heat reservoirs via irreversible heat transfer processes.
The systems were optimized for maximum power output at a given increase of en-
tropy and internal energy of the working fluid for the case of stationary temperatures
of the heat reservoirs. We found that independent of the number of reservoirs the
temperature of the working fluid should attain no more than two di¤erent values.
These base values are time independent and are attained for a certain fraction of the
overall time available for the process. In particular this is the case for cyclic pro-
cesses. Here the optimal cycle corresponds to a Carnot cycle of two isotherms and
two isentropes/adiabats.

A surprising but inevitable consequence of this process structure is that there may
exist heat reservoirs that should never connect to the working fluid. These ‘‘unused’’
reservoirs provide heat at temperatures that are between the temperatures of the iso-
therms. Thus it is more advantageous to ignore the heat available from them than to
operate at di¤erent temperatures.
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