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Abstract

Optimization of processes can yield a variety of answers, depending not only on the
objective of the optimization but also on the constraints that de®ne the problem.
Within the context of thermodynamic optimization, the role of the constraints is
particularly important because, among other things, their choice can make some
objectives either equivalent or inequivalent, and can limit or broaden the possible
kinds of processes one might choose. After a general discussion of the principles, a
speci®c example of a model power plant is analyzed to see how the constraints
govern the possible solutions.

1. Introduction

In the context of optimizing processes by thermodynamic methods, one may choose
from a variety of objective functions, particularly if the process transpires in ®nite
time and is irreversible. Recent literature has addressed some aspects of the
equivalence of some of these functions, sometimes in a vociferous, even heated
manner [1±4]. In particular, there is an apparent controversy over the equivalence or
inequivalence of minimizing entropy production and maximizing power production.

The immediate purpose of this note is to resolve this speci®c issue by showing how
the choice of constraints determines the answer. Minimum entropy production and
maximum power are inequivalent in general but are equivalent under certain speci®c
conditions. The larger goal is to illustrate the importance of specifying constraints
explicitly and of demonstrating their importance in the teaching of thermodynamics.
Recognizing the importance of constraints in thermodynamics is hardly a new issue,
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but the regularity with which apparent paradoxes and controversies occur because of
misunderstood constraints indicates that illustrating their roles in new situations will
always have pedagogic value.

An intuitive example to illustrate the difference is driving a car under two very
different conditions to travel the same distance: in one case, if you are likely to be late
for an appointment 5 miles away, you will maximize power and sacri®ce the entropy
and energy of the fuel; in the other, if you are low on gas but must travel 5 miles to the
nearest gas station, you will minimize fuel consumption and, very likely, entropy
production, but will certainly not maximize power! If there are other constraints, such
as a speed limit or an approaching closing time at the gas station, you will presumably
choose some compromise between maximizing power and minimizing entropy
production.

Suppose we view the operation of a heat engine as an economic process that converts
fuel at its market price into energy at its market price. Presumably, we would like to
optimize the net revenue; then there is a region of operating conditions for our engine,
ranging from maximizing power to minimizing entropy production, within which all
the possible optimum conditions lie. Where we choose to operate depends on the
relative prices of fuel and power [5, 6]. At one extreme we operate the engine to
deliver as much power as possible without regard to how much fuel we waste. At the
other extreme we try to get the maximum work out of the fuel without regard to how
long it takes, i.e. to use the fuel as ef®ciently as possible.

Without further constraints, both of these objectives often have uninteresting answers
for many model systems. The maximum power objective often calls for fuel
consumption at an in®nite rate, while the minimum fuel consumption (and minimum
rate of entropy production) calls for in®nitely slow operation. This is the case for one
model [1] which we discuss below. For many other models with adequate constraints,
these objectives give rise to well de®ned, ®nite modes of operation. The surest way to
make the minimum entropy production rate problem well de®ned is to require that
something happen; otherwise having nothing happen is inevitably the best solution.

In the real world, we encounter not only a variety of objectives to optimize; we must
also deal with a variety of constraints, depending on the particular problem we are
addressing. For the example of driving a car just discussed, the most natural constraint
is the imposition of a ®xed length of the trip or the traversal of a given route; in that
case the two problems just presented become doing this trip either in minimum time or
with minimum fuel consumption. For a real automobile these problems give distinct
and ®nite solutions. Another way to constrain this problem, the choice of the
vacationers, is to impose an inequality, rather than an equality: the trip cannot be
shorter than the shortest route, but if there are factors that make side trips valuable, the
shortest route may not be the optimum.

Still another way to constrain the same problem is to restrict the analysis to a ®xed
amount of fuel consumed [2, 1, 7]. This does indeed make the problem well de®ned
in the above sense, and can also, with a suitable additional assumption, make
equivalent the particular two optima of maximum power and minimum rate of total
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entropy production. Constraining the amount of fuel consumed however is not the
only `̀ consistent'' or useful way to make the problem well-de®ned, as has been
shown in a variety of situations [6±30].

Whether the additional assumption mentioned just above is `̀ suitable'' depends on
whether the constraints specifying the process completely determine the ®nal states
of all the participating systems apart from the tradeoff of energy between a work
reservoir and a heat reservoir. If they do, then minimum entropy production and
maximum power are indeed equivalent. This follows immediately from the equality
form of the Second Law [31±33]

TL�Suniverse � ÿ�Auniverse �1�
where TL is the temperature of the atmosphere (environment), S is the total entropy,
and A is the availability with respect to the atmosphere. We separate �Auniverse into a
portion going to the work reservoir, a portion going to the atmosphere, and a term
�Aspent which includes the availability changes of all other systems. More speci®cally,

�Auniverse �
X

i2fall systemsg
�Ai

�
X

i2fall systemsg;
i 6�Work Res;
i 6�atmosphere

�Ai�

��AWork Res ��Aatmosphere

� �Aspent �W � 0 �2�

where �Aspent is the sum of �Ai over all systems other than our work reservoir and
the atmosphere, W equals �AWork Res, and

�Aatmosphere � �Uatmosphere ÿ TL�Satmosphere

� 0 �3�

since availability is counted with reference to the atmosphere. Using our de®nition of
�Aspent, we can reexpress equation (1) as

ÿ�Aspent � TL�Suniverse �W : �4�

This expression for �Aspent makes it clear that once �Aspent is ®xed, maximizing one
term on the right hand side of equation (4) and minimizing the other achieve the same
thing. Specifying the initial and ®nal states of all systems other than the work
reservoir and the atmosphere, but including any reservoirs that supply availability,
speci®es �Aspent and thus maximizing the work W (or work per unit time _W , or
average work per unit time) is equivalent to minimizing the total entropy changes
�Suniverse (or the rate of entropy change _Suniverse, or the average rate of entropy
change, depending on which variable one wishes to use). The equivalence found
between these two objectives in references [1±3] comes about by ®xing _Aspent whose
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value is determined by the assumption that fuel is consumed at a given rate and the
combustion products cool to the temperature of the atmosphere. It is, however,
neither necessary nor, in many situations, relevant or desirable to specify the ®nal
state of the surroundings ± fuel not burned today can usually be saved for tomorrow.

2. A Model Power Plant

To take the discussion to a more concrete level, we analyze a model of a power plant
[1] shown in Figure 1. The irreversible heat engine for our model power plant works
between a hot stream having temperature TH and mass ¯ow rate _m, and a heat
reservoir (the environment) at temperature TL [34]. The model consists of a power-
producing compartment and compartments that provide heat input and removal to
drive a power-producing cycle. The power-producing compartment operates
reversibly and is connected to the hot stream through heat conductance UA, in the
notation of Ref. [1]. In the course of the heat exchange, the hot stream is cooled to
TH;out while transferring the heat ¯ux

_QH � _mcp�TH ÿ TH;out� �5�

to the power producing compartment at temperature THC. The parameter cp is the
speci®c heat capacity of the hot stream. Following Bejan [1], we also take this heat
¯ow to be equal to

_QH � UA�TH;out ÿ THC� �6�

which re¯ects the ®nite heat conductance between the hot stream and the power
producing compartment [35]. Eliminating TH;out from these two equations leads to a

Fig. 1. Model power plant described in section 2.
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heat conduction law relating the temperature of the working ¯uid and the initial
temperature of the hot stream,

_QH � _mcpUA

_mcp � UA
�TH ÿ THC�: �7�

The power plant produces work at the rate _W and therefore rejects heat

_QL � _QH ÿ _W �8�
to the atmosphere at temperature TL, and consequently with availability of zero. We
assume reversible operation inside the engine working between THC and TL giving

_W � _QH 1ÿ TL

THC

� �
: �9�

Expressing this entirely in terms of the temperatures with the aid of equation (7) gives

_W � _mcpUA

_mcp � UA
TL 1� TH

TL

ÿ TH

THC

ÿ THC

TL

� �
: �10�

Next we evaluate the entropy production in the process by summing the entropy
changes of the participating systems. Since the engine undergoes steady operation, it
has no net entropy change. Thus we need to evaluate only the entropy changes of the
hot stream and of the atmosphere. Here again there seems to have been some
confusion in the literature concerning ways to do this evaluation, which we take up
more fully in the next section. For the present, following Bejan [1], we assume that
the hot stream which exits the heat exchanger compartment at temperature TH;out is
rejected into the atmosphere at temperature TL, and thus any residual availability
remaining in the stream is completely degraded. This involves an additional heat ¯ow
_Qe � _mcp�TH;out ÿ TL� from the hot stream to the atmosphere at temperature TL. The
total entropy production then becomes

_Suniverse �
_QL

TL

�
_Qe

TL

�
� _m�sstream�TL� ÿ sstream�TH��; �11�

where sstream�T� � s0 � cpln�T� is the speci®c entropy of the hot stream as a function
of the temperature. Substituting from equation (8), we have our desired expression for
the total rate of entropy production,

_Suniverse � ÿ
_W

TL

�
_QH � _Qe

TL

� _m�sstream

� ÿ
_W

TL

ÿ _m
�ustream ÿ TL�sstream

TL

� ÿ
_W � _m�astream

TL

�12�
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where �ustream and �astream are the speci®c internal energy and availability changes
of the stream cooling from TH to TL. Note that this is essentially equation (1) again
for this speci®c example.

Equation (12) shows speci®cally that once the burn rate _m is speci®ed, we are left
with a situation of the type described at the end of Section 1, with equivalence
between minimum entropy production rate and maximum power. At ®xed _m, we have
only the degree of freedom THC in _W in equation (10). This gives the familiar result

THC �
�����������
THTL

p
; �13�

with the ef®ciency � � _W= _QH at maximum _W given by the Curzon-Ahlborn

expression 1ÿ �������������
TL=TH

p
.

Once we reduce the problem to this one degree of freedom, the important ability to
vary the rate of fuel burning, maybe at lower ef®ciency, is missing. If we allow the
burn rate _m to vary, the situation is very different. In that case maximum _W is
achieved for _m � 1 while minimum _Suniverse is achieved for _m � 0. If the problem is
better speci®ed, for example by requiring that _mmin � _m � _mmax, maximum power
occurs for

_m � _mmax; THC �
�����������
THTL

p
; �14�

while minimum entropy production occurs for

_m � _mmin; THC �
�����������
THTL

p
; �15�

These are typical, if trivially simple, examples of boundary extrema, in which the
optimum conditions correspond to operating at a limit of a constraint.

3. Ways to Evaluate

One central feature of this example involved the way that we evaluated the availability
of the hot stream as it exits from the heat exchanger compartment. The analysis above
assumed that all of this availability was discarded. If this is not the case, the conditions
of minimum entropy production rate and maximum power can be different, even for
®xed _m. There are many examples for which it is inappropriate to include the
discarded availability term _Qe=TL. This is the case, for example, in solar power plants
in which the hot stream can be `̀ recycled'', i.e. heated again by the sun rather than
discarded into the atmosphere. The term is also inappropriate for a device operating
from a reservoir. In this case a simple heat conduction to the power producing
compartment does not require the disposal of Qe to the atmosphere. The point of view
in Ref. [1±4] is that there is only one `̀ freely variable'' reservoir (the atmosphere), i.e.
any other reservoir needs to be restored by burning fossil fuels. This in turn brings us
back to the earlier analysis including Qe=TL. Restoring the other reservoir is by no
means a necessity. Geothermal power plants are industrial examples of this mode of
operation. A dramatic example suitable for demonstration purposes is provided by
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James Senft's palm-size Stirling engines [36] which can run for about half an hour
using a small glass of ice water as the other reservoir.

If we do not include the discarded availability term in equation (12), the entropy
production rate becomes, instead,

_Suniverse � _QL=TL � _m�sstream�TH;out� ÿ sstream�TH��
� _QH=THC � _mcpln�TH;out=TH�: �16�

The value of THC which minimizes this for constant _m is certainly different from the
one given in equation (13); it gives an optimal THC � TH which results in zero values
for _QH and _W and so corresponds to the `̀ nothing happen'' solution mentioned in the
®rst Section. To get a more meaningful result, we must require that something
happens. Many studies have done just that for reciprocating engines by requiring that
the engine carries out one cycle, sometimes in a ®xed period [6]±[9], [12, 13, 16],
[18]±[24], [27]±[30]. In the present example this has no easy counterpart since the
working ¯uid in the engine has been abstracted away. One can expand the model
however and require a certain amount of the working ¯uid to traverse the cycle. Since
this would lead us in a direction already well-explored by the references just cited, we
do not pursue this direction further here.

Another important example in which the entropy production should be counted
differently is cogeneration power plants. In these plants the waste heat is used to heat
some cold stream, typically for district heating. Consider a modi®cation of our
example shown in Figure 2 in which the exhaust stream at temperature TH;out is fed to
a second heat exchanger with conductance U2 A2 which provides contact with a stream
coming in at temperature TL ¯owing at a rate _mL with constant speci®c heat capacity.

In this model, some of the availability in the hot stream is stored in the cold stream
rather than dumped into the atmosphere. While _W remains unchanged, the entropy

Fig. 2. Model of a cogeneration power plant. The exhaust stream at temperature TH;out heats a
cold stream at TL.
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production rate now becomes a sum of three terms representing the rates of change of
the entropy of the atmosphere, the hot stream, and the cold stream:

_Suniverse �
_QL � _Qe2

TL

� _m�sstream�TL� ÿ sstream�TH��
� _mL�scoldstream�TL2� ÿ scoldstream�TL�� �17�

where the exhaust heat _Qe2 is now given by

_Qe2 � _mcp�TH2 ÿ TL� �18�

and TL2 and TH2 are the temperatures of the two streams exiting from the extra heat
exchanger used in the cogeneration. The equations describing this second heat
exchanger are straightforward but messy. At ®xed _m, optimization with respect to THC

is possible to carry out analytically although the procedure involves solving a cubic
equation and yields a rather long expression. The resulting Tmin _Suniverse

HC is always
between Tmax _W

HC and TH , approaching these values only as the constrained value of _m
approaches in®nity or zero, respectively. Varying _m gives the familiar result that for
minimum _Suniverse we want _m as small as allowed while for maximum _W we want _m
as large as allowed.

Which modes of entropy production one counts depends on the purpose of the study.
In some problems, minimum entropy production rate and maximum power are
equivalent objectives; in others they are not. One suf®cient condition for the
equivalence of these two objectives is that the ®nal states of all participating systems
except one work reservoir and the atmosphere (de®ning availability) be given and
®xed. In this case, equation (1) ®xes the sum of _W � TL

_Suniverse and maximizing one
term is equivalent to minimizing the other. If the ®nal states of other participating
systems are not ®xed by our constraints this need not be the case. In fact, it follows
easily from equation (1) that either all three of the quantities _Aspent; _W , and _Suniverse are
stationary at a point xopt in control space or at most one is. To see this, consider a point
xopt where one of these quantities is stationary and hence its directional derivative in
every feasible direction is zero. Our result follows by differentiating both sides of
equation (1) and noting that two of the three terms cannot vanish without the third one
vanishing. Thus if there is a feasible variation allowed by the constraints on our
controls which changes one of the three terms to ®rst order, it must also change at least
one other one. In particular, conserving fuel changes _Aspent to ®rst order and, as long as
such variations are not ruled out by the constraints of the problem, power and entropy
production rate cannot both be stationary for such variations.

4. Conclusions

We have shown that the equivalence of minimum entropy generation and maximum
power is limited to rather special constraints and ways of counting the entropy
produced. There are certainly situations where these constraints and ways of counting
are appropriate but there are many others [37]. One can however give a general rule
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of thumb. Minimizing the rate of entropy production and maximizing the power
both push an operation toward minimum waste along any axis whose scale
measures wastefulness. However these same optimizations push in opposite
directions along any axis whose scale measures frugality. This rule of thumb is the
basis of Avraham Nitzan's characterization of minimum entropy production as the
objective of the conservationist and maximum power as the objective of the
industrialist. The two versions of the toy power plant model demonstrated how this
comes about.

One important reason for studying thermodynamic processes in ®nite time is to pursue
the quest for understanding the limits of what can physically be achieved in such
processes quite aside from any direct implications for engineering. The simplest
analyses of this kind reveal how different sources of irreversibility individually
in¯uence the limits to power generation and entropy production. It is now clear that
some systems have well-de®ned regimes in which one or another source of
irreversibility dominates and sets the limits of performance (12); in such systems,
the results of a complex analysis including all sources of irreversibility tell us
essentially nothing more than separate analyses based on individual sources of
irreversibility. We may expect other systems to show richer, nonlinear behavior, in
situations in which different sources of irreversibility interact with one another.
Whether simple or complex, these limits serve to quantify the intrinsic limitations on
energy conversion and transfer in ®nite time.

We conclude by reminding the reader that thermodynamics is about much more than
power plants and engines. Its domain includes limitations to the performance of such
diverse processes as lasing, photochemical synthesis and stellar collapse. Many of
these limitations are obtained by calculations which model the processes as heat
engines [29, 27, 28]. Thus there is much to be learned from evaluating limits to
energy conversion while considering a host of possible loss mechanisms, subject to a
host of possible constraints and optimizing a host of possible objectives. The fact that
synthesizing these possibilities into a uni®ed scheme still remains a challenge is not a
reason to restrict the set of allowed problems. Rather, it is a challenge to continue the
development of thermodynamics as the physics of limits to what is possible.
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